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ABSTRACT

A review of the current understanding of the Arnold
diffusion —a universal instability of motion in many-
dimensional nonlinear oscillator systems—is given
with the special emphasis on the estimation of the dif-
fusion rate. Two new phenomena of the fast Arnold
diffusion in systems with strong and with weak nonli-
: nearity are discussed.
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1. INTRODUCTION .

The main purpose of this talk is to discuss agabin the fascinating
mechanism of the so-called Arnold diffusion, a universal instability

of motion in many-dimensional Hamiltonian oscillator systems

[l —5]. This fine phenomenon may play an important role in such
diverse processes as the motion of asteroids in the solar system and
the dynamics of a heavy particle in the storage ring [6]. The first
example of such a universal instability was constructed and dis-
cussed by Arnold [1]. The diffusion nature of this instability was

l revealed and numerically confirmed in Refs [2, 4, 5] while

Nekhoroshev imposed the rigorous upper bound on its rate [3].
To begin with, consider a many-dimensional Hamiltonian

H(I,0,)=Ho(l)+e ) Vama(l) e ™", (1.1)

m,n

where H, describes an unperturbed completely integrable system,
and where small (e—0) perturbation is represented by the Fourier
series. The action-angle variables /, 6 are N.dimensional vectors,
and the explicit quasi-periodic dependence on time is characterized
by M-dimensional frequency vector Q; m, n are integer vectors of
dimensions N and M, respectively (e. g. m= (my, ..., my)).

The long-term dynamics, we are interested in prlmarlly, is con-
trolled by . the resonances, both coupling (n=0) and driving
(n+0). A first-order, or primary, resonance is defined by the rela-
tion

ma (I) +nQ =0, l ) (1.2)




which determines resonance surface in the action space.. Here
mo=nm; o; nQ=n,Q: are scalar products and unperturbed fre-
- quencies «;(/) =dH,/dl;. The unperturbed-oscillation is called nonli-,
near if frequencies wi(/) depend on the actions. Moreover, if the
oscillation is nondegenerate, that is if the determinant

'al.l = Iaijg;.' +0 (113)

there is one-to-one correspondence between the action space and the
frequency space. The latter is more convenient for a graphical pic-
ture of the resonance structure where each resonance surface (1.2)
is simply a plane.

Under a weak perturbation (e30) the nonlinear resonance
acquires a finite width [4, 5]: '

/2 .
(Aw),= “V"'“l — 20 ean) (1.4)
lml 2m m| .

Here l/u,,.=m.~(6m,-/6l,,)mk~lm|2a|m|/|ll' |m| = Zlmi' a is

dimensionless “nonlinearity parameter and Q, is irequency of the
small phase oscillations about the stable periodic trajectory at the
resonance center. In the last rough estimate v~Vn,/H, for the lar-
gest perturbation harmonics.

For sufficiently small perturbation the KAM theory guarantees
preservation of quasi-periodic motion on slightly deformed invariant
tori for most (but not all!) initial conditions. The complementary
set is just the region where the Arnold diffusion occurs in a. many-
dimensional system. Before, turning to this main topic of the present
talk we mention that for a relatively strong perturbation the reso-
nances overlap produces a global large-scale chaos with only occa-
sional small islets of regular motions embedded. The critical pertur-
bation was roughly estimated in Refs [4, 8, 12] as -

(ea)cf~(%) AR Cas) |

where perturbation harmonics are assumed to decay exponentially
Van~vHoexp [—o(Iml+1nl)]; o< 1; (V*)=Ho;; Q=N+M and
F=0 from the simple resonance overlap criterion while the rigorous
upper estimate inferred from Moser’s results [8] is F=4.
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‘Thus, for this particular problem both approaches are reaso-

nably compatible so that estimate (1.5), being rather crude, seems -

to be_not far from the truth, especially if (N4 M) is large enough
Unfortunately, this is not the case for Arnold diffusion which is the
main topic of our discussion bélow. Typically, this diffusion persists
for arbitrarily weak perturbation e < e, and, in this sense, is uni-

versal phenomenon of many-dimensional nonlinear oscillations. The

word «typically» means that there are exceptional systems, €. g.
Toda lattice [9], which are completely integrable and whose motion
is quasi-periodic for all initial conditions. Unlike those exceptional
cases a typical Hamiltonian system is, for €0, only KAM integr-
able '[10] that is up to the Arnold diffusion. Both the diffusion rate
as well as the measure of chaotic component are very small in e,
and, hence, the KAM integrability is of a fairly good quality. It is
as important as the approximate adiabatic invariance to which KAM
* integrability is closely related , namely, it may be called the inverse
adiabaticity [11] (see also Sectlon 2 below).

