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ABSTRACT

A simple model of the dynamics of Halley's comet is
developed, and its motion is shown to be chaotic. Esti-
mates for the error growth in the extrapolation of
comet’s trajectory are obtained. Various mechanisms
limiting the full sojourn time of the comet in the Solar
system are considered. This time is found to crucially
depend on weak nongravitational forces.
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- L. INTRODUCTION

Celestial mechanics, i. e. the dynamics of the -solar system, has
been always a perfect example of the regular, deterministic, motion
which allows a long-term prediction to a fairly high accuracy. Yet,
as in almost any other many-dimensional nonlinear oscillator
system, the motion of a qualitatively different nature is possible
here. We mean the so called dynamical chaos when a trajectory be-
comes random, i. e. highly irregular and unpredictable, irrespective
of any noise (see, e. g., Refs [I, 2], and [3]). Moreover, according
to Arnold’s conjecture [4] which has been well confirmed in nume-
rical experiments [1, 5], the chaotic components of motion for the
special initial cond:tions of a positive measure is a generic phenome-
non in nonlinear oscillations. The origin of chaos lies in a neighbor-
hood of any separatrix, the trajectory with zero frequency of the
unperturbed motion.

In celestial mechanics the simplest example of separatrix is the
parabolic trajectory in the two-body problem which separates the
bounded and unbounded motions. As is well known by now [1, 2,
5], in this case any perturbation, particularly, a regular one, by a
uniformly rotating third body, for instance, produces a finite chaotic
layer at the side of unperturbed elliptic trajectories. It has been ex-
plicitly shown in recent paper [6] for a.particular case of the plane
circular restricted three-body problem. |

The orbits close to parabolic, i. e. ones of a large eccentricity
e—~>1 (0<I—e<l), are typical for comets, those «probe particles»
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in celestial mechanics. The most detailed observational data have
been cumulated on the famous comet Halley which left the tracks in
- various historical records back to year —239 (240 B.C.). The analy-
sis of these data allowed us to conclude that the motion of Halley’s
comet is chaotic. We present some of its statistical characteristics,
particularly, the diffusion rate in energy, the estimates for comet’s
life time in the solar system, and the increment of its motion local
instability which sets the limit for the extrapolation of comet’s tra-
jectory in both directions of time.

Our analysis is based upon the construction of a simple 2-dim.
model (a map) for the comet dynamics, and on the subsequent
~study of this model by means of the modern theory of dynamical
systems.

The motion of comet Halley seems to be the first real example
of dynamical chaos in celestial mechanics. Another one is likely to
~ be Saturn’s satellite Hyperion as predicted by Wisdom and cowor-
kers (see Ref. [3]). Extensive numerical simulations of the dyna-
mics of Halley’s comet [7—12] is a striking illustration of the diffi-
culties and limitations in prediction of a chaotic motion.

2. THE MODEL

The strong instability of a chaotic trajectory restricts its extra-
polation by a relatively short time interval irrespective of the model-
ling accuracy. On the other hand, for studying statistical properties
of the motion one can use a relatively simple model which includes
the essential part of dynamics of the real system. In the problem
under consideration it is the dynamics of the phase of comet pertur-
bation by Jupiter. As a conjugate variable it is convenient to choose
some quantity proportional to comet’s energy which determines the
motion period and, hence, a change in the perturbation phase.

In constructing the model we have used, as the original data, 46
values of f,, the comet perihelion passage time, as presented in
Ref. [7] and repeated in Table 1 (#; value is from Ref. [8]). Values
{» comprise a fairly big time span from 1986 back to — 1403 yr.
Notice that only 27 values (n=2-—28) are reconciled with the ob-
servations while the remaining 18 ones (n=29—46) have been pre-
dicted from the numerical simulation of comet’s orbit [7].

Define the global perturbation phase via Jupiter’s position, w1th
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respect to comet’s orbit, at a perihelion passage time:

tn ’ )
Xam - | | | (1)

and set X, =0 (Table 1). Jupiter is assumed to move uniformly in a

circular orbit with an effective period P, =4332.653 days. As a mat-

ter of fact, P, includes various perturbations, particularly, Jupiter’s

and comet’s orbit precession. The above P, value has been empiri-

cally adjusted .from the best intrinsic agreement of the-original data

t. (see below). Measured in years P, is close to the ratio of Earth S
and Jupiter’s mean motions. |

Comet’s period is P,=¢,—t,—,. Define a quantity

—2/3 '
wo=(£) 7 = (%, =X, P~ —2E,, | 2)
J .

.where E. is comet’s total energy, far from Jupiter within the inter-

val (t.—,,t.). We set Jupiter’s velocity and radius of the orbit to- be
unity while its mass p; =9.54 X 10™* is the small perturbation para-
meter. The time unit is then P,/2n=689.563 days =1.888 years.

The change in w depends on the perturbation phase x=X mod 1.
Together with Eq. (2) it leads to a canonical map of the plane
(w, x) (cf. Ref. [6]): \

' 32
wn+l=wn+F(xn); Xny1. =%, +wn+{ . . , (3) )

= Apparently, it is the srimplest (very restricted though) model of co-

met’s dynamics (backwards in time).
The unknown perturbation function F(x) can be found directly

" from the original data ¢, (Table 1) using the same Eqs (3). The re-

sult is depicted in Fig. 1. The scattering .of points turned out to be
caused by Saturn’s perturbation.

