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INTRODUCTION

The proposed monograph is devoted mainly to many-dimensional non-linear oscillations
of a conservative mechanical system studied in a complete way, i.e. in an unlimited period
of time and for arbitrary initial conditions, This problem, of which the famous three-body
problem in astronomy is a particular example, is probably the most complex and at the same
time the most beautiful in classical mechanics. The point is that in the case of finite
motion (which is equivalent to oscillations in the broad sense of the term) in the absence
of damping, repeated interactions occur in the system, so that very subtle cumlative ef-
fects become important (Section 2.12). The complete solution of this problem is still a
long way off, Nevertheless, at the present time, particularly as a result of the numerous
papers of the last 10-15 years, the general picture of the motion of such a system is al-
ready beginning to emerge more and more clearly through the thick fog of innumerable details
and the particularity of specific problems,

There are two important reasons for constructing a general theory of non-linear oscil-
lations. On the one hand, in specially interesting cases it is not always possible to re-
main in the linear oscillation region, i.e. to keep within sufficiently small amplitudes.,

On the other, the linear region is too narrow and therefore relatively poor in phenomena.

Of course, it is difficult to guarantee that qualitatively new processes will not be dis-
covered in this region, particularly if it is remembered that quite recently such interest-
ing and important phenomena as the Kapitsa pendulum’?2) or the strong focusing of particles
in an accelerator!’?) were discovered in this region. Nevertheless, it seems safe to assert
that the linear oscillation region has been exhausted to a large extent and for subsequent
significant progress, both in understanding and applying oscillatory processes, we shall
have to switch to the non-linear region. An attempt to limit investigations to linear
oscillations is often very artificial, unduly reduces the possibilities of practical appli-
cation and resembles the notorious attempt to restrict the search to the area directly in
the spotlight. This latter method is certainly a good idea, since the beautifully worked
out comprehensive theory of linear oscillations is in sharp contrast to the disconnected
descriptions of separate non-linear processes. However, it is becoming increasingly dif-
ficult to find anything new "in the spotlight' and the development of a theory of non-linear
oscillations can be considered as an attempt to light, albeit a little, the general mass of
streets of a large town in addition to the brightly-1lit main avenue.

At present, there are two main approaches to the problem. The first is connected with
the search for stable periodic or almost periodic motion. This is related to the classical
theory of non-linear oscillations (Poincaré, Lyapunov, Mandelstam and others), the basic
disadvantage of which ~ that the cases of motion considered are too special -- was over-
come recently in the famous works of Kolmogorov, Arnold and Moser (KAM theory, Section 2.2).
Another approach, the ergodic theory, deals on the contrary with the case of extremely un-
stable motion, leading up to a statistical description (Birkhoff, Hopf, Anosov, Sinai and
others, Sections 2.1, 2.3 and 2.4). Both approaches, in particular recently, have given a
series of brilliant results which form a reliable basis for further research in this field.
However, on account of the extraordinary mathematical complexity of the problem, they
nevertheless remain only special or, rather, limiting cases of motion. It is not even known
under what conditions the transition from one approach to the other, i.e. from stable to
wunstable motion, takes place.
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In these circumstances it appears advisable to reject the purely deductive method com-
pulsory in mathematics and adopt the semi-empirical method more usual in physics, which in
the present instance means a system of models, analytical estimates and experiments, numeri-
cal or "real" (Section 3.1). To a certain extent the Mandelstam school carried out such
research with the aim of combining theory and experiment as applied to the special problems
of non-linear oscillations. A similar approach to the general problem outlined above was
started by Krylov®®), many of whose ideas are used and developed in this paper. The main
difference in our approach is that we are interested not so much in the macroscopic molecu-
lar systems of statistical physics, the nature of whose motion has in any event been cor-
rectly established, as in systems with a few degrees of freedom, where this problem is far
from trivial and is not of merely theoretical interest. Bearing in mind the given approach,
we shall speak of constructive physics, since the main task here is to construct an approxi-
mate system of notions and laws in 2 region where, in principle (but not in practice!), the
exact laws are known. It should be noted that, at present, constructive physics, besides
being related to oscillation theory, is comnected with such large branches of science as,
for instance, statistical physics and chemistry, and in the not too distant future probably
also biology. It should be stressed that the centre of gravity of constructive osciliation
theory (and this also applies to a certain extent to other regions of constructive physics)
does not lie in fornulating any new laws of nature, but in applying well-known and firmly
established laws of mechanics to the explanation (analysis) and construction (synthesis)
of new mechanical systems and processes with the desired characteristics (Section 3.1).

The basis of our analysis of non-linear oscillations is the notion of non-linear
resonance (Chapter 1), which first arose apparently in celestial mechanics in connection
with the librational motion of the planets (lagrange) and in a clearer form in accelerator
theory in connection with the phase stability mechanism (Veksler, McMillan). The most
significant and, as far as we know, new process proves to be the interaction of several
resonances, always taking place in a non-linear system,

_ A large part of the paper (Chapters 2 and 3) is devoted to the study of this interac-
tion.

A system of models was constructed (see diagram on next page) beginning with a one-
dimensional non-linear oscillator. The downward-pointing arrows show the simplification of
the model down to the elementary one, which is studied in detail analytically (Chapter 2)
and by means of mmerical experiments (Chapter 3). The results obtained are applied to a
series of increasingly complicated models, finishing with a many-dimensional non-linear
oscillator (upward-pointing arrows). For the analytical investigation wide use is made of
the Krylov-Bogolyubov-Mitropol'sky asymptotic averaging method [Km t_heory’)] on the basis
of Hamiltonian formalism. We were naturally obliged to limit ourselves to the case of small
(or slow) perturbation (parameter £ << 1), assuming that the motion of the unperturbed sys-
tem is known in one form or another. Since, however, the basic results of the work are
estimates in order of magnitude, their range of application can be extended to € ~ 1.

Let us note here two of the results obtained, in our opinion the most interesting.
Firstly, a study was made of stochastic instability, which from a practical point of view
is the most dangerous instability of non-linear oscillations (Section 2.5) (and at the same
time a peculiar method of particle acceleration, Section 4.1), but from a theoretical point
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of view gives a model of statistical laws applied, as distinct from the model of contempo-~
Tary statistical mechanics, to a system with a few degrees of freedom N 2 2 (Section 2.13)").
Secondly, a study was made of Arnold diffusion, which proved to be a peculiar universal
instability of non-linear oscillations in cases where there was no stochastic instability
(Section 2.12).