Arnold diffusion proceeds along the resonance surfaces (1.2),
the whole set of which is everywhere dense in the phase space. If
- resonance surfaces intersect than any chaotic trajectory covers the
whole invariant surface determined by the exact motion integrals,
e. g. an energy surface of a conservative system (=0 in
Eq. (1.1)). Moreover, chaotic trajectory comes arbitrarily close to
any point on this surface. Yet, the motion is not ergodic because the
measure of chaotic component is small! From simple geometrical
considerations it is- clear that resonances do intersect only if the
number of freedoms N> 2, i. e. only for N>=3 in a conservative
system (Q=0) or for N>2 and Q340. In this sense the Arnold

- diffusion, unlike the global chaos, is a many-dimensional phenome-

non. An example of finite set of resonances is outlined in Fig. 1.
The main problem to be discussed below is the diffusion rate.

Even though this rate is very low the diffusion may happen to be .

decisive in some long-term processes like the beam-beam interaction
in storage rings [6]. We give a general review of our present
understanding of the Arnold diffusion including various (and very

different so far!) estimates as well as some results of our recent -
numerical experiments on a simple model. One new feature which

" has emerged from these studies is the existence of a wide perturba-
tion range where the diffusion rate decreases as a power of pertur-

~ bation ¢ only, i. e. relatively slow. Of course, asymptotically as e—>0

the rate drops exponentially in agreement with all previous results.
B 5 '
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Fig. 1. A scheme of nonlinear resonances in frequency space for two freedoms
(N=2) driven by an external perturbation (Q240) or for a conservative (Q= 0)
system of N> 2 (projection onto energy surface).

2. STRONG NONLINEARITY, ESTIMATES

We shall call nonlinearity strong if the dimensionless parameter
a0 and does not depend on & (see Eq. (1.4)). Then, for suffici-
ently Wweak perturbation the resonance width (Al),/I~
~(Aw) /oo~ (ev/a)'/? is relatively small. This substantially simpli-
fies theoretical analysis of the Arnold diffusion.

The structure of nonlinear resonance in the phase space is
shown in Fig. 2 where resonance phase y=m®0+n®t, and p is
the conjugate momentum (a linear combination of I, for details see
Ref. [4]). Superscnpt «g» indicates a particular, «guiding», reso-
nance mg +n¥Q=0 along which the diffusion goes on, and
r——Qt—l—r where 7 is constant phase vector. The resonance
domain of width (Ap),~|I| (ev/a)'/? is bounded by the unperturbed
separatrlx surface whose projection is shown in Fig. 2 by dashed
line.
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Fig. 2. The structure of nonlinear resonance with the chaotic layer' between solid
lines:

1, 2 are the domains of resonance phase ¢ rotation in opposite senses; 3—same of ¥ oscillation;
4, 5 are the projections of unstable and stable periodic trajectories, respectively; arrows at layer
edges indicate the direction of motion; unperturbed separatrix is shown by dashed line.

The perturbation destroys (splits) separatrix and forms a very
narrow chaotic layer around. It is precisely this layer where the
Arnold diffusion occurs. The rest of the resonance domain is filled
with regular trajectories, also covering the invariant tori but of a
different topology, as compared with the unperturbed ones. What is

still more important, the motion near resonance acquires a new,
very slow, frequency Qg~|ol| (exv)'/?, that of the ¢ phase oscilla-
tion. Thus, a new set of resonances appears [Q,+mo+nQ=0
whose interaction results in both the formation of chaotic layer and

the Arnold diffusion therein. Why the chaotic layer is always close,
as &0, to the unperturbed separatrix? Because phase frequency
Q0 vanishes here which generally facilitates the chaos.

Consider the resonant Hamiltonian [4] (see Eq. (1.4) above):

. 2 o
Ho=2L— —p, 82 %cosyp, (2.1)
2y,
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‘which describes a single (guldmg) resonance. We are mterested in
the vicinity of separatrix (Hy=pn,Q32) where the motion penod T
grows mdeflmtely :

1 32
1’(w)=§ In—lTv—l . (2.2)

Here dimensionless quantity w= (H,/ngQ2) —1 characterizes the
relative distance from the separatrix. The second term in resonant
Hamiltonian 2 1) is one of perturbation terms in original Hamilto-
nian (1.1): ,,,,._Vg This system is still completely integrable as it
possesses integral H,= const.

