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Abstract

Selected topies in the theory of dynemical chacs in Hamil-
tonian systems are discussed, ineluding the neture and mecha-

niam of the chaos sa well as its peculiar statistical Droper=
ties in presence of the chaos border with a critical scale-
~invariant structure. Am an example, two simple models deseri-
bed by two-dimensional mappings are considered.

g

1. Introduction

The d cal chaos, or intrinsic stochasticity, means
the random (irregular) motion of & completely deterministic
(dynemical) system which is free of any noise, either extermal
or internal. The discovery amd explanation of those controver-
gial processes has been one of the most fundamentel recent
achievements in the classical mechanics. The dymamical chaos

should net be confused with the motions described by the so-

-called stochastic equetions which represent just the effect
of noise upon & dynamical system. Sometimes dynemical chaoca
may be useful, e.g., for particle heating by an electromagnetic
wave in plasma {(see, e.g., /1/ for review). However, in most
casesd 1t is hermful as it means a global instability of motionm,
248+, the collisionless leakege of particles out of a megnetic
trap /2/.

The account of dynamicel chaos is most important in aimp-
le syastems with just a few degrees of freedom. For example, a
#ingle particle in magnetic trap has only three degrees of
freedom or even two, in an axisymmetric megnetic field. Ano-
ther important exemple is the geometry of magnetic field itself
whose linea can be considered as trajectories of certain dyns-
mical system. For all those systems one cannot eimply introdu-
ce gome statistical assumptions, e.g., ergodicitiy, as is usu-
glly done in the statisticael mechanics, Instead, it is necesas-
ry to study the dynamice of a particular system, and to find
dut if ite motilon is regular or chaotic. This depends on the
gystem parameters as well as on the initial conditions of its
motion. In a conventionel mirror trep, for example, s domain
of chaotic motion does always exist near the adisbatic loss
cone, expanding the latter (Fig. 1). For a harmonic magnetic
ghape, and for a sufficiently small particle velocity 7+ the
chaos border is given by the relation /2/
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Here dﬁo is the pitch-angle width of the cheotic layer,
Fg the gyrocenmter radius, ¢, the gyrofrequency (all in the



migplane), A the mirror ratio, and 2L is the distance Letween
mirrors.

Generally, the statistical properties of chaotic moilon
are not as pimple as in atanderd statiatical hypotheses or in
atochestic equationa, e.g., the usually assumed exponential
correlation decay. The complexity of dymamical chaos is rela-
ted, particularly, to the chaogs border in phase space whose
viginity has an intricate hierarchical atructure including do-
mains of both cheaotic as well as regular motions. In the above
éxample of a magnetic mirror trap it reaults, particularly, in
a nonexponentisl relaxation (leakage) of particles. It is qui-
te likely that just this effeect had been obgerved in the expe-
viments by Varma and coworkers which were reported at the Con-
ference in Nagoys f3/, and also were discussed then in Rosen-
bluth's summary. An example of that relaxation (after Ref. /4/)
ig depicted in Fig. 2. The suthors interpreted it in terms of
the sum of exponentials with different characteriastic times

2; » However,; reacaled as a log-log plot; the data fit also
fairly well a power law dependence. Below we ere going to ex-
plain why the latter dependence is to be expected (Sect. €).

2a The Neture of Iymamicol Cheos

Since the time of Poineare it appeared intuitively clear
that irregular dynamical motion is explained by itas strong
(exponential) loenl instability. However, the progresa in the
modern ergodic theory has led to o paredoxicael conclusion that
guch an instability by itself does not imply almost any sta-
tistical properties of the motion. Partioculerly, the correla=-
tion not only decays nonexponentially, in general, but may
even not decay to zero at all if the motion spectrum possesses
a diserete component. Of course, the exponential instability
of chaotic motion does imply some continous component in the
spectrum unlike regular {(quasiperiedic) motion whose spectrum
is purely discrete.

