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0. INTRODUCTION

The primary purpose of this lecture is to present an overview of main recent

developments in the theory of the so-called chaotic quantum systems or, better

to say, of the quantum chaos. This is a rather new topic, especially for

mathematicians, which arose some time ago from the study of a very peculiar

classical phenomenon— the dynamical chaos (for review see, e.g., Refs [1,

2]), The latter is fairly well understood by now including many important

rigorous mathematical results in the modern ergodic theory [3 ].

Two properties of the dynamical chaos should be stressed from the

beginning. First, such a chaos arises, under certain conditions (see Section 3

below), in a purely dynamical system (hence, the term) without any random

parameters, or any noise. To the contrary, the chaotic dynamical system is

itself a generator of noise. Second, those systems can be very simple,

particularly, a few-dimensional ones (see Section 2 for examples). In a

conservative Hamiltonian system N = 2 freedoms is already sufficient for

chaos. In case of a periodically driven system this small number further

reduces to N = 1. Both cases can be described also by a two-dimensional

mapping (briefly, 2D map).

In case of a dissipative system even 1D map, as a model of such a system,

can be chaotic. Yet, we are not going to discuss this case further because the

dissipative system is not a purely dynamical one. This is especially clear in

quantum mechanics where dissipation is included by the coupling to a heat

bath.

All this is completely different from the conceptions of traditional

statistical mechanics (TSM) with its thermodynamic limit N -*• » (for further



discussion see Section 9). Instead, in the new field of dynamical chaos the

studies are concentrated on few-dimensional systems.

Now, the crucial physical question is whether this peculiar phenomenon—

the dynamical chaos—would survive quantization? This is just the principal

problem of quantum chaos. The answer, which will be discussed in detail

below, is negative.

On the first glance, this is no surprise since the quantum mechanics is weil

known to be fundamentally different as compared to the classical mechanics.

However, the difficulty, and a very deep one, arises from the fact that the

former is commonly believed to be the universal theory, particularly,

comprising the latter as the limiting case. Hence, the correspondence principle

which requires the transition from quantum to classical mechanics in all cases

including the dynamical chaos. Thus, there must exist a sort of quantum

chaos!

Of course, one would not expect to find any similarity to classical behavior

in essentially quantum region but only sufficiently far in the quasi-classical

domain. Usually, it is characterized formally by the condition that Planck's

constant % -* 0.1 prefer to put fl — 1 (which is a question of the units), and to

introduce some quantum parameter q. Generally, it depends on a particular

problem, and may be, for instance, the quantum (level) number. The quasi-

classical region then corresponds to q»\ while in the limit q -> a> the complete

rebirth of classical mechanics must occur somehow. Notice that unlike other

theories (of relativity, for example) the quasi-classical transition is rather

intricate. Actually, this is the main topic of my lecture (see also Ref. [4]).

Thus, the quantum chaos we are going to discuss is essentially a quasi-

classical phenomenon in few-dimensional systems.

The number of papers devoted to the studies of quantum chaos and related

phenomena is rapidly increasing so that practically impossible to comprise

everything in this field. In what follows I have to restrict myself to some

selected topics which I know better or which I myself consider as most

important. The same is true for references. I apologize beforehand for possible



omissions and inaccuracies. Anyway, Irefer in addition to a number of recent

reviews [ 4 - 9 ] .

My presentation below will be, of course, from a physicist's viewpoint. AH

I can do for mathematicians is to explain and attract attention to many

unsolved problems in this field.

The lecture is organized as follows. In the next Section 1 the principal

approach to the problem is explained, and in Section 2 a few simple physical

models are described which I am going to use further as illustrations. In

Section 3 various defenitions of both classical and quantum chaos are

discussed. Sections 4 through 7 are the main part of the lecture where I

describe what remains from the classical chaos in quantum mechanics, and

how the classical limit reappears from these remnants. Section 8 is devoted to

the relation between dynamical quantum chaos and statistical random matrix

theory (RMT) while in Section 9 a similar problem with respect to TSM is

discussed. I finish with a few exotic examples of the true quantum chaos

(Section 10), and with a brief listing some other related problems which I am

not yet ready or have no space-time to discuss in detail (Section 11).

1. SOME PHILOSOPHY: PHYSICS AND MATHEMATICS

The well ascertained absence of the classical-like chaos in quantum

mechanics apparently contradicts not only with the correspondence principle,

as mentioned above, but also with the fundamental statistical nature of

quantum mechanics. However, even though the random element in quantum

mechanics ("quantum jumps") is inavoidable, indeed, it can be singled out and

separated from the proper quantum processes. Namely, the fundamental

randomness in quantum mechanics in related only to a very special event—the

quantum measurement—which, in a sense, is foreign to the proper quantum

system itself.

This allows to divide the whole problem of quantum dynamics into two

qualitatively different parts:



(i) the proper quantum dynamics as described by the wave function

and

(ii) the quantum measurement including the registration of the result, and

hence the ф collapse.

Below I am going to discuss the first part only, and to consider ф as a

specific dynamical variable ignoring the common term for ф, the probability

amplitude. Variable ф obeys some purely dynamical equation of motion, e.g.,

the Schrodinger equation.

This part of the problem is essentially mathematical, and it naturally

belongs to the general theory of dynamical systems.

The main contribution of physicists to the studies of quantum chaos is in

extensive numerical (computer) simulations of quantum dynamics, or

numerical experiments as we use to say. But not only that. First of all,

numerical experiments are impossible without a theory, if only

semiqualitative, and without even rough estimates to guide the study.

Mathematicians may consider such physical theories as a collection of

hypotheses to prove or disprove them. What is even more important, in my

opinion, that those theories require, and are based upon, a set of new notions

and concepts which may be also useful in a future rigorous mathematical

treatment.

I would like to mention that with all their obvious drawbacks and

limitations the numerical experiments have very important advantage (as

compared to the laboratory experiments), namely, they provide the complete

information about the system under study. In quantum mechanics this

advantage becomes crucial because in the laboratory one cannot observe

(measure) the quantum system without a radical change of its dynamics.

As to the second part of the problem—the quantum measurement—this is

a hard nut for physicists. Currently, there is no common opinion even on the

question whether this is a real physical problem or an ill-posed one so that the

Copenhagen interpretation of (or convention in) quantum mechanics answers

all admissible questions. In any event, there exists as yet no dynamical



description of the quantum measurement including the ij> collapse. An

interesting recent discussion of this question in the light of quantum

cosmology can be found in Ref. [10]. In my opinion, one could find more

"earthy" problems as well.

Below I comment about the quantum measurement on a few occasions, but

I will not discuss it in any detail as this certainly goes beyond the frame of my

lecture here, and even of this conference as a whole.

Recent breakthrough in the understanding of quantum chaos has been

achieved, particularly, due to the above philosophy of separating the

dynamical part of quantum mechanics accepted, explicitly or more often

implicitly, by most researchers in this field.

2. THE BASIC MODEL AND PHYSICAL EXAMPLES

As an illustration of dynamical chaos, both classical and quantal, I will

make use of the following "simple" model. In the classical limit it is described

by the so-called standard map: (n, 0) -> (H, 9) where

n = n + к- s i n 9 ; <f=Q+Tn. (2.1)

Here n, 6 are the action-angle dynamical variables; к, Т stand for the strength

and period of perturbation. The phase space of this model is an infinite

cylinder which can be also "rolled up" into a torus of cirqumference

L- T

with an integer m to avoid discontinuities. Notice that map (2.1) is periodic

not only in 0 but also in n with period 2ir/7\ The latter is a nongeneric

symmetry of this model. In the studies of general chaotic properties it is a

disadvantage. Nevertheless, the model is very popular, apparently because of

its formal and technical symplicity combined with the actual richness of



behavior. It can be interpreted as a mechanical system—the rotator driven by

a series of short impulses, hence another nickname—"the kicked rotator".

Essentially, however, it is an abstract mathematical model to try various

methods and concepts.

The quantized standard map was first introduced and studied in Ref.

[11 ]. It is described also by a map: ф -»i|J where

ф = RT

and where

(2.3)

xs - ( Tn2) <2.4>
F. = exp(— ik • cos 8) , RT = exp — / —~—

are the operators of a "kick" and of a free rotation, respectively. Momentum

operator is given by the usual expression: n = — id/dQ.

Some time it is more convenient to use the symmetric map

ф = RT/2 Fk RT/2 ф , (2.J)

which differs from Eq. (2.3) by the time shift T/2, and which is moreover,

time reversible. In the most interesting case of a strong perturbation (k »I)

the operator/^ couples approximately 2k unperturbed states.

Notice that in classical limit the motion of model (2.1) depends on a single

parameter K = kT but after quantization the two parameters, к and T, can not

be combined any longer.

Even though the standard map (2.1) — (2.5) is primarily a simple

mathematical model it can serve also to approximately describe some real

physical systems or, better to say, some more realistic models of physical

systems. One interesting example is the peculiar diffusive photoeffect in

Rydberg (highly excited) atoms (see, e.g., Refs [12, 9] for review).

The simplest 1D model is described by the Hamiltonian (in atomic units):

8



Я = — —2 + e • z (n, б) cos tat,
In

where z stands for the coordinate along the linearly polarized electric field of

strength e and frequency a>.

Another approach to this problem is constructing a map over a Kepler

period of the electron [13 ]: (ЛГф, 8) -* (N^ 6~) where

( 2 - 7 )

(2(0)

Here , Л^ф = Е/ш - - l/2ion , and perturbation parameter

* « 2 . 6 - ^ - ( 2'8 )

if the field frequency exceeds that of the electron: шп > 1.

Linearizing the second Eq. (2.7) in Л^ф reduces the Kepler map (2.7) to

the standard map with the same k, and with parameter

T = 6 m A 5 . <2-9>

Thus, the standard map describes the dynamics locally in momentum.

In quantum mechanics, instead of solving Schrbdinger's equation with

Hamiltonian (2.6) one can directly quantize a simple Kepler map (2.7) to

arrive at a quantum map (2.3) with the same perturbation operator Fk (2.4)

but with a different rotation operator

/2) ( 2 Л 0 )

Here parameter v = 1 (one Kepler's period) for quantum map (2.3), and v

1/2 for symmetric map (2.5).



Notice that in Kepler map's description a new time is discrete (the number

of map's iterations), and moreover, its relation to the continuous time t in

Hamiltonian (2.6) depends on dynamical variable n or Ыф:

In quantum mechanics such a change of time variable constitutes the

serious problem: how to relae the two solutions, фШ and ф(т)? For futher

discussion of this problem see Section 5, and Ref. [9 ]. Besides, map's solution

vjHiV, T) does not provide the complete quantum description but only some

averaged one over the groups of unperturbed states [13 ].

These difficulties are of a general nature in attempts to make use of the

Poincare map for conservative quantum systems. The straightforward

approach would be, first, to solve the Schrbdinger equation, and then to

construct the quantum map out of tyit). Usually, this is a very difficult way.

Much simpler one is, first, to derive the classical Poincare map, and then to

quantize it.

However, generally the second way provides only an approximate soiution

for the original system. The question is how to reconcile the both approaches?

Another physical problem—theRydberg atom in constant and uniform

magnetic field, I will refer to below, is described by the Hamiltonian (for

review see Ref. [14 j):

4?
Here r2 = p 2 + z2 = x2 + y2 + z2; ы is the Larmor frequency in the magnetic

field along z axis, and L. stands for component of the angular momentum (in

atomic units).

Unlike the previous model the latter one is conservative (energy

preserving). It is simpler for theoretical studies and, hence, more popular

10



among mathematicians. Physicists prefer time-dependent systems or, to be

more precise, the models described by maps which greatly facilitate numerical

experiments.

Another important class of conservative models are the billiards, both

classical and quantal [16—18, 4]. Especially popular is the billiard model

called "stadium" [17 ]. Interestingly, instead of a quantum 4' wave one may

consider classical linear waves, e.g., electromagnetic, sound, elastic etc. In the

latter case the billiard is called "cavity". Of course, this problem has been

studied since long ago, yet only recently it was related to the brand-new

phenomenon of "quantum" chaos [19, 20].

Quantum (wave) billiards are the limiting (and a simpler) case of the

genera! dynamics of linear waves in dispersive media. It seems that the case

of a spatially random medium does attract the most attention in this field,

particularly, the celebrated phenomenon of the Anderson localization. True,

this is a statistical rather than aynamical problem. On «he other hand, one

may consider the random potential as a typical one, and the averaged solution

as the representation of typical properties in such systems. Instead, in the

spirit of the dynamical chaos, one can extend the problem in question onto a

class of regular (but not periodic) potentials (Section 6).

Recently, a deep analogy has been discovered between this rather old

problem of wave dynamics in configurational space <in a medium) and of the

dynamics in momentum space, particularly, the excitation of a quantum

system by driving perturbation [21, 22]. Remarkably, that while the latter

problem is described by a time-dependent Hamiltonian the former is a

conservative system. This interesting and instructive similarity will be

discussed in Section 6.

3. DEFINITION OF DYNAMICAL CHAOS

This is one of the most controversial question even in classical mechanics.
There are two main approaches to the problem. The first one is essentially

11



mathematical [3, 23]. The terms dynamical chaos or randomness are

abandoned from the rigorous statements, and left for informal explanations

only, usually in quotes \ Instead, a hierarchy of statistical characteristics,

such as ergodicity, mixing, K, Markov and Bernoulli properties etc, are

introduced. In this hierarchy each property supposed to imply all the

preceeding ones.

However, this is not the case in the very important and fairly typical

situation when the motion is restricted to a chaotic component usually of a

very complicated (fractal) structure which occupies only a part of the energy

surface in a conservative system or even a submanifold of lesser dimensions

(see, e.g.,Ref. [26]).

The second approach to the definition of the classical dynamical chaos is

essentially physical (see, e.g., Refs [1, 2]). Here the conception of random

trajectories of a dynamical system is introduced from the beginning, and it is

related to the strong (exponential) local instability of motion. This is charac-

terized by a positive Lyapunov's exponent Л or, more generally, by the

Kolmogorov—Sinai <KS) dynamical entropy h.

The main difficulty here is in that the instability itself is not sufficient for

chaotic motion. One additional condition is boundedness of the motion to

exlude, for example, the hyperbolic motion which hardly can be termed

chaotic. Further, the separated unstable periodic trajectories must be also

excluded, possibly, by the requirement of some minimal dimensions of a

chaotic component. To the best of my knowledge, the complete set of

conditions for an arbitrary motion component to be chaotic has not been found

as yet, and it constitutes a difficult problem.

The latter definition of classical dynamical chaos is commonly accepted

in the physical literature, yet it needs to be modified in the light of our main

even in Ref. [24] where a version of rigorous definition of dynamical randomness (chaos) was
actuakky given. This is notthe case in Chaitin'spapers (see, e.g., Ref. [25]) buthisissomewhat
separated from the rest of ergodic theory.

12



problem, the quantum chaos. Namely, the two levels of chaos can be

introduced:

(i) the "first-rate chaos" (h > 0) with truly random trajectories, and

(ii) the "second-rate" chaos which is just sufficient toadmita simple statistical

description by a sort of kinetic equation.

On the first level the chaos has very strong statistical properties to the

extent that the dynamical trajectory completely loses any physical meaning,

and only statistical description is possible. Notice, however, that the motion

equations can still be efficiently used to completely derive all the statistical

properties without any additional statistical hypotheses.

On the second level only some mixing property is required which is

roughly equivalent to the continuous component of the spectrum. What is

important for quantum chaos that even on the second level of classical chaos

the motion phase space has to be continuous to provide traditional statistical

discription.

This is not the case in quantum mechanics where the size of an elementary

phase-space cell is ft . Particularly, for the quantum motion bounded in

phase space the total number of cells is even finite, and classical mixing is

impossible, to say nothing about the exponential instability. Moreover, the

energy spectrum in this case is descrete which in the classical mechanics would

correspond to the opposite limiting case of regular motion. So, what is then

quantum chaos we are going to discuss?

Currently, the most common definition ready (see, e.g., Ref. [6]):

quantum chaos is the quantum dynamics of classically chaotic systems

whatever it could happen to be, I would add.

Logically, this is most simple and clear definition. Yet, it is completely

inadequate, in my opinion, just because that chaos may turn out lo be a

perfectly regular motion, much surpassing that in the classical limit. The point

is that the discreteness of quantum spectrum supresses any transitions for a

sufficiently weak perturbation, no matter what is the corresponding classical

motion [27 ]. For example, in the standard map this occurs if perturbation

13



parameter k < 1 independent of classical parameter K-kT which controls the

transition to chaos. This specific quantum stability is also called perturbative

localization, or transition localization.

For this reason Berry proposed [28 J to use the term "quantum chaotog)?'

instead of quantum chaos meaning just the above definition.

The opposite position was taken by Ford [29 ] who insists that the quantum

chaos is deterministic randomness in quantum mechanics over and above that

contained in the wavefunction or the expansion postulate.

The latter refers to the quantum measurement as discussed in Section 1

above. A few other researchers implicitly accepted the same definition, and

successfully constructed the quantum analogue A^ to classical KS-entropy h.

The only problem is that hq = 0 (see, however, Section 10 and Ref. [97 ]).

My position is somewhere in between. I would like to define the quantum

chaos in such a way to include some essential part of the classical chaos. It

would be natural to include the second level of chaos discussed above, that is

some mixing property. The difficulty is in that the discrete spectrum prohibits

even the mixing in the sense of the ergodic theory. Yet, it turns out that with

some, essential though, modification the mixing can be extended on the

quantum mechanics (Sections 4,5).

For this reason, currently, I adhere to the following definition: the

quantum chaos is statistical relaxation in discrete spectrum. A drawback of

this definition is in that such a chaos occurs also in the classical systems of

linear waves as already mentioned. New suggestions are welcome!

4. THE TIME SCALES OF QUANTUM DYNAMICS

The main difficulty in the problem of quantum chaos is in that one needs

to reconcile the quantum discrete spectrum, which apparently prohibits any

dynamical chaos, with the correspondence principle, which does require some

chaos, at least, sufficiently far in the quasi-classical region. We resolved this

difficulty by introducing characteristic time scales of the quantum motion on

which it is close to the classical chaotic dynamics [30].

Г4



Actually, the first of those time scales had been discovered and explained

by Bennan and Zaslavsky already in 1978 [31], and was subsequently

confirmed in many numerical experiments (see, e.g., Refs [32]). This

Berman—Zaslavsky time scale is given, generally, by an estimate

• ln_£ (4.1)

where q »1 is some quantum (quasi-classical) parameter, and h stands for the

KS-entropy (not Planck's constant к = 1!).

In our basic model (2.1) - (2.5) Л-Л«(1/Г)1п(Л:/2) for K>4, and there

are two quantum parameters: к and 1/Г. The transition to the classical limit

corresponds to к -*•<», T -*• 0 while the classical parameter К = кТж const.

General estimate (4.1) takes now the form [30]

T I In T I (4.2)
•*BZ~in(j:/2) *

The corresponds to the optimal configuration of the initial ty (0), a coherent

state.

This physical meaning of this time scale is in a fast (exponential)

spreading of the initially narrow wave packet. Thus, the exponential

instability is present in quantum mechanics as well but only on a very short

time interval (4.1,2).

This can be explained in two ways. On the one hand, the initial wave

packet cannot be less, in size, than a quantum phase-space cell, that is ~

fi =1. On the other hand, in Hamiltonian systems, the local instability leads

not only to the expanding in a certain direction but also to the contraction in

another direction which rapidly brings the initial wave packet to the size of a

quantum cell.

According to the Ehrenfest theorem a wave packet follows the beam of

classical trajectories but only as long as it remains narrow, that is only on time

scale (4.1). Nevertheless, characteristic time interval *BZ/Tgrows indefinitely

15



in quasi-classical region, as T -> 0, in accordance with the correspondence

principle. However, the transition to the classical chaos is (conceptually)

difficult as it includes two limits (T-+0 (g-* <») and t -*• <») which do not

commute. This is a typical situation in the quasi-classical region as was

stressed, particularly, by Berry [5].

Still, the first time scale (4.1) is rather short, and the important question

is: what happens next? Numerical experiments revealed [11, 30] that some

classical-like chaos persists on a much longer time scale tR which is, generally,

of the order

In tR ~ In q . (4.3)

For model (2.1)

tR ~ Tk2 . (4.4)

On this time scale the diffusion in n proceeds and, moreover, closely follows

the classical diffusion in all details, again in agreement with the

correspondence principle. Subsequently, these numerical results were

confirmed also analytically [33]. We call tR the diffusion or (statistical)

relaxation time scale.

This similarity to the classical chaos is, however, only partial. Unlike the

classical one the quantum diffusion was found to be perfectly stable

dynamically. This was proved in striking numerical experiments with the time

reversal [34]. In a classical chaotic system the diffusion is immediately

recovered due to numerical "errors" (not random!) amplified by the local

instability. On the contrary, the quantum "antidiffusion" proceeds until the

system passes, to a high accuracy, the initial state, and only then the normal

diffusion is restored. It is worthwhile to mention here that there is no time

arrow in the dynamical chaos: statistical relaxation proceeds eventually in

both directions of time.

Beyond the relaxation time scale, that is for t »*л, the quantum diffusion

and relaxation typically stops, and a certain steady state is formed which may

16



or may not be close to the classical statistical equilibrium. The details of

quantum relaxation will be discussed in the next Section, and a pecul;ar

quantum steady state is considered in Section 7.

As к -> oo (kT « const) the time scale tR -*• <» but this quasi-classical

transition is also characterized by the same double limit as for tBZ discussed

above.

Thus, various properties of the classical dynamical chaos are present in

quantum dynamics but only temporarily, within finite time scales tBZ or tR.

This is a crucial distinction of the quantum ergodic theory from the classical

one which is asymptotic in t. It seems that any substantial progress in the

mathematical theory requires a generalization of the existing ergodic theory

to a finite time. Perhaps, it is better to say that a new nonasymptotic (finite-

time) ergodic theory needs to be created.

5. STATISTICAL RELAXATION IN DISCRETE SPECTRUM

Of the two characteristic time scales of quantum motion discussed in the

previous Section the relaxation time scale tR is most important simply because

it is much longer than the other one, /B Z. Peculiarity of quantum statistical

relaxation is in that it proceeds in spite of the discrete energy spectrum. As is

well known, the latter is always the case for the conservative system bounded

in phase space. The crucial property is a finite number of quantum states on

the energy surface or, better to say, within an energy shell. In ihis case [30 J

tR < p , (5.1)

where p is finite energy level density 01-1).

17



The physical meaning of this estimate is very simple, and it is related to

the fundamental uncertainty principle**. For sufficiently short time the

discrete spectrum is not resolved, a classical-like diffusion is possible, at most

up to / — p. The same is true for the standard map on a torus (2.2) which has

also a finite number (L) of now quasi-energy states. Since the quasi-energy is

determined mod 2ъ/Т the level density is

TL • • (5.2)
p = 2 ^ = m - ^ '

The situation is much less clear for the standard map on a cylinder where

the motion can be unbounded in n. In some special cases the quasi-energy

spectrum is, indeed, continuous, yet this does not mean a chaotic motion but

rather a peculiar quantum resonance (see next Section). A more complicated

case of continuous spectrum will be discussed in Section 7.

On the other hand, all the numerical evidence indicates that typically the

quasi-energy spectrum is discrete in spite of the infinite number of levels.

Formally, the level density p is then also infinite. Yet, relaxation time scale

tR Is finite. The point is that the quantum motion does not depend on all

quasi-energy eigenstates but only on those which are actually present in the

initial quantum state ф(0). We call them operative eigenstates (for a given

initial conditions). If their density is r a better estimate for tR is (cf. Eq. (5.1)):

tR ~ p 0 . (5.3)

For p 0 to be finite all eigenfunctions have to be localized that is to decrease

sufficiently fast in n. To the best of my knowledge there are as yet no rigorous

results on the eigenfunction localization and/or the spectrum even for simple

model (2.3).

*) In a different way this First principle was used in Ref. [15] to explain Andetson localization in
random potential (see Section 6).

18



If the localization length is /, the density p 0 ~ 77/2ir (for sufficiently

localized initial state). This latter estimate can be improved by introducing

the weighted density (cf. Ref. [35 ])

— I / v 2тг _ , / v i 2 c . / v ( 5 . 4 )
P 0 (n 0 , w) =jr 2 l<pw (n0) I 6 (a) - <o m ).

m

Here <pm are the eigenfunctions with eigenvalues cow, and the initial state isassumed in the form: d>(n, 0) = б и и . Of course, this does not improve the basic

estimate (5.3) (see below).

Actually, Eq. (5.3) is an implicit relation because p 0 depends, in turn, on

dynamics. Consider, first, the unbounded standard map, and introduce the

classical diffusion rate in the form

n _

where т = t/T is the number of map's iterations, and the latter estimate holds

for К :*4 (complete classical chaos). Suppose, further, that the width (in n) of

the initial state Дл«=/0«/. Then the final width due to a diffusion during time

TR is А"/~(тл^>ге) ~/. SincetR~l, we arrive at the remarkable relation

TR ~l-Dnt (5.6)

which couples essentially quantum characteristics (т л, D with the classical

quantity Dn.

Thus, the quantum diffusion in the unbounded standard map is always

localized, and a certain steady state is formed which has no counterpart in

classical mechanics (Section 7).

For the bounded standard map the situation is qualitatively different

depending on a new parameter

19



which we term the ergodicity parameter. Indeed, the quantum localization

occurs for x « 1 only. In the opposite limiting case X. » 1 the relaxation time

scale, being finite, is nevertheless long enough for the relaxation to the ergodic

steady state to occur. In this case the final steady state is close to that in

classical mechanics (Section 8). The same is true for conservative systems of

two freedoms like billiards or cavities.

Now we turn to a more accurate discription of the quantum relaxation in

model (2.3). First, what are the quasi-energy eigenfunctions? We shall discuss

this in detail in Section 7. Now it is sufficient to know that the quantum

localization is approximately exponential with eigenfunctions

1 ..._ / \m-n\\ (5.8)

and the steady state

/ ч "TT~7^i2 1 ,' 2 \n\\ (5.9)
g (n) = lib (n) I «-j-exp — — : — .

l, [ I, }
Here the bar means averaging in time, and the initial conditions g(n,Q) -Ь(п)

so that g is the Green function. Generalization to arbitrary initial conditions

is obvious.

Numerically (see, e.g., the second Ref. [30]):

I '—• X t ! = s : LJ • w.lV/

This is a more accurate relation between quantum and classical characteristics

of motion (cf. Eq.(5.6)). Surprisingly, the localization lengths for

eigenfunctions and for the steady state are rather different. This is due to big

fluctuations around simpie exponential dependence (5.8).

The first attempt to describe the quanUr i relaxation in standard map was

undertaken in Ref. [36 ]. The idea was • ery simple: the diffusion rate is

proportional to the number of quasi-energy levels which are not yet resolved

in time 7. This number decreases, for т > TR, as T ~ , hence
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Dn W - Dn (°) T '
(5.11)

where Dn(0) is the classical diffusion rate. This result was corrected in Ref.

[37 ] where, in a more sophisticated way, the level repulsion (see Section 8)

was taken into account to give for the rate of energy E = n 2/2 variation

where p is the repulsion parameter. Preliminary fitting Eq. (5.12) to some

numerical data looked as an agreement with p = 0.3

However recent extensive numerical simulations [38 ] revealed a different

dependence for т ?>тл (in our notations)

2 (5.13)
E (T) « СЁ (0) N In

supported by a different theory. Numerically (my fit):

т л = 2 / 8 ; с «0.2 (5.14)

in apparent contradiction with Eq. (5.12).

Still another phenomenological theory was proposed in Ref. [9] and

developed in Ref. [62 ]. It is based on the general diffusion equation (see, e.g.,

The second term discribes a "drift"

(5.16)
+ B.
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Introducing this relation into Eq. (5.15), we obtain

M=LJLD 2K_±B (5.17)
dr 2 dn n gn dn s'

In our problem the last term represents the so-called "backscattering", or

reflection of wave propagating in n.

Negligible in the beginning the backscattering eventually suppresses the

diffusion and leads to the formation of steady state (5.0).

From Eq. (5.17) the general expression for the steady state gs(n) is

В (п) dn (5.18)

For homogeneous diffusion (I> = const) gc is given by Eq. (5.9) with / = £> ,
/ I S о /I

hence

2? = + l ; n | 0 . (5.19)

The analysis of quantum relaxation can be performed using the two first

moments of gin, т): m^ « (л) (n > 0) and m2 = (n2) = 2E. Notice that for

initial gin, 0) = bin) the solution is symmetric with respect to n = 0, and we

can consider n > 0 only. The equations for the moments are derived from Eq.

(5.17):

m i = 2 n g ( ° ' T ' - ' m2~Dn+2mlB.

Here 5 * -1 but we keep it in the expressions for further analysis. The second

equation shows that one should distinguish the rate of energy variation from

the diffusion rate just because of the backscattering.

The quantity g(0, т) in the first equation, called staying probability, is of

independent interest as a characteristic of the relaxation process.
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In our case Eqs (5.20) describe the evolution of initially spreading
Gaussian distribution into the final exponential steady state (5.9).
Accidentally, the ratio of moments

m] 2 (5.21)
— = ^ « 0 . 5

remains aimost constant which allows for a simple solution

- t = $ + In (1 - £); |(0) = 0 . (5.22)

Here the new variable and time are

(5.23)
Dn

Initially, as t-* 0 Eq. (5.22) describes the classical diffusion (£2 « 2t, E «
£>пт/2) independent of 7. For constant Dn and В the relaxation € -*• 1 is
exponential

^ « l - e M " 1 ; f-*oo. (5.24)

To explain a power law relaxation, observed numerically in Refs [36 -
381, one needs to take account of the explicit time dependence for both &п(т)
- 0„5(т) and B(r) --S(T) . Notice that their ratio must be independent of time,
at least asymptotically, to provide the exponential steady state (see Eq.
(5.18)).

The solution for the moments (see Eq. (5.20)) can be obtained by a change
of time:

' = Г s (т)

Then, Eq. (5.22) shows that a power-law tail is only possible for S(T) ~
This is in accord with the first simple extimate (5.11). Assuming
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we arrive at the following implicit dependence £(т):

TR

(5.26)

The value of exponent p is obtained from asymptotic relations (т -> oo):

£(т) ~ T"9 —sir) ~ T 4 . Hence, the relaxation time scale is

Dn <5.27)

7

The value of -y » 0.5 was derived from the best numerical data available [38 ].

It is only a half of the theoretical value (5.21). Besides, Eq. (5.26) does not

contain the logarithmic dependence like Eq. (5.13) [38]. The latter seems

better to agree with the numerical data for large т. ~ЗДе origin of these

discrepancies will be discussed in Section 7.

From the first Eq. (5.20) we can derive also implicit dependence of the

staying probability on time:

J (5.28)

The latter asymptotic expression is in agreement with numerical data in Ref.

[35 ] as to the time dependence but exceeds the former by a factor of 3. The

origin of this discrepancy is unknown as yet.

In many-dimensional systems or for a quasi-periodic driving perturbation

the diffusion localization is typically absent beside some special cases (see,

e.g. Ref. [39 ]). For three freedoms or two driving frequencies the localization

persists but its length is exponentially large. However, the perturbative

localization, mentioned in Section 3, occurs in all cases of discrete spectrum.
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On the other hand, even in the lowest dimensions under consideration the

so-called delocalization is possible if the motion is allowed to be unbonded.

Consider, for example, the standard map on a cylinder with the perturbation

kin) depending on momentum:

D (n) = Do n2a <5.29>

with some constant a. To solve this problem it is essential to assume that the

backscattering remains unchanged, that is В = -1 as before, since it does not

depend on system's parameters. Then, using Eq. (5.18), we obtain the steady

state distribution in the form

In gs (я) =

2 л

1 ~ 2 а 1 (5.30)
a( l - 2 a ) V 2

2_ __1

V a" 2

In agreement with previous results [40 ] the critical value of the parameter is

ac = 1/2. For a < a c the localization remains exponential while for a > a c

delocalization occurs becausb gs(n) -* const ^ 0 as n -> oo. In the critical case

the steady state distribution is a power law:

g 5 ~ n ~ 2 / Z ) o (5.3D

and the localization takes place for sufficiently small DQ< 2 only, when gs(n)

is normalizable.

Notice that for the localization of energy, that is for the mean energy

(£)=(n2)/2 to be finite in the steady state, a more strong condition is

required,namely

n 2 (5.32)
L>0 < 3 .

This result was recently confirmed numerically in Ref. [41 ].
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In spite of all this theoretical development no rigorous treatment of the

quantum relaxation exists so far.

The change of time is a serious problem in quantum mechanics as was

explained in Section 2. For a steady-state this problem can be solved [9 ] as

follows. The steady-state distribution is proportional to invariant measure

and, hence, to (sojourn) time t. Whence, upon a change of time t -* Г

gs (n) dt

even though gs does not depend on time! Now we can change momentum n in

such a way to provide gs (Я) = gs (n). We have

dn _ df (5.34)
dn ~ dt *

Particularly, if Г= т, the map time (the number of map's iterations)

J~s ~~f ~~dn'

where T = 2^/Q.in) is map's period. If, moreover, n is action, the map's

momentum n = 2?/2iris proportional to the energy (cf. Kepler map (2.7)).

6. QUANTUM CHAOS AND ANDERSON LOCALIZATION

Now we consider in some detail a very fruitful analogy, mentioned already

in Section 2, between the quantum localization of dynamical chaos in

momentum space and the Anderson localization in configurational space of

disordered solids. This analogy had been discovered in Ref. [21 ] and

essentially developed in Ref. [22 ].

The analogy is based on the equation for eigenfunctions in both problems.

Consider quantum map of the type (2.3) with Hamiltonian
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н=тно(Я) + 1>(£) . (6.D

For the standard map, for example, HQ= rr/2, and V = kcos (Г. The

eigenfunction are determined from the equation

е ^(в-#о) ф е = е<Ле,
 ( 6 ' 2 )

which also can be written in momentum representation as

Фе in) e '" X-W - 2 Ж т Ф е '(« - «) - Жо ФЕ (я), ( 6 ' 3 )

where x(") =7e -ГЯ 0 (л); e is quasi-energy, and Ж т are the Fourier

amplitudes of exp(iF(8)). For V-k-cosQ, for instance, Wm-imJm(k).

Eq. (6.3) is essentially identical to that in a simple Lloyd's model of ID

lattice in solids:

vE (n) U (n).- 2 Wm vE(n-m) =E vE (n) , (6.4)
m *0

where now n is discrete coordinate, and E is energy. The difference is that in

Eq (6.3) "potential" (e'x) and "kinetic" (И^) energy are complex functions

but this can be removed by a transformation of <p.

Consider a case when only two W^ - —k are nonzero, and take

V (6) = 2 arctg {E - 2k cos 0), (6.5)

where £ is a parameter.

Then Eq.(6.3) is transformed exactly into.Eq. (6.4):

v (n) tg *№> + kv (n + 1) + kv (n - 1) = Ev(n), ( 6 * 6 )

where v(n) are the Fourier amplitudes of function
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v(e) -

These relations determine the correspondence between the two problems

which allows to share the concepts, methods and results in both fields.

Particularly, for random and homogeneously distributed phases x(") all

the eigenfunctions are known to be localized (see, e.g. Ref. [42]). The

localization length (for /»1) is given by the expression

7 2 1/2 ^ ( 6 ' 8 )

l = {4k2 -E2)U 2 = - f ,

where Dn is the diffusion rate in momentum n with perturbation (6.5) (cf. Eq.

(5.10)).

In Ref. [21 ] the discovered analogy was used to prove the diffusion

localization in dynamical problems like standard map. But this is not a proof,

of course, since dynamical phases x(") •* Tie - n /2) are not random even

though they are homogeneously distributed (mod 2ir). On the contrary,

numerical results on the localization in the standard map show that a random

potential in solids is sufficient but not a necessary condition for the Anderson

localization. Indeed, now is well established that the localization is possible

in the quasi-periodic potential with only two spatial frequencies (see, e.g., Ref.

[43]).

Thus, we can speak now about the Anderson localization in a regular

potential, but not a periodic one, of course. In this field a number of unsolved

problems remain, including the localization in the standard map.

In exactly periodic potential all eigenfunctions are delocalized (the so-

called extended Bloch states), and the spectrum is continuous and has the

band structure. Interestingly, analogous structure is also possible in the

momentum space. For example, in the standard map it corresponds to any

rational value of parameter 274<ir e plq. Then phases x(n) жТг- Тпг/2 (the
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"potential" in solid-state problem) is of period q. This phenomenon had been

discovered in Ref. [11] and we call it the quantum resonance. The

corresponding theory was developed in Ref. [44 ]. More intricate dynamics for

the standard map with special irrational 774-ir will be discussed in the next

Section.

The analogy under consideration, being very fruitful, is nevertheless

restricted since it concerns the correspondence between eigenstates only. The

properties of motion in two problems, both dynamical and even statistical, are

generally different. For example, even though the localization length in both

cases is the same (cf. Eqs (6.8) and (5.10)), those for the steady state are

already different: / s » 2/in momentum space (5.10), and ls = 4/in disordered

solids (see Ref. [42]).

The most striking difference is in the absence of the diffusion stage of

motion in 1D solids [45 ]. This is because the level density of the operative

eigenfunctions (see Section 5)

I dp £ (6.9)
p0 dE ~ и '

which is the localization (relaxation) time scale (5.3), is always of the order

of time interval for a free spreading of the initial wave packet at a characteristic

velocity u. In other words, the localization length / is always of the order of the

free path for backscattering. On the contrary, in momentum space, for

instance, in the above example (6.5) each scattering (one map's step) couples

~ к unperturbed states, so that -k » 1 scatterings are required to reach

the localization I —k.

Another (qualitative) explanation of this surprising difference is in that

the density of quasi-energy levels for driven systems is always higher as

compared to that of energy levels. The same is true for a conservative system

of two freedoms as compared with the one-freedom motion in solids. Thus,

the Anderson localization is the spreading, rather than diffusion, localization.



Interestingly, the asymptotic relaxation (*-*•«•) in solids [45 ] is the same

as in the momentum space (5.13). Yet, the decay of the staying probability is

different [45] (cf. Eq.(5.28))

gs(O,t)~t~*. (6.10)

Nevertheless, the analogy in question remains very fruitful and extensively

used in the studies of quantum chaos (see, e.g. Ref. [35 ]).

7. THE QUANTUM STEADY STATE

The quantum diffusion localization generally results in the formation of a

peculiar steady state which has no classical counterpart. The statistical

relaxation to this steady state is also surprising because the motion spectrum

is discrete.

The ultimate origin of this steady state is localization of all the

eigenf unctions. In a homogeneous systems like the standard map on a cylinder

the localization is asymptotically exponential. This is because Eq. (6.3) for

the eigenfunctions is linear whose behavior is described by the Lyapunov

exponents in n. This is the most powerful method, borrowed from the solid-

state physics, to numerically calculate localization length / [46]. In this

method Eq. (6.3) is considered as the "motion" equations for a certain

"dynamical" system in n as "time". Formally, it is an infinite-dimensional

system but to a good accuracy one can neglect the contribution of Bessel

functions Jm(k) with I m I >N~k. Then the system is described by a canonical

2jV-dimensional map which has N positive Lyapunov exponents. Unlike the

usual dynamical problem, where the largest exponent is most important, here

the least one Amjn= 1// determines the asymptotic localization. The role of

other exponents is still not clear.

However, a simple exponential dependence (5.8) is only the average

behavior superimposed by big fluctuations:
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(7.1)

By definition (£n) * 0 while the dispersion not only big but grows with \An\

as [22]

Nevertheless, the accuracy of numerical determination of / can be fairly high:

U
1/2 (7.3)

Fluctuations £n have a big impact on the steady state as was already

mentioned in Section 5. Namely, they double the localization length (5.10).

This is essentially numerical result, no accurate theory still exists [40 ]. Also,

it is not clear if the steady-state is purely exponential asymptotically or there

is a power-law factor like in solids [42 ].

Initial part (I n I ~ /) of the distribution for both eigenstates as well as the

steady state must deviate from a simple exponential dependence. Again, big

fluctuations impede direct numerical measurements. Instead, two integral

characteristics were studied. One is the average energy in the steady state.

For exponential localization (5.9)

and it is in agreement with numerical results within a factor of 2. One difficulty

is that E. depends in a complicated way on the precise value of parameter T

owing to the everywhere dense set of quantum resonances mentioned in the

previous Section.
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Another integral quantity—the entropy H—was introduced in Ref. [47 ]

(see also Ref. [8 ]) as a different measure of quantum localization. The entropy

localization length is defined as

/ я ^ е я ; Н±-2 1<р(л)!21п \<ьЫ\2. ( 7 - 5 )

For exponentially localized eigenfunctions

e A. (7.6)

Numerically, lH « Dn that is less, partly due to fluctuations which decrease

the entropy and lH by a factor of 2. Again, deviations from exponential

dependence are apparently present but they are not very big.

Just because lH essentially depends on the main part of the distribution

its fluctuations are much bigger as compared to those for / (7.3). Namely [48 ]:

Д /„ (7.7)
- j - £ « 0.5.

lH

Fluctuations of entropy H were numerically found [48 ] to be described quite

well by a simple expression (7Я»1):

a (7.8)
dH Tich[a{H -TJ)]

with Л = In l w and a « 3. So far there is no idea as to the explanation of this

distribution. For further discussion of the quantum entropy see Section 8.

There is another class of localized eigenfunctions which we call Mott's

states. They were conjectured by Mott [49] in the context of Anderson

localization and further studied in Refs [35, 38, 50, 51 ]. Mott's state is also

called the double-hump state for its shape of two exponential peaks separated

by distance L (in n). These states exist in pairs of symmetric and



antisymmetric superpositions of the two peaks. The mechanism of their
formation can be qualitatively explained as follows. The exponential
localization is the effect of resonant backscattering, that is the backscattering
on a resonant harmonic of random (or sufficiently irregular) potential. Hence,
the exponentially localized states are in a sense unperturbed ones. The
perturbation (nonresonant potential) mix them. For close unperturbed states
this increases still more the fluctuations. However, for distant states a new,
double-hump, structure is formed. The principal parameter is the overlapping
integral

V— 00

which determines the energy splitting in the pair: Де ~ v.

We studied numerically [52 ] the structure of Mott's states in the standard

map assuming two versions of dependence Де (L):

(7.10a)

. » = „ . . Ч - — , f --m (7.10b)

where <o ~ ГДе/2тг, and A is a constant. The first dependence is usually
accepted in literature, the second one is suggested by parameter (7.9). Our
preliminary results seem to better confirm the second law with fitting
parameters

A «0.05; / m « £ > n « / s « 2 / . (7.11)

The fitting to the first dependence gives a close lm but larger A «0.15.
In disordered solids the structure of Mott's states was directly calculated

in Ref. [50 ] via the correlation functions. The result is of the form of Eq.
(7.10a) with^«5,and/m-/«/ s /4 (cf. Eq. (7.11)).

33



The importance of Mott's states, for which they actually were sought, is a

large matrix element

nn = j dnn9l (л)ф 2 (п) « у .

The latter expression holds for l»lm- The additional logarithmic dependence

in the long-time relaxation (5.13) is explained just by the effect of Mott's

states in low-frequency part of the spectrum [38 ]..

The probability for a given unperturbed (exponential) eigenstate to form

the Mott pair with L > L{ can be estimated as

0 0 , ,, (7.13a)
Pj « 2a / w (L) dL = 2aA e~h' m,

(7.13b)

for two dependencies шШ in Eq. (7.10) respectively. In both cases a«1.5

according to our numerical experiments. The total probability />j(0)«l, and

this explains why milti-hump states are very rare. We have found a few states

which could be interpreted as distorted three-hump eigenfunctions.

In disordered solids px (0) > 1 but this is not necessarily a contradiction

because Eqs (7.10, 13) are asymptotic. Nevertheless, it would be interesting

to analyze the structure of Mott's states in more detail.

The time-averaged density gs(n) (5.9) determines a certain invariant

measure of the quantum motion which is qualitatively different from the

classical measures (microcannical, Gibbs' etc). One important distinction is

in that it depends on initial conditions as the quantum steady state is

localization of the spreading initial state. Moreover, if the width of initial state

exceeds the localization length this dependence becomes even more

complicated.
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Another difference is in that the relaxation of initial state into the steady

state is never as full as in the classical mechanics. For example, average

quantities like energy £'J-(n2)/2 (7.4) oscillate, and can even come back, close

to the initial value EQ since the motion spectrum is discrete.

Does it make any physical sense to speak about statistical relaxation in

discrete spectrum? In my opinion, it does. First, such Poincare's recurrences

are extremely rare, and their time scale has nothing to do with the charac-

teristic relaxation time scale tR (4.4). Second, which is even more important,

those recurrences are but large fluctuations characteristic for any statistical

system.

The same occurs in classical mechanics—for trajectories, and this is the

difference. In fact, the quantum density gin, т) plays an intermediate role

between classical density (which would never come back for chaotic motion)

and a classical chaotic trajectory with its Poincare 's recurrences. Namely, the

quantum density, which actually describes a single quantum system, repre-

sents, nevertheless, a finite statistical ensemble of M -~ 1$ systems. Hence,

finite fluctuations in the quantum steady state. For example, the energy

fluctuations

AES i j ^ (7.14)

in a reasonable agreement with numerical experiments (see, e.g., Ref. [36 ]).

One can say also that the mixing, which is responsible for relaxation, is

terminated by localization, so that the quantum mixing is only partial or the

finite-time mixin.

The smooth (up to fluctuations) steady state (5.9) is formed only if

localization length /S»2TT/7\ the period of standard map in it. In the opposite

limit / c «2ir/r the quantum measure gAn) reveals the classical resonance

structure [40 ]. Since quantum diffusion requires both K> 1 (classical border)

and k > 1 (quantum border) this regime is only possible near i : * l where the

diffusion rate in the chaotic component is very slow:
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2 к2 < 7 Л 5 >

and where the resonance structure is critical with characteristic time scale т с г

[40,53 ]. The border between the two regimes is approximately at

!l _ ( 7 Л 6 >

At the border т с г ~k as was recently confirmed in Ref. [54 ].

For /S7"« 1 the localization length (ls) averaged over the resonance

structure is

< 7 Л 7 )

and interpolation between the two regimes is approximately destribed by the

expression [9]

, \ i/2 (7.18)

The quantum steady-state is only possible in discrete spectrum. The

conditions for the latter in an unbounded quantum map remain unknown. For

the standard map on cylinder the spectrum is continuous for the rational

values of parameter Г/4тг * pig due to periodicity of this map in n. In Ref.

[55] the continuous spectrum was proved to exist also for very special

Liouville's (transcendental) 774-ir (see below) but if this condition is only a

technical limitation remained unclear. This constitutes a very subtle

mathematical problem. We shall try to discuss it using a semiempirical theory

of the quantum resonance [9 ] (see Section 6) which leads to the expression

(7.19)
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This is the asymptotic energy growth in quantum resonance with denominator

<7>£>n. A detuning e{g) - I Г/4тт - p/q\ would stop the growth in time т(е)

which we assume to satisfy the condition (see Eq. (2.4))

етл -v 1

Consider now irrational

m l

-j s(/n p..., m.,...) ,

(7.20)

(7.21)

m2 -r"'

= (mp..., m.) - * ^ ; = m.

where p.Jq.^xt the convergents of 7T/4ir. Comparing Eqs (7.19—7.21) we can

formulate the following conjecture: there exist infinitely many irrational

values of Т/Атг which provide unbouned energy growth and, hence, a

continuous spectrum; moreover, Г/4тгсап be adjusted in such a way to achieve

the desired growth rate. Take the growth law in the form

(7.22)

Substituting this into Eqs (7.20,7.21) and excluding т, we arrive at the relation

1 + 7

= ;F Г7П e x P

(7.23)

7

n 2 - 7

where the latter expression (c~l) follows from the continuous fraction repre-

sentation (7.21) of Г/4-ir. This relation determines a map for the construction

of desired T/4ir:

m i + i «•
cG

I +7
f 1 +

2 - 7

(7.24)
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Successive convergents determine the quantum resonances which operate

in turn, each one on its own time scale

(7.25)

Since these time scales rapidly increase the diffusion is inhomogeneous in

time, its local rate Г s d{rt)/dr oscillating from about zero up to

(7.26)

The ratio

2 ^ -

where (Г) is the mean rate from Eq. (7.22).

For maximal y=* 2 a single resonance operates according to Eq. (7.19). In

the whole interval 0 < у < 2 the motion is unbounded, and the spectrum is

(singular) continuous with a fractal structure in agreement with the rigorous

results in Ref. [55]. Irrationals which are approximated by rationale to

exponential accuracy, like those satisfying Eq. (7.23), are called

transcendental numbers. A new conjecture is that even among those T/4ir

values there are (infinitely many) such ones that provide the diffusion

localization. They correspond, particularly, to 7 * 0 with any finite G. A more

general condition is that asymptotically

/ ч 1 (7.28)
т.+1<ехр(ад(); а<ьГ5~п'

For a particular value of r/4w satisfying this condition the energy Es

 ж G/2
of the quantum steady state is determined by maximal Gt found from Eq.
(7.23)
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(7.29)

f this Gm.v < D~ 12 (7.4) the resonances are irrelevant and usual
ИЩА П

exponential steady state is formed described by Eqs (5.9) and (7.4). This is

just the case for a typical irrational T14r

classical parameter k . » 1 is big enough.

1 /2

just the case for a typical irrational TI 4TT when G m a x ~ D n ' « Dn if quasi-

8. QUANTUM CHAOS AND THE RANDOM MATRIX THEORY

The well developed random matrix theory (RMT) (see, e.g. review [56 ])

is a statistical theory which describes average properties of a "typical"

quantum system. At the beginning, the object of this theory was assumed to

be a very complicated, particularly > many-dimensional quantum system as the

representative of a certain statistical ensemble. With understanding of the

phenomenon of dynamical chaos it became clear that the number of system's

freedoms is irrelevant. Instead, the number of quantum states, or the quasi-

classical parameter, is of importance (for further discussion see Section 9).

Until recently the ergodicity of eigenfunctions, that is the absence of any

operators commuting with Hamiltonian, was assumed. Of course, this is not

always the case (for a very interesting and instructive review of first attempts

to prove the quantum ergodicity, see Ref. [57 ]). One of a few rigorous results

in quantum chaos is an old theorem due to Shnirelman (announced in Ref.

[58 ] with a full proof published only now [59 ]). Loosely speaking the theorem

states that the classical ergodicity implies the ergodicity of most quantum

eigenfunctions sufficiently far in the quasi-classical region that is for

sufficiently large quantum parameters. The quantum ergodicity was further

discussed in Refs [61 ] and well confirmed in numerical experiments with

quantum billiards [18 ].
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Shnirelman's definition of quantum ergodisity is of an integral type:

f dp dq Wn (/>, q) f (p, g) -* {dp dq g (p, q) f (p, q) <8Л>

for any sufficiently smooth function /of the phase space. Here Wn are Wigner

eigenfunctions, and

is microcanonical (ergodic) measure. The quantity pCE) = dpdqfdE is the

classical counterpart of the mean level density.

To understand the quantum limitations of egrodicity and the importance

of the quasi-classical asymptotics (n\ -* oo) we consider as an example the

Rydberg atom in magnetic field (see Eq. (2.12)).

In Re f. [63] the eigenfunctions of this model were found, for chaotic

motion in the classical limit, in the form

ф, = С 2 —TJ .

m ( П ( т ) ) 1 / 2

Here С is normalizing constant, qm are some unperturbed eigenfunctions with

a fixed quantum number m, and

n \ъ'2 i (8-4)

-fij -E] --^
is the electron longitudinal frequency depending on quantum numbers n, m.

In the classical limit the ergodic measure

„ {m) - Г

where П = дН/дп.

J (8.5)
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In quantum mechanics this measure in discrete, and to satisfy ergodicity

(8.1) the change in П must be small, hence, w ->• 0. On the other hand,

classical ergodiciiy (chaos) takes place under condition [14]

1EI < г (8.6)

Therefore, the condition for quantum ergodicity is

ы « £ 3 . (8.7)

The RMT operates with finite matrices N x N , so that expansion

similar to Eq. (8.3)

ф. - x e..<p. <8.8)
j

is always finite, the ergodicity meaning that

In other words, all probabilities la£..l
2 are equal at average. This is not the

case in a physical system whose energy shell, corresponding to the classical

energy surface, is bounded. Hence, the conventional RMT is a local theory

applicable within a quantum energy shell. We will come back to this important

question below.

Statistical properties of quasi-energy eigenstates (for driven systems)

were first studied in Refs [64, 65] (see also Ref. [8 ]) using, as a model, the

standard map on a torus (see Eq. (2.2)). Owing to condition (2.2) the

parameter T/4tr = m/2L is rational. But for a finite system, with L states, the

spectrum is discrete of course, so that no delicate problems, discussed in

Section 7, arise. This system models the quantum dynamics in the energy shell

of a two-freedom conservative system.

The ergodicity depends on the parameter mentioned already in Section 5
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(8.10)

and corresponds to large values of the latter. In the quasi-classical region

\ к -* oo as к -»• oo (K~ kT and m - LT/lis remain constant). Thus,

m •

sufficiently high quantum states are ergodic in accordance with the

Shnirelman theorem.

The structure of ergodic eigenstates well agrees with the prediction of

RMT, namely, the fluctuations are nearly Gaussian with the probability

density

Г(ЛГ /2) „ Л к ~ 3 (N \Y

N 1 (8.11)

Here a, assumed to be real stand for amplitudes in expansion (8.8).

Interestingly, a slight difference between the two distributions was clearly

observed in Ref. [65 ] for Nm - 25.

Big spatial fluctuations in a chaotic eigenstate are not completely random

but reveal the structure of classical periodic trajectories. This interesting

phenomenon had been discovered by Heller in numerical experiments with

the quantum stadium billiard [66 ], and was subsequently confirmed by many

others (see, e.g., Ref. [67]), particularly, in quantum maps. The

microstructure was observed so far as some enhancements along classical

periodic trajectories in both configurational and phase space. Such

enhancements were termed "scars" by Heller.

A general theory of scars in conservative systems with arbitrary number

of freedoms JV was developed by Berry [68, 5 ] (see also Ref. [69 ]). He made

use of the Wigner function WVhich is the quantum counterpart of the classical

fine-grained phase space density. Notice that W is generally not positively

definite.
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Within a scar Wforms complicated diffraction fringes, rapidly oscillating

and rather extended along the energy surface. The relative width of the central

fringe contracts with the quantum number n as ~ / t 2 . In this sence the scars

have essentially quantum structure which vanishes in quasi-classical region.

Yet, this transition to the classical limit is not a trivial one as the fringe

amplitude does not depend on n. To get rid of scars one needs a coarse-grained

(averaged) density Wwhich is called also the Husimi distribution, and which

is positively definite. Then average density of a scar vanishes ~n '~iN~i\

As the scars are maximally localized (essentially within one quantum cell

of the phase space) they do not violate Shnirelman's integral ergodicity (8.1).

However, it is not completely clear why they are not seen in fluctuations of

eigenfunctions.

According to Berry's theory the Wigner chaotic eigenfunction can be

approximately represented as a sum over classical periodic trajectories:

(8.12)

Here x = (p, q) is a point in 27V-dimensional phase space while X •» (P, Q)

describe 2 (#—1)-dimensional Poincare section transverse to a periodic

trajectory at X « 0. The periodic trajectory is characterized by action S and

quasi-classical phase as well as by instability rate Д" and period T. Each term

in sum (8.12) represents a scar which, by the way, can be of any sign, that is

it may produce both a bump or a dip in phase density W. Explicit expression

for h(X) is given in Refs [68,5], and v is some numerical factor.

A difficult mathematical problem in this theory is apparent strong

divergence of series (8.12) since the number of periodic trajectories with T$ <

T grows as ехр((ЛГ — l)KT) (see, e.g., Ref. [70 J). One way to approach this

problem is as follows [62 ]. Let us try to consider Eq. (8.12) as an expansion

in the basis of certain "coherent" states, the "scars"
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Ws=jrb (Xs) 6 {E - H (x)) ; JWS dx = 1 , ( 8 Л З )

which are localized on periodic trajectories. A peculiar property of such

coherent states is in that they are stationary that is they don't move in phase

space, nor they are spreading. The mechanism of localization is essentially

the same as for the diffusion discussed in Section 5, but now it concerns the

exponential spreading of a narrow wave packet prior to diffusion. The

difference is in the level density which, for a scar, is p$ ~ T$. Hence, the time

scale for the localization of instability is 7\, and this explains the exponential

factor in expression (8.12).

Oscillating S (A') tails of unknown length overlap to produce somehow the

average ergodic (microcanonical) distribution ~b(E-H{x)) (see Eq.(8.12>)

as well as the Gaussian fluctuations discussed above. The total number of

separated scars is ~;iA ч . Since the number of periodic trajectories grows as

cxp((N - 1 )ЛТ) the longest period Tm of basis scars is given by the estimate

ЛТ -In/г (8.14)
m

and it coincides with the Berman—Zaslavsky time scale (4.1) (with q ~ n).

This is the time interval for a wave packet spreading over the whole energy

surface. The scars with longer periods Ts > Tm are not separated from each

other, that is even their central fringes do essentially overlap, hence they are

crucially modified. As a crude approximation onecan simply drop these higher

terms which makes series (8.12) convergent. It is not excluded that this

approach would provide some physical justification for a formal procedure of

smoothing 8 {E-H) [5].

Another characteristic statistical property of chaotic eigenstates is the

distribution of their eigenvalues, the energies. Particularly, the spacings 5

between neighbouring levels are distributed, according to RMT, as

/ \ л В —Bs (8.15)
p \s) ~ л * e '
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where А, В are obtained from normalization and condition (s)ж 1.

In the old RMT the level repulsion parameter p could take 3 values only

(p - 1; 2; 4) depending on system's symmetry. In Refs. [64,8 ] this property

was confirmed for ergodic quasi-energy eigenstates as well.

A new problem is the impact of localization on the statistical properties of

chaotic eigenstates. It was first addressed in Ref. [47 ] to discover a new class

of spacing statistics which is now called the Izrailev distribution:

\ (8.16)

where now p is a continuous parameter in the whole interval (0, 4). This

semiempirical relation was found using Dyson's model of charged bars on a

ring. In this model the parameter p, which is the inverse bar temperature, can

take any value. Yet, for the level repulsion of ergodic eigenstates only 3 values,

given above, make sense. Izrailev has found that the intermediate values

describe localized eigenstates. The Izrailev distribution is also called

intermediate statistics as contrasted to the limiting statistics (8.15) for ergodic

states. This intermediate statistics should be distinguished from another one

proposed in Ref. [71 ] to account for the lack of ergodicity in the classical limit.

Earlier a few cases of big deviations of unknown nature from the limiting

statistics (mainly in heavy nuclei) were described by a purely empirical

Brodjfs distribution (0 < p <, 1):

3 _ B s i + P (8.17)

The next important step would be to relate parameter p in Eq. (8.16) to

the localization length l от rather to the ergodicity parameter X.* l/L. Instead,

Izrailev introduced a new ergodicity parameter

2lH (8.18)
TT TT \ ""^
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Неге Н, lH are the entropy of an eigenstate and corresponding length,

respectively (7.5), and He «ln(L/2) is the entropy of ergodic state which is

less than maximal (laL) owing to fluctuations (8.11). Surprisingly, the new

parameter р я = р proved to be very close to the repulsion parameter pof

intermediate statistics (8.16). Why this relation is so simple remains an open

question.

Particularly, in case of strong localization <ря«1) the spacing distribution

(8.16) approaches the Poisson law

p(.s)-e , (8.19)

which originally was associated with the completely integrable systems and

regular dynamics. Also, this limiting case shows that Eq. (8.16) is an

approximation because clearly p(0) * 0 for sufficiently small р я . At most, the

residual level repulsion could be exponentially small.

In any event, this limit explains the absence of repulsion for Anderson

localization in infinite disordered solids. Yet, in a finite sample the repulsion

must appear which is also an interesting mathematical problem.

Notice, that Poisson distribution holds only for all levels. For the operative

eigenstates (5.3), which determine the quantum dynamics, the repulsion

reappears again. This is another difficult problem.

The level repulsion does not change the relaxation time scale (5.3) but

may influence the relaxation tail (see, e.g., Eq. (5.12) and Ref. [35 ]). In this

context an interesting question concerns the repulsion among specific Mott's

states (7.10). For each pair of such states the repulsion is very strong in the

sense that their spacing is bounded from below by overlapping integral (7.9).

On the other hand, the total number of Mott's pairs increases as the spacing

(w) decreases owing to the growth of state's size L. Both effects seem to cancel,

and the integral repulsion vanishes. Indeed, from Eqs (7.13a) and (7.10a)

(both versions (a) and (b) are asymptotically equivalent), we have

px =2а1тш. (8.20)
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This is in apparent disagreement with numerical results in Ref. [35]

where the level attraction was inferred from the asymptotic behavior of the

staying probability (5.28). However, this conclusion is very sensitive to the

exact relaxation law. On the other hand, our result is in agreement with

another relaxation (5.13) observed in Ref. [38 ]. To conclude, this question

certainly requires further studies.

Empirical dependence рд- (X) was found in Refs [47, 72, 73 ]. Parameter

fix was defined by Eq. (8.18) with the entropy averaged over all eigenstates.

The dependence can be approximately described by two expressions

fcr

(8.21)

1 -

Besides the limit X-* 0 there is no explanation of this dependence so far, nor

even the physical mechanism underlying Eq. (8.21) has been identified.

For example, we could use a simple Eq. (5.8) for localized eigenstates. On

a torus it becomes

2X
+ Xsh(l/\)

and Izrailev's ergodicity parameter is

ftr

1/2

ch
\m — nl

I

(8.22)

(8.23)

1 -
360X

X>> 1

that is quite different from Eq. (8.21). Thus, the real dependence р я (X) is

related to deviations from simple eigenfunction shape (5.8). One conjecture is

that it is the effect of larger Lyapunov's exponents in Eq. (6.3) for

eigenfunctions in addition to the main (smallest) exponent \ll which

•••л

47



determines the asymptotic behavior (5.8). The full set of Lyapunovs

exponents was studied in Ref. [74 ].

Remarkably, dependence (8.21) has the nature of a scaling in the sense

that (i^and p ~ (3^ depend on the ratio \~lfL- DJ2L only, whatever the

underlying mechanism could be.

The importance, of this scaling is in that both quantities, p and A, are

invariant with respect to the rotation of the basis in Hilbert space whereas

intermediate quantities. |S -̂ and H, are not.

The statisiicaS r.:-;nierpart to the theory of quantum localization is not onl v

old Anderson's theory but also a new development in RMT which makes USL:

of the so-called band random matrices (BRM, see. e.g., Refs (75)>. These

have nonzero randons elements within a band of some width 1h along the m^in

diagonal only. They are defined in a certain physically significant basis, and

also are not invariant under basis rotation.

The 'jnitar> matrix in quantized standard man (2.3) is also of a band

structure with •:> ~ к but nonrandom elements. This .similarity suggests thai

appropriate scaling parameter would be [76 {

b} (8.24)

where L is now the matrix size, and r some numerical factor. All matrix

elements are assumed to have the same statistical properties, indeed, the

scaling ;3rr (,y is similar but not identical to that for the dynamical problem

iS.2!.). In fact, the first, dependence is the same for r ~ ) .5, and it persists

even farther, up to \ ~ 3. The second region ф ^ « 1) is apparently different

but it has no. yet been studied enough. Notice that the origin of the difference

can be «iUributed not only to the distinction between random and regular

matrix e'cmcnis bin aiso to the different boundary conditions fora square

r.v.nir\x and for a Joruj,
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For >y«l the matrix of eigenfunctions a., (8.8) is also a band matrix with

a.- smoothly decreasing off the diagonal but with a much larger effective width

(~b2).

In a conservative system parameter b2 characterizes the width of the

energy shell. Hence, the old RMT with its universal limiting statistics

describes the local quantum structure only, that is for L« bl. The global

structure is associated with band matrices. The former approximation is very
*J ft "У

good, for example, in heavy nuclei (b —10 ) but not in heavy atoms (b — 10

only) [77].

A new type of statistical properties for the quantum chaos has been

introduced recently in the second Ref. [43]. It is the statistics of bands (or

gaps) in the fractal spectrum of a particle in quasi-periodic critical potential.

For a particular model the band "attraction" (or clusterring) was found with

the parameter (3 =-3/2 (cf. Eq. (8.15)) in the limit of small gaps. The

attraction parameter characterizes also the fractal dimensions of the spectrum

d/—$- 1 *= 1/2 in this model. Apparently, the same statistics can be applied

to the nonresonant unbounded motion in the standard map (see Eqs (7.22)—

(7.24)).

Also, I would like just to mention (and to attract attention to) a very

interesting and less known theorem due to Shnirelman [78 ](for the proof see

Ref. [59]). It is related to the situation intermediate between the complete

integrability with independent levels (see Eq. (8.19)) and quantum chaos with

level repulsion (8.16). Namely, he assumes, in the classical limit, that the

Kolmogorov—Arnold—Moser (KAM) theorem holds. We call this KAM

integrability [79 ]. The KAM structure is highly intricate as its chaotic part,

being of exponentially small measure, is everyv зге dense.

In quantum mechanics the beautiful Shnirelman's theorem, which even

doesn't need translation, asserts:

VN \CN > 0 , Vn > 1 min (A,. + 1 - х„, А„ - Л„ _,) < CNn~N, (8.25)
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where Xjj are the energy eigenvalues. Thus, asymptotically, as я -»•», a half

of level spacings are exponentially small. A striking difference from both the

complete integrability and the quantum chaos!

9. QUANTUM CHAOS AND THERMODYNAMIC LIMIT

Dynamical chaos in classical mechanics seems to be a principally new

mechanism underlying statistical laws in physics as compared to the

traditional ("old") statistical mechanics (TSM). It is indeed! The only

disadvantage is in that the classical chaos does not exist, strictly speaking, as

our world is quantal. Now in quantum mechanics the chaos in waning, and

becoming a sort of pseudochaos which only mimics some properties of the

"true" chaos, and moreover, on finite time scales only. Besides, it turns out

that such quantum chaos is rather similar in mechanism to TSM [80, 81 ].

Let us consider these complicated relations in some detail. The paradigm

of TSM is many-dimensional linear oscillator which can be described by the

matrix of coefficients in its quadratic Hamiltonian. So this is a completely

integrable system with purely discrete spectrum. But the same is true for a

broad class of quantum systems as described by Hamiltonian's or unitary

matrices. In both cases the main dynamical problem is to diagonalize the

matrix, and to find its eigenvalues and eigenvectors. The principal difference

between the two problems is in the nature of matrix's size. In TSM it is the

number of freedoms N while the quantum-dynamical counterpart is that of

states n.

If any of these parameters is big the statistical description becomes

meaningful. In TSM it is achieved, in the formal theory, by taking the

thermodynamic limit N -* ю. Then, the spectrum becomes continuous if the

eigenfunctions are delocalized. This is, indeed, the case, under certain

conditions, and not only for the simple linear oscillator but also for a broad

class of completely integrable systems (see, e.g., book [3] and references

therein). Moreover, in the thermodynamic limit the completely integrable
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system (for any finite N) becomes /C-system, particularly, its /TS-entropy h >

0. This is a very strong statistical property.

In quantum mechanics we have the classical limit n -> » with its new

dynamical chaos. Yet, the main problem in quantum chaos is finite (no matter

now large) n. This quasi-classical region is characteristic for the quantum

chaos. Actually, the same problem exists in TSM as well. What would be

impact of finite JV on the statistical properties? From the studies of quantum

chaos we know that one still can speak about statistical relaxation in spite of

the discrete spectrum. A striking example of such process was observed in old

numerical experiments [82 ] with the completely integrable Toda lattice of 5

freedoms only!

Thus, the new quantum chaos turns out to be very similar in mechanism

to the old TSM of completely integrable systems. Remember that TSM equally

applicable to both classical and quantum systems under N-* <». The latter, if

bounded, are always integrable in the Hilbert space. Classical systems can

exhibit dynamical chaos for any N >2. Yet, from the viewpoint of fundamental

physics the classical chaos in but a limiting pattern to compare with the true

(quantum) dynamics (for a discussion from the mathematical point of view see

Ref. [83 ]). As we already know the main distinction of the quantum chaos is

restriction of this limiting patterns in time. It reminds the conception of

continuous phase space in classical mechanics. Notice that both limits (in time

and space) greatly simplify theoretical analysis.

10. TRUE CHAOS IN QUANTUM MECHANICS?

Is the true chaos possible in quantum mechanics? The true means here the

chaos like in the classical limit, particularly, on the infinite time interval. Also,

remember that we are speaking about the proper quantum dynamics without

intermediate measurements (Section 1). The answer is yes as was found

recently but the examples of such a chaos are rather exotic. The first one was

briefly mentioned in Ref. [84 ]. We consider here another example following
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the second Ref. [30 ] (for a more physical example see Ref. [85 ] while some

general considerations are presented in Ref. [86 ], and rigorous results see in

Ref. [97]).

Consider the flow on an N-dimensional torus specified by the equations

6. = vt (Qk). (10.1)

U N >3 the classical chaos is possible with positive Lyapunov exponents that

is the solution of the linearized equations is exponentially unstable. Consider

now the Hamiltonian system

H(n, 6) =2 nkvk(Qi) (10.2)

к
linear in momenta nk canonically conjugated to coordinates 6 .̂ Then, the

equations for nk coincide (in reverse time) with the linearized equations

(10.1). Hence, as soon as system (10.1) is chaotic the momenta of system

(10.2) grow exponentially.

It is easily verified that the density g(Q, t) = 14» (6, t)! of quantized system

(10.2) obeys exactly the same (continuity) equation

dg д , . n (10.3)

as classical system (10.1) does with the same (particularly, chaotic) solution.

The peculiarity of this and similar examples is in that to achieve the true chaos

not only the quantum motion must be unbounded and, hence, of a continuous

spectrum but the momenta have to grow exponentially in time.

Exotic though, these examples are important for the understanding of the

nature of dynamical chaos. Particularly, it is not necessarily related to

nonlinear equations. Also, the classical chaotic motion can be equivalently

described in terms of the linear Liouville equation. On the other hand, the

linear wave equations in classical mechanics exhibit typically the "quantum"

chaos only, that is the discrete-spectrum chaos.
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The true chaos is also possible in the so-called "seraiclassical" systems.

In those some freedoms ate described classically (often implicitly like for the

nonlinear Schrodinger equation, see Ref. [88 ]) which is, of course, some

approximation. For the chaos to occur a single classical freedom is enough. An

instructive example of N two-level atoms in a single-mode electromagnetic

field is discussed in detail in Ref. [87] (see also Refs [88, 89]). The

"semiclassicai" approximation is very important for the problem of quantum

measurement but this lies beyond the scope of the lecture.

11. CONCLUDING REMARKS

In conclusion I would like, first, to mention briefly a few other interesting

developments in the theory of quantum chaos which are not presented in the

main Sections above. One is the impact of external noise first studied for the

standard map in Ref. [90] (for further developments see Refs [38, 91 ]).

Typically, a sufficiently weak noise does not affect the classical-Hke diffusion

on the relaxation time scale tR (5.6). Yet, even arbitrarily weak noise destroys

localization and provide a finite and permanent diffusion rate DN where

( П Л )

* > * » « * l

Here T>n is the diffusion rate under noise only. A sufficiently strong noise

restores the permanent classical diffusion (for 1 / Dn<T>n< Dn).

A more interesting effect, recently under intensive studies (see, e.g.,

paper [92] and references therein), is in that the noise of a special type

substantially inhibits the quantum transitions preserving the initial state. The

importance of this effect is in that it is close to the effect of quantum measure-

ments but unlike the latter admits the dynamical description (cf. Ref. [93 ] on

the quantum Zeno effect).
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Another interesting topic is the classical dynamics in discretized phase

space. A simple change of the standard map (2.1) to

n = n + [ / t s i n e ] ; Б = 6 + Т п (11.2)

where square brackets denote the integer part, reproduces many quantum

effects surprisingly well but, of course, not exactly [30, 9] . Another

interesting model — the Arnold cat map — was studied in detail in Refs [94 ].

A particular quantization is exactly reproduced in the discrete version of this

model but it is an exclusion rather than the rule.

The studies of such a discrete dynamics are of special importance for

numerical experiments on digital computers where all the quantities (not only

the action variables like in Eq. (11.2)) are discrete (integer). So, any dynamics

in computer is a "quanta!" one. Moreover, as all variables in computer are

bounded no exclusions exist for the ban on the true chaos.

This field is rather unexplored, some related mathematical questions were

discussed in Refs [95 ]. Since recently extensive studies in a close field of the

so-called cellular automata, which appear to be essentially a particular type

of the computer, are in progress (see, e.g., Ref. [96 ]).

In the very conclusion of this lecture I would like to emphasize again the

importance of developing a new ergodic theory which instead of benefiting

from the asymptotic approximation (111-* oo) could analyze the finite-time

statistical properties of dynamical systems.
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