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Abstract

Selected topics in the theory of dynamical chaos in Hamil-
tonian,systems are discusged, including the nature and mecha-
nism of the chaos as well as its peculiar statistical proper-
ties in presence of the chaos border with a critical scale-
-invariant structure. As an example, two simple models descri-
bed by two-dimensional mappings are considered.



s Introduction

The dynamical chaos, or intrinsic stochasticity, means
the random (irregular) motion of a completely deterministic
(dynamical) system which is free of any noise, either external
or internal. The discovery and explanation of those controver-
gial processes has been one of the most fundamental recent
achievements in the classical mechanics., The dynamical chaos
ghould not be confused with the motions described by the so-
~called stochastic equations which represent just the effect
df noise upon a dynamical system. Sometimes dynamical chaos
may be useful, e.g., for particle heating by an electromagnetic
wave in plasma (see, e.g., /1/ for review). However, in most
cages it is harmful as it means a global instability of motion,
e@.8., the collisionless leakage of particles out of a magnetic
trap /2/.

The account of dynamicael chaos is most important in simp-
le systems with just a few degrees of freedom. For example, a
gingle particle in magnetic trap has only three degrees of
freedom or even two, in an axisymmetric magnetic field. Ano-
ther important example is the geometry of magnetic field itself
whose lines can be considered as trajectories of certain dyna-
mical system. For all those systems one cannot simply introdu-
ce gome statistical assumptions, e.g., ergodicity, as is usu-~
ally done in the statistical mechanics, Instead, it is necessa-
ry to study the dynamics of a particular system, and to find
out if its motion is regular or chaotic. This depends on the
gyastem parameters as well as on the initial conditions of its
motion. In a conventional mirror trep, for example, a domain
of chaotic motion does always exist near the adiebatic loss
cone, expanding the latter (Fig. 1). For a harmonic magnetic
shape, and for a sufficiently small particle velocity U~ the
chaos border is given by the relation /2/
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Here A/, is the pitch-angle width of the chaotic layer,
Fo the gyrocenter redius, &J, the gyrofrequency (all in the



midplane),,a the mirror ratio, and 2L is the distance between
mirrors. '

Generally, the statistical properties of chaotic moetion
are not as simple as in standard statistical hypotheses or in
stochastic equations, e.g., the usually asaumed exponentlal
correlation decay. The complexity of dynamical chaos is rela-
ted, particularly, to the chaos border in phase space whose
vicinity has an intricate hierarchical structure including do-
mains ¢f both chaotic as well as regular motions. In the above
eéxample of a magnetic mirror trap it results, particularly, in
a8 nonexponential relaxation (leakage) of particles. It is qui-
te likely that just this effect had been observed in the expe-
riments by Varma and coworkers whiqh were reported at the Con-
Yerence in Nagoya /3/, and also were discussed then in Rosen-
bluth’s summary. An example of that relaxation (after Ref. /47)
is depicted in Fig. 2. The authors interpreted it in terms of
the .sum of exponentials with different characteristic times

c‘ - However, rescaled as a log-log plot, the data fit also
fairly well a power law dependence. Below we are going to ex~
plain why the latter dependence is to be expected (Sect. 6).

D The Nature of Dynamical Chaos

Since the time of Poincaré it appeared intuitively clear
that irregular dynamical motion is explained by its strong
(exponential) local instability. However, the progress in the
modern ergodic theory has led to a paradoxical conclusion that
such an instability by itself does not imply almost any sta-
tistical properties of the motion. Particularly, the correla-
tion not only decays nonexponentially, in general, but may
even not decay to zero at all if the motion spectrum possesses
a discrete component. Of course, the exponential instability
of chaotic motion does imply some continous component in the
spectrum unlike regular (quasiperiodic) motion whose spectrum
is purely discrete.

-The above controversy is resolved in the new, algorithmic
theory of dynamical systems on the basis‘of the exactly for-
mulated mathematically (and perfectly reasonable from the phy-
sical viewpoint) concept of random dynemical trajectory (see
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/5,6/ and an elemerntary presentation in Ref. /7/). The princi-
pal point here is the algorithmic independence of any suffici-
ently long segments on such a trajectory. It means impos='hili-
ty, in any way, to calculate (predict) a single segment from
the observation even all the rest together. In other words,

the information J(%/ contained in a random trajectory {as re-
corded to any finite accuracy £ , of course) grows in opropor-
tion to its length: ”

. (¥
Lim T

=t

L >0 (2.1)

where the KS-entropy )
— .
=210, >A,. | (2.2)

describes the mean rate of the local exponential instability,
and Ny > /A, > O . Note that mean information flow (2.1)
does not depend on the accuracy & . Indeed, decrease in £ imp-
lies an increase of the algorithmic correlation time

T, h-I[ZMEI . Hence, J(£)/it] ~ [éné| A

An important corollary of these simple considerations is
the existence of a continuous transition between deterministic
and random behavior of a chaotic trajectory. The transition is
described by the randommness parameter /8/:

@ ' R AT/ /£/ |
t' —— S ——————— A'/_~_— .
- (¢/ [lns | 24 (2.3)

A tempt‘rary. or transient, determinism ( ,Q,« 1'1' 1t/ << [
gets over eventually to the asymptotic randomness (% > 1 ,
s> T, ).