Now we include one more perturbation term with the phase

(p,,.,.=m9+ntz§m,.1|7+a)mnt+ﬂmn ’ (23)

where factor Emn~1; Bma is a constant phase, and perturbation fre-
quency om=mo® +nQ with resonant vector ©* satisfying
m®e® +nQ=0. The interaction of two resonances (m” and m)
breaks down the integrability and produces a chaotic layer around

the unperturbed separatrix. The layer width can be estimated as [4] ,

Ws =~

n Vi Vimn 218ml +1, —n)./2 ‘
-_— 2.4
T'(2|Emal) Emn Vg ) } (2.4)

where ['(x) is the gamma function; v,~1, and the basic parameter

Omn  [ec)'? Im] %
= 2mn | 2= —_ - 2.
A Qg S) lm“”l ( 5)

The latter estimate is rather crude but it shows that in the region of
Arnold diffusion (e<e.) the parameter A>1 is big, and chaotic
layers are typically exponentially narrow. -

With two resonances only the diffusion. within the chaotic layer
is restricted by its very small width and, hence, is of no importance
for the global dynamics. To provide a long-range diffusion, at least
one more resonance is required. A rough estimate for the diffusion
rate in the actions is then [4] '
e?V: w?

g 1 (26)

. Dl~

where Ta is the averaged motion period wnthm the chaotic layer:
A= Tan—QgT(ws) +l see Eq (2.2). In terms of the reduced layer.
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where the rate D! corresponds to the global chaos (e>ec),
arrive at the important relation

= H '

b~Cc =% . (2.8)
between the rate of Arnold diffusion and the width of the correspon-
ding chaotic layer. In the next section we are going to make exten- -
sive use of this remarkable relation. Fortunately, generally
unknown factor C only weakly depends on system’s parameters
according to our experience [10]. All resonances essential for the
Arnold diffusion but the guiding one are called driving resonances.

We see that both the width of chaotic layer as well as the rate
of Arnold diffusion are exponentially small and are mainly control-
led by the parameter A (2.5), the ratio of perturbation frequency
. ®ma to that of phase oscillation @, in the guiding resonance. Thus,
the Arnold diffusion is associated with a high-frequency perturba-
tion A>1. This is just the opposite case as compared to a slow adi-
abatic perturbation. It is easy to see that the difference comes actu-
ally to which freedom is perturbing and which one is perturbed. For
this reason we shall speak of the Arnold diffusion ‘as reverse adia-
baticity, and call A the adiabaticity parameter [10, 11].

If only three primary resonances aré operative, i. e. one can
neglect’ all perturbation terms in Eq. (1.1) but three, the evaluation
of both w;s as well as D; can be performed quite accurately, within
a factor of 2 at worst [4]. However, for sufficiently weak perturba-
tion this is almost never the case because of the impact of higher-
order resonances which may be not explicitly present in original
Hamiltorian (1.1). Instead, they appear in higher approximations of
perturbation theory. How to express these higher order effects in
terms of the original Hamiltonian? A hint was given in Nekhoro-
shev’s upper estimate [3] which can be represented in terms of
Arnold diffusion as '

D~Do exp(—Ar'") (2.9)

with the most important parameter

9




BN—-I)N
=

E=E +2 (2.10)

for M=0. This upper estimate was later confirmed by many
authors (see e. g., Ref. [13]). It is essential that A, in Eq. (2.9) is
a formal adiabaticity parameter related to the primary driving reso-
nances only which are explicitly present in the original Hamiltonian
(1.1), i.e. A, is immediatly known (see next Section for an
example).

A qualitative explanation of the dependence (2.9) and its rela-
tion to higher-order resonances was given in Ref. [4], yet the quan-
titative result turned out to be rather different, as compared to
Eq. (2.10)

E=L<Q—1=N+M—1, (2.11)

where L is the number of linearly independent (incommensurable)

unperturbed frequencies. whose combinations determine the higher-

order resonances. The maximal value of L=Q—1 is due to relation
o+4n Q= =0, at average, on the guiding resonance.

