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KAM INTEGRABILITY™?

In 1892, almost & hundred years ago, Poincaré has publi-
shed his famous theorem /1/ on nonexistence of isolating ana-
lytical motion integrals (except energy) in a generic conser-
vative Hamiltonian system (in external static field, for an
isclated system - except the integrals of Poincare's group).
Thigs theorem, being formally correct, nevertheless made a lot
of confusion, at least among physicists who payed no aittention
to the importance of the term “analytical" (integrals). It
seemed obvious -~ why should any singularities appear in a simp~
le mechanical motion? In 1923 young Fermi has even published
a paper /2/ where he ostensibly proved that the Poincaré theo-
rem implied the ergodicity of motion (on energy surface). How-
ever, as a physicist he had apparently never believed his own
foermal result, and by the end of life he decided to check it
via numerical simulation on one of the first computers /3/.

The numerical experiment did not confirm the Fermi "theorem".
The surprise of the authors was so great that they did pay no
attention to the clear signs of ergodicity in some runs (see,
e.ge Pige 3 in Retf./3/)., Thus they had missed the phenomenon
which has been termed later on the dynamical chaos (see Ref.
/4/)+ Instead they heve discovered a remarkable stability of
nonlinear oscillations which gave a strong impetus to the fu-
ture development of powerful mathematical methods for "con-
structing® the whole families of completely integrable nonline-
ar equations (see, e.ge, Ref-/S/)**). The integrals in question
are analytical, indeed, so all these completely integrable sys-

tems are exceptional in accordance with the Poincaré theorem,
The mystery of this theorem has been finally resolved in
the fascinating KAM theory, one of whose creator was Professor
Jurgen Moser. His decisive contribution to the theory was in
the studies of nonanalyticel perturbations, mappings including.
*)

This work proposed for publication in the collected volume
dedicated to Professor loser's sixtieth birthday, Zurich,
Switzerland (1988).

In the development of those methods the integrability of
another model ~ the Toda lattice ~ which had been discover-
edlalso in numerical experiments /6/, played an essential
role.
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He devoted many papers to the development of this theory as
well as to its various applications (see, e.g., Ref./7/).

According to the KAM theory a sufficiently weak perturbe-
tion ¢f a nonlinear system preserves the full set of its mo-
tion integrals for moat of initial conditions. The measure of
the complementary set with unstable trajectories goes down 1o
zero with perturbation, yet this set is everywhere dense. It
congists of narrow chaotic layers along destroyed separatrices
of the nonlinear resonances, A detailed description of such a
structure is given, for instence, in Ref./8/.

Even though the problem is obviously improper the theory
guarantees, in the case of two freedoms { N = 2), the eternal
stability of motion in the gemse of small variations of the
unperturbed integrals over indefinite time interval (chaotic
layers including&).vThis is because chaotic layers are isolat-
ed in this case from each other by invariant tori while the
motion instability within a layer is sharply restricted by its
negligible width.

The gituation drastically changes in a many-dimensional
system ( N > 2) where chaotic layers form a single connected
set, the everywhere dense network, or "web", comprising the
whole energy surface. A chaotic trajectory within this set co-
mes arbitrarily close to any point of energy surface, yet it
is not ergodic as it remains always on the set of a small mea-
surel A priori, such an intricate structure of motion appears
to be completely unlikely, at least for physicists. The KAM
theory did help them to considerably develop imagination, and
now the above generic picture seems already to be quite natu-
ral and comprehensive in terms of nonlinear resonances and
their interaction. The most important implication of this pie-
ture is a slow motion over the web /9/ which proved to be chao~
tic and was termed the Arpmold diffusion /8/.

However, the problem remains esgentially improper. One
way to regularize it is imposing an external weak noise whose
effect would be amplified by Armold's diffusion for erbitrary
initial conditions, the moxe so the weaker is the noise /8/.
Another way is in restriction of the motion {ime which converts
the everywhere dense web into a finite-mesh grid.




In this paper we consider a different problem: what is
the accuracy of approximate motion integrals in the KAM theo-
ry for arbitrary initial conditions? Following this approach
we introduce a new concept of approximate integrability which
we shall term the KAM integrability /10/.