The above controversy is resolved in the new, algorithmic
theory of dynamical systems on the basis of the exactly for-
mulated mathemetically (and perfectly reasonsble from the phy-

sical viewpoint) concept of random dynamical trajectory (see

R ——_ . e

/5,6/ and an elemernuary presentation in Ref. /7/). The princi-
pal point here is the plporithmic independence of any suffici-
ently long segments on such a trajectory. It means fmro=:iMmili-
ty, in any way, to caloculate {prediet) a single zegment from
the ocbgervation even =ll the rest together. In oiher words,

the information %/ conteined in & randem trejectory (as re-
corded to any finite accurncy £ . of course) grows in vropor-
tion to 1its length:

. Yk
i;/(.-.l"!"." -..,'L/:/ =

T >0 (241}
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where the K== iropy
e T A
ﬁf“ﬁ b Z il e (2.2}
describes the mean rate of the local exponential .netebility,

and Amx = f1+ > & . Fote that mean inforzation flow (2.1)
does not depend on the accuracy £ . Indeed, decresge in £ dmp-

lies an_;naraaag of the algorithmic correlaticn time
y W' [fngl. Bence, J(E}/IE1 ~ifné] &, ~ |

An important corollary of theae simple consideraticns is
the existence of a continuous transition between deterministic
and random behavior of & chacotic trajectorv. The tranzition is
deseribed by the rendomness parameter /B/:

— It IE
B (r) = il (2.3)

= ; oA
A temp®rary, or transient, determiniam ( % <= fiti < Ty )
gets over eventually to the asymptotic randommess (.2 {1 |

Wlyr Ty ).

On the other hand, the guasiperiodic (regular) motion is
characterized by & line~r in time (weak) instebility (see, e.f«,
Ref, /10,9/). Hence, for a regular trajectory ﬁ??ﬂ'* éﬂ:ﬁﬁﬁ :
Since W&/ [l =2 ¢ oz & >+ o , the prediction of any tru-
jectory segment is poasible from the chaervation of a neighbo-
ring segment with o comparable langth‘].

*) ‘the opposite conclusion due Lo Eern f10/ on unpredletabili-
ty of = quasipericdic trajectory is related ‘o the fact thet he

congidered predicticn from the initial conditions umly, and not
irom a finite trajectury segment.

5




An interesting and instructive example of the interplay
between determiniastic and random features of dynamical chaos
iz the electron motion in & "braided®™ toroidel magnetic field
with random lines /11/. Configuration of such a field is cha-
racterized by the radiasl diffusion of magnetic lines:
((dr‘}'zj o £ where £ is the 1ine length. If one would com-
pletely neglect both the electron seattering and all the fini-
te gyroradius effects the electron diffusion were the same
with f:=fﬁ;ﬁf. However, if only the abattering is taken into
aecount but not the drift, nor e shift of guiding center, then,
by virtue of motion reversibillity along a mﬁgnﬂtic lire (even
a chantiqlunai} subaaquanE to a change of 1@ algn, {Zﬁa e
and <A™ o /11/. Also, generally, the chaotic motion is
reveraible, end its statistical relaxation proceeds for both
directions in time ga fﬁrw F12/.

All the complexity of & random trajectory, i.e. ell its
past and future chacs, is completely contained in the exmctly
fixed (imaginarily!) initisl conditions. It means that the ul-
timate origin of dynemicel chaos relates to the contimuity of
phase space in classical (but not quantumf} mechanics,. The
proper dynamicel system is only to provide the exponential in-
gtability ( h> C), and therefore it may be very simple that
atill appears so paradoxical.

3. Statiatical Prﬂpertiea.nf Hemilionian Dymamica

For a trajectory of dynamical aystem to be random it is
nacessary and sufficient, sccording to the Alekeeev-Brudno
theorem /5,6/, that b > 0, or equivelently, that the maximal
Lyspunov exponent /), , > 0. This is spparently the simplest
numerieal test for randommess. However, the randomness by it-
pelf implies only that the very concept of trajectory loses
its direct physical meaning like that of unstsble equilibrium
or of unstable periocdic orbit. The dynamicel chaos has to be
described in terms of atatistical mechanics, yet its statisti-
¢al properties may be very different. They are determined, to
& large extent, by the behavior of correlations or, correapon-
dingly, by the type of motion spectrum. A simple ("routine")
statistic relates to the exponentisl correlation decay and to

nonsinguler spectrum at &) = 0. In this cese a simple statis-
ticel description by means of a kinetic (perticulsrly, diffu-
sion) equation iz eppliceble. A complicated ("abnormal") sta-
tistic correeponds, in particular, to & power law dependence
of correlations as ¥ —» + a » and of spectral denaity as

& —» 0. A well known example of such s behavior is the 1/c0
noise.

As an exemple we shell consider g "simple" model 13/
deserd - (7,8} (7 d)
'::cr bed by the so-called standerd mapping el>(7,8)

e

J=J+ K Sing; J:.g*a&' (3.1)

Here ; +» & ere action-phase variables, and X is the only
perameter of the model. Many particulsr problems in nonlinear
dynamica can be approximately reduced to this map, 8:g., the
particle motion in a mirror magnetic trap /2/ (for other examp-
les, particularly, related to plasma physica, sees Ref. /1/).