The difference between L and Ey is not necessarily a contra-
diction as Ey is the upper estimate. Yet, the problem is what is the
true value of E, if any, i. e. if Eq. (2.9) is a good approximation at
all?" Numerical experiments to be discussed in the next Section seem
to confirm the value of E=L. However, one is never sure that the
perturbation is weak enough which is one of the conditions for
applicability of Nekhoroshev’s estimate.

Our recent numerical experiments [10] revealed another
interesting feature of Arnold diffusion: even though E increases
with L and the dependence D(A,) becomes less steep, the factor A
in Eq. (2.9) seems also to increase with L so that two curves
D(A,, L) for different L do intersect at some A,(L). In other words,
 higher L works at big A, only. This is precisely the reason why a
fairly simple 3-resonance approximation, which corresponds to
L=1, is in a good agreement with numerical data for A,<C4 (see
Refs [4, 14]).

A more accurate examination (than in Ref. [4]) of the estimate
for factor A in Eq. (2.9) confirms the conjecture in Ref. [10] that
actually A=BL where now B weakly depends on the parameters.
Particularly, this implies that the diffusion rate for some L < L may
happen to be bigger than for the actual L. Such an enhanced diffu-

~
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sion can be caused by the driving resonances formed by a fewer
number (L) of unperturbed frequencies. Therefore, one should find
such L(M) <L, for each A, which provides the highest diffusion
rate. Thus we arrive at the dependence

1‘)(;.,,) ~Doexp(— BTy, (2.12)

where L(?»p) L. As our estimates are rather crude we may smooth
over such a broken line. To this end we consider dependence L(Ap)
as a contmyous one, and derive it from the local condititon
0D (hy, L)/0L=0 whence L=1InA,. Substituting this into Eq. (2.12)
we obtain a fairly simple estimate

BaDor %, (2.13),

where e=2.7182... We shall call this surprising regime the poor
adiabaticity. It persists while L<L, i. e. for A,<<e . Subsequently,
the exponential dependence:is recovered. Thus, our final estimate for
the diffusion rate becomes |

2 AP-BE ApCet
Do eXP(—BLA,’:/L) Aet . (2.14).

Notice, that both curves D(A,) are tangent at Lp=eL.
According to our numerical experiments (see next Section)
. B~2.8 which is close to B=axn for L=1 (see Eqs (2.4), (2.6)) and
we assume the latter value in what follows. The exponent in the
first Eq. (2.14) then becomes: Be~ne~8.5. ‘

The quantity A, in Eq. (2.14) is some fofmal parameter related

to the primary resonances. Instead, we may introduce a new,.
«true», adiabaticity parameter A by the relation -

oA=Lt (2.15)

This provides an alternative description for the impact of higher-
order resonances. Notice, that A in Eq. (2.4) is the true one.

The estimate (2.13) makes sense if Q is big which is satlsfled
however, for a few freedoms also if the spectrum of the external
quasiperiodic perturbation is reach enough }M>>l).
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3. STRONG NONLINEARITY, NUMERICAL EXPERIMENTS

As in earlier studies [2, 4, 14] we made use of a simple model
specified by the Hamiltonian -

2 2 4 4 .
H=-’“—Jgﬂ+ "—'}"—’—ux.xz—exlf(t) , (3.1)

where f(¢) was some periodic or quasiperiodic function (for details .
see Ref. [10]). A peculiar feature of the unperturbed system
(w=¢e=0) is in that the motion is almost harmonic x;&a;cos6; in
_ spite of strong nonlinearity: a= (//0)do/dI=4/3; 6=w=~_a;
Bp~0.85. For the periodic driving perturbation of basic frequency €,
and guiding resonance ®;=w,, the formal (primary) adiabaticity
parameter A,= |, | /R~ Q/2BV1 (01, =0 —nQ; Qp=p/n). o
Fig. 3, taken from Ref. [14], clearly shows the transition from a

]
\ 6‘“ [
! <
I, ] I
ol 2
(] | )
~o| Sl ARNOLD DIFFUSION
oe W &g )
= |
—tl < a ’
81 s R ® |
—oi ® R separatrix
w w
v ()
$— I L + +
| a A A a a center
g I
e 1
. '0.00 10.00  20.00 _ 30.00 40.00 _ 50.00
: =10 v

_ Fig. 3. Diffusion rate vs adiabaticity parameter A.,,z0.0Q/\/p‘ (e/u=0.01) ‘at the gui-
ding resonance center, and inside the chaotic layer. The vertical dashed line marks
the transititon from resonance overlap to the Arnold diffusion [14].
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global chaos due to a strong resonance overlap to Arnold diffusion
within a narrow chaotic layer. The latter is explicitly seen in Fig. 4
[14]. The results of direct measurements of the diffusion rate in
Ref. [14] confirm estimate (2.9) with the following fitted values of
the parameters: E=2; Dy=26; A=7.9 or B~4 (see Eq. (2.14))."