- Furthermore, the studies made seem to us to give a rather detailed general picture of
many-dimensional non-linear oscillations, and particularly the rather complicated structure
of their phase space. With the above-mentioned limitation on the perturbation strength,
the transition from the Kolmogorov region of maximumm stability to the region of maximm in-
stability of the ergodic theory can be traced, and it can thus be shown that in the general
case both regions interpenetrate deeply in a rather complicated way, forming a system with
divided phase space. The latter fact is also an important obstacle to the construction of
a rigorous mathematical theory.

In spite of some indistinctness in this picture and some doubt about certain of the
details, giving rise to natural dissatisfaction, it can nevertheless serve as a guide line
for future research and current applications in this unexplored region. The work can,
therefore, be looked upon as a kind of reconnaissance in depth (although perhaps including
some superficial observations), intended to facilitate subsequent more accurate investiga-

tions.
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LIST OF THE MAIN DIMENSIONLESS PARAMETERS AND SPECIAL SYMBOLS
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5. s’
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Note

*) Typist's Note:

small perturbation parameter (Section 1.1).
non-linearity parameter (Section 1.3).

parameter of the overlapping of resonances;

(Aw)H: non-linear width of resonance;

A : distance between resonances (Section 2.1).

parameter of destruction of non-linear resonance separatrix
(Section 2.6);

Ry frequency of phase oscillations (Section 1.4);

wy ¢ perturbation frequency (Section 2.6).

stochasticity parameter (s,s;) for re-normalized resonance
{Section 2.6).

exponentially small parameter of destruction of non-linear resonance
separatrix;

c v 1: constant (Section 2.6).

fraction of stochastic component in the region of Kolmogorov sta-
bility (Section 2.6).

number of degrees of freedom (Section 2.12).
multiplicity of interaction (Section 2.12).

sign of equivalence in order of magnitude (with correct dimension-
ality).
sign of proportionality (dimensionality not maintained).

The above symbols are valid throughout the text, with the exception
of special cases in which changes in the symbols are specifically
mentioned.

In the handwritten formilae the signye has been used.



CHAPTER 1

NON-LINEAR RESONANCE

This short chapter is an introduction. It sets out the basic ideas comnected with a
single resonance of non-linear oscillations, or, let us say, non-linear resonance. Although,
as we shall see later, the difference between resonant and non-resonant motion is not as
great for a non-linear system as for a linear one, the main features of the motion are
nevertheless determined by the non-linear resonance, which is an "elementary" non-linear
oscillation process.

1.1 Formulation of the problem

Let us begin our investigation with a one-dimensional non-linear oscillator, subject
to various perturbations. Let us assume that the Hamiltonian of the system is:

Hadl, (paA) +sH, (p9,A, O, ¢)

X:X(‘t—'); A"'A(?“Il’ai;;é,é,m); i‘f-‘-‘ﬂ(‘c) (1.1.1)

Here 1 = et is the "slow'" time, and the parameters define: A as the adiabatic processes, ¢
as the resonant processes, including those with variable frequency, A as the perturbation,
depending on the dynamical variables p, q and their derivatives; #H, is the unperturbed
Hamiltonian; ef, is the small perturbation (e << 1).

Let us explain the idea of introducing the parameter A by the following example.
Supposing we want to consider the frictional force -- k. The direct introduction into the
.Hamiltonian of the term kqp/m “spoils" the second equation: § ¥ (3H/3p) = (p/m) + (ka/m).
But if we do the same thing through the parameter: gA(p) where A(p) = kp/m the equations
remain canonical, since differentiation with respect to p, q is carried out with a constant
A. The dependence of A on p should be understood in this case as an explicit dependence
on time, so that the Hamiltonian is not conserved. This simple method of taking into ac-
count unusual perturbations in the frame of Hamiltonian formalism is equivalent, essentially,
to using the generalized Hamilton principle for obtaining Lagrange equations‘) .). A
similar problem was studied by Volosov?).

In spite of the apparent limitation of the problem, the Hamiltonian of the form of
{1.1.1) covers a fairly wide range of non-linear oscillatory processes, mainly on account of
the diversity of the perturbations. In a sense system (1.1.1) may be called an "elementary
non-linear oscillator, which enables us to introduce, investigate and "sound" the basic
ideas and regularities of this region. In particular, some many-dimensional problems (see
Section 4.5) can be reduced to the form of (1.1.1).

*) However, it should be borne in mind that the said method should be used with caution.

Thus, for instance, frictional forces change the phase space volume of the system
(violation of Liouville's theorem), while in the case of "real” explicit dependence of

the Hamiltonian on time the phase space volume is conserved.
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Let us suppose, for instance, that there is a many-dimensional system, which in a zero
approximation- (e = 0) splits into independent one-dimensional oscillators. The perturbed
Hamiltonian of such a system depends, generally speaking, on variables of all degrees of
freedom. However, by calculating these varisbles in a zero approximation as explicit time
functions and substituting them into the perturbation, the system can again be divided (in
a first approximation) into separate oscillators of the form of (1.1.1), whose dependence
on variables of other degrees of freedom is replaced by an explicit dependence on time. 1t
should nevertheless be stressed that the one-dimensionality of the original model (1.1.1)
may sometimes lead to qualitative anamalies (see Section 2.12).

We consider the parameter € as fairly small, i.e. the perturbation is weak (or slow).
This assumption turns out to be correct in a series of cases and is due to the practical
need to use a kind of perturbation theory for analytical investigation. Under the condition
of small perturbation, resonance, i.e. cumlative perturbation, is the most significant
process for the oscillatory system. Thus our problem can be defined as the study of non-
linear resonance in a one-dimensional system of the form of (1.1.1).

1.2 Transfomation to slow variables

Since the perturbation is small, it is advisable to choose dynamical variables in which
the smallness will be expressed explicitly. In other words, it is useful to exclude the
"fast" unperturbed motion from the equations. Let the solution of the umperturbed equations
take the form:

G = ¢(1,8,A\); LQ:fb(I/\)‘/ﬁ""‘ o
4= @16 ; I=L $pdy 0.2

where 2n/w is the period of the motion and I is the action canonically conjugated to the
angular variable 6. Although the frequency of the unperturbed motion is constant, it is
placed under the integral in order to preserve the functional form of the solution also for
the perturbed motion. In this case the constants of the unperturbed motion (I,4) will vary
with time, but slowly. We shall choose them as new variables.

In the variables 1,0 the Hamiltonian (1.1.1) takes the form:
7’{-"% + A J"{(I. B:A.)"‘ 5—% [I,t;, /1,19, S) (1.2.2)

where A is an additional term to the unperturbed Hamiltonian because of its explicit de-
pendence on time. In order to find H we will write tne total derivative of I:

i X.‘I(P;‘i:l) (W‘%_g;?f?)(;/;.,_gp/{’/ (1.2.3)
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and take into account that the operator in brackets depends only on the function I(p,q,)\)
and thus is equal to 3/30. But from (1.2.2) I = -3H/30; equating with (1.2.3) we find:

J = j./e( ) fa/J( a-2.0

The lattef expression is obtained if a similar procedure is carried out with the function
6(p,q,2) ) khen calculating the integral it is necessary to express p,q through I, in
accordance with (1.2.1).