Any motion integrals, if only approximete, are of the
primary importance in physics. A classical example is the adi-
sbatic inveriants. It turns out that adiabaticity is closely
related to KAM integrability /11/. As is well known by now
(see also below) the chaotic layers are formed by a high-fre-
quency perturbation, while the adiabatic invariance holds in
case of a low-frequency one. Clearly, the both are different
only in which of interacting freedoms is treated -as perturbing,
and which one as perturbed. Hence, the KAM integrability may be
called the jnverse adiabaticity.

The variation of unperturbed motion integrals is propor-
tional to perturbation and generally is not very small for
any initial conditions. However, such relatively big perturba-
tions do not accumulate and can be calculeted, theoretically,
to a high accuracy. The accumulating variations, on the other
hand, are caused by the diffusion only which is very slow and
which does piace indeed, the principal limit to the accuracy
of KAM integrals. Another important charecteristic of this ac-
curacy ia the width of cheotic layers to which the diffusion
is confined without external noise. Both characteristics are
interrelated: loosely speaking, the diffusion rate is propor-
tional to the aquare of layer width (to the cube in presence
of noise /12/). Precisely this dependence is going to be used
below for evaluating the diffusion rate at a very weak pertur-
bation. In this case the diffusion depends on high-order reso-
nances in a very complicated way. Nevertheless, a fairly simple,
very rough though, estimate for the diffusion rate was obtained
in Ref./12/. Our main objective bhelow is the extension of thil
estimate onto & considerably weaker perturbation, and its com-
parison with the rigorous upper estimate in Ref./13/.

We confirm the exponential dependence on perturbation in
the limit of sufficiently weak perturbations for both the dif-
fusion rate and layer width. On the other hand, we have found
some preliminary indicaiions of the existernce of a rather broad

5




(in perturbation) domain with only a power-law decay for the
diffusion rate. This interesting phenomenon requires further
gtudies.

In any event, the diffusion falloff is fairly sharp which
proves once more & high precision and quality of the KAM integ-
rals, and hence, their importance in physics.

1. Model

We make use of the same model as in Ref./12/ which is
specified by the Hamiltonian

2o 7 2t
ﬁ’[z{-,p{ = —’—2 — —i—b‘ ~ HTX —51;/(5) . (1)

£ e (2)

where (2 is oscillation amplitude ( Xy zQ{'[)m‘&(j ) relat-
ed to the frequency @t :a)(.g'ﬁd_ ; ﬁ: 0.8472.4. (3ee
Ref./8/). The driving periodic force is chosen in the form

—6mz

; Cas (22¢) (s (52t ) . (3)

T 2
A =— =
7- A, Cas(s2t) % &

2R
The latter expression holds for & =(7~A4,) << { . 1If, more-~
over, $2/w << { the driving resonances ¢O=7252 form a
dense net which increases siow diffusion.

The mgin coupling resonance Wy = 51),—3 is taken as the
guiding resonanece along which the diffusion proceeds. At £=7

the motion near resonance has a form of the phase oscilltion,
i.e. the oseillation of resonance phase ¥ =&, -&-  as well
as of amplitudes (2, . Approximately, it is described by the
"pendulum" Hamiltonien /8/
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,L/i('%,p}:: -—;%pz—‘ ‘/; (:)os'y . (4)

Here is momentum conjugated to ¥ end £, = Ef ‘“?2;=
~capst + The steble equilibrium at ¥ =0 (#, =~ - ua’/z)
corresponds to the stable periodic trajectory at resonance cen-
ter. In its vicinity the small phase oscillation of frequency
2 ” = 1/@ ig harmonic. Smallness of this frequency as

-~ ‘does determine the inverse adiabaticity of the driving
perturbetion with parameter & . .

The unsteble equilibrium at ¥=% [ Hy = /(,Qf /»9 ) cor=
regponds to the unstable pericdic trajectory which is crossed
by a separatrix surface (separatrix) - the boundary of a nonli-
near resonance in the phase space. Any, arbitrarily weak, per-
turbation destroys ("splits up") the separatrix: In its vicini-
ty a chaotic layer arises (Fig. 1) along which, i.e. in the di-~
rection perpendicular to the figure plane, the diffusion goes
on if &£ 740 .