!

/bZ.D -45

- 20

- 25

A A A A A A A A A A
3
4 d x 10 5
Fig. 4. Diffusion rate vs initial conditions: A,~4; &/p=0.1; 2d=x,(0) —x2(0);
p1(0) =~ p2(0) =0; resonance center corresponds to d=0 [14].

In Ref. [14] the value of A,~ 10 only has been reached because of
a fast decay of the diffusion rate. To study much weaker perturba-
tion we turned in Ref. [10] to the measurement of the chaotic layer
width, evaluating the diffusion rate-from Eq. (2.8). Actually, the
only quantity to be measured was the dependence T(w) (see
Eq. (2.2)) from which both w; (minimal T) as well as the true
A=w;/Awn (Aw. the maximal single change in w) were calculated.
In this way we managed to proceed as far as up to A,~50 (but to
A= 14 only, see Eq. (2.15), L=2 and below). |
First of all we checked Eq. (2.8) and calculated unknown factor
C~3.5 from the direct measurement of diffusion rate in Ref. [14]
within the interval A,=3.7—8. The main numerical data of
Ref. [10] are presented in Fig. 5 by crosses. They are well fitted by
Eq. (2.9) with - the parameters E=2; D;=2.0; A=5.60 hence,
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Fig. 5. Arnold diffusion ‘rate vs A,: crosses are numerical data; straight line is esti-
mate (2.9) with E=2; A=5.60; Dy=2.0; curve is the same estimate with E~l.
" A=n (primary resonances).
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Fig. 6. Relation between true (1) and primary (A,) adiabaticity parameters for the
i data in Fig. 5. Horizontal line is Eq. (2.15) with L=2. .
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- B=~2.8. The latter is reasonably close to B=n for primary resonan- ~
ces (see Eqs (2.4) and (2.6)). Fig. 6 demonstrates the building-up

of asymptotic value for the ratio A/2VA,—1 (see Eq. (2.25)).

—.

-5 -

~

logD

~10

e

-20-

T | ]
o5 10 L5 2.0
by

Fzg 7. Is there a poor adiabaticity? Straight line is power law, and curves the-expo-
nentials in Eq. (2.14) with L=1, 2, 3 as indicated. Crosses are the data from- Fig. 5
(L=2); squares for 0/Q=11/2 (L=1); circle for independent Q,, Q:(L=3).

Finally, in Fig. 7 we present preliminary data which suggest
existence of a region of poor adiabaticity according to Eq. (2.14).
The power law is shown by the upper straight line while the curves
correspond to the asymptotic exponentials for different L values.
The data from Fig. 5 (crosses) fit the combined dependense (2.14)
as well as the asymptotic law only. Not a very conclusive result!_
However, the rest of data in Fig. 7 give, in our opinion, some preli-
minary indication in faver of the poor adiabaticity. They include: (i)

* linearly dependent frequencies w/Q=11/2 which reduces both the
value of L—1 and the diffusion rate (squares); and (ii) two inde-
pendent driving frequencies "Q/Q,=1.2381966... which increases
L—3 and the rate (circle). Of-course, the study of this new pheno-
menon —the poor adiabaticity — needs to be continued.
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4. WEAK INSTABILITY, NONRESONANT CASE

If unperturbed Hamiltonian

Ho=0"1 (4.1)
is linear in the actions with a constant frequency vector 0¥ we call
the nonlinearity weak. In such a case all the nonlinearity comes
from a weak perturbation eV (/, 0) only. We mention that this situa-
tion is typical for the beam-beam interaction in a storage ring [6].
A generalized KAM theory [7] is still applicable which guarantees
the motion stoability for most initial conditions provided the linear
frequencies on are incommensurable:.

mo® +nQ£0 (4.2) -

for any integer vectors m and n. Actually, for most vectors o and
Q the following lower estimate holds (see Ref. [7])

[me"® +nQ|> GJZ'V' (4.3)

with some constant G and any v>0; Q=N+ M; g=|m|+ |n]|.