On the other hand, the quasiperiodic (regular) motion is
characterized by a linear in time (weak) instability (see, e.g.,
Ref. /10,9/). Hence, for a regular trajectory 7(9‘)“' &n tl .
since S/t —> 0 as £ -> + o , the prediction of any tra-
Jectory segment is possible from the observation of a neighbc-
ring segment with a comparable length.). |
7 The opposite conclusion due io Born /10/ on unpredictabili-
ty of a quasiperiodic trajectory is related to the fact that he

considered prediction from the initial conditions only, and not
from a finite trajectory segment.




An interesting and instructive example of the interplay
between deterministic and random features of dynamical chsos
is the electron motion in a “braided" toroidal magnetic field
with random lines /11/. Configuration of such a field is cha-
racterized by the radial diffusion of magnetic lines:

((A'r‘)z) o ¢  where / ig the line length. If one would com-
pletely neglect both the electron scattering and all the fini-
te gyroradius effects the electron diffusion were the same
with /= /Ui‘( %t/ . However, if only the scattering is taken into
account but not the drift, nor a shift of guiding center, then,
by virtue of motion reversibility along a magnetic line (even
e chaotic one{) subsequent to a change of U sign,*df‘>cc ‘ ,
and ((Ar‘]“} oVt /11/. Also, generally, the chaotic motion is
reversible, and its statistical relaxation proceeds for both
directions in time as ¥ —=>* d%@ /12/.

All the complexity of a random trajectory, i.e. all its
past and future chaos, is completely contained in the exactly
fixed (imaglnarily ) initial conditions. It means that the ul-
timate origin of dynamlcal chaos relates to the continuity of
phase space in classical (but not quantum!) mechanics. The
proper dynamical system is only to provide the exponential in-
stability ( A > 0), and therefore it may be very simple that
gtill appears so paradoxical.

3. Statisticel Properties of Hamiltonian Dynamics

For a trajectory of dynamical system to be random it is
necessary and sufficient, according to the Alekseev-Brudno
theorem /5,6/, that A > 0, or equivalently, that the maximal
Lyapunov exponent jﬁ > 0. This is spparently the simplest.
mmerical test for randomness. However, the randomness by it~
gelf implies only that the very concept of trajectory loses
its direct physical meaning like that of unstable equilibrium
or of unstable periodic orbit. The dynamical chaos has to be
described in terms of statistical mechanics, yet its statisti-
d¢al properties may be very different. They are.detérmined, to
a large extent, by the behavior of correlations or, correspon--
dingly, by the type of motion spectrum. A simple (“routine")
statigtic relates to the exponential correlation decay and to
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nonsingular spectrum at & = 0. In this case a simple statis-
tical description by means of a kinetic (particularly, diffu-
" sion) equation is applicable. A complicated ("abnormal") sta-
tistic corresponds, in particular, to a power law dependence
of correlations as ¥ — £ o , and of spectral density as

¢ —» 0. A well known example of such a behavior is the 1/c
noise.

As en example we shall consider a "simple" model /13/
described by the so-called standard mapping g];é/wé (7,8)
where

Here 57 , & are action-phase variables, and K is the only
parameter of the model. Many particular problems in nonlinear
dynamices can be approximately reduced to this map, e.g., the
particle motion in a mirror magnetic trap /2/ (for other examp-
les, particulaerly, related to plasma physics, see Ref. /1/).

For K>> 1 the motion in 77 ig described by a simple dif-
fusion equation /13/, the diffusion rate being a complicated
function of X though /14/. However, for special values of
K 2y 27'n, where integer n # O, the motion statistical proper-
ties become much more intricate /15-17/. In particular, the
diffusion rate, formally determined numerically, grows indefi-
nitely as the motion time increases. The origin of such sta-
tistical "anomalies“*) relates to the chaos borders surroun-~
ding the domains of regular motion which occur for those speci-
al K. Notice that the chaos border is not the only origin of a
complicated statistic. Appasrently the most simple and graphic
example of the latter is the so-called "stadium" model /18/.