We make use of e canonical mapping (x;,%; ) > (56;,/5’_ )
generated by the function

Bl ) =o,p + %[, + H (% P2 ) (5)

ag the numerical algorithm. Its accuracy grows with the number
of steps per oscillation period /\/1-“-2.71:/1/5&, , and it proves
to be sufficiently high provided /\/4,230 (as »f/i/) /8,12/.

2, Primary resonances

Arnold diffusion is only possible if there are at least
three resonances - a guiding one, and two driving., With one dri-
ving resonance the diffusion goes at some angle to the layer,
and thus is restricted by thé» same mechanism as the layer width.

If the perturbation is moderate, i.e. is not too weak, it
suffices to take account of primary, or first-order resonances




only. In model (1) these are the guiding resonance &J);= &Jp
and a couple of mosat cloase driving resonances ﬁ)gzm-g?— .

On the other hand, the perturbation should not be too
strong to avoid global chaos due to resonance overlap. The dri-
ving resonances alone do overlap under condition /8/: & >

2 a¥ezpFp o or

| 8o T \7e
E—éfz —SJZ(%.”E) 23/21 .

Here ‘-/,L is the adiabaticity parameter which plays the prin-
eipal role in the problem of KAM integrability; l&o}ksa/a

is the meximal aetuning in respect to the neighbouring driving
resonances; 72”1""—‘2 53—';0(— G'm}/é\' are smpiitudes of driving
force (3), and Y, =££ [ ML (see 5a.(2)). At A KAy the
diffusion rate (in energy grows up to (see, e.g., Ref./15/):

(aH)? g (haw)?
D=~ "3~ - (6)

Taking account of the coupling resonance, the overlap bor-
der increases to

dyaf(Z) " 42 E

only it A ® A, the diffusion is confined within a nar-
row cheotic layer of the coupling resonance. Introduce a dimen-
sionless layers widih %/~ = (a’;'h:{ /,ﬂaf )*" 4 . On the unpertur-
bed separatrix 77=, while in the resonance center %= -2 ,
According to Ref,./18/ the half-width of chaotic layer is

. ~ .8 —wAfR




provided 3, € { . In the middle between two driving reso-
nences ([éiolﬂzék/k ) all three domains of chaotic layer
(1,2,3, Fige 1) have equal width. Otherwise, one of the exter-
nel domeins (1 or 2, ¥ rotation) is much more narrow. On
the contrary, the width of internal domain (3, ?& oscillation)
would be twice as much. The explanation is as follows /8/.
Changes in 7%/~ by the driving perturbation occur around

¥ =0 that is they follow with & period

/ 32
'73;/,@«_—-&‘,
(v) o ] (9

which is the period of 1& rotation and the half-period of

% oscillation. In asymmetric case ( |Sw|« /2 ) the
perturbation is operative only on one half-period of oscilla-
tion, and only for one direction of rotation. Hence, the per-
turbation period for oscillation doubles, and this increases

the layer width /8/.

Chaotic layer is exponentially narrow (8) that mainly de~
pends on the adisbaticity parameter . >> 1. In turn, ol is
related to that part of perturbation only which determines the
guiding resonance (parameter’/L Yo

A simple equation

V) o~ AW , (10)

relates the layer width to separatrix splitting W= 63”*lmxar
which, in turn is equal to the maximal change in ¥~ over pe-
riod 7T (9).

The splitting of separatrix, and the formation of en in-
tricate homoclinic structure was known already to Poincaré who
even obtained the first expomential estimate for W /1/ (Sec-
tions 226 and 397). Subsequently, this problem was studied in
many papers (see, e.g., Refs./7,16,17/}. The concept of chaotic
layer near separatrix was first developed in Ref./18/ and than
thoroughly investigated in Refs./8,19,20/. The results of nume-
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rical simlations in the latter papers (especially in Ref./19/)
are well in agreement with a simple estimate like Eq.(8) provi-
ded o/?, > is not too big.