If, however, perturbation is a power series in xy=(2/,/®:) cos 0
and conjugated momenta p, it is sufficient for Eq. (4.2) to hold for
|m| <4 only (see Ref. [7]), as, generally, the stabilizing nonlinear
frequency shift |8w|~H,. This is just the case near the center of a
typical nonlinear resonance (e<e.) which is, thus, stable (Secti-
on 2). Notice, that the beam-beam interaction is generally not of
this type.

Coming back to the general case of weak nonlinearity consider,
first, a single resonance perturbation ~e¢v, and the nonlinear frequ-
ency shift 8w ~ev. The system remains integrable but, in contrast to
the strong nonlinearity, the resonance width Al~I(e/a)'/?~I would
be much bigger while the phase frequency Q~o (eav)'(?~ewv much
lower as a~gv (cf. Eq. (1.4)). Other estimates remain essentially
unchanged and we may use the results of Section 2 with adiabati-
city parameter A,~1/e rather than k,,~l/\/e for strong nonlinea-
rity (see Eq. (2.5)). Particularly, we expect the diffusion rate to be
given by Eq. (2.14). This may be compared to a recent estimate in
Ref. [15] where the principal parameter L= N-+3 which is reaso-
nably close to.our L=N—1 (see Eq. (2.11), M=0).
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However, this agreement is not well justified. The essential dif-
ference is in that we consider one resonant term in the perturbation,
i. e. a violation of eq. (4.2) for one couple of vectors m, n while in
Ref. [15] all resonances are excluded. For a strong nonlinearity it
makes no difference as resonances depend on-initial conditions: In
the case of weak nonlinearity such a dependence takes .place for
high-order resonances only: q}e_lm—q, (see Eq. (4.3)). Only
these resonances can work as guxdmg ones with a very big (true)
adiabaticity parameter

A~g.e ""Q~-— InD, (4.4)

which corresponds to an enormously slow dxffusnon Here we. as-
sumed the phase frequency Q, ~:-:Vq ”~ee””, and made use of
Eq. (2.15): A~ A,, e Estlmate (4.4) is very rough, of course,
but it gives an 1dea of the crucial dependence on the guiding reso-:
nance.

In Ref. [13] the effect of consnderable decrease in the diffusion
rate has been predicted, for the weak nonlinearity, namely: :

—InD>gNingy, - (4.5)

where Ingg= —Ine/4(N—1)~Ing. and M=0. This rate is much
less than for the strong nonlinearity (see Eq. (2.9)) but greatly in
excess of Eq. (4.4). Again, there is no contradiction but a big diffe-
rence, even bigger than for strong nonlinearity (cf. Eqs (2.10),
(2.11)).

To conclude, the weak nonlmearlty is more difficult to study. but
it provides much better stability in the nonresonant case.

5. WEAK NONLINEARITY, RESONANT CASE

In the previous section we have already mentioned the effect of |
a single resonance which is very similar'to that for the strong non-

linearity. That is not the case at all for two or more linear resonan- .

ces (4.2). To see this we may change variables in such a way to 3
remove. the unperturbed Hamiltonian (4.1) (a simple example of -
this procedure will be given below). Then, the small perturbation

parameter ¢ does no longer affect the motion structure, the degree -

of chaos, for instance, but determines the motion time scale only. To
put it in other way, with a new time t=gf there is no more any

18




small parameter .in the problem, and hence the motion would be
generally strongly chaotic provided the number of freedoms is, at
least, two. The latter is equal to the number of independent reso-
nance . phases \pk=m(k)9+n(k)t with different vectors m® in
Eq. (4.2) (see Ref. [4]). This interesting nonlinear phenomenon
had been discovered in Ref. [16] and further studied in Ref. [17].

Until recently the Arnold diffusion has been understood as the
diffusion along nonlinear resonances (chaotic layers) in a many-di-
mensional phase space. In case of weak nonlinearity, however, a
qualitatively different resonance structure is possible which has
been discovered and studied in detail by Sagdeev, Zaslavsky and
coworkers [18]. We consider here a, simple .example following
Ref. [18]. The Hamiltonidn is

2 2,2 ’
H=-p—+2m—°x+ecos(x—-$2t)=m01+scos[acosﬁ——9t], (5.1)

where a= (2//@o)'/? is the amplitude of unperturbed oscillation, and
I, 6 are the action-angle variables.