In case of a regular motion the statistical description
geems, at the first glance, to be cowpletely inadequate. Howe-
ver, the question proves to be more "tricky". T» see this con-
sider for a moment the quantum dynamics, i.e. the evolution of
g state vector ¥4QJ. Here the motion (energy) spestrum is pure-
ly discrete for any conservative system bounded in the phase

*) The quotes here intend to emphasize that those properties
are anomalous to us, due to our previous experience in study-
ing random processes, rather than to the Nature.




space. Hence, it appears to be no room for the dynamical chaos
in quantum mechanics. Ye%, the correspondence principle requi-
res some transition to the classical motion, including a chao-
tic one as well. The resolution of this apparent contradiction
has been given in Ref. /19/. The main idea is in imitation of
some statistical properties of the classical chaos on a finite
time scale of the quantum motion. In other words, in quantum
dynamics a temporary, or transient, chaos is possible in spite
of discrete spectrum. But the same is true for a regular clas-
sical motion as well! In this respect, I would like to attract
reader's sttention to a series of interesting papers due to
Ott and coworkers /20/ dealing with some problems in plasma
physics. However, it should be mentioned that no limitations of
the classical chaos due to gpectrum discreteness are taken in-
to account in these papers. "

4. Resonant Theory of Critical Phenomens

The so-called critical phenomena occur, particularly, at
the cheos border in phase space. First, we consider & simpler
problem about a critical KAM (invariant) curve, e.g., one in
the standard map (3.1). A KAM curve is specified by the mean
frequency <G> of phase rotation, or by the rotation number
(frequency ratio) Y= (w>, /27 . For K = 0 the curve
7@?)::,22Vk‘ is just a straight line on the phase plane. If
7(# 0 the curve is distorted: J(&’./‘:jr (9/ /(, V/ « It becomes
critical at certain K'= K (¥/) when it is destroyed and bifur-
cates into some disjointed Cantor set, or a cantorus after
Percival (see Ref. /21/), embedded into a narrow chasotic layer.
The study of critical KAM curves had been started by Greene
/22/, and was continued by many other authors, especially tho-
roughly by MacKay /23/. Here, the resonant theory of critical
phenomena /24/ based upon the analysis of resonance structure
near a critical KAM curve is briefly presented. One advantage
of this approach is the possibility offapproximate analytical
calculation of many scale factors whose exact values are obtai-
ned only numerically. The resonant theory provides also some
phyéical insight into‘the critical structure and, particularly,



leads to various relations ‘between its parameters /24/*).‘ The
results presented below have been obtained in collaboration

'ith DelLe Sh‘p‘lm /17’ 26/0

The structure of a critical KAM curve is intimately rela-
ted to the arithmetical properties of its rotation number in
the continued fraction representation

1

.‘r.'_-:-__-‘

1 = (;"4)“;2.3'"31"*) (4.1)
] _

‘ ’"3 + teor )
The convergents of this expansion

G = Masny e

M, +
", +

provide the best rational approxina.f_ion to r with denouina_tor
Q€ 9 From dynamical viewpoint thg_pcriodio trajectories
with rotation numbers f; correspond to the principal (stron-

- gest) resonances in a 'v:l.cinity of curve r . They are outlined

in Pig. 3 where the critical curve with r=r1_ is chosen as the
axis of the mean phase ®> ( <@>= 2.97’ / Por each resonan-
ce one period of its separatrix is shown (there are %bsuch
periods over the periodic trajectory, i.e. within the phase .
interval <&>=(-+27) Actually, edch separatrix is embedded
in a narrow chaotic layer, so that the whole critical structu-
re is a capricious mosaic of both regular and chaotic motion
cunpononta with a comparable measure.

- The principal resonances determine the structure for cor-
responding scales of ever diminishing size which converge to

_the critical curve. The simplest critical structure relates to

the so-called ngolden" curve of F= re = (1,1,...) =
- (|/3"- 1)/2 = 0. 678 (see Rets.. /22.23 217", Asymptotical-
1y, as n»oe (g - co0) all the.scales here are exactly si-
milar since the scaling factors are related to the ratio

¥ Still another approach to the study of critical KAM curves
has been proposed earlier and is developing by Escande and co-
workers /25/. Bssentially, this theory is also a resonant one
making use of the two-resonance approximation.

) This, exceptional in other respacts, curve is believed to
be the strongest one against perturbation, i.e. it gets dest-
royed at the biggest K /22/.



=0, /f of denominators for successive convergents which
rapldly approaches the limiting value Sr = 4/f§ =4+ j—?«‘

The complete relationship of the structures at different
scales is given by the so-called’renomeliZation transformati-
ong which form a group. Such a renoggroug may be considered
as an abstract dynamical system in the functional space of ve.-
rious meppings where the standard mep, for example, is just a
point. The serial scale number # is then a substitute for the
time. This renormtime is thus proportional to the logarithm of
cheracteristic size ¢ 2 or of physical time §Zm for a given
scale /. (see Ref. /24/).

In the problem under consideration the renormgroup, as
well as the sequence of principal resonances, is digerete so
that the correspondlng abstract dynamical system is always a .
mepping (of the phase plaene structure on two different scales).
We shall call it renormmap for brevity. The asymptotic simile-
rity on all the scales, or scale invariance, is theAsimplest
dynamics of the renormmap, namely, a fixed point of saddle ty-
pe.