Por K> 1 the motion in iz described by a eimple dif-
fusion equatien /13/, the diffusion rate being a complicated
function of K though /14/. However, for special values of
E 2 2% n, where integer n g 0, the motion statistical proper-
ties become much more intricate F15=1T/. In particular, the
diffusion rate, formally determined onumerically, growa indefi-
nitely ns the motion time incremses. The origin of such sta-
tistical "aunmaliea"*} relates to the chaos borders surroun-
ding the domains of regular motion which occur for those speci-
al K. Notice that the chmoe border is mot the only origin of a
complicated statistic. Apparently the most simple and graphic
example of the latter is the so-called "gtadium" model f18/.

In case of a regular motion the etatistical description
geema, at the first glance, to be cowpletely inadequate. Howe-
ver, the guestion proves to be more "{ricky". Ts gee this con-
gider for s moment the quantum Gynamica, i.e. the evolution of
a state vector W2, Here the motion (energy) speztrum is pure-
ly digerete for any conservative system bounded in the phase

]

The quotes here intend to emphasize that thore pro erties
are enomalous to us, due to our previous &xperian-;epinpstudqr-
ing random processés, rather than to the Rature.



space. Hence, it appears to be no room for the dynamical chaos
in quantum mechanics. Yet, the correspondence principle requi-
res some transition to the clulinnllmtiun. including a chao=
tic one s well. The resolution of this apparent contradiction
has been given in Ref. /19/. The main idea is in imitation of
some statistical properties of the classical chaos on a finite
‘H'.III- scale of the quantum motion. In other words, in gquantum
dynamics a teuparhr:r. or transient, chaos is poseible in apite
of discrete spectrum. But the seame is true for a regular clas-
sical motion as well! In this respect, I would like to attract
reader's attention to & series of interesting pepers due to
Ott and coworkers /20/ dealing with some problems in plasma
physics. However, it should be mentioned that no limitations of
the classical chaos due to spectrum discreteness are taken in-
to account in these papers.

4. Resonsni Theory of Critical Phenomensa

The so-called eritical phenomena ocour, particularly, at
the chaoa border in phase space. Firat, we consider a simpler
problem sbout & critical KAM (invariant) curve, e.g., one in
the standard map (3.1). A EAM curve is specified by the mean
frequency <GJ> of phase rotation, or by the rotation number
(frequency ratic) ¥= {w> /27 . For K = 0 the curve
3‘@'} =27 »r 18 just a straight line on the phase plane. If
i # 0 the curve is distorted: J(#/=J, (€ K, ¥/ . 1t vecomes
critical at certain K'= K (¥) when it is destroyed and bifur—
cates into some disjointed Cantor set, or & cantorus after:
Percival (see Ref. /21/), embedded into & narrow chaotic layer.
The study of critical KAM curves had been started by Greene
f22/, and waa continued by many other authors, especially tho-
roughly by MacKay /23/. Here, the resonant theory of critical
phenomens /24/ based upon the analysis of resonance structure
near a critical KAM curve is briefly presented. One advantege
of this approach is the possibility of epproximate analytical
calculation of hany scale factors whose exact values are obtai-
ned only numerically. The resonant theory pravides also somé
physical insight into-the eritical structure and, particularly,

-
leads to various relations between ite parameters /24/ }. The

-results presented belew have been obtained in colleboration

with D.L.Shepelyansky /17,26/.

The structure of a critical KAM curve is intimately rela-
ted to the arithmetical properties of ita rotation number in
the continued fraction representation

¥
r-: ST i_“___ E I-/Hf"""_ﬂi -'I"_'!_; ___-j (4-1}
b, —— _.,i_.
oo, =5
e LATRE
The convergents of this expansion
Yu= ”r:_'r — (m\r;'--: ") (4.2)

Fa

provide the best rational approximetion to ¥ with denominator
Q< Qr From dynemical viewpoint the periodie trajectories
with rotation numbers ), correspond to the prineipal (etron-
geat) resonances in a vicinity of curve V . They are outlined
in Pig. 3 where the critical curve with ¥='7 is chosen as the
axis of the mean phase <4> (<& =2Z2r. ) . Por each resonan-
ce one period of its separatrix is shown (there are r.‘;,mﬂuah
periods over the periodiec trajectory, i.e. within the phage
interval <&, = ¢ =25k Actually, esch separatrix is embedded
in a narrow chaotic layer, so that the whole critical structu-
re i3 a capricious mosaic of both regular and chectic motion
components with s comparable measure.