This model has been widely used in the studies of plasma heat-
ing via the particle-wave interaction. We wonder if it has any rele-
vance to the particle dynamics in accelerators, and, particularly, to
the beam-beam interaction. '

If we put wo=0 the model describes a single nonlinear reso-
nance and is completely integrable with no trace of chaos. The
quantity x is ‘phase variable, and p is the action while nonlinearity
is- strong. Yet, for any wo>0 (in particular, arbitrarily small) the
nonlinearity becomes weak, and the motion drastically changes. To
remove linear term in Hamiltonian (5.1) we transform to new
phase @=0— wot:

—I—:— =cos|acos(p+ (o(;t) —Qf] =/ ,(a) cos(nq>+ “_2”_) +

+ Y 1@ cos[kcp-(sz-—k;oo)t+-"5’i], (5.2)

k#n
k= —oo

where J.(a) is the Bessel function, and we assume the resonance
condition: Q=nw,. The sum represents a high-frequency perturba-
tion as e—»0 since ¢~e. Neglecting this perturbation we arrive at
the time averaged Hamiltonian
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H=¢el.(a) cos(nq>+ %ﬁ)—»t’,«\/f; cosA cosD. : (5.3)

where A=a—nan/2—n/4; ®=nep+nn/2 and the last snmphﬁed
expression holds for big a>>1. :

The most remarkable peculiarity of this model is in that a single
resonance (nwo=Q) generates an infinite gnd of stable
- (sinA=sin®=0) and unstable (cos A=cos ®= O) fixed points on
the surface (A, ®) as outlined in Fig. 8. This should be contrasted

Y ' 4
- ¢ G - O
—————— -————\‘ '
{ i
' i
| 7N 7N,
\ | /
yo )
: ~_.’ i \\_,/
]
‘x.! 1
\, l’
= e ————
r
/A\\ //V‘\\
L ] (e { o) 1
\\—/ \‘sa/
D e * >
/ ) )

Fig. 8. An example of the single resonance grid ‘for weak nonlinearity in model (5.1)
on plane (A, ®): A>1; unstable fixed points are connected by separatrices (straight ‘
lines). Arrows show the direction of motion.
with the resonance picture for strong nonlinearity when, as is well
known, there is an one-dimensional chain of fixed points only, which
extends in the direction of the phase variable. This difference drasti-
cally changes the motion. While strong nonlinearity absolutely
bounds the oscillation in action, the weak nonlinearity allows, in
this model, indefinite motiont over the resonance grid. It is true, in
approximation (5.3) the oscillation is confined within an individual
cell of the grid. However, the high-frequency perturbation produces
a connected chaotic web along separatrices which allows a trajec- .
tory to wander indefinitely. The size of a resonance cell (AA=n;
(Al);=mnwoa) does not depend on e but the oscillation frequency in
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the cell does:

o= 2 en ' ’
So=\[7 S ©4)
near the center, and ' _ |
~ ol 0 ~2 ‘
G~ B _ & _ (5.5)
| In ws| k ®o

in chaotic layer of width ws (Inws~—A4) where adlabatxcnty para-
meter A =0/ (see Section 2). ‘

The diffusion is caused by transition of the trajectory from one
cell to a next one when it crosses the central line of a chaotic layer
(the unperturbed separatrix) which is the border between neigh-
bouring cells. The average time between successive crossings of the
central line, or the recurrence time to this line, was evaluated in
Ref. [19] and is equal to

TR~3A-— ~ ;‘;‘; - (5.6)

Hence, the diffusion rate in chaotic web of a single resonance is

py= @D _ (Ah: _ Dy (en)” Y

t Te I oja’’

The rate drops only as the cube of perturbation, so the Arnold dif-
fusion in this case is fairly fast. A similar result for another model
of the resonance grid was derived and numerically confirmed
recently in Ref. [20]. Curiously, the poor adiabaticity in a strongly

 nonlinear system, considered in Sec’uon 2 above, is also a power

law with close exponent: D~¢ RAPOPL (see Eq. (2.14)).

The discovery of the resonance grid and the fast Arnold diffu-
sion’ was really dramatic. Model (5.1) has been studied by many
plasma phisicists as early as in 1977 (see References in [18]). But
it took about 10 years to understand the phenomenon. Moreover, in
book [5] the resonance grid is now (!) obvious in Fig. 2.11 (ci.
with our Fig. 8) but was missed by the authors as well as by the
translators of this book into Russian.