The two perturbations can be separated off as follows. Approxi-
mate the dependence in Fig. 1 by a Fourier series F;(x) and plot
the difference F(x.) —F;(x.) vs. Saturn’s phase y=Y mod! where
Y=r,X (Table 1), and ry=0.4026868 is Saturn’s revolution frequ-
ency. The latter has been also empirically adjusted and turned out.
to be equal to the ratio of Saturn’s and Jupiter’s mean motions. The
difference F—F, as a function of y was again approximated by
another Fourier series Fg(y), and the whole procedure repeated for
the function F(x.)—Fg(y.) instead of the initial F(x.). After about
10 such successive approximations the following decomposition of
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Table 1|

Comet Halley’s Dynamics: Perihelion Passage Times [7]

n Year pas;egr:letluio?JD) Jupiter{'é. phase Saturn}’}i phase
1 1986 2446470.9518" 0. 0.
2 1910 2418781.6777 6.39083584 2.57350511
3 1835 - 2391598.9387 12.6647606 5.09993167
4 1759 2363592.5608 19.1287858 7.70290915
5 1682 2335655.7807 25.5767473 10.2994180
6 1607 12308304.0406 31.8896785 12.8415519
7 1531 2280492.7385 38.3086791 15.4263986
8 1456 2253022.1326 44.6490451 17.9795802
9 1378 2224686.1872 51.1891362 20.6131884
10 1301 2196546.0819 57.6840264 23.2285948
11 1222 2167664.3229 64.3500942 25.9129322
12 1145 2139377.0609 70.8789490 28.5420157
13 1066 2110493.4340 77.5454480 31.2265267
14 989 2082538.1876 83.9976717 33.8247519
15 912 2054365.1743 90.5001572 36.4432169
16 837 2026830.7700 96.8552482 39.0023280
17 760 1998788.1713 103.327633 41.6086720
18 684 1971164.2668 109.703382 - 44.1761014
19 607 1942837.9758 116.241244 46.8088124
20 530 1914909.6300 122.687259 49.4045374
21 451 1885963.7491 . 129.368127 52.0948344
22 374 1857707.8424 135.889745 54.7210039
23 295 1828915.8984 142.535083 57.3969935
24 218 1800819.2235 149.019949 60.0083634
25 141 1772638.9340 155.524114 62.6275046
26 66 1745189.4601 161.859602 65.1787221
27 —11 1717323.3485 168.291253 67.7686629
28 —86 1689863.9617 174.629030 70.3208017
29 —163 1661838.0660 181.097560 72.9255932
30 —239 1633907.6180 187.544060 75.5215136
31 —314 1606620.0237 193.842186 78.0576857
32 —390 1578866.8690 200.247766 80.6371280
33 —465 1551414.7388 206.583867 83.1885924
34 —539 1524318.3270 212.837867 85.7069955
35 —615 1496638.0035 219.226637 88.2796687
36 —689 -1469421.7792 225.508291 90.8092075
37 —762 1442954.0301 231.617192 93.2691812




Table 1

(continued)

" Y_ear Pas;egr::il:o?‘m) Jupiter’i phase Saturn)’,i phase
38 —835 1416202.8066 1237.791521 95.7555018
39 —910 1388819.7203 244.111687 98.3005491
40 —985 1361622.0640 250.389054 - 100.828362
41 — 1058 1334960.1638 256.542767 103.306381
; 42 — 1128 1309149.3447 262.500045 105.705298
43 —1197 1283983.7325 268.308406 108.044248
44 — 1265 1259263.8959 274.013879 110.341767
45 —1333 1234416.0059 279.748908 112.651187
! 46 — 1403 1208900.1811 285.638100 - 115.022687
* after [8].
Effective periods for Jupiter 4332.653; for Saturn 10759.362 (days).
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Fig. 1. The full perturbation

of comet Halley vs. Jupiter’s phase.



0.0/

e

-0.01

JUPITER

00925

Fot9)

00025

SATURN




[ e

- 0.001
F.(2)
i . ) %%, ] ofs .- . Z
Ty T v, T wa ¢
0 « . 10
. _ *
~-0.001 EARTH

Fig. 2. Comet Halley’s perturbation by Jupiter (a), by Saturn (b), and residual per-
turbation (c). Curves are Fourier approximation (FA), straight lines are «saw-tooth»
' approximation (STA).

the total perturbation into that by Jupiter, and by Saturn has been -
obtained (Fig. 2): \

F(x) =F;(x) + Fs(y) + Fg(2) . (4)

The final perturbation Fourier spectrum is shown in Table 2
where

Fy(x) = X[am cos (2n mx) + b, sin (2u"mx)]

for Jupiter, and similarly for Saturn. In Fig. 2,c the residual pertur-
bation F,(z) is also plotted vs. Earth’s phase z=Zmod1 where
Z=r:X, and ry=P; (years) =11.86241 is Earth’s frequency in the
units assumed. We failed to find any simple dynamical interpreta-
tion for F, which, thus, characterizes the accuracy of our model (3):
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Here At is the error in «prediction» of the next (or preceding) peri-
helion passage time (Fig. 3).