The principal resonances determine the structure for cor-
regponding scales of ever diminishing size which converge to
the eritical curve. The simplest critical structure relates to
the so-called "golden" curve of F=1ry = T A P
= (VF-1)/2 = 0, 678 (see Rets. /22,23,21/"). Asymptotical-
1y, aa H.-» oo (.g."-—r o) all the scales here are exactly ai-
milar since the scaling factors are related to the ratio

*) Still another approach to the study of criticel KAM curves
hes been proposed earlier and is developing by Escande and co-
workers /25/. Basentially, this theory is alsc a resonant one
making use of the two-resonance approximation.

=) This, exceptional in other respects, curve ia believed to
be the strongesat one against perturbation, i.e. it gets dest-
royed at the biggest K /22/.



$.=G./%.. , o denominstors for successive convergents nhj.n,h
rapldly approaches the limiting value 54- =4/ r':i-r = f+ rz 7
1.618.

The complete relationship of the structures at different

scales is given by the so-called remormalization trensformati-
ons which form a group. Such & renormgroup may be considered

as an abstract dynamical system in the functional space of va-
rious mappings where the standard map, for example, is just a
peint. The serial scele nmumber # is then a substitute for the
time., This rencrmtime is thus proportional to the logarithm of

characteristic size g”-z or of physical time gm for a given
acale 4. (see Ref. /24/).

In the problem under consideration the renormgroup, as
well as the sequence of principel resonances, ie discrete so
that the corresponding ebstract dynemical system is slways o
mapping (of the phase plane structure on two different scales).
We shall eall it renormmep for brevity. The asymptotic eimila-
rity on all the scales, or gcale invariance, is the simpleat
dynamics of the renormmap, namely, a fixed point of saddle ty-
L

A convenient and graphical way of presentation for a cri-
tieal structure is the Fourler apectrum of motion on the criti-
cal curve or in its immediate vicinity. Por e periodic trajec-
tory, the Pourier amplitudes’ @; are defined as follows:

LGu/2]
9{&)=2rr;f+§ a, Sin(2a1Y,[¢) (4.3)
=4
where 7 is discrete time {number of map iterationa); the

motion period; Iy, = P, /g, the rotation number, and (Y=
f(fq, <4/2  the moduli of motion frequencies. By Tirtuu

iF ity Sdms A acrebanuan mnd af & /(%) entisymmetry the amplitu-

des satisfy the relation G.J » z'ﬂy'

The largest smplitudes correspond to principel resonances,

and, hence, to the motion frequencies, or detunes from exact
resonance ( M =¢ )/

10

They are -apprqximatel:.r described by the following empirical
expreaslon

%_ expiﬂq,"ﬂ(f{’& r,,J—K'G]}:-.F(K', ) (4.5)

L=

Here we have defined the reduced emplitudes
5 = o5 J"M 6
"‘:Ph :'%u ]““]'rfﬁ-q”gﬁ-f (4:8)

and nome effective local perturbation

1{ (K, r.)= K+ K {1= 3} (4.7)

which is fairly well approximated, according to our mumerical
data, by the linear dependence with "gradient" k = 0.211.
Note that BEq. (4.7) holds for the set of cnnvergents P> I
only as function K, (r) is epparently everywhere singular
{fractal) sccording to Ref. /28/. We make use of a modified
fraguenoy

g:: -j: _ﬂ‘ntﬁ‘?i}/' {4.8)

which provides a better consistency of numerical datm st large
Y . Eqs (4.5) i@ similar in etructure to but diffaerent from
one glvon by Eascende (see Ref. 2.

The ampirical exponent Af == 1.13 in s_q: {3.6] tokeas
pecount of the dependence oh reduced datune v ‘F.}‘ V. while nu-
merical factor (& 1.2 relates to deviationa from the criti-
oal condition .k‘f = K where J"(’ m 0.97163540631... in
Greene’s nri’aical ,ﬂ< valus for r', . /22,23.,27/. Pinally,

,the limiting emplitude, which charascteérizea the oritical scale

invarisnce, or the fixed point of rencrmsap, i equal numeri-
cally . to

A_=lgal _=o+6736..; IVFgVl =1 (9
et

A convergence |34l ¥ /{d{, ia shewn in Pig. 4. The
numerical data havo been obtmined from the pericdic trajectory
of $N- 46368 ( I!'N- 'l'i,[z 2 x 107'Y), Notice asymmetry between

1




two sides of the critical curve., In part, it is due to alterna-
ting detune hr“;_”_ « Yet, for n F‘-‘ 8 the detune oscillati-
on becomes negligible (it decays as q } but the asymmetry
gtill persists because of the gradient term in Eq. (4.5) which
decrenses as q".