4 convenient and graphical way of presentation for a cri-
tical structure is the Fourier spectrum of motion on the criti-
cal curve or in its immediate vicinity. For a periodic trajec-
tory, the Fourier amplitudes &, are defined as follows:

LGu/2]
eWH R+ > @ fm(zf/)) /t) (43)
k=1
where Zf ig discrete time (number of map iterations), 7 the
motion period; Fy, = Py /9,\/ the rotation number, end /l{é/ =
= f(/({‘, < i/.Z the moduli of motion frequencies. By virtue
of the " ime discreteness and of &t/ antisymmetry the amplitu-
des satisfy the relation OV e [Zy et ,

The largest amplitudes correspond tq. pi'ijheip“ei)z:'eeonences",;

and, hence, to the motion frequencies, or détunes fro’m exact
resonance ( YV =0) B : ~

Vn: @n rN.-/Jh; | S “ "'(4.4)
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'I‘hey are approximately described by the following empirical
expression

L exp{Cq, Ko )-keJ) = F (K, ) (4.5

(=~

Here we have defined the reduced amplitudes }
A, = 9. )a,,},‘\/?%gn«]/" (4.6)
qnd gsome effective local perturbation :
K (K r)~ K+ Kp(rmrg) @D

which is fairly well approximated, according to our numerical
data, by the linear dependence with "gradient" K = 0.211.
Note that Eq. (4.7) holds for the set of convergents r, .- ~
only as function K (r) is apparently everywhere singular
(fractal) according to Ref. /28/. We make use cr a modifled
frequency

y = :47~ Senry) | (4.8)
which provides a better consistency of numerical data at large
Y « Eqo (4.5) is similar in structure to but different from

one given by Escande (see Ref. /27/ )

The empirical exponent , = 1.13 im 5q. (4 6) takes
sccount of the dependence on reduced detune VF ¢ « while nu-
merical factor (= 1.2 relates to deviations x‘m the criti-
ol condition K, = K where K ='0.97163540631... is
Greene's critical K value for r‘ Ty /22.23,27/. Pinally, |
.the limiting emplitude, which characterivea the critical scale
invariance, or the fixed point of venormmap, is equal numeri-
- cally-.to

A= ;q,a,[ =0, 16736.. /\/5*7;'5/%:1 (4.9)

A convergence |%.Cf, > !¢G], is shown in Pig. 4. The

numerical deta have been obtained from the periodic trajectory -
of @N- 46368 ( ]rN- r‘3 [~ 2 x 10"'0%), Notice asymmetry between
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two sides of the critical curve. In part, it is due to alterna-
ting detune VooV [— 1 . Yet, for n 2 8 the detune oscillati-
on becomes negligible (it decays as q 2) but the asymmetry

gtill persists because of the gradient term in Eq. (4.5) which

decreases as ' .

Fourier smplitudes (2, of a critical curve are closely re-
lated to the phase plane structure of nearby resonances. Consi-
der Fourier emplitudes of the perturbation 7y (in Hamiltonian)
corresponding to frequencies )/h' of the critical motion. As
the latter is a driven oscillation it is reasonably to assume
a, < U, /V,> .+ Using Eqs. (4.5) and (4.6) we arrive at

V:‘ :(241V ”j‘/ffwlu-z-_—* ﬁj(")*tf(/( rn) | (4.10)

Here (£ (r;)= 1 047402 +.. is the limiting velus of phase ad-
vance w, = _Q for the small oacillation with frequency
£, = a., \/U;, about periodic trajectory ), . FPhase ( is
related to the stability parameter of periodic trajectory, or
Greene's residue /0 = SchZ(¥/2). In perticular, K, (rg) =
= 0.2500888 ... /23/. This is also an important characteristic
of scale invariance, and it is related to /57‘,0 by

o 5“*“ A’./d . p (4.1

An(yl= 3 B, 5/ =075

in a reasonable agreement with numerical value (4.9) from the
Fourier spectrum. ‘

The above relations also permit to calculate the set of
regidues /2 (or sDn ) for periodic trajectories /, at a given
K or that of /< for a given A . From the former data in R
Ref: /27/ (see Eq. (3.21) there) the factor (= —ﬁ. n§~1 «11
which 1s rather close to the above value. However, the gradient
k / . as obtained from the same data in Ref. /23/, turas out to
be quite different.

ol \/r5_‘g‘€ _ . '
. e A (4012)
Ky er. T “” -

where we have used ( = 1.11, and where /57/2 ,\_,,‘ 0.0439 ia 8
constant in the standard scele inverience reiation /23/:



‘ 1= :
, ,Qh = /?N-t- BR.(SB | '. . (4.13)

Here the convergence parameter

R, - K | | o

S = h h-1 . — SQ:\‘:-—- ’g,z_ 4.618 (4.14)
‘QM-,{“ Eh | : ;

according to the resonant theory, while its numerical value is

8,2:; -1.635 /23/. The residue dynamics in n is also depicted
in the upper part of Pig. 4 (after Ref. /23/). '