The diffusion rmte slong the coupling resonance (in ener-
gY) is also exponentially small /8/ (cf. Eq.(6)):

D, ~ Ie——_—————(’s’f‘m‘))ee'l’l ()
H 3 _5?;7; .

Here 779_ is the average period of motion in a chaotic layer
(see Eg.(9)):

A =51>_/u7[1 /3 éj—f~ =$2, T(ws)+1 . (12)

S

Comparing Eqs.(11) and (8), we arrive at our basic rela-
tion:

Na
~_ DS o %
D=t awr ™" AxF

{13)
~ _ 2 oo L
s q}" / 8 7
f >

between{\djmensionles diffusion rate JJ end reduced layer
width W, . Notice that £q.(13) actually holds around

b0 =~ 2 /2 only. Otherwise, ‘(1); depends on the more close
driving resonance (on smaller |[Sw| ) while IJ,, does so on
larger igco\ .

3. High-order resonances

Arnold diffusion was observed first in numerical experi-
ments /21/, and then was studied in detail in Refs./8,22/. As
was noticed already in Ref./8/ the diffusion rate comsiderably
exceeded simple estimate (11) when A = 5. Qualitatively, this
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was explained by the effect of high-order resonances, the high-
er the bigger was c-/’L « Even though their amplitudes are very
small they form & much more dense net as compared to primary
drl)&/ng resonances. This leads to a decrease in detuning/:é:‘a)--v
— 8% < £2) , and, hence, to a poor adiambaticity: L -+ <

< gﬂ, + Clearly, the motion structure in this region is extreme~-
ly complicated, so that any analytical theory can, at best, pro-
vide a very rough order-of-magnitude estimate only. One was ob-
tained in Ref./8/ (see also Ref./23/), namely:

—~ £/
D~ﬂ0arﬂ/—4ﬂ/ /. (14)

Here A7 is the number of linearly independent (incommensur-
able) unperturbed frequencies which form the high-order reso-
nances; .D‘, and A4  assumed to be constant. Unlike Eq.(11)
we take now for oL =52 /25?-},_ its maximal velue on primery
regonances assuming 2‘25' to weskly depend on the original
&¢d , According to Eq.(14) an effective adiabaticity parame-
ter (cf. Eq.(11))

—~ ~— .{.M
T ko A g
2 T (15)

the latter inequality being the condition for applicability
of estimates (14,15).

The theory, developed in Ref./8/, shows that the basic
relation (13) does hold for arbitrary resonance set. However,

constant ( generally depends on syatem's parameters, and
mey comsiderably change. Eqs.(13~1%) imply then

/2
—~ A_Da o~ _]Zﬂ/n?
Wy ~ (’—‘“@ A7e , (16)
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Earlier, in paper /13/, a rigorous upper estimate has
been obtained which can be transformed to type (14) with the
parameter /8/

M=M~

-1 )N
=—-@/—‘—4i)——+2>l\1’, an

where N is the number of freedoms for a conservative Hamil-
tonian gystem. Even for N =2 parsmeter My = 4.5 consider-
ably exceeds the value A/ = 2 found in Ref./12/. Thig is in
no contradiction with the upper bound (17), of course. Yet, a
more effective estimate is desirable.

In Ref./12/ the diffusion rate [J,, was directly measured
on a supercomputer CRAY-1. Even though, it was possible to
reach A =~10 only due to a rapid decresse in the diffusion
rate. In the present work & different technique is used, name-
ly, we measure the width of a chaotic layer «/ , and then
calculate J,, from Eq.(13). As a result we have reached
A &~ 50 on a personal computer} The back side of the coin will
be discussed in Section 6.

4., Numerical experiments

We employ the numerical algorithm, described in Section 1,
and the following values of parameters (in the main series of
experiments):

gfp=00l, R-005bs, A,=0995 (=~ #5 );

o~

@=0.285; w[R~55; ]Xw‘zﬂ/ﬁj v, =05

Variables ‘/.1_ and -/7. run over a broad range:

/

sz

200 ¢ < 2500, 4 <A <50

(18)
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For ol > 20 the double precision (20 decimal places) is used.
The initial conditions are chosen within the chaotic layer.