Fourier amplitudes &, of a eritical curve are closely re-
lated to the phase plane structure of nearby resonances. Consi-
der Fourier amplitudes of the perturbation U (in Hamiltonian)
corresponding to frequencies y'h of the critical motion. As
the latter is a driven oscillation it is reasonably to assume
a, e, /Y + Using Eqs. (4.5) and (4.6) we arrive at

V= Gl g3, = g2 05) F (i) 019

Here [Iﬁm(rj‘]- 1.047402 ... im the limiting value of phase ad-
vance ‘Fn= C;"_n _{Zh for the small oscillation with frequency.
0.,.= G Vi,  sbout periodic trajectory ¥, .« Phase ( is
related to the stebility parameter of periodic trajectory, or
S 2. ¢

Greene's residue .Q = Sin (90,«’2). In particular, ol .J'c?j =
= 0.2500888 ... /23/. This is also an important characteristic
of scale invariance, and it is related to .rﬁ;’m by

5 % £ (4.11)
F?N(r‘ﬁ): e Pﬂa (";?,]_- o435
in a reasonable agreement with numerical value (4.9) from the
Pourier spectrum.

The sbove relations also permit to .caleulate the set of
regidues ,Q (or ll,-!J ) for periecdic trajectories F, at a given
K or.that of K, for a given A . Prom the former data in
Ref. /27/ (see Eq. (3.21) there) the factor (=-4#, £ﬂ521._‘|1
which is rather cloge to the above value. However, the gradient
I|'-(": , 88 obtained from the amme data in Ref. /23/, turnas out to

be quite different

x—-_ﬂi!;— - o 4
J{E— CR. v 4 35% (4.12)

where we have used C = 7.11; and where 52 2 0.0439 i8 &
gonatant in the steandard scele invarience relation /23/:

12

=i

Ek = Eﬁ -+ ER' CFE N (4.13)
Here the convergence parameter
Qu_' lEll—f

]

—r 3 x-—%z-i.ﬁ'fﬂ (4.14)

"
[ Wd L
according to the resonant theory, ﬂuc ite numerical value is
R =1.635 /23/. The residue dynamics in n is also depicted
in the upper part of Fig. 4 (after Ref. /23/).

Assume now that the above relations hold not only for the
"golden mean" =Ty but also in some neighborhood {in K, motu-
ally). Then, one immediate conclusion from Eq. (4.10), m:-u
we keep the same value for (0 = @ (r'}.. would be a shift in
E (r*') for those special /= (m ", eae ) = (V' i) /2
'lhiuh obvioualy retain an exact scale invariance /25/. The
ghift is due to a different limiting value of the detune

o A
!ﬁ?v;lgﬁ = M2+|', {41153

S
4 5
Em(r‘ )= Gh-?) _'_‘?a-(’;w’ (4.16)

This is the case, indeed, at least, qualitatively! Accor-
ding to numerical data in Ref. /27/ K. (r%) = 0.23%0.01
( K.(r®) = 0.9574..:) while Eq. (4.16) gives K, = 0.20. In-
stead, we may calculate A value to obtaim: Af = 1.64%0.18,

whence

3. [Renormalisation Chaos

Representation of the renormgroup as a dynamical system
is instructive, particularly, in that it suggests a more rich
¢ritical phenomensa than just a fixed point, l.e. exact scale
invariance. The opposite limiting case would be a chaotic dyna-
mices that is a random variation of critical structure from one
gcale to the next. Such e possibility was discussed in Refs.
f17,29/, and is implicitly present in Ref. /23,25/.