Assume now that the above relations hold not only for the
"golden mean" I'=Trg but also in some neighborhood (in K, actu-
ally). Then, one immediate conclusion from Eq. (4.10), where
Wwe keep the same value for (0, = @ (i), would be a ghift in
K._(r®’) for those special /= (o, w1, oo, ) = (WP =m) /2
which obviously retain an exact scale invariance /25/. The
shift is due to a different limiting value of the detune

o /5 |
Vvl = - o (4.15)

' L 2 |
(M) ~~ et et : o
/200(1’ ) = an+q,) ) an[':f/ (4.16)
This is the casé, indeed, at least, qualitatively! Accor-
ding to numerical data in Ref. /27/ KR, (r) = 0.23%0.01

( Kc(rg)) = 009574000) while Eq. (4016) g_ives px = 0,20, In-
stead, we may calculate M value to obtain:,ﬁ4 = 1.64%0.18,

whence

Renormalization Cheos

 Representation of the renormgroup as a dynamicael system
is instructive, particularly, in that it suggests a more rich
éritical phenomens than just a fixe&'point,'i.e. exact scale
invariance. The opposite limiting case would be a chasotic dyna-
mics that is a rendom variation of critical structure from one
scale to the next. Such & possibility was discussed in Refs.
/17,29/, and is implicitly present in Ref. /23,25/.

Ag we have seen in the previona Section the critical struc-
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. ture depends, particularly, on renormalization -dynamics of de-
tune (\/5—“4,‘;4 )n» « The latter is determined, in turn, by arith-
metical properties of the rotation number ¥ . It is easy to
verify that the dynamics of frequency ratio Uy =— /1 Va1 (>o)
is deseribed by the mapping’ .

W, = : wmod 1 ! [ ‘i. ]: m,, (5.1)
U,y . Uyt

with the initial o= "= (#,, M, ..., #,, . ). Then, for
almost any I the gequence { Un} is rendom since its KS-ent-
ropy h = 7?2/5 bnl >0 (see Ref. /12/). Apparently, the
sequence {M,,} is also randon as well as .{q,,,,} (j’n- My Gy +
+ Q}n_z), "and {C,,,,, \),,3 too. The dynamics of %, can also be
described by the map (5.1) using the. rati'or:_! Wy, = g,_, / Cre *
Then, backwards in renormtime /o :

4 | e B .
= %y IMO([i; ‘[:wm]-—mm' (5?)
with the "final" condition W)= 4/M, and rational 13, on-
ly. The "initial" condition for map (5.2) is irrational W,
with reversed sequence of the elements M.« Since the set of
such numbers has the full measure, the sequence W, has the
same statistical properties as those of U, s and the average
ratio of successive denominators is given by (see Ref. /12/):

y |
f,~3.728 (5.3)

n-4

ek g h

An example of the critical étructure for a random
=(2,4,1,1,2,1,2,4,1,1,2,41,4, 2 4,...)=

Y=r
RAND
=0, 32IE6953... ..(5-4)

is also depicted in Fig. 4. The date have been obtained from
the periodic trajectory with 9’)- 10612 (I.f;,-.- eawal ~ 10~8)-
at K = 0,9618704. The change in renormalization behavior is-
#triking: a big Fourier 'amplitude variation is apparently irre-
gular, .and shows no obvious trend to decay. The seme is true
for K,, variation as well. Note that ¥ rayp 18 close to another
"golden" r= 4 —rg =(2,1,7,...)= 0.382. In Fig. 5 the depen-

14



dence of'lqa{ vS. f/fq/\’;’[ is'plotted to see if po_iver law (4.6)
still holds. It does, indeed, to the accuracy of a few per cent,
as the least square fit shows. Moreover, the parameters M 03T
and especially ﬁw(r; AND)z 0.168 are close to the "golden" ones
(Sect. 4)*.). Note that the present M ‘velue is still closer
to one for 2/ (see above). ’ ' :

6. The Chaos Border and Statistical "Anomalies"

The chaos border in phase plane is always a critical curve.
However, neither  exact location of this curve nor its rota-
tion number are known beforehand. Therefore, this problem turns
out to be much more- complicated than the previous one. On the
other hand, it is much more important. A given critical KAM
_curve corresponds to very particular values of the s&sten para-
meters, K, for instance, in standard map. This is always an ex-
ceptional case. On the contrary, the chaos border generally
exists in a wide range of parameters, its position and rotation.
number vafying, while the critical structure persists.