In the method employed everything is calculated from the
only measured quantity, the period T{ w) (9). To suppress
big fluctuations in chaotic motion and, thus, to minimize er~
rors in 7~ , & special averaging of resonance phase ’}// is
applied /14/.

Given 7 (w7 the quantity %+ is calculated from
Eq.(9). The difference in successive %'~ values is satisfac-
torily described by a simple relation /8/:

~ WS 2 o 2
a1~ Win g, W~~~ p2(aw)? , 19)

where ¥ is some high-order-resonance phase, random in a
chaotic layer. The actual width of chaotic layer ’a};,’,_ is cal-
culated from the minimel period 7 (%), ) which satisfactorily
agrees with average period 7,  (12): (52/,. (72_~ 7"(?4/,1))) =
= /14 . To find the full width %/ 'a correction is in-
troduced according to Eq.(4.49) in Ref./8/, namely:

wy R L
};“1+(ﬂ ) ~2 . (20)

Here 72 =17 / 7a is the mean number of periods over the total
motion time #  ; typically, 72 ~ 100 is chosen. All obtain-
ed quantities are averaged over 10 trajectories to suppress
big fluctuations which are characteristic for the chaotic mo-
tion with chaos border (at layer edges) /24/.

The diffusion rate is celculated from Eq.(13) where .ﬂ =
~_—&}_;/W is substituted for I . Parameter (€ , assumed
to be constant, ig found from the same Eq.(13) using the data
of Ref./12/ in the range A =& 3.7 + 8. Averaging over 11
points provides

(byo)=0s52027; C~36 -
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where the dispersion of decimal logarithm values is given. No
systematic variation of (® with o1 is observed. Notice
that O value exceeds that in Eq.(13) by a quite big factor
of about 200 which is not completely clear {(see below).

The results of the main series of measuremenets with
@ = 0,225 (S = 0.0156) are shown in Fig. 2. The straight
line represents dependence (14) with parameters _Du = 2,0,
and 4 = 5.60 obtained by the least square fit of numerical
data. According to Ref./12/, Z,=~ 26 and A = 7.9 which
gives the idea as to the accuracy of estimate (14). However,
the scattering of points in Fig. 2 appears to be surprisingly
small. This may be related to the fact that only one parameter

/‘~ is varying.

In Fig. 3 the dependence of diffusion rate on another pa-
rameter - reduced detuning & =7/ -(2 ]S'LOI/SE) - ig shown.
The value 5 = 0 corresponds to & haliway between the two
driving resonances, while 5 = 1 falls just on one of them.
Horizontal line represenis Eq.(14) with the parameters fitted
in PFig. 2.

In Fig. 3 the data for two velues of 1///7, = 600; 300
are shown. In the firsv case, besides the main force (3), two
other types of driving perturbation are represented: i) two-
-frequency force with J2,= 35352 and $2,= 652 523/91 =
= 6/5, and with the same amplitudes as in %q.{(3); ii)} the force
with two independent frequencies 523/521 = 1.2381966444 o
All three versions are in a good agreement. They reveal a sig-
nificant dependence of diffusion rate on detuning S« ., This
is most striking in a narrow inlerval o< 1()_3 which covers
a low-order resonance ¢ = 5?1 + S2p « A similar drop in
:D\" does occur also at S~ 1. The rest of dependence shows
the accuracy of estimate (14) with a constant 4 .

Low diffusion rate at o =0 puts al: the upper bound
for a possible background which turns oul .. be about 4 orders
of magnitude below the diffusion, independent of el . We menti-
on that for & = 0 the fictitions diffusion rate calculated
from Eq.(13) drops by 11 orders of magnitude. Notice that a fi-
nite width of chaotic layer in this case is real due to the in-
teraction with other coupling resonances M, ), = #2; ‘4»)2 ’

#ey # 772-5 o« On the other hand, the "real" additional diffu-
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sion caused by the discreteness of numerical algorlthm (5) is
completely negligible. According to estimate (14) its 7~
~ 10" - (i) owing to a very big value of adiabaticity parame~
ter A2 = f/fs,/_ 800 at £//4 = 500.