As we have seen in the previous Section the critical astruc-
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. ture depends, particularly, on rencrmalizstion dynamics of de-
tune (Y54 v ), . The latter is determined, in turn, by arith-
metical properties of the rotation number i . It iz emay to

verify that the dymamics of frequency ratio (L, =— \:’u/ﬂk,i (>a)

is degeribed by the mapping’

Uy,

I

med 4 ¢ .'F—é_—-j -, (5.13
P R

with the initial .= "= (M, #, ‘eu M, ...}, Then, for
: ;
almost any I the aeguence {I{fﬂj’ ia random since itz ES-ent-
— AEEnd 0 " &

ropy h = {see Ref. /12/). Apparently, the
seguence -{k-’-'n__? is also random ms well as {4, } ( {szm,, R
o+ (;*1_2}.'3.:1& {ghuﬁg too. The dynamiecs of i, can alamg be
described by the mep (5.1) using the ratics 1% — B e
Then, backwerds in rencramtime #Ho

S med 4 +
=
with the "final" condition W% = 4/w, and rationsl 1% ° on~
ly. The "initisl" conditlon for map (5.2) is irratiomsl J,
with reversed sequence of the slements Mte oy Sinee the met of
such aumbers has the full wmeesure, the sequemce 5, has the
aame statistical properties as those of iy, ¢ 8nd the aversge
*atic of successive denominstors is given by (gee Ref. /fi2/):

/2
2 g9 (5:3)

L ]

{ y :
f}:j: m, (5.2)

Cnsd=-t. o by _v9uy_"
< Enis> Sy Smga {1H>,-e

4n example of the criticel étruc-.ture for & rendom
F= Py = (£,4,4,4,2,4,2,4,4,1,2, 44,42 4/"]:'5“_-_1}
:ﬁ). j?ﬁ&g?ﬁgl.‘?--e e : »

is sleo depicted in Fig., 4, The date have been cbtained from

the pericdic trajectory with § = 10612 ( ]'.r;r - rmﬁ ] 10"3}-'_'_
at K = 0.9618704. The change in renormsliszation behavior is-

striking: & big Fourier amplitude variation is apparently irre-
gular, and shows no obvious trend to decay. The same is true
for K, veriation as well. Note that ¥ is close to snother
"golden" =14 — P":j = (2t leeut = 0.382. In Fig. 5 the depen-

14

dence of'ftl&.f ¥a. ]'.-"57(;,;! is'plotted to mee if power law (4.6)
#till holds. It does, indeed, to the ecouracy of s few per cent,
ag the least asguere fit shows. Moraover, the pmﬂtmﬂ 2537
‘and especislly ,‘?Mfr‘;ﬂ”b]gﬂ.iﬁﬂ are close to the “golden™ ones
(Sect. 4)°). Note that the present M velue is still closer
to one for P2/ (see sbove). : .

6, The Chaos Border snd Statistical "Anomelies"

The cheos bordar in phrgse plene is alweys & oritical ourve,
However, neither  exact location of this curve nor its rotae
tion number sre known beforehsnd. Therefore, this problem’ turms
cul to be mich more complicated then the previous one. On the
other hend, it is much more Importent. A given critical KaM

ceurva: correspopds to very particular values of the gystem pare-

meters, K, for imstence, in standard map. Thie is always an ex-

.ceptional case. On the contrary, the chaos border generally
exlats in a wide range of parameters, its position amd rotation

mumber verying,; while the critieal atructure persists.

48 an exmmple we conaider the so-called separstrix mepping
F1373

Y=NeSnd:  O=8-A-In r;;r (6.1)

.with the only ps.ra.m.f'-ter A . Thiz model nppruximtely degcri-

beg, for exemple, the particle motion in & mirror megnetic trap
mnesr the loss come /2/. Map {6.1) reduces loeally in Y= 7 to
the stendard mep with K'=~A/Z , end—9= bz(+ A(y-2)/Z
Roughly, the chesos border corresponds to [K[= Kazi ; du
to (Z|=Zy 2 A . so thet chaotic component of motion comprises
the iayer 'f'j | < A+ The border rotetion number ri“'é"%: A,

First numerical data on the structure of cheos border ha-
ve been obtained in Ref. /26/-following the tecimique of Ref,
/30/. The method wes based upon the comcept of Poincars recur-
Tences gnr;.uéﬁqiﬂgd'_in él;_l'npqtatinn of the probability [z
for s random trajectory to recur after ?* iterations back to
the layer center Y = 0. The r_asul{:i.ug'mariul data for va-

*)""the same is also true for C in Eq. (4.5) which is equal to
1.2 from ., and to 1.1 from R-": )

1§75 <



rious A from .?L-.Th] through A = 100 (®) are shown in
Pig. 6 (after Ref. /26/). Roughly, the dependence [(?) looks,
at average, like a power law:

o PR (6.2)
P&) - :