As an example we consider the so-called separatrix mapping

/13/: _ . — -
y=Y+S8n8; = 67-/\-ln-lyi (6.1)
_with the only parameter A . This model apprdximately descri-
bes, for example, ‘the particle motion in a mirror magnetic trap
near the loss cone /2/. Map (6.1) reduces locally in Yz Z to
the' standard map with K'=-A/z , and—Y= 1-buiz(+ A (4=2)/z .
Roughly, the chaos border corresponds to |K|= Kazj_ » 1e€0
to |Z|=Z,~ A , 80 that cheotic component of motion comprises
the layer {3, < A« The border rotation number r&z.‘%: .In A,
(4

First numerical data on the structure of chaos border ha-
ve been obtained in Ref. /26/-following the technique of Ref.,
/30/. The method was based upon the concept of Poincaré recur-
rences and consisted in computation of the probability [(2)
for a random trajectory to recur after 2 iterations back to
the layer center Y = O. The resulting numerical data for va-

*)  1ne seme 'is also true for C' in Eq, (4.5) which is equal to
1.2 from &,,, and to 1.1. from /2». ' |
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rious A from A = 1(+) through A = 100 (® ) are shown in
Pig. 6 (after Ref. /26/). Roughly, the dependence [°(Z) looks,
at average, like a power law:

Ple) = BA)

=P

Por small 7~ the exponent p =1/2, and B = 1 independent
a2 A . It is explained by a.homogeneous diffusion inside the
layer until its border is reached. This is just the recurrence
behavior which was observed in Ref. /30/. At a larger ¢ the
dependence changes abruptly. The overall average </D> = 1, 45
-with a fairly big dispersion from p =1.26 (A = 30) through
= 1,64 ( A- 1)e This latter behavior of recurrences is
apparently related to the structure of the chaos border /26/.
A i)ower law dependence suggests some scale invariance of this
structure. Apparently irregular oscillations in P(Z“), clearly
geen in Fig. 6, are also a very important peculiarity of the
recurrence behavior. Moreover, they do not depend on the initi-
al conditions in spite of motion instability. This suggests
their relation to the chaos border atructure too. A similar be-
Havior was observed in a rather different (but also two-dimen-
#ional) mapping in Ref. /16/. The oscillation in /) has been
interpreted in Ref. /17/ as an indication of the renormchaos
for most values of parameter A

(6.2)

An attempt to analytically evaluate the critical exponént
P Wwes made in Refs. /26,24/. The main idea was in that the
diffusion rate Doc £% is rapidly epproaching zero near the
chaos border ( p= F=13 >0, ). For o > 2 the diffusion equa~-

tion
of _ _£
PY» 'P 20 o (6.3)

Has no eigenfunctions which are regular at © = 0., This leads
particularly, to a nonexponential (power law) relaxation. For
the critical exponent in Poincare recurrences the following re-
lation has been derived

{
oL ~2

p= {1+ (6.4)
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The exact solution of the problem is possible by means of the
Green function for Bq. (6.3) which has been found by Meias
/31/. It confirms Eq. (6.4).

A more hard task is evaluation of the difiusion rate ori-
tical exponent o{ . Using the resonant theory, outlined in
Sect. 4 above, the value o = 5/2 has been obtainéd in Ref.
/24/. It gives P = 3 in a plain contradiction with the nume-
rical data. A possible explanation for this discrepancy is the
following. The transit time c,,_ between neighboring scales of

the critical structure needs not to be of the border of corres-

ponding time scale 7Z,~ G, es was assumed in Ref. /24/. Accor-
ding to Refs. /21,32/ the transit time is determined by cros-
ging some crucial invarient cantorus which replaces the corres-
ponding critical KAM curve for a supercritical perturbation.
Particularly, the following scaling has been obtained in Ref.
/21/ for the transit time between neighboring integer (princi-
pal) resonences ( 07 =2%n) in standard mep

where &: K*— KQ: v and 7 = 300117000 - 30

This result has been applied to the chaos border problem
/11/ assuming & o< o near the border so that &£ >0 at ‘the cha-
otic gide, £ < (¢ at regular side, and & = 0 on the border.
It gives SR ! ' '

‘q

5 11

which somewhat underestimates numerical value of - /) 1¢4.

Here we consider another approach to the problem. First,

we derive Eq. (6.5). The crucial invariant cantorus, responsib-
le for Eq. (6.5), is embedded into & chaotic layer whose width

is determined by the biggest scvale‘ (gc) (principal resonance)
of critical structure destroyed by a supercritical perturbati~
on £>( . Then, from Eq. (4.5) gc'fv E.'! - The crossing time
for this chaotic layer is of jhe same order. Since scale

K e Ct & /24/, the transit:.time out of a large domain

ﬁ,‘ > 0. through the chaoz‘tﬁ.@uz' layer k8

17
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p 3 3 | |
T~ %c‘ ?’fi oc %c ~ & ’ (6.1

in a fairly good agreement with Eq. (6.5).