In F:Lg. 4 the dependence of effect:.ve a.d:.abatlmty para-
meter 7 = =u/W=w (2 (aw)® )"/2 onﬂ=é?/c.62f,,
is depicted. The asymptotic relation (15) - the horizontal
line -~ is reached, within fluctuations, at A 2 15. Notice
that in the whole range Jl‘.é 10, studied in Ref./12/, the
relation (15) is satisfied poorly. This may be a reason for
quite big ¢ value as obtained from data in Ref./12/.

Our results confirm the value A7 = 2 for the main para-
meter in estimate (14). It was obtained in Ref./12/ and ex-
plained there by the presence of two independent frequencies,
52 and <0 (in coupling resomance <0, =<y=¢D ), This
explenation is further confirmed by a sharp decrease in diffu-
sion rate at & =0 (Fig. 3) when the two frequencies become
commensurable (aJ/_S? =11/2) and M = 1.

Thus, the theoretical value of A7 seems to be confirmed.
If so, one would expect a considerable increase in /13’ for
two independent frequencies 521, _5'22 of the driving pertfurba-
tion as N =3 in this case, However, this is not observed
(Fig. 3, (J ). In the next Section we attempt to resolve this
contradiétion.

5. A weak adiabaticity?

We assume that parameter A~ in estimate (14), surmised
to be constant, is actually growing with A7 . Suppose that
it grows linearly, i.e. #=8BM where 5 is constant now.
Then, at l =12 (Fig. 3, [J ) the diffusion rate, calcula-
ted for A =2 and /¥ = 3, is nearly the same. lloreover, the
data in Fig. 2 imply the value /A3 -+ 2,80 which is close to
B=JC for M =1 (see 89, (11)). I/M

In case of modified estimate ./ ~7) Eto( B’Wc/z )
the curves D(ﬂ) for different </ do intersect. Particu-
larly, this implies that the difrfusion rate for some 7V7’< N
may happen to be bigger than for the asctual A7 . Such an
enhanced diffusion can be caused by the driving resonances
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formed by a fewer number (/’/}J) of unperturbed frequencies.
For exemple, at sufficiently small ! the diffusion is al-
ways drived by primary resonances (11), and hence M =1 for
any N7 . Therefore, one should find such M (A)< M |, tor
each 4 » which provides the hlghest diffusion rate. In this
way we arrive at the dependence D (ﬂ.) /.D in the form of
successive functions ezp( BmA 1/~) with different
M < N7 .+ As our estimates are fairly rough we may smooth
over that broken curve. To this end we consider dependence
M(-/'U to be continuous, and derive it from the local condi-
tion 9ﬁ(l,ﬂ7)/2fﬁ =0 , whence 7 =&d . substitut-
ing the latter relation into ﬁ(ﬂ,;ﬁvj we arrive at a fairly
gimple estimate

—~ -~ Be
D ~ 1A (22)

where € = 2.71¢.s « That slow decay of the dlffus:.on rate
- the weak adiabaticity - pers:.sts, however, while M < M
only, i.e. for ﬂ, <] e » Subsequently, the exponential de-
pendence is recovered.

Thus, if our hypothesis is true, the final estimate for
the diffusion rate becomes

-Be
.Doﬂ ; Age™

T~ (23)

%exp(’BMj!/lvyf A=

Notice tha.t both curves 3(-1) are tangent to each other at
A=e"

In F:Lg. 5 the data of Fig. 2 (+) are represented in Ea -
- /,7, scale. The straight line is power law (23) with fltted
parameters Dy~ 1.6; B =~ 2.84. The latter value is very
close to B = 2.80 previously obtained. The curves in Fige. 5
show exponential dependence (23) for M = 1; 2; 3. Squares
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correspond to minimal detunings & < 107 (see Fig. 3) with
expected NM =1 (Section 4).