1
Yor small ?° the exponemt O = 1/2, and - B = 1 independent

6f A . It is explained by a homogeneous diffusion inside the

layer until its border is reached., This is Just the recurrence
behavior which was cbserved in Ref. /30/. At a larger 2" the

dependence changes abruptly. The overall average P> = 1.45

-with a fairly big dispersion from p = 1.26 ( A /= 30) through

= 1.64 { A= 1). This latter behavior of recurrences is
apparently related to the structure of the chacs border /26/.
A pum law dependence suggests some scale invariance of this
structure. Apperently irregulsr oscillatioms in /7)), clearly
seen in Fig. 6, are alsc a very important peculiarity of the
recurrence behavior. Moreover, they do not depend on the initi-
al conditions in spite of motion inastability. This suggeasts
their relation to the chaos border structure too. A similar be-
Havior was observed in a rather different (but also two-dimen-
#ional) mapping in Ref. /16/. The oscillation in /%) has been
interpreted in Ref. /17/ as an indication of the remormchaoas
for most values of parameter A5

An attempt to analytically evaluate the critical exponént
p was made in Refs. /26,24/. The main idea was in that the
diffusion rate Dec ™ is rapidly approsching zero near the
c¢haos border [_p=r-—r's >0 )« Por of > 2 the diffusion equa-
tion

Has no upu.tunnttun'a!hiohmrmn ¢ = 0. This leads
perticularly, to a nonexponential (power law) relaxation. Por
the critical exponent in Poincara recurrences the rnnm:u; -
lation has been derived

{

(6.4)
=2

P= {+

The exact solution of the problem is possible by means of the
Greean function for Eq. (6.3) which has heen found by Meiegs
/31/. It confirma Eq. (6.4).

A more hard task is evaluation of the diffusion rate cri-
tical exponent of . Using the resonant theory, outlined in
Sect. 4 mbove, the vaelue o = 5/2 has been obtainéd in Ref.
fe4f. 1t gives p = 3 in s plain contradiction with the nume-
ricel data. A possible explanation for this diacrapa.ncx is the
following. The transit time T, between neighboring scales of
the criticel structure needs not to be of the border of corres-"
ponding time scale 7, + ¢, as was assumed in Ref. /24/. Accor-
ding to Refs. /21,32/ the treneit time is determined by cros-
ging some crucisl invariant cantorus which replaces the corres-
ponding critical KAM curve for s supercritical perturbstion.
Particularly, the following scaling has been obtained in Ref.
/21/ for the transit time between neighboring integer (princi-
pael) resonances ( an,:z;?m]l in standard map

O e TR . (6.5)
where E.. k- #{G » and £ = 3.0117.00 22 3. © -
This result has been applied to the chaos border problem

f17/ meguming £ = P ‘near the border mo that £ > at the cha-

otlc side, £ <@ at regular side, and £ = 0 on the border.
It gives

9 =S il
_x—?-xj.zﬂj A= ] T (6.6)

whith somewhat underestimates numerical value of P o 1ade

Here we consider a.mnther approach to the problqn. Pirat,
we derive Egq. (6.5). The crucial invarisnt cantorus, reaponsib-
le for Egq. (6.5), is embeddad into a chaotic layer whose width
is determined by the biggest scale (? } (prineipal resonance)
of critleal structure destroyed by a supercritical perturbati-
on £3>( . Then, from Eq. (4.5) Q ~ £ = « The crossing time
for this r:hautin layer is of the same order. Since scale
?L ~ q, f24/, the transit time out of g large domain
.5 p, through the chactic layer ia

17T



_Pa. 3 3 e {601}
’E‘NEZ":_?_, G"C-g,c ~ £

.1:1 g fairly good agreement with Bq. (6.5)a

Yow we turn to the chaocs borders Since, by assumption,
E~FPu~8 -2 the period (J, of the crucial centorus on
LS M 2] E

gcale k. 18 :
G~ E gl > (6.8)
C ol oo =

Hence, this cantorus gorresponds not to one of tl':n prin-
pipal resonances for the border rotation mumber I but to an
imtormediate resonance (sae Fig. 1), or toF B,/'prinl:.ipn% FeacnAn-
oe 0f some intermediate rotation mumber 1y (Pa/qu < Vu<fu-z /.20
¥e sseume in Eq. (6.8) that exponential dependence (4.5) holds
gualitatively fox guch intermedinte resonances ag well. The
latter is confirmed by our mmerical data. Assuning, further,
just one (or a few) crucial ecantori on eamch scale and using -