In the process of successive approximating F;, Fg the parameters
P, and rg, as well as the number of Fourier harmonics, have been

e
25 _| | ', 1 | : .,(
M.t”/! ”[Ihr[ . th“] i

Fig. 3. Accuracy of model (3) for comet Halley’s dynamics: Af (days) is the pre-
diction error of perihelion passage time f, from the two preceding values ¢,—,
and t,—,. '

also optimized by minimizing residual (F3). Interestingly, the opti-
mizing proved to be very sensitive to P, value, so that the empirical
uncertainty in this model parameter is only 0.01 day~15 min! Simi-

larly, the relative uncertamty of effective Saturn’s frequency rg is

~107¢.
The developed model (3), together with the empirical pertur-

bation (Table 2) is, of course, but a physxcally meaningful interpo-
lation of ihe original data ¢,.

Besides the Fourier approximation (FA) of perturbation we

made also use of a simpler «saw-tooth» approximation (STA)
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Table 2

Perturbation Fourier Spectrum in Model (3)

Jupiter ' Saturn
" am X 107 b X 102 Van+b%x10? amX10°, bm X 10° Vaz+b%x10°
0 0 ' 0 - 0 0 0 0
1 —.240980 .390305 458704 .539282 402058 .672663
2 .182350 —.060684 192182 - | —.365971 .094560 377990
3 —.120144 —.025157 122749 . .055456 | —.195876 .203575
4 053170 .062750 082247 .087232 145022 .169236
5 —.002350 | —.051279 .051333 —.076651 .043299 ..088035
6 —.019543 .033955 1039178 —.019011 | —.032018 037237
7 019810 | —.006757 .020931 —.010290 049478 .050537
8 —.016521- | —.005454 .017398 —.067932 .063112 092724
9 003908 | .009710 .010467 —.000503 012022 .012033
10

—.001400 | —.005662 .005833 013116 .013741 .018996

when each of the functions F, (x), Fs(y) was represented by the two
straight lines as shown in Fig. 2. The amplitudes and vertex positi-
ons have been assumed -as follows

A;=6.35X107%  x.=0552; x_=0.640;
Ag=1.05x10"%; 4, =0.305 y_=0.385; (6)
2dy=x_—x4=0.088; 2d3=y_—y,=0.080.

Naturally, the accuracy -of the latter approximation is much worse
(cf. Eq. . (5)):

: 1/ 1
(i’ﬂ?’*; * <0.10; “iw) Za12X107%  ((Af)?)112~50 days.
: 10; ;

We mention that the dynamics of 2-dim. maps with a «saw-
tooth» perturbation, similar to map (3), was studied in Refs
[13, 14] (see also Refs [1, 5]). ‘

A surprisingly sharp phase dependence of the perturbation
(Fig. 2) is explained by relatively close encounters of the comet and
planets due to a small inclination angle i of comet’s orbit
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(sini=~0.3). Indeed, two encounters per turn are possible, both pro-
ving to correspond approximately to the same phases x and y. Re-
call that we define the perturbation phase at the perihelion passage
time while the perturbation actually takes place at-a different in-
stant. The closest encounter corresponds to some «encounter phase»
. X.~0.60. Due to approximate symmetry of the encountering the
value F;(x;) =0. Saturn’s encounter phase is y.=~0.35.

Effects of the two encounters can be separated off using the os-
culating values of comet’s energy near perihelion which are also
presented in Ref. [7]. The result is shown in Fig. 4 without the

0.01

Eut(xj W,
R LES . - s * e . }:‘-7 x
o_f: ‘ *g = o® «® " ..j ot - 10
| d .-
P
ﬂ'l(x} -, [
» .
»n
_.0_0/ JUPITER

Fig. 4. The full perturbation of comet Halley, approachmg the Sun (squares Fin(x)),
and moving away (diamonds, Fou(x)): Fm+Fo..¢-—F(x) (Fig. 1).

separation of Saturn’s perturbation. The particular shape. of depen-
dences in Fig. 4 is not completely clear to us.

Assuming the straight and uniform motion of both Jupiter and
the comet at the right angle to each other for a very close encoun-
ter (sini<l; d;<«1) the following simple analytical relation for the
perturbation
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24; (x—x,) d; |

—F;(x) = )+ Fy(x)=0;

A=t B _o060; | (7)
sini

d=A/3 S 0.059

J 2 o2m

can be shown-to hold within some interval around x. including
both | F;| maxima. Numerical values are given for the comet Halley.
They agree quite well with Eqs (6), and do so still better with a
more accurate FA presented in Fig. 2,a which gives A; ~0.0059 and
d; ~0.062. Notice, however, that empirical function F;(x) is slightly
asymmetrlc with respect to phase x.~0.60.