In slow variables (I,§) the equations take the form:

p = 2% 1L, o
8 A Ar €

Since the differentiation with respect to both 6,§ is equivalent, system (1.2.5) is cano-

nical.
Let us transform 3fi/30 = (':)I/aJ\)p q using the relation:
]

'DI(W‘,"):__L; ’:)I(V,A)___L.(?z;o (1.2.6)
2N T @ 7D

2w w
where W = H,(p,q,)), and the bar signifies averaging over the unperturbed motion with con-

stant A. We h}ive:

’D_L(ﬁiw_: 27 ('\ ) ’3.[(”'/‘) 9."’(29, ) (1.2.7)

g ) '7 W '
4

- L (-

Whence
R NYEY. Y 78 NPACT i}
I= el G Y =X ) £ 56 (1.2.8)

This equation clearly shows the adiabatic invariance of the action and is very convenient
for constructing various approximate expressions. A similar but approximate equation was

*) (1.2.4) gives the interesting identity:

(’31( £ 9 /9A+(990 )I/\
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obtained by Volosov?). It should be pointed out in this connection that all the equations
in this paragraph are exact.

let us mention without proof another form of equation for \P ¢);

S = - \/24°. 2 %&f) 297 (1.2.9)

AW 94 26

At first glance the disagreeable feature of this expression is that the velocity in the
denominator may vanish. In practice, however, this fact can be used to check the correct-
ness of the expression for \'f, since the numerator, of course, may also vanish along with
the denominator.

For solving specific problems one can use any pair of the equally valid equations
(2.2.5), (1.2.8) and (1.2.9).

Sometimes it is convenient to use the energy of the umperturbed system W instead of the
action. Calculating the total derivative in the same way as in (1.2.3) and using (1.2.1),

we find:

(1.2.10)

- Mo lpigiA) >74
W= L =51 %6

It should be borne in mind, however, that this equation is not canonically conjugated to
the equation for 9

1.3 Single resonance =

When the perturbation is small, the most important process for the oscillator is reso-
nance. Resonance generally takes place for a number of values of the oscillator frequency
w=uw. In this chapter we shall consider that the w; are rather far apart, so that near
one resonance the influence of the others can be completely neglected. Such single reso-
nance is a kind of "elementary' process for a non-autonomous oscillator. The interaction

of several resonances will be thoroughly examined in the next chapter.

The time dependence of the unperturbed Hamiltonian is assumed to be slow (but not neces-
sarily small): Ane (1.1.1).

Let us re-specify:

5\}’,}"1"5%%{ "‘.Zg*/y

and use the parameter A to describe the losses in the system (for instance, frictional forces).
The equations of motion take the form:
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fe-z 200002/ _ . ) (1,0

‘f' = ¢ 2%,(7,6,°) (1.3.1)
27

In accordance with (1.1.1) and (1.2.1) H, is a periodic function of 6,9 of period 2m:

(=8 +n2)
M, (1,6,9) = .:2':1 H, o (X)) € (1.3.2)

The resonance condition takes the form:

e = uSL (1.3.3)

Here m,n are any positive integers (we assume that w, £ > 0); in contrast to this, in (1.3.2)
m,n may be both positive or negative.

All the hammonics that are multiples of the basic ones contribute to the resonance:

_,q/k; .//é; .A/:/,Z)...,' k/g '}.'_':Z/ta

Neglecting the non-resonant hammonics in accordance with the averaging method, we obtain
from (1.3.1}, (1.3.2) the so-called first approximation averaged Hamiltonian!$):

= & WMy
(J'f; )/(e = _%‘ Z//; Nk ~we " € T_ A I/ = (1.3.4)

= -i({— U@, wl+ Ny; ¢= ,(9-?49;/1(!/:/3(1;‘9/

where U is a periodic function of y, of period 2.

The physical meaning of neglecting the non-resonant harmonics is fully understood; a
detailed mathematical proof of the validity of such an approximation and also its accuracy, the
limits of its applicability and the construction of the subsequent approximations, form the
subject of the Krylov-Bogolyubov-Mitropol'sky theory (KBM theory)’). The most important
effect of non-resonant harmonics is that new frequencies arise in the system and cause new
resonances. For the study of a single resonance this has no significance by definition; as
regards the role of higher harmonic resonances for the case of the iuteraction of several
resonances, this question will be discussed in Section 2.7.

From (1.3.4) we obtain the first approximation equations (v £) of the averaging method
in the form:
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_Z::—f.?_l_(—‘i/‘(fj

Ry
= ko(T)-f2+¢ Q-’I! 1.3.5)

Let us recall that the dependence A(I) is regarded as an explicit dependence on time and
therefore is not differentiated when obtaining the equation for §. The parameter A is con-
nected with a more usual quantity -- the loss rate (eP) -- by the relation:

A P (1.3.6)

-
— em—

(/%]

The system of equations (1.3.5) is canonical with the resonant Hamiltonian:

Jf/;,=5(/<w-/fz)dl+ iZ[(I,‘/’/f-i/lya (1.3.7)

For a constant A (dA/dl = 0) Hp is the integral of motion and if it can be calculated
in explicit form it enables us fully to investigate the behaviour of the oscillator near
the resonance. This method is widely used (see for instance Refs. 4 and 5) and is specially
suitable (and necessary) when the non-linearity is small (o << 1). Usually just the case
of small non-linearity is studied, often in the hope of simplifying the equations. However,
things turn out to be just the opposite"). In the case of strong (but not very strong,
moderate as we shall call it in what follows) non-linearity

€ << A £< ‘/E (1.3.8)

the Hamiltonian (1.3.7) is substantially simplified, since the variation of I in this case
proves to be always small. Therefore one can neglect the dependence of U on I, having put

'u(Iy '/’/= U(I,,,é}—? Uie) (2.3.9)

and take into account the dependence w(I) only in first approximation:

Qw (71,2
kw-£51 = bzo(I-I,,); ‘d;:k‘ *"%g"‘) (1.3.10)

kw(lf,): 2.&2

where wl'((Ip) is the constant characterizing the non-linearity of the oscillator.