We also measured the diffusion rate for two independent
frequencies S2,, 52, (expected A7 =3) and A =
= (SZ,I"_SQQI/BSZ}‘.;.S'.’; (x/@~ =/500) . at this A > €% 20
estimates (23) with M =2 and /N =3 differ by 3 orders
of magnitude., Indeed, the measured values of -é@ ;2_ lie
all in the interval 13.8 + 9.6 (at average, - (£ogD) = 11.9)
while Eq.(23) gives 14.3 (M = 2) or 11.8 (# = 3). A consider-
able dispersion in 35‘ is apparently related to the depen-
dence on detuning O = 0.00084 + 0.085 (cf. Fig. 3). 4t & =
= 0 the diffusion rate drops down to - é%ﬁfr= 16.8 which is
comparable to the estimate for A7 =2,

We understand, of course, that the consideration and data
given above are but preiiminary indications toward the existen—
ce of a domain of weak adiabaticity (22). Nor the hypothetical
relation 4 =5/ follows directly from a simple theory in
Ref./8/. Instead, it requires = more accureste evaluation of
the density of high-order resonances. To summarize, this inte-
resting question remains as yet open.

113

6. Concluding remarks

The main result of our studies is the confirmation of ex-
ponential estimate (14) in a broesd range of adiabaticity para-
meter A (Fig. 2). In our opinion, the most important prob-
lem to be solved would be the relation between simple empirical
egtimate (14) and the rigorous estimate from above in Ref./13/
(see EQ.(17)). Why do they differ? Could it be related to the
fact that fairly large values of A studied in this peper
are still not big encugh? Generally, we may also ask if the ap-
plicability domain of estimate (14) is restricted in .1
from above?

On the other hand, we certainly know that this domain is
bounded from below, and not only by the resonance overlap (Sec-
tion 2). Already in paper /12/ the deviation from dependence
(14) at 1 £ 4 was observed. This could be roughly explained
by a change in A7 value from 2 (A4 2 4) to 1 (A < 4). In
this paper we put forward the hypothesis which extents such a
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behaviour on arbitrary A7 (Section 5). Surprisingly, this
leads to the conclusion on existence of the domain of "weak
adiabaticity" where the diffusion rate falls off as a some po-
wer of the adisbaticity parameter only (23). The domain width
in A rapidly grows with A7 , and it certainly deserves
further thorough studies.

Penetration into the region of large JZ- in this work
proved to be possible due to a new method for evaluation of
the diffusion rate via the width of the chaotic layer. How po-
werful it might seem, the method has its own limitations. Par-
ticularly, it fmils (in the present form &t least) as soon as
a modulational chaotic layer appears whose width is irrelevant
to the diffusion rate /14,25/. More precisely, the applicabili-
ty of the new method is restricted by the condition A >o’2'mgd
where uzwnad is some critical valu¢ at which a modulational
layer is formed. Another disadvantage of the method is in its
poor accuracy due to unknown factor which may considerab-
ly change (cf. Eqs.(21) and (13)).

Even in the domein of weak adiabaticity the long-term va~
riation of metion integrals rapidly drops with perturbation
which confirms & high accuracy of the KAM integrals, and empha-
sizes again their importance in physics, At the same time, the
estimates obtained may heppen to be helpful in those special
applications where the diffusion, no maiter how slow, turns out
to be significant as, for example, in the dynamics of an aste-
roid or a heavy particle in the storage ring (see, e.g., Ref.
/26/).

We are happy to acknowledge Professor Moser's great con-
tribu%ibh;to the international collaboration which is so vital
in this, as well as in other , fields of research.
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Fig. 1. Outline of a chaotic layer (see Eq.(4)): 1, 2 are
the domeins of resonance phase % rotation in op-
posite senses; 3 same of ¥ oscillation; 4, 5 are
unstable and stable periodic trajectories, respecti-
vely; arrows ai layer edgea indicate the direction
of motion; unperiurbed separatrix is shown by dashed
curve.
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fige 2o linin results of numerical experiments (+) for model
(1y: A = 52/358,._ ; gtraight line is estimate
(14) with M = '2; curve shows the effect of prima-
ry resonances (11); logarithm is decimal.
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Fige 4. Bffective adiabaticity parameter A vs. c/z for
the main deta (Fig. 2). Horizontal linme is Eq.(15)
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Fig. 5. Conjectured weak adiabaticity (23): straight line
is powar law; curves correspond to exponentials
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