Now we turnh to the chaos borde:é. Since, by assumption,
En™~ Pn ~ 9;2 the period (), of the crucial cantorus on -
acale k. is '

4 .zi | _ ' ,
Qn N' En ~ ?n >>»g11, » (6.8)

Hence, this cantorus corresponds not to one of the prin-
eipal resonances- for the border rotation number rp but to an
intermediate resonance (see Fige. 3), or to a principal resonan-
oe of some intermediate rotetion mumber ri, (P./q, < V.'<Pus/%,.,).
We assume in Eq. (6.8) that exponential dependence (4.5) holds
qualitatively for such intermediate resonsnces as well. The
latter is confirmed by our mmerical data. Assuming, further,
just one (or a few) crucial cantori on each scale and using -

Bq. (6.7) we arrive at the tollowing eatimate for the transit
tine

e 0 (%)~ gt Pﬂ-—z (6.

whence the diffusion rate and critical exponents ere

o 02 ¢ _ 3 " (6410

DN%N‘P} a(::4; P=Z . (' )__
The latter number seems to somewhat overestimate numerical va~
lue of /7~ 1.4 although one should bear in mind uncerteinties
in the numerical value mentioned above. The remaining ‘discre~
pancy, if any, may be relased to the fact that there are actu-
ally many crucial chaotic’ layers on each acal_c,. This important,
and as yot unsolved, question is discussed in Ref. /21/.

The statistic. of Poincare's recurrences mainly serves
Just as a convenient way for studying statistical "enomalies"
of the chaotic motion with & chsos border. Yet, it is also clo-
sely related to a more important statistical gmpmy, the
ocorrelation. Consider, for exemple, & correlating fumnction

i8



which is spproximately constant at chaos border. Then, the
correlation C(&)~ L&) e T -—> oo , and Eq. (6.9)
givea (see Refs. /16,26/) - :

. 1 { o '
=zt e -
Note that the latter law (for p= 3/2) is the same as for one-
~dimensional, homogeneous and unbounded diffusion. The spec-
trum of correlation, or the "power" spectrum of motion, as
Ww—> O , has the form
{

{
> () =< P _'—»/a_)—;

The law {/w is reached here for p—> 1 only that is for en
indefinitely slow correlation decay. However, for any P < 2
i.e. for critical correlation exponent (p-1)< { , the-spect-
rum is singular at = O while the integral "power" within
the interval (0, «w ) vanishes with <J if P> 1.

If a slowly decaying correlation determines, in turn, so=-
me other diffusion, the statistical "anomalies" become even
more "grave". Indeed, the diffusion rate is proportional to
the integral of correlation, which diverges if Qb-—j/‘< { .
The diffusion in standard masp for special K=~ 27 n (AL 40O
integer) is an example. The usual diffusion equation is comple-
tely inapplicable in this case since the process to be descri-
bed is essentially non-Markovian, and the fofmally defined
diffusion rate grows indefinitely with time /15-17/:

- < R
D= ﬁ@ﬁf < £ (6.13)

It simply means that the second moment of d:.stribution function
(its width squared) grows faster than time: <Cdj’) > oc 3P,
Numericel simulations with various models confirm this conclu-
sion /15-17/. However, the problem of complete statistical
description for such an "abnormally" fast diffusion still re-
mains to be solved.

19



" Acknowledgements

I take this opportunity to express my sincere gratitude
to D.L.Shepelyansky, in collaboration with whom many results
presented above have been obtained, to A.A.Brudno, R.S.MacKay,
J.Meiss, I.C.Percival and F.Vivaldi for stimulating discussions,
- and to L.P.Kadanoff for providing many of his published and un-
published papers on the critical phenomena in dynamics.



References

/1/ LICHTENBERG, A.J., and LIEBERMAN, A.M., Regular and Sto-
chastic Motion, Berlin, Springer-Verlag, 1983.

/2/ CHIRIKOV, B.V., Particle Motion in Magnetic Traps, Vopro-
sy teorii plasmy (Topics in Plasma Theory), Ed. B.B.Ka-
domtsev, Moskva, Energoatomizdat, 1984, Vol. 13, 3.

/3/ BORA, D., JOHN, P.I., SAXENA, Y.C., and VARMA, R.K., Proc.
Internat. Conf. on Plasma Physics, Nagoya, April 1980,
Vol. I, 171,

/4/ BORA, D., JOHN, P.I., SAXENA, Y.C., and VARMA, R.X.,
Plasma Phys., 22 (1980) 653..

/5/ ALEKSEEV, V.M., and YAKOBSON, M.V., Phys. Reports, 75
(1981) 287. '

/6/ BRUDNO, A.A., Trudy Mosk. mat. obshchestva (Proc. Moscow
Math. Soc.), 44 (1982) 124.

/7/ FORD, J., Phys. Todey, 36, No. 4 (1983) 40.

/8/ CHIRIKOV, B.V., Proc. Internat. Seminar, Group Theoreti-
‘cal Methods in Physics, Zvenigorod, November 1982, Mos-
kva, Nauka, 1983, Vol. II, 389.

/9/ CASATI, G., CHIRIKOV, B.V., and FORD, J., Phys. Lett. A,
77 (1980) 91.

/10/ BORN, M., Phys. Blatter, 11 (1955) 49.