‘For Saturn’s perturbation only the values of phase yc, and of
. amplitude Ay in Eq. (7) change, namely :

7‘-=—“S——_—O.163, | (8)
A W as

where pg, ag are the mass and orbit’s radius for Saturn. The data
in Fig. 2 give Ag/A; =0.175. _
| Even though Earth’s mass pg ~p, /300 is quite small, the close
encounters with the comet do happen down to the minimal one,
An=~0.04 AU =~0.008 (in 837). In the latter case

AE) 1 pg sini -
— A~ — ~0.06, 9
( AJ max 2 “JAm . . i ( )

which is 2 times the residual perturbation (5) However the rms .
perturbation by Earth

(%;—)1/2~?Mﬁ smz((l/A)2>'/2~oo2 o  (10)

is somewhat less than F,. The value ((1/A)%)'2=7.3 (AU) '~38
is derived from the observational data cited in Ref. [9].

Some other planets (Venus, Uranus, Neptune) as well as the
nongravitational forces (see Refs [7, 12]) provide a comparable
perturbation. Altogether (Earth included) it amount to about
((F5)/{F}))/?~0.025 which 1s close to residual perturbation Fj of
our model (see Eq. (5)). The latter includes, of course, the effect of
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some other model approximations, particularly, the assumed circular
rotation of Jupiter and Saturn. ‘

At small w the perturbation F(x) is nearly independent of w
(7) as the energy exchange with Jupiter is determined by the
«local» (osculating) speed of the comet v’~2>w. This was just the
reason to choose quantity w as a dynamical variable of our model.
Moreover, one. can show.that w is the so called ergodic variable
(see Ref. [15], Section 13), and therefore the average perturbation
(F(x) y=0 was set zero (Table 2). | ,

Notice that in presence of Saturn’s perturbation one should
either use the global phase X, (§n=ran) in map (3), as we did, or

- add the equation y,, | =ya.+rsw, ).

3. LOCAL INSTABILITY OF. MOTION

Strong local instability of motion — the exponential divergence
of close trajectories. — is commonly accepted by now as the
simplest and most reliable criterion of dynamical chaos, at least, in
numerical experiments [1, 2, 5]. We studied this instability via the
linearized equations of model (3): =

8w, =8w,+ F’'(x)) -bx,,

3 _
ax,,+,=ax,,—7(w2+.) . 8w, , (11)

where r(_’xg,wg) is a reference trajectory, and (8x., dw,) the tangent
vector [. The nature of [ dynamics is determined by the Lyapunov
exponent :

A=lim L 1n b . (12)

n—oo N 0

For a 2-dim. map A =h, the Kolmogorov— Sinai entropy. Dynamical
chaos occurs under condition A>0, or A>0.

The motion under consideration has two very different time
scales: i) Ny~h~' of the fast phase mixing, and ii) N,>N, of a
slow diffusion in w (Sect. 5). Therefore, the limit in Eq. (12)
should be understood as a double strong inequality: N,<n< Ny,
while entropy A(w) depends on comet’s energy. '

The eigenvalues of matrix (11) satisfy the condition MA,=1.
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Define the largest eigenvalue modulus by A.; it depends on the ite-
ration serial number n. Then:

In An=| In| 1 —k,+ 1/k,,2-2k,.ll;

fen = 2 w, P F(x,) - (13)

where we drop the superscript zero for the reference trajectory.
Consider first the perturbation by Jupiter only. In the STA (6)

0.108

— 0.552 < x, < 0.640

fen = " - (14)
0.0104 o .
5 otherw;se

n .

‘At the present value w,=w,~0.3 the instability occurs. only within
the phase -interval given in the iirst line of Eq. (14) around encoun-
ter phase x.~0.60 where 4,~6.2. We shall term these phases un-
stable. For other x values A,=1. Notice that with £,>0 for unstable
phases the eigenvalue A,~1.9 would be much smaller.

Using Egs (13) and (14) we conclude that for

w,,<wc,z0.12 - (15)

all the phases become unstable as |k,] >2. In this w domam there
is a single solid chaotic component of motion.

On the contrary, at w>w,, large regions of stable motion arise
around the fixed points of map (3): w=w,~m"¥3 x=yx;
F; (x5) =0; F’(x,)>0 with m any integer (Fig. 5,a). The oscillation
penod about a fixed point Pn=~2nm'/S[(1—2d,)/3A,]"2~700 yr (in
STA). Remnants of this periodicity persist in the chaotic component.
Apparently, they were noticed and discussed in Refs [7, 16]. There
are fixed points at phase x. (7) as well, yet all the latter are un-
stable since F/(x;) <O0.

- In region w>w,. the motion instability grows only ‘within the
narrow interval of unstable phases (14), and the entropy can be
described by the relation

h(w) ~p(w) In [ak(w)]. : (16)

Here p(w) is theiprobability for a trajectory to enter the unstable
phase interval; A is the maximal eigenvalue in this interval which

15
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does not depend on the phase in the STA (13); a factor a~1 de-
pends only weakly on w, it describes the average orientation of [
with respect to eigenvectors.