In the approximation considered, the conditions of application of which will be dis-
cussed in the next paragraph, the resonant Hamiltonian (1.3.7) takes the form:

2
j‘q’y = wz_é{:‘éﬁl + £ U () (1.3.11)
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and the equations of motion:

I

¢ = )

AL
-Q

- £

"

(2.3.12)

Q%l

-Z,)

Generally speaking, one could also take the losses into account in this same approximation
by adding the term eA(ID)w to the Hamiltonian (1.3.11); however, it is more convenient to
do this later (Sections 1.5, 1.6).

System (1.3.12) can be reduced to a so-called phase equations) after eliminating I:

‘)0 + £¢o’ i/.[f =0 (1.3.13)
dy

The Hamllwman (1.3.11) describes the oscillations of a certain '‘particle' with a mass
1/mk in a per1od.1c potentlal field eU(y). Thus for moderate non-linearity (1.3.8) the
behaviour of the oscillator near the resonance proves in the first approximation to be
universal (except for the shape of the "potential well' and consequently the shape of the
oscillations). It should be remembered that with weak non-linearity (a < €), the behaviour
of the system varies qualitatively according to the type of resonance (external, parametric,
etc.)h,lb,S).

Since the shape of the oscillations, generally speaking, is not important when study-
ing the general laws of non-linear resonance, it will be specified from time to time in
order not to complicate the writing of the formulae unnecessarily. Llet us put:

®, )= U (1) % ot (1.3.18)
Then the original sysiem (1.3.5) takes the form:

_f::—allo_@y}‘{’ - €A
- W - OS2 — Zao,j';y’

(1,3.15)

and the universal Hamiltonian becomes:

1/;, = “—’z-f“ (I-—I,,) L\‘- sl @ (1.3.16)

We studied the periodic dependence of the perturbation on the phase 8. Extension to
the case of quasi-periodic perturbation presents no difficulty, but neither does it lead to
any new effects. A periodic transient (acting in a finite interval of time) perturbation,
is not of much interest from the point of view of resonant processes. There is also steady
aperiodic (with a continuous spectrum) perturbation, which leads to a completely different
pattern of motion. This case will be discussed later (Section 2.11).
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1.4 Phase oscillations

The analogy mentioned in the previous section with the motion of a "particle" in a
periodic potential enables us to have a visual picture of non-linear resonance for moderate
non-linearity. let us limit ourselves to the case of the harmonic potential (1.3.14).

System (1.3.12) has two equilibrium states, I = Ip, y = #1/2, one of which is unstable

[depending on the sign U, wy see (1.3.13)]. The pattern of the phase plame is periodic
in y and has a characteristic 'bucket" appearance (Fig. 1.4.1). The phase trajectories are

———\
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Fig. 1.4.1: Phase trajectories in the vicinity of resonances for moderate
non-linearity: © - stable, or elliptic, points; x - unstable, or hyperbolic
points. The dotted lines show the first approximation separatrices; in the
subsequent approximations they are destroyed and stochastic layers are
formed in their place (Section 2.6).

determined from the condition H_ = const. When |[H | < |eUo| (inside the "potential well")
the phase trajectories are closed, i.e. the phase [ and energy *)] of the oscillator varies
within restricted limits. These oscillations are generally called phase oscillations.
This name is fully justified, since the behaviour of the oscillator near the resonance is
determined by its phase conditions, namely phase shift law. The frequency of small phase
oscillations is equal to (1.3.13):

*)} From time to time we shall speak of the energy of the oscillator, which depends on the
action variable monotonically dW/dI = w > 0. This is shorter and more usual.
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.Q_; =sl, o’ 1.4.1)

When |H | > |eUo} (outside the "potential well") the phase shifts to an unlimited extent
and the energy oscillations decrease in proportion to their distance from the resonance (to
the increase of [H_|). The equation for the separatrix (the upper edge of the ‘potential
well") takes the form: |Hy| = |eKo| or:

@-1,)°= Zif,i" (5 22) (1.4.2)

where the sign in brackets coincides with the sign U°"°l'<'

The physical meaning of phase oscillations is that the non-linear oscillator deviates
from the exact resonance (kw = £Q) as a result of the variation of its frequency w(I).
Alternatively it can be said that the non-linearity stabilizes the resonance, since the un-
limited increase of the energy in the case of a linear resonance is replaced by the re-
stricted oscillations. Thus moderate non-linearity always stabilizes the resonance.

The region inside the separatrix is generally called the capture or phase stability
region. This means that although the oscillator deviates from the exact resonance as a
result of non-linearity, it does not deviate much. Moreover, if, say, the frequency of the
external force varies slowly, the energy of the oscillator also varies so that the approxi-
mate equality kw = 20 is fulfilled all the time.

The size of the capture region is characterized by the width of the separatrix in the
direction of I (Fig. 1.4.1):

(AI)H'-'-L{/}igz?‘,} }4(4“),,"/7\/)5“0“’2[:4-52,, (1.4.3)

WKk

These relations determine the non-linear width of the resonance.

From the above-mentioned analysis of the resonance it can be seen that the essential
characteristic of a non-linear oscillator is the derivative w’, i.e. the dependence of the
frequency on I (or't.he energy). In what follows, therefore, the term "non-linear oscillator"
will be equivalent to the term ‘'oscillator whose frequency depends on the energy" or 'non-
isochronous oscillator". The oscillations may be of any shape and generally speaking their
shape has nothing to do with the non-linearity. Thus the rotation of a2 relativistic par-
ticle in a magnetic field is an example of a non-linear but harmonic oscillator, and an
ultra~relativistic particle in a square potential well represents an anharmonic oscillator
with constant frequency.

The conditions of applicability of the universal Hamiltonian are connected with the
requirement for small variation of its parameters U, (1), w]’((l) and depend on the specific
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form of these functions. In order to obtain a general estimate we shall assume that in the
typical case: U§ ~ Up/I and w” ~ aw’/I. It is then sufficient to require small variation of
the quantities I,w:

:e_I)z £.U . [Aw) _ U (1.4.4)
(I ST <L (’B‘/J‘S‘ t gy <1

Hence the conditions of (1.3.8) are obtained, if the parameter ¢ is chosen so that
Up vl ).

Let us point out that for moderate non-linearity the real expansion parameter is not
€ but ve. The universal equations (1.3.12) prove in this case to be of the first order in
/e and the original equations (1.3.5) of the second. This also explains the possibility of
simplifying the original equations.

Let us note that the behaviour of a non-linear system near to a resonance has been re-
investigated many times since the days of Poincaré®*). A simple picture of phase oscilla-
tions and phase stability was set out in the classical papers by Veksler’) and McMillan®)
which had such a great influence on contemporary accelerator technique. Nevertheless it
seens to us that so far due attention has not been paid to the universality of the phase
oscillation process and the decisive part it plays for the understanding of non-linear
phencmena.