/11/ RECHESTER, A.B., ROSENBLUTH, M.N., Phys. Rev. Lett., 40,
~ (1978) 38,

/12/ KORNFEILD, I.P., SINAI, YA.G., FOMIN, S.V., Ergodic Theory,
Moskva, Nauksa, 1980.

/13/ CHIRIKOV, B.V;, Phys. Reports, 52 (1979) 263.

/14/ RECHESTER, AcBo, and WI{ITE, RoBo, PhySO Rev, Lett.' .4_4.
(1980) 1586,

/15/ KARNEY, C.F.F., RECHESTER, A.B., and WHITE, R.B., Physica
D, 4 (1982) 425.

' /16/ KARNEY, C.F.F., Physica D, 8 (1983) 360.

21



/17/ CHIRIKOV, B.V., and SHEPELYANSKY, D.L., Correlation Pro-
perties of Dynamical Chaos in Hamiltonian Systems, Phy-
sica D, 13 (1984).

/18/ VIVALDI, P., CASATI, G., and GUARNERI, I., Phys. Rev.
Lett., 51 (1983) 727.

/19/ CHIRIKOV, B.V., IZRAILEV, F.M., and SHEPELYANSKY, D.lL.,
Soviet Scientific Reviews C, 2 (1981) 209.

/20/ OTT, E., et al., Phys, Fluids, 21 (1978) 2263; 22
(1979) 2247; 23 (1980) 1031; 25 (1982) 359.

/21/ MACKAY, R.S., MEISS, J.D., and PERCIVAL, I.C., Transport
in Hemiltonian Systems, Physica D, 13 (1984) 55.

/22/ GREENE, J.M., J. Math. Phys, (N.Y.), 9 (1968) 760; 20
(1979) 1183.

/23/ MACKAY, R.S., Thesis, Princeton University, 1982; Physi-
ca D, 1 (1983) 283.

/24/ CHIRIKOV, B.V., Lecture Notes in Physics, 179 (1983) 29.
/25/ ESCANDE, D.P., Physica Scripta, T2/1 (1982) 126.

/26/ CHIRIKOV, B.V,, SHEPELYANSKY, D.L., Proc. 9th Internat.
Conf., Nonlinear Oscillations, Kiev, September 1981,
Kiev, Naukova dumka, 1984, Vol. II, p. 421, English
translation is available as PPPL-TRANS-133, Plasme Phy-
sics Lab, Princeton University, 1983.

/27/ SHENKER, S.J., and KADANOFF, _IJ.P., Je Stat. Phys-, 21
(1982) 631,

/28/ SCHMIDT, G., and BIALEK, J., Physica D, 5 (1982) 397.

/29/ OSTLUND, S., RAND, D., SETHNA, J., and SIGGIA, E.,
Physica D, 8 (1983) 303.

/30/ CHANNON, S.R., and LEBOWITZ, J.L., Ann, N.Y. Acad. Sci.,
357 (1980) 108,

/31/ MEISS, J.D., private communication, 1983.

/32/ BENSIMON, D., and KADANOFF, L.P., Physica D, 13 (1984)
82. | | '

22



Pig.

Fige.

Fige.

| Fig.

Fig.

Fige.

1e

2.

5.

4e

S5e

6.

Figure captions

Chaos in axisymmetric mirror trap: (1) adiabatic loss
cone; (2) chaotic motion (leakage of particles);

(3) regular motion (particle confinement); (4) chaos
border (boundary of confinement).

Nonexponential electron relaxation in & mirror magne-
tic trap in semilog (circles) and log-log (dots) sca-
les: (1), (2) the exponentials with T =z 0.35 and
0.61 msec; (3) the power law with exponent Pz 2.2;
I the electron current out of the trap in arbitrary
units.

A sketch of principal resonances of periods 9 near
critical curve p=r-—rc = O. Two crucial chaotic
layers with cantori of periods @hhz and Q,,,._;
are also shown (Sect. 6).

Critical renormalization dyna.m:xcs in » , the gerial
number of scales (renormtime), for = r, (fixed po- -
int, or exact scale invariance, dots), and for a ran-
dom ¥ (5.4) (renormchaos, or statistical scale inve=

riance, circles). Solid lines indicate one side of

eritical curves ( £ >0 ) while dashed lines do so for
the other (_p<0 ), cf. Fige 3. ..

Reduced amplitudes gQ vs. détune f q,g for a ren-

dom Y (5.4) in log-log scale. Straight line is the

least square fit:|ga{ N_'?,V, 3? = 0,168, The circle

corresponds to = lfg while arrow points l\/‘ :;v[ for
= l’ (4-15)- -

Statistic of Poincaré recurrences in éeparatrix map
(6.1) for A = 1#100;°10' iterations (sfter Ref. /26/).
Upper line is Eq. (6.2) with p = 1/2 and 8 = 1; lo-
wer line Showg the Pit for A = 3(*): /> = 1.37;
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