Numerical simulation at w=~0.3 gives: A= 0.26; p=0.19; a=0.55
and A=~6.2. Notice that probability p considerably exceeds the inter-
val width 2d; =0.088 (6). It is explained by a decrease in the area
of chaotic component outside the unstable phase interval due to
large stable regions there (Fig. 5,a). The a value is close to 1/2
which would correspond to the isotropic distribution of tangent

035 | HALLEY MAP | 035 | HALLEY MAP

w ‘ W

(a)

0.20

0 L0

I

Fig. 5. Phase trajectory of map (3) in the STA (6). Initial conditions. (crbsses)
w,=0.29164; x,=0 (in 1986, see Table 1): a)—Jupiter’s perturbation only,
N=1.5x10° iterations; b) —perturbation by both Jupiter and Saturn, N=4000.

vector upon trajectory entering the unstable phase interval ‘and as-
suming the eigenvectors to be orthogonal. |

Comet’s motion changes substantially if Saturn’s perturbatlon is
«switched on» (Fig. 5,b). Notice that upon including Saturn’s per-
turbation the phase plane point (w,x) does no longer completely
determine the trajectory which also depends on Saturn’s phase y. In
other words, the plane in Fig. 5,6 is 2-dim. projection of the 3-dim.
phase space of map (3) (see the end of Sect. 2). With Saturn’s per-
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turbation on, the stability domains noticeably decrease but persist.
This leads to a reduction of the probability to p~0.13 and, conse-
quently, of the entropy to A~0.16 while factor a~0.53 as well as
the unstable eigenvalue A remain nearly constant. The latter is
explained by a weak Saturn’s influence upon parameter k in
Eq. (13):

AR re ~0.076. | (17)
On the contrary, the perturbation by Earth, being relatively
weak (9, 10) completely dominates nevertheless, upon a close enco-
unter A with the comet as it is concentrated within a very narrow -
interval of phase z=rzX mod| (dg ~Am/2n0g ~0.006). We have:

’ . o~ 2 —4
%lzﬂf—rgag(s-lz l) ~ @A—;—O——S 10,
4 W

—~3
2.8x107° _

Mg 2 kgl ~ Z2—— S 45. | (18)

The latter numerical values correspond to minimal A=
—=An=~0.008~0.04 AU. The approximation A; ~2k; holds for A:>>1.
Destabilizing effect of close encounters with Earth is well known
from the practice of numerical simulation of comet’s trajectory [7,
10, 12]. However, Earth’s mean contribution to the entropy is insig-
nificant. It can be roughly evaluated as follows. The observational
data [9] reveal approximately homogeneous distribution of the en-
counters in A with the density o=7. Averaging over A we find

A
he~0 § In [ahe (A)]dA=20(A,—An) —0An In[adg (An)]~006.  (19)

Am

Here a=~0.5 (see Eq. (16)); A (A|) ~1/a=~2, whence A, ~0.025~
~0.13 AU from k; (A)) =~ +2.3 (see Eq. (13)).

Within stability domains the motion is quasiperiodic, i. e. of a
discrete spectrum, and w variation is strictly bounded ‘and small
while entropy h=0. Interestingly, the present value of comet
Halley’s energy is only 3% above the nearest stability region. How-
ever, the residual perturbation F, makes the existence of such
regions questionable. |
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4. THE ERROR FACTOR IN NUMERICAL SIMULATION
OF A CHAOTIC TRAJECTORY

, - \
The local instability of comet Halley’s motion is the cause of its
chaotic behaviour, particularly, of the diffusion in energy (Sections
9, 6). Moreover, the instability sharply restricts any extrapolation of
comet’s trajectory both forward and backward in time. The most er-
ror-sensitive quantity is perihelion passage time t,, or the perturba-
tion phase x,. Just those f, errors are given usually in the papers
on numerical simulation of comet's dynamics [7, 8, 10, 12]. On the
other hand, x, errors significantly change the comet motion. as the
trajectory may get over from stable to unstable phases and vice
versa. Define the error factor

n=|22], S (20)

Gxo

which describes the growth of phase errors over m comet’s revo-
lutions. |
For m>>1 the mean error factor relates to the entropy (Sect. 3):

frme™ . | o (21)

Assume the maximal tolerable error |8x.] to be of the order of
- d;=0.05, |8¢m| ~200 days (a hali-width of the unstable phase inter-
val, see Eq. (6)). Then, the available length of extrapolation is

restricted to . :
1 d,

Neyt~— In
ext h 'axol

It grows only loganthmlcally with the modellmg accuracy |8x,.

Eq. (22) we use the value A=0.16 without Earth’s contnbutlon V-

(Sect. 3). Assuming an effective initial error |8x, ~5x107*,
| 8¢yl ~2 days (see below) we obtain N..=29 revolutions.

This estimate is rather crude, of course, due to big fluctuations
on a relatively short time span, particularly, because of a narrow

interval of unstable phases. A more accurate evaluation of the error -

factor can be performed as follows.

Consider linearized map (11) on some interval {tn, tm) usmg the
«true» orbit (Table 1) as reference trajectory. Then, the error factor
can .be estimated, within this interval, as the biggest cigenvalue

-
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modulus of the corresponding transfer matrix
fn.m"’;"n,m . | (23)

The quantity (lnd, ,)/(m—n)=h, , descrlbes a «current» entropy
on this interval (f., ¢»). For instance, f, ,, =0.24, which noticeably
exceeds the mean value A=0.16. The latter is reached in a longer
time interval. The former value may be compared to £h=0.30 as
measured by means of maps (3) and (11) (Sect. 3) for 50 comet’s
revolutions.

As the errors of linearized map also grow exponentially the
transfer matrix is expedient to evaluate by multiplying the matrices
of each iteration rather than numerically iterating map (11).

As a particular example we estimate the extrapolation accuracy,
for comet Halley’s trajectory in Ref. [7]. The main parameters of
this trajectory were determined from comet’'s apparitions in 1759,
1682 and 1607. However, the most error-sensitive quantity ¢, was
set to the observational value in 837 (n=16). So, we assumed just
the latter date as the extrapolation start in evaluating Ag,. These
values are depicted in Fig. 6 for m=17—46 (crosses) which corres-
pond to the extrapolation back to —1403 in Ref. [7]. A peculiar fe-
ature of this dependence is rather long interval of stable motion
(A=1, m=17—29 except Mg, =1.89) followed by a fairly steep int
stability. It is important to note that the earliest reliable observati-
ons of comet Halley fall just on the stable section (in —86, m=28).
In other words, the proper extrapolation, in absence of any observati-
onal data, gets actually into the unstable part of the trajectory. At
the end of extrapolation the error factor amounts to fig 44 ~Ag 44 =~ 700.

As the initial error 84, it is natural to assume the rms deviation
of computed £, from their observational values within the stable in-
terval m=17—28. Using the data of Table 5 in Ref. [7] we find
8tin =2.7 days. The values of In(|8¢tn]/8tn) are shown in Flg 6 by
squares.

At the end of extrapolation interval the error |84, ~
~ 01, - fi,44~5 yr becomes prohibitively large. The extrapolation holds,
therefore only up to about m=35 (in —615) when |84;] ~200 days.

- As a check of these estimatés we made a similar extrapolation
with our model (3). We have slightly corrected the value w,; in
order to decrease &f,; (in 141) as well as it has been done in
Ref. [7]. Actually, the eccentricity was corrected there but, cu-
riously, both relative changes proved to be very close:
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|Ael /(1 —e) = | Aw| /w=2.2X107* The initial- error for our model,
~calculated in the same way as above, 8fi,~19 days is in a reason-
able agreement with the rms accuracy (5), and is only 7 times the
error in Ref. [7]. A somewhat big error in the latter case is likely
due to comet’s encounters with Earth which are not included in our
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Fig. 6. Error factor [ in extrapolation of comet Halley's chaotic trajectory (in 837

through —1403). Dependence of In(]8tnl /8tin) =Inf vs. m=17—46 is shown after

Refs [7] (squares); [12] (diamonds); our model (3) (full circles), and Inkg
(crosses), see text.

model. The model values of In(|8¢.l /8ts) are represented in Fig. 6
- by full circles, and they clearly demonstrate a «sudden» burst of
instability. |

Finally, one may compare comet’s trajectory in Ref. [7] with the
recent computation in Ref. [12] (Table 8, sample I, for instance).
The result is shown in Fig. 6 by diamonds. The rms difference bet-
ween the two trajectories within the stable section is 6#,=0.9 day.
At the end of extrapolation of the trajectory in Ref. [I2] the error-
factor reaches the value fig33~Mg 33 =30, and the separation of the
trajectories becomes |84;] ~27 days. Why in the final version of co-
met’s trajectory as presented in Table 9 of Ref. [12] the same sepa-
ration lies within about one day remains a mystery for us.
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In any event, all the above data definitely point out a rapid
growth of the extrapolation errors in the time interval under consi-
deration. This may explain some difficulties in reconciling the obser-
vational data in —465 and —617 with extrapolated trajectories of
comet Halley as mentioned in Ref. [12].

We emphasize that the error growth in our model relates to the
perturbation by Jupiter (and Saturn) only without any Earth’s con-
tribution which would increase the errors still more. We mention
that the motion instability and error growth in a simple three-body
model were noticed in Ref. [16] and certainly follow from the
results of Ref. [6].

For comparison we note that the computational accuracy for the
stable (quasiperiodic) motion of planets in the solar system on the
same time interval is equivalent to &i~1 day, and it weakly
depends on time (see, e. g. Table 2 in Ref. [7]).
~ Contrary to extrapolation the interpolation of a chaotic trajec-
tory can Le realized to a much higher accuracy. Particularly, it is
demonstrated by surprisingly small errors of our fairly simple mo-
del (3). How strange it may seem at the first glance, the interpola-
tion is the simpler (requires the less changes in initial conditions
and/or system’s parameters) the stronger local instability of motion.
It is the property of structural stability (robustness) of chaotic
dynamics which also provides stability of the statistical description.

Notice that big absolute errors of ¢, for the computed comet’s
trajectory in Ref. [7] do not prevent at all from using this trajec-
tory for the reconstruction of perturbation F(x) in Sect. 2. The
point is that we need three successive values {, only, and the re-
construction accuracy depends on trajectory errors within two co-
met’s revolutions.

5. THE LOCAL DIFFUSION RATE
OF A CHAOTIC TRAJECTORY

Within a chaotic component of comet’s motion the perturbation
F(x) causes a diffusion in w. If perturbation phases x, would be
not only random (which they are due to the local instability) but
also statistically independent (which they generally are not in spite
of randomness) then the diffusion rate were determined simply by
mean square of the perturbation (see, e. g., Reis [1, 2]):
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A2

p= A9 _p _(Fx)) ~ F~13x107°. (24)

m

That limiting case holds at w <« w., when all the phases are un-
stable (Sect. 3). Here Saturn’s contribution is negligibly small
(A2/A? ~0.03). - :

As w grows the entropy falls down (13) which results in a time
correlation, and in diffusion deceleration. This becomes especially
significant for w>w. due to formation of domains with a regular
motion (Fig. 5). It is just the case for the present value w,~0.3.

We numerically measured the local (a small change in w) diffu-
sion rate by averaging over 1024 trajectories of 46 iterations each
with slighly different initial conditions. In the FA the rate
D(w,) ~5.6 X10™® while the STA gives 6.0 107%. It is about two
times less than D, (24). «Switching-off» Saturn’s perturbation
somewhat decreases the diffusion (4.4x107%) due to a stronger
~ correlation. S

Residual perturbation F, (Sect. 2) in the form of a random
noise with the same rms magnitude doesn’t change the rate:
5.5 107% (FA).

Finally, we directly used the data in Ref. [7] (Table 1) which is
equivalent to one trajectory in the previous method. It gives a close
value of 7.4 x107°. :

- We also mention that at bigger w the diffusion rate drops e. g,
D(0.7) =2.7x107°.

6. GLOBAL DYNAMICS OF COMET HALLEY

Simple model (3) does not take any account of other orbit’s pa-
rameters, besides w, and therefore 'its straightforward “application is
restricted by a relatively short time interval.

The most significant eifect seems to be a periodic crossing of
Jupiter’s and comet’s orbits due to the perihelion precession with a
period Np,=~440 comet’s revolutions (see Ref. [7]). This leads to a
considerable decrease of the minimal Jupiter —comet dlstance s as’
compared to the present value s, =sini~0.3.

Besides increase of the mean diffusion rate the prompt ejection
of the comet out of the solar system may happen as a result of a
single very close encounter with Jupiter. A rough estimate for the
ejection probability can be derived as follows.
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[
Consider analytical approximation (7) of perturbation with ‘the
parameters , : -

A d .
2 4’

A= f‘éii - d=d, sin ( ) (25)
S

2nm
3
‘where the present values are marked .by subscript 1; m is the serial
number of comet’s revolution counting approximately from an or-
bits’s crossing (m,~ N,/4), and factor 1/2 takes account of the fact
that only one of the two encounters per turn can be close for s<s,.
The condition for ejection has the form F<—w, which is only pos-
sible at |m|<SA,N,/4nw=~0.7 (w=0.3) that is during about
8| m| ~6 comet’s revolutions per period N,=440. The ejection proba-
bility at such a special revolution is pi=Ad/w=~10"% (w=03). It
is determined by entering a very narrow phase interval where

F<—w. The ejection mean life time of the comet |

. N = w 2~ 5 _

| Nej~ 8imlp, 24, (—71',') ~10 = (26)
turns out to be surprisingly long, much in excess of the diffusion
life time (see below). We mention that the probability for the comet
to fall down on Jupiter is still about 100 times less.

- To evaluate the mean diffusion rate in the independent-phase
approximation we average expression (24) over m. Using Eq. (25)
we obtain /

D, ~ Dy-6d, - In N,~2D, . - | (27)
Thus, the diffusion rate remains of same order in spite of orbits’
crossing. ’ -

Using Eq. (13) for parameter £ and perturbation approximation
(7) and (25) it is easily verified that the width of .the unstable
phase interval does not depend on d. Therefore, the phase correlati-
on persists for d<d, as well, and hence the actual mean diffusion

rate D (w) is also of the order of D(w) in the model (3).

Another omitted effect, which is important for the global dyna-
mics, is apparently the diffusion in inclination [, as perturbation
F(x)oc(sini)™" (7). A rough estimate can be obtained from the
data in Ref. [7] (Table 4). The maximal relative change over the

time interval given is
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SN fay 1 _0.086
Si dyy |

which is comparable with the corresponding diffusion change in w:

Omax 1 -0.111.

wmin

Thus, even though the diffusion in i can hardly be neglected
completely, it doesn’t seem to change the order of magnitude for
comet’s life time in the solar system, especially in view of big fluc-
tuations of the latter (see below).

In any event, we are going to make use of model (3) for some
rough preliminary estimates of comet’s global dynamics.

In the STA a connected chaotic component is unbounded in w

because of a slow decay of perturbation Fourier harmonics
[5, 13, 14]. For the true smooth perturbation the chaotic component

is limited from above: w<<w,. Yet, the border is much higher than
w,;~0.3, and therefore is unimportant here. Numerical simulation
shows that, at any rate, w,>0.6 (P,<2.15=25.5 yr). What is im-
portant, that chaotic component extends down to w=0, i. e. the co-
met leaves eventually the solar system along a hyperbolic orbit.

In the independent-phase approximation (24) the diffusipn life
time of the comet is

2 3w?
Np~ 2 = 28 < 10%,
"D, A4~

tD'=ND(w"3/2)~4N" 3x1054/w <10°%yr (28)

where the initial w Sw. ~0.12 (P, ~290 yr).
[t is interesting to compare N, with the ejection time (26):

N |
o= =01 | (29)

ej

Notice, that even though Eq. (26) for N.; has a «diffusion appea-
rance» it is not necessarily related to any chaotic motion, and it
holds for regular tra]ectones as well provided the phase x runs
over the whole interval, i. e. is rotating.

The diffusion proceeds down to w,, ~A;, ~0.006 which corres-
ponds to comet’s period P,,~2.6X10*yr, and to its aphelion
2a,,,~ 1700 AU.
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We carried out numerical simulation of the global dynamics
~using 40 trajectories of map (3) with initial conditions from
Table 1. Because of the local instability all these trajectories rapidly
diverge and show quite different values of the life time:

1374<Np<10°, 53X 10°st, (yr)<2X107.
The latter relates to big diffusion fluctuations, especially, at w>w,,.

An example of the full phase trajectory, projected onto plane (w, x).
is depicted in Fig. 7,a.

05 | HALLEY MAaP 10 | HALLEY MAP

w w

Fig. 7. Two examples of comet Halley's global dynamics in model (3), N,~4.1x10",

iy ~4.5%10° yr (a); with a variable nongravitational acceleration (30), F =3x107°%,
New=10°, Npy~3.1 X10°, tp, ~2.1x 10" yr (b).

The mean diffusion life time of the comet is equal to
Np~18x10*; 1, ~39x10° yr

the average period being P, ~t, /N, ~220 yr, and the mean rate of
- global diffusion Dg~w]/N,~5x107%. The latter is close tg the
local diffusion rate (Sect. 5).
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The global diffusion primarily proceeds downwards in w because
of increasing of D(w) in this direction.

Comet’s life time, unlike the local diffusion rate, cruc1ally de-
pends on a relatively weak perturbatnon by Saturn. Upon its «swit-

ching-off» the life time jumps up to N,=~6X10° (f, =6x107 yr),
i. e. by a factor of 20, due to a long-time «sticking» of trajectory in
some narrow w layers. Under these circumstances even a weak
additional perturbation may greatly change the life time. Notice that

comet’s mean period P,=~100 yr remains close to the initial
P,~T76 yr. |

- As the diffusion proceeds symmetrically in the both directions of
time, the full sojourn time of the comet in the solar system is twice

as big, 2N,, which, of course, is of the same order on the
background of big fluctuations. |

Certainly, comet’s actual life time may be determined by totally
different physical processes, for example, simply by its evaporation.
After recent data in Ref. [17] the evaporation time amounts to
N, =~4000 comet’s revolutions only. However, there is no such a
limitation backwards in time. ' '

Another important effect is a systematic variation of w (a drift).
The physical cause of the drift is the so called transverse nongravi-
tational acceleration (force) related to evaporation of the comet
near the Sun [18]. Using the latest data on the parameters of non-
gravitational forces [8, 12] we find

&/ &

= F(x) = +3x107°

backward in time. Forward in time F <0 which would result in
comet’s leaving the solar system after about Ny~w,/F ~10* revo-

lutions, that is somewhat less than Ezl.SXlO“. The combination
of both diffusion and drift would decrease the life time still more;

numerically, N;;zGGOO.

We mention that the change in phase volume (dissipativity),
which is inevitably related to the drift, is, nevertheless, much
smaller, so that the corresponding time Ngss can be shown to have
the order Nas/Ni~ (qw)~'~30 where ¢=~0.6 AU=0.12 is comet’s
perihelion distance. Hence, map (3) can be treated as canonical one
even in presence of the drift.
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a common belief (see, e. g., Refs [7, 12]). Also, for any chaotic
trajectory the mean error growth in time is exponential but not a
power law one as is sometimes assumed [19]. Increasing the com-
putation accuracy helps, therefore, only on a short time interval as:
is easily verified by a slight change in initial conditions or by the
time reversal.

Since chaotic motien has a continuous temporal Fourier spec-
trum, the so called «cyclic ‘method», i. e. the search of commensura-
bilities in motions of the comet, Jupiter and Saturn [20] is totally
inaplicable here. This displays a qualitative distinction of chaotic
motion from a regular (quasiperiodic) one, as the planet motion, for
example, where this method is successfully used. We remind that
‘the perturbation in our model is a regular (quasiperiodic) function
-of time except a small residual perturbation, assumed to be random,
which however doesn’t change the chaotic nature of comet’s motion.

Dynamical chaos results in the diffusion of comet’s orbit in both
directions of time, so that the comet is found eventually outside the
solar system. Numerical simulation shows that comet’s sojourn time
within the solar system crucially depends on a weak nongravi-
tational force acting upon the comet near the Sun. Interestingly, re-
peated crossings of comet’s and planets orbits only insignificantly
decrease the comet life time.

All the computations have been performed on a fast personal
computer «Odroenok» designed and manufactured in the Institute of
Nuclear Physics at Novosibirsk [21]. We are greatly indebted to
A.N. Aleshaev, S.D. Belov, V.P. Kozak, E.A. Kuper, G.S. Piskunov,
and S.V. Tararyshkin for numerous advices and continual assistance.

We also acknowledge interesting and helpful discussions with
F.M. Izrailev and D.L. Shepelyansky. |
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