Bqe (6.7) we arrive at thé following eatimate for the transit
time

Ll

o 3 v 4 e (6.9)
e PV Qﬂq’( ?"I' ) —~ gﬂ N.Pn
i
whence the diffusion rate a.tud critical exponents are
& 4 3 © (6410)
F r — # L B
D~E ~phy A=) PEZ :

[

®he latter number seems to somewhat overestimate mmerical va-
lue of r;’i':v., 1.4 mlthough one ahould bear in, mind uncertainties
in the numerical walue mentioned mbove. The remaining discre-
pancy; if any, may be roloted to the fact that there are acti-
slly meny crucial chaotic’layers on each seale. This important,
and 8e yet unsolved, queetion is discussed in Ref. /21/s

The statistic. of Folncare's recurrences mainly serves
just as a convenient way for studying statistical "anomaliea"
of the chaotic motion with s& chaos border. Yet, 1t is also clo-
gely related to a moTe important statistical property, the
sorrelation. Consider, for exepple, a correlatling function

8

which is approximately constant at chaos border. Then, the
correlation (C(z)~ P&} ea 7 — oo , and Eg. (6.9)
gives (mee Refs. /16,26/)

1 {
C)r —7 = = (6.11)
=Pt vz
Wote that the latter law (for p= 3/2) is the same as for one-
=dimensional, homogeneous and unbounded diffusion. The spec-

trum of correlation, or the “power" spectrum of motion, aa
ti—» ¢ , has the form

S(w) =< *—*-*{E#P = -——vf_-. (6.12)
P [F3)

The law ffm is reached here for per { only that is for an
indefinitely plow correlation decay. However, for any < 2y
i.e. for critical correlation exponent (p-1)< { , the spect-
rum is singilar at () = 0 while the integral "power" within
the interval ( O, ¢ } venishes with &J if P>

If a slowly decaying correlation determines, in turn, so-
me other diffugion, the statistical "enomalies" become even
more "grave". Indeed, the diffusion rate ie proportiomal to
the integral of correlation, which diverges if (p—7/ < f .
The diffusion in stendard map for specinl K =27 n (A 40
integer) is an exsmple. The usual diffusion equation is comple-
tely inapplicable in this case since the process to be descri-
bed is essentiaslly non-Markovien, and the formally defined
diffusion rate grows indnﬂ.nitnl; with time /15=1T7/:

7 é.@%}—i} o T or (6.13)

It gimply means that the second moment of distribution function
(its width aquared) grows faster than time: <@J}£} o £ P .
Kumerical simulations with various models confirm thie conclu-

gion /15=17/. However, the problem of complete smtatistical

degeription for such an "ebnormelly™ fast diffusion still re-
maing to be solved.
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Figure captio

Chaos in axisymmetric mirror trap: (1) adiebatic loss
cone; (2) chaotic motion (leaksge of particles);

{3} regular motion (particle confinement); (4) chaos
border (boundary of confinement).

Nonexponential electron relaxation in & mirror magne-
tic trap in semilog (circlea) and log-log (dots) sca-
lea: (1), (2) the exponentials with & =~ ©.35 and
0.61 msec; (3) the power law with exponent P 2e25
I the electron current out of the trap in arbitrary
unita.

A sketch of principal resonances of pericds g, near
critical curve p= r—r; = 0. Two crucial chaotic
layers with cantori of periods & and Q,,_..,.._;

]
are also shown (Sect. 6).

Criticel renormalization dynamics in & , the serial
number of scales (renormtime), for = fo (fixed po-
int, or exact scale invariance, dots), and for a rTen-
dom F (5.4) (renormchacs, or stetistical acale inve-
riance, circles). Solid lines indicate ome side of.
eritical eurves ( £>¢ } while dashed lines do so for
the other ( P<(C), cf. Fig. 3.

Reduced amplitudes g ve. detune ﬁ;;,; for a ren-

dom ¥ (5.4) in log-log emcale. Straight line is the

least square fit:f‘i;ﬂ-f*rﬁi-w e 0168 The circle

corresponds to I'=ry while arrow points [V5g P/, for
r= ¥4 (4.15).

Statistic of Poincaré recurrences in separatrix mag

(6.1) for A = 14100; 107 iterations (after Ref. /26/).

Upper line 4a Eq. (6.2) with P = i/2and 8 = 1; lo-

wer line shows the fit for A = 3(): p = 1.3T;

E = 4.0.
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