As the diffusion rate decreases with [/ (5 7) the average action
grows. slower as compared to homogeneous diffusion. Generally, if

_ D, ’Di ™" the diffusion equation
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S.p3 : (5.8)

o _ 1
at 2 a1 oI’

where f(I) is the distribution function gives:

(PP =( 1+ %) Dit;  I~(Dy)' e+

(1" =% Dit;  I~(Dit)*/3. (5.9)

The latter relations are for =5/4 in Eq. (5.7).

The formation of infinite resonance grid in the model under con-
sideration is due to- an oscillatory dependence of the averaged
Hamiltonian (5.3) on the action /. This holds only if the resonance
is maintained to accuracy [18]:

18] < Q. (5.10)

If, for example, 8¢=08Q/n (8Q = —nwy) the chaotic web is res-
tricted to the region a*2sCen?/wedQ provided e>wedQ/\/n. I,
instead, we would add to the averaged Hamitonian (5.3) a monoto-
nic term like eV,o(/) the condition (5.10) were independent of e.
Suppose Vo=1% then the diffusion over the web -is restricted by
I<n* 05\ :

We mention, that in a many-dimensional system of weak nonli-
nearity the resonance grid takes shape of something like honeycomb.
In any dimension the diffusion over such a structure is always fast
as compared to the case of strong nonlinearity (e—0). Another
important distinction of the weak-nonlinearity diffusion is in that it
can occur in the minimal dimension N> 1 when the chaos is pos-
sible at all [18].

6. CONCLUDING REMARKS

For sufficiently small perturbation a typical nonlinear oscillator
system (1.1) is KAM integrable, i. e. its motion is regular and
stable for most initial conditions (Section 2). The Arnold diffusion
 violating complete integrabilily, is not only very slow but, moreover, -
is confined within narrow chaotic layers of a negligible measure.
Hence, at first glance, it seems to be of no importance. This is the
case, indeed, in a purely dynamical system. However, the presence
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of any additional, external, noise drastically changes the motion as
the Arnold diffusion may greatly enhance the effect of noise inde-
pendent of the initial conditions. The enhancement is the bigger the

weaker is the noise as it is described in some detail in Ref. [4]. The.

average rate of Arnold diffusion drops to

<D>A~D——~A"’;5, (6.1)

as compared to the noise-free diffusion (2.8).

With the presence of dissipation (the radiation dampmg of elect-
rons, for example) -a qualitatively new. mechanism of particle trans-
port along resonances comes into play. It had been predicted by
Tennyson [21] and studied in detail by Gerasimov [22]. 4

Still another instability of motion—the modulational diffusion
—occurs under a low frequency modulation, external or internal

- [23, 24]. It leads, for a not-too-weak perturbation (e>em, en<<€cr),

to the formation of the modulational layers of relatively large width
Awn. Within the layer the motion is chaotic due to the overlap of
close resonances in a modulational multiplet. Critical e, decreases
with modulation frequency but remains finite unlike the Arnold dif-
fusion. Width Aw. depends on the modulation depth (amplitude)
and is equal approximately to the width of the motion Fourier spec-
trum. In a chaotic layer around separatrix the latter is of the order
of phase oscillation frequency Q,. Hence, it is no surprise that esti-

mate (2.14) for the rate of Arnold diffusion can be applied,

roughly, also to the modulational diffusion upon substituting Aom
for Q,. More accurate evaluations are presented in Ref. [23] but for

-the primary resonances only (L=1). The effect of high-order reso-

nances on modulational diffusion was apparently observed in nume-
rical experiments in Ref. [25] (see Fig. 3 there).

The most important difference from the Arnold diffusion is in
the measure of the chaotic component which is bigger by the factor
~w; ! for the modulational diffusion. Particularly, the average dif-
fusion rate (D)m~Dm/A> (D)4 is also much bigger (ci. Eq. (6.1)).

Our final remark if of a different nature, very important though.
It concerns the problem of error estimation for computation, in
general and in numerical simulation, particularly. If the equations

in question are Hamiltonian and the numerical algorithm is conser- .

vatlve, or canonical one [26], which seems to be most effective, we
put forward the followmg conjecture: the growth of computational

23




‘

etrors is determined by the artificial Arnold diffusion due to nume-
rical discretization in time; moreover an external, although artificial,
noise is present as a result of round-off and other numerical errors.

‘:}L..h w
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