1.5 Crossing the resonance

let us assume that the value Ip explicitly depends on time, and so the difference
I-1, and thus also kw - £2, change sign. This may occur both as a result of the action
of perturbation with variable frequency f2(1) and as a result of the variation of the fre-
quency of the oscillator w, if the unperturbed Hamiltonian depends on the parameter A
(1.1.1). Unlike other more usual adiabatic processes, in which one can use the conserva-
tion of the adiabatic invariant J = (1/2n)$Idy, the crossing of the resonance is a more
camplex process, since here, generally speaking, J changes considerably independently of
the rate of crossing (see Section 1.6).

It is convenient to study the crossing of the resonance graphically, by analogy with

the motion of the '"particle" in a periodic potential, mentioned at the end of Section 1.3 s),
Let us first find the variation of the total energy of the "particle"” (1.3.11):

%{;Z:%%:—QL(I_IP).IP=-¢IF (1.5.1)

When the perturbation is small, the width of the resonance is relatively small [~ /g,
(1.4.3)]; therefore ip can be treated as a constant, and we obtain:

*) In other words, all the dimensionless parameters of the problem except €, a are of the
order of unity.
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J‘f:.j = - jp (¥-+) (.5.2)

By inserting this expression in (1.3.16) we find ):

‘2 .
B Voo p- Sy aso

where the coefficient V characterizes the rate of crossing the resonance:

; 2w _ p 22
Y = 2. = k D& € 2 (1.5.4)
=g 2}

and the phase Yo is taken at the moment of exact resonance (kw = Q).

If we now represent graphically the quantity proportional to the potential energy of
the "particle": sin ¢, then analysis of the motion is made in the usual way according to its
intersection with the line of the total energy, namely with a horizontal line in the steady
case (i = 0, Section 1.4), with a slanting line V(¢ - ¥p) + sin Y, when ip is constant, and
with a curve f£(y) obtained from (1.5.1) in the general case (Fig. 1.5.1).

o b
AT\

\

-

Fig. 1.5.1: Graphical investigation of the crossing of a resonance:
a - fast crossing; b - slow crossing; c¢ - phase stability; this region is
hatched and limited by a separatrix (thin line).

In the Fig. 1.5.1 it can be seen that there are two qualitatively different regimes as
for crossing through the resonance. The first is characterized by the existence of two
points of intersection (“particle" stops), by restricted phase oscillations and consequently
by repeated crossing of the resonance (line c). This regime has been well studied for a
special case (éha}ged particle accelerators) and is generally called capture or phase sta-
bility?»®). Capture is possible only when |V] < 1 and for specific initial conditions shown
in the Fig. 1.5.1 by hatching. When |V| « 1, capture takes place for almost any initial
phase of the oscillations (when detuning is sufficiently small). Under capture conditions
the energy of the oscillator automatically varies in such a way that ke = £0. The accuracy
of this equality is determined by the depth of the "potential well" and is of the order of
2, (1.4.3).

*) Limiting ourselves to the special case of (1.3.14).
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Another regime (lines a, b in Fig. 1.5.1) is characterized by a single crossing of the
resonance. When |V| > 1 crossing is possible for any phase o, but_for |V| < 1 only for
some Yo. It is the last regime that is a real crossing of the resonance, since when
t + *= the system deviates a long way from thé resonance and its energy approaches constant
values.

Let us consider two limiting cases in which the solution (1.5.3) in the last regime can
be represented analytically‘). We will suppose that the values Q, “’1‘( and U, are positive.
1f 5'21 < 0, it is necessary to change the sign of the time in the solution (the resonance is
crossed in the opposite direction) and also to make a phase shift (Yo + % - yp) on account
of the changing of the sign of V, as is easy to see from Fig. 1.5.1. If U, w}'( <0, it'is
necessary to shift the phase by m (Yo =+ Yo + w) (1.5.3). Finally, if both the values Q;

Uy m"( < 0, it is necessary to perform both transformations successively, which is equivalent
to changing the sign of the time and to the transformation Yo + -yo.

i) Fast, or linear, crossing of
‘the resonance (V >> 1)

In this case non-linearity can be neglected in the first approximation and then the
phase equation (1.5.3) or (1.3.12) is at once integrated:

/70

T
=+ B (1.5.5)

and the equation for I (1.3.12) comes to the Fresnel integral [see for example Ref. 9)]:

Alke ) = - %Z‘Qf‘a’:f(%*%)

u
0T = - V25 £l G (g+ X )
7z, /

Let us give the next term of the expansion in powers of the small parameter V!, char-
acterizing the weak effect of non-linearity for the fast resonance crossing‘):

(1.5.6)

— -1
ofke) =~\/g'-9¢'fr&¢e+ }E [1467-1)(52¢ +.c;.2.¢)_}f

potor Sefiz sl )y = gv 2

1.5.7)

&

The upper sign corresponds to the motion after the resonance, and the lower to that before
the resonance. Since the expression in square brackets > 0, the sign of the non-linear con-
tribution to A(kw) is the opposite of the sign s'z,. In other words, the non-linear frequency
change for the fast resonance crossing is directed to the opposite side with respect to the
external change of frequency, as in the capture; it is as if the non-linearity somewhat

slowed down the crossing of the resonance.
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The variation of the frequency and energy upon crossing the resonance increases with
the reduction of the rate of transit, but in contrast to the purely linear case it is limited
by the condition V >> 1 and does not exceed: [A(kw)| £ 9, << w; |aI| < 2y /uy ~ Vel uk’ <«< 1
(1.4.4).

ii) Slow, or reversible, crossing of
the resonance (V << I)

It can be seen from Fig. 1.5.1 (line b) that in this case the phase at the moment of
exact resonance is enclosed in a narrow interval around n/2:

%=L g; ~Y< $t < SV 2.5.8)

The rest of the phases correspond to capture.

An approximate integration of equation (1.5.3) gives‘):

Alke) = 2VRe O (Ve5)(13V-£%) +

(1.5.9)

The first term is important only in an exponentially small region on the edges of the inter-
val (1.5.8), where it leads to unlimited variation of w (and I). The physical meaning of
this variation is comnected with the very slow motion (almost a halt) of the phase near the
value (n/2) - V (1.3.12). The sign of A(kw) is the opposite of the sign of f; as in capture,
i.e. the crossing of the resonance is slowed down. This result is fully understood, since
the edges of the interval (1.5.8) are directly adjacent to the separatrix.

The main term in (1.5.9) is the second. In the limit V -+ 0 it depends neither on the
_ phase Yy (and consequently also on the initial conditions), nor on the rate of crossing the

resonance f;:

{

al= g £l (1.5.10)
3 w’k

Thus under these conditions there is no continuous transition to the steady case {s'z, = 0):
this transition takes place only in the capture region.

The sign of A(kw) for slow crossing agrees with the sign of ﬁ,, i.e. non-linearity speeds
‘up the crossing of the resonance. Because (1.5.10) is independent of the phase the slow
crossing process is reversible. In particular, when there is periodic crossing of the reso-
nance in both directions, the energy of the oscillator is subjected only to the limited
[and small (1.4.4)] oscillations in approximation (1.5.10). A more accurate expression
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(1.5.9) already depends on ¥, and therefore may lead to certain cumulative effects. This
question will be dealt with in more detail in Section 2.9.

Let us note that the uniform change (1.5.10) agrees in order of magnitude with the maxi-
mum possible fast crossing of the resonance.

Comparatively little is known about the process of slow crossing of a resonance.
Apparently it was first mentioned in a paper by Symon and Sessler! 1), vhere it was called
the phase displacement mechanisn’ ) and was proposed as a method of acceleration in addition
to the usual phase stability. A qualitative study of slow crossing of a resonance was made
by Sturrock®), but the criterion of slowness in his paper is incorrect:

N
—S2
(o ; ) > 4 (1.5.11)
24

In this form it has no sense at all, since it depends on arbitrary detuning (w - 2). However,
as far as can be understood from the text of Ref. 9 the author takes as the width of the
resonance the linear expression: w - @ ~ €U{ [see (1.6.17)], whereas in order to obtain the
correct criterion one should take the nmon-linear one: w - 2 & Q, (1.5.4).

Let us now consider the effect of losses. In the first approximation to v/t it is neces-
sary to add to the universal Hamiltonian (1.3.11) the term eAy, where A = A(I ) = const.
like the other coefficients. The result can be regarded either as a change of the 'potential
.well” U(y) (its "slope"), or as some effective change of the speed of crossing through the
-previous resonance by the value (1.5.1):

A.(i, =-£Ne 1.5.12)

In the latter case the parameter of the rate of 'crossing" the resonance takes the form
(1.3.6):

= T = ry o U (1.5.13)
o a:

In particular, with constant frequencies (3, = 0) capture is possible only under the condi-
tion P < ully. In the capture region the energy of the oscillator on the average does not
change, since the losses are compensated for by the action of the perturbation. Outside the
separatrix the energy of the oscillator decreases, and it goes away from the resonance.

I8 = EA“llc’ an interesting "steady’ case (V = 0) nzcurs with variable frequencies.
Unlike the true steady case (fh = A = 0), the amplitude of the phase oscillations may vary
(Section 1.6).

*) Displacement in phase space.
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1.6 Second approximation effects

The effects of the second approximation (namely ~ ¢, Section 1.4) in the non-linear
resonance are related to the effects due to the variation of the coefficients of the umivers-
al Hamiltonian (Section 1.3): U, (I)u\l'((l), A(1), vwhich in the first approximation to /& were
taken to be constant. These effects can be divided into two categories: oscillating (at the
frequency of the phase oscillations} and cumlative. According to the estimate of Section 1.4
the oscillating effects in the region of moderate non-linearity are always small (v /e),
and we shall not write out the corresponding corrections in explicit form. On the other hand,
the cumlative effects can be regarded as slow; the simplest way of studying them is to use
the adiabatic invariant of the phase oscillations:

J- 1 &I Qg = P é(]_ }d¢ (1.6.1)

The latter expression is valid for limited phase oscillations, when § dw = 0. Far away from
the resonance J + I, i.e. the adiabatic invariant of the phase oscillations changes over to
the adiabatic invariant of the oscillator itself.

In order to calculate the variation of J let us return to the resopance Hamiltonian
(1.3.7) and use the general formula (1.2.8). The variable parameters here are the frequen-
cies ;(t) and the loss parameter A(t). We have:

E’l Ta VH, X ), A (p-F)-1 (1.6.2)
2z \ 3% 2¢ / Ly

where T, is the period of the phase oscillations and the explicit dependence on time is due
to the frequency variation ({'21).

When there is sufficiently slow and smooth frequency variation the first term, as is
known (Section 4.4), makes an exponentially small contribution to AJ, i.e. J scarcely
varies'), so that it is sufficient to examine only the second term, connected with losses.
For the integration of (1.6.2) let us limit ourselves to small phase oscillations: '

lol=]e-¥] s, <1 (1.6.3)

where P, is the amplitude of the phase oscillations. In this case one can put

2

¢ x u"‘(f—I/,'/; IzJ,ﬂ'—f,; =Zo- ftf (1.4.6)

*) Provided the trajectory does not cross the separatrix of the steady-state phase oscil-
lations, for which T, = =, and the adiabatic invariant always changes independently of
the rate of transit, as is in fact calculated in Section 1.5.



- 21 -

It is easy to verify that the relative accuracy of these expressions n spo/E. In order
to obtain J with the same accuracy it is sufficient to use the universal Hamiltonian:

N -3
Y= e (1.6.5)

By inserting the expressions (1.6.4) and (1.6.5) in (1.6.2) and averaging over the period
of the phase oscillations, we find:

{!‘gg =~ s (1.6.6)

or

(1.6.7)

/:&‘ ()
J=7-e F% c

In the general case the parameter A'(Ip) may depend on time because of the variation of Ip'
The direction of the variation of J and consequently also of the amplitude of the phase
oscillations (damping or increase) depends on the sign of the derivative A’ = (P/w) / (1.3.6).

The application of the averaging method to equation (1.6.2) in order to obtain (1.6.6)
is permissible under the condition that:

s A’ << 2, (1.6.8)

In the steady-state case (S'Z; = 0) the only important effect of the second approximation
is the damping (or growth) of the amplitude of the phase oscillations with a constant decre-
ment -eA’ (Ip) (1.6.7); other effects lead only to small oscillating corrections ~ ve.

With sufficiently slow crossing of the resonance under capture conditions, the ampli-
tude of the phase oscillations varies adiabatically according to (1.6.5) and (1.6.7). The
expression for the adiabatic invariant of the phase oscillations is universal in the same
sense as the Hamiltonian (1.3.11), i.e. it does not depend on the type of resonance (except
for the shape of the oscillations).

This result, mentioned for the special case of synchrotron oscillations in an accelerator
by Kolomensky and Lebedevs), is completely natural, since the expression for J can be obtained
with an accuracy of ~ /& from the universal Hamiltonian. In the case of small phase oscil-
lations expression (1.6.5) is entirely umiversal.

The independence of the adiabatic processes of phase oscillation on the type of pertur-
bation can be considered from another point of view. If the phase of the perturbation ¢ de-
pends only on time (1.1.1), the phase plane of the resonance (I,y) differs from the original
phase plane of the oscillator (I1,0) only by a turning of the co-ordinate axes and by the
constant transformation of the scale [y = k0 - 28(t)]. In this case the integral (1.6.1) is
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proportional to the phase area of the umperturbed oscillator, spanned by the trajectory of

the phase oscillations. According to Liouville's theorem this area (defined by the motion

of the ensemble of all the points inside the phase trajectory) is always strictly conserved
(also when there is perturbation). This corresponds to the approximate conservation of the
area spanned by the steady-state trajectory of the phase oscillations, in those cases in

which its intersection with the actual trajectories of neighbouring particles can be neglected.
The resonance itself determines only the shape of the region, for example, for small phase
oscillations: 2, « 40 & w' - AT (1.3.12).

In the special case of a harmonic potential (1.3.14), under the condition that
V << 1 (1.5.13) and in the absence of losses we obtain:

(1.6.9)

el

which agrees with the result of the theory of synchrotron oscillations in acceleratorss).
From the last expression it can be seen that damping of the phase oscillations can be ensured
both when the energy of the oscillator increases and when it decreases, owing both to the
special non-linear characteristic of the oscillator and to the variation of the parameters
of the resonance in time. This gives the possibility of using the non-linear resonance for
regulating the amplitude of the oscillations, within the limits compatible with Liouville's
theorem.

Let us consider the influence of second approximation effects on slow crossing of the
resonance®). The most important influence is comnected with the possibility of changing
over from one regime of crossing to another, i.e. with capture (transition to limited phase
oscillations) or, on the contrary, with moving out of the resonance. It is evident that
moving out of the resonance will necessarily take place sooner or ljger, if the amplitude of
‘the phase oscillations increases. In the case of damping of the phase oscillations capture
is possible (but does not necessarily take place). The point is that with slow crossing of
the resonance there is only one phase oscillation intersecting the steady-state separatrix
(see Fig. 1.5.1, line b), and therefore the damping may not have time to change the para-
meters of the phase oscillations so much that capture takes place. However, when V + 0
capture necessarily occurs, because the aforementioned phase oscillation in this case ap-
proaches the separatrix and an arbitrarily small change is sufficient for capture. Moreover,
as will be shown in Section 2.6, near the separatrix there is always a more or less wide
stochastic layer which facilitates the capture process.

Let us estimate the critical value of the rate of crossing. Let us return to the com
plete equation for ¥ (1.3.15), which we will write in the form:

Z ”
y°/: uf‘(I-I,)-{- (‘Iiz_,]_}_’_)wz‘- e U, Fny (1.6.10)

*) For fast crossing this influence is always small (~ ve).
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The first term is the main one, the second always being small for moderate non-linearity;
capture may take place owing to the last term, if w vanishes after crossing the resonance
near sin y = 1, where ¢ has a minimm value according to the first approximation (Fig. 1.5.1).
For capture it is also necessary that ¢ ¥ 0 before the crossing of the resonance; in the op-
posite case all investigation is transferred to the next phase region (one ¥ period to the
right, Fig. 1.5.1). This happens to be possible, since the first term (1.6.10) changes sign
after the crossing of the resonance, and the last one does not change.

The minimm value of § in a first approximation is of the order of (1.5.3):

¢c.~.. e 52? VerV (1.6.11)

Capture is possible under the condition of Qd, /an v < |eul]:

2
U’ € . ’
V=< & = ~ = u, >o 1.6.12
V 47,_”0“2 oL / -Q4 ° ( )

The last inequality is the condition for the signs of the terms of (1.6.10).

For stable capture it is necessary for the amplitude of the phase oscillations to de-
crease after capture; in the opposite case only short-termm capture is possible. In the
absence of an explicit dependence on time and the condition U, > 0 the oscillations die down,

*
if ):

ALV
((,{D )'-94 > q (1.6.13)

This is compatible with the capture condition (1.6.12) when

4
wl‘
us

U, (1.6.14)

In the opposite case stable capture, as a rule, is not possible except for an exponentially
small region of resonant phases on the edges of the interval (1.5.8), for which inequality
(1.6.12) changes sign (Section 1.5).

Capture is also possible owing to the non-uniform rate of crossing of the resonance
(@, # 0), if this leads to the reduction of V by the value AV A V (1.5.3), namely under the
condition:

*) In approximation (1.6.9), which we use as an example.
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-..g:!- > 1 (1.6.15)
2,32

However, for this capture to be stable the damping of the phase oscillations must be suf-
ficiently fast. In fact, under condition (1.6.15) V passes through zero in a time of the
order of one phase oscillation and begins to grow again in absolute value, which may lead
to motion out of the resonance.

All the estimates of the second approximation effects in this paragraph were made for
moderate non-linearity (1.3.8). When there is large non-linearity ea 2 1 it is necessary to
take into account the subsequent expansion terms of the quantity (kw - iSZ) in the equation for
¥ (1.6.10). In particular, the relation of the second term to the first is of the order of
/€a . Hence it can be seen that for sufficiently small oscillations

@, << (Eo()-{/z (1.6.16)

all remains as usual. However, the shape of the large oscillations (¢o v 1), and also the
position of the separatrix, may change substantially depending on the specific form of U(I,y).

Wbm non-linearity decreases (mllc + 0) we finally arrive at a linear resonance. In this
case the difference (kw - 22) in the system of equations (1.3.15) is simply constant detuning.
The resonance corresponds to the condition v=0 , whence the linear width of the resonance
(width of unstable region) is:

k‘("‘-’),‘ = Z¢& [(o, (1.6.17)

The linear approximation is valid as long as the non-linear frequency variation (wl’( + AI) is
.mch smaller than the linear width of the resonance (1.6.17). In particular, for AI ~ I we
obtain:

slel

4
Tt

- &
= 7 (1.6.18)

In the intermediate case of € ~ o the motion of the oscillator may be very complex and
depends on the type of resonance. The most important feature of this region is the forma-
tion under certain conditions of a capture region, or, in other words, stabilization of the
resonance by non-linearity. The conditions of such stabilization are usually obtained from
the resonance Hamiltonian (1.3.7). An estimate of the order of magnitude can, however, be
obtained much more simply from the following considerations. Stabilization occurs in the
case when the non-linear frequency variation exceeds the linear width of the resonance and
the oscillator thus begins to move out of resonance. On the other hand, the non-linear de-
tuning can be estimated according to the phase oscillation formula (Section 1.4):



- 25 -

Céo-f!?_)" ~ Ry ~ @Uo ‘“2)1/2 (1.6.19)

Hence we obtain the stabilization condition in the form:

/2
w,’< )N s Q%f_ (1.6.20)

As an example, let us consider the resonance for small slightly anharmonic oscillations
described by a Hamiltonian®):

s ilko-£2)¢ 2 £

M{Pﬂi«i]: H. (e f}:Le . 5, ak&:.[ a-6.2)

g=-00 <=k

where fi; is the linear part and the smallness of the perturbation is ensured by the condi-
tion: 1 £ 1. The non-linearity is determined here by the first non-vanishing term Uoom
with my > 2 (usually Ugou):

S1.2
Wy = —{(7 Upoz,* %4 (R—2)- 1* (t-6-22)
and the value of the perturbation for the resonance of the kt‘h harmonic (k > 0) is (see
1.3.4):
[Us | x 2k [Upe,f- Ik/z' (1.6.23)

The stabilization condition (1.6.2) takes the form:

A

Bk g
%55, A-

l Uke
(& 4—2) I Ucois,

N

(1.6.24)

For 1 + 0 this inequality is always fulfilled when k > m; (stabilization at small amplitudes)
and not fulfilled when k < m;. In the latter case stabilization is possible only for X £ 1.
and the stabilization boundary is given by the estimate:

Z
1- ~ X S,-k (1.6.25)

1
The stable region corresponds to a sufficiently large amplitude: I > I . Let us note that
when A 2 1 this region (I 2 I,) becomes unstable for k > m;. When k = m,, the stabilization
condition does not depend on I: A £1,

For the special case of m; = 4 the estimates obtained agree with the results of the de-

tailed calculations on a similar problem carried out by Schoch!*) (see also Ref. 5) and
Mel'nikov?”).
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CHAPTER 2

STOCHASTICITY

This is the main chapter of the paper, in which the interaction of several resonances,
due to the non-linearity of the system, will be investigated. The interaction of the reso-
nances is a source of instability of the oscillations, which in turn leads to one or
another form of stochasticity, i.e. to the appearance of statistical laws in the dynamical
system. At this point, classical oscillation theory merges with statistical mechanics and
what interests us mainly is the border zone between the two sciences. In contrast to the
more elementary investigations of the previous chapter, we are obliged in what follows to
turn to a system of simple models and to make greater use of analytical estimates by order
of magnitude. Natural dissatisfaction with such a "non-rigorous" approach may be compen-
sated for to a certain extent by the numerical experiments which will be described in the
next chapter.

2.1} The basic model

The central problem of this paper is that of the interaction of several resonances.
According to the results of the previous chapter, the size of the region of influence of
each resonance (in frequency) is of the order of (Section 1.4)"):

Qo) ~ 24 2.1.1)

around the resonance value w = w_. If there are several resonance values of the frequency
(mi) (several resonances, as we shall say for the sake of brevity), then it is obvious that
the character of the motion will essentially depend, generally speaking, on the ratio:

s= @)y . R 2.1.2)
a a’
where A = Imi 41" “’il is the frequency distance between neighbouring resonances. The case

of single resonance, thoroughly studied in the previous chapter, corresponds to the condi-
tion

S<< {1 2.1.3)

The asymptotic vaiidity of this condition is fully evident"). A more accurate criterion
of the applicability of the single resonance approximation will be discussed later
(Sections 2.2 and 2.7).

*) For the case of moderate non-linearity (1.3.8), which will always be understood if no
special reservation is made.

*+) See Section 2.7 though.
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In the opposite case
s2 { (2.1.4)

it is necessary to take into account the interaction of the resonances, namely the simul-
taneous effect on a non-linear oscillator of several perturbations with different fre-
quencies.

It is not difficult to extend the universal Hamiltonian (1.3.11) to the case of
several resmances. Let us choose one of them as the basic resonance (basis of reference)
and designate the values relating to it by a zero index. Let us insert the phases
Y=0- ¢ b = Yo - L A (see Section 1.3, k = £ = 1). The universal Hamiltonian can now
be written in the form:

jé = % (]']v,} 2+ SZ [(‘. S, (99_,.,1,‘,J (2.1.5)

whence the equations of motion in a first approximation are

1"= &Z L(; Cos (Y’*‘/’./

. (2.1.6)
= w0l (I-1) 5 = 2.~

One can express the following qualitative considerations about the behaviour of this
system under conditions of interaction of the resonances (2.1.4). Each term defines its
own "'centre of attraction'" around which the phase oscillations of our "particle" (see
Section 1.3) can take place. In other words, in the oscillator phase plane (I1,0) instead
of one "potential well” (or rather one "bucket'", Fig. 1.4.1) there are a number of
*potential wells" around Ii. Under condition (2.1.4) these "wells" overlap, which makes
it possible for the "particle" to cross over from one well to another. The transition
conditions depend on the phase relation y + Vi» and generally speaking, vary continuously,
since the "wells" shift with respect to each other along © on account of the difference
of the frequencies ;.

The law governing the migration of the "particle" from one "well" to another depends
on the specific form of the perturbation and in particular on the phase relations. Later
we shall give examples of the various types of migration (Section 2.4). However, it can
be considered that in the limiting case of very large overlapping of the resonant zones

s >> 1 (2.1.7)

the law of migration will be almost random. The reason is the very intricate variation of
1 in this case (2.1.6), especially if one takes into account that the phases y + wi deter-
mining this variation themselves depend on I by virtue of the non-linearity of the

. +)
oscillator ‘.

+) This conclusion is not trivial, see Section 2.8.
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It would seem that the motion cannot be 'completely" random since it satisfies the
dynamic equation. However, the imitation of all the known properties of a random process
is possible and is sometimes so good that the question arises as to whether a '‘real"
random process is only a clever "imitation". Discussion of this question will be postponed
until Section 2.13.

Motion of such a quasi-random type will henceforth be called stochastic, on the under-
standing that this covers all the features of a random process at present known (Section
2.3). The study of the stochastic motion of a mechanical system, begin mainly in con-
nection with the problem of the foundation of statistical mechanics [Section 2.13; see,
for instance Ref. 16], has now become a whole new branch of mathematics -- the metric
theory of dynamical systems -~ which we shall refer to in the rest of the paper by a shorter
though less felicitous term, the ergodic theory‘). Unfortunately this theory, as a rule,
is too abstract and is not easy to apply to specific physical problems. It should be
stated at once that the most recent and most important results of the theory”’”’“’“)
are better in this sense and will be widely used in this paper.

Our basic task is to validate inequality (2.1.4) as a criterion of stochasticity,
namely as the border separating the stable and stochastic regions, for the special case
of a mechanical system of the form (1.1.1), and also to calculate the specific parameters
of stochastic motion.

The study of the general case of the interaction of resonances (2.1.6) encounters con-
siderable difficulties, the meaning of which will be clear in what follows. Therefore we
shall first simplify the model (1.2.5) chosen in the previous chapter, assuming that the
perturbation acts on the oscillator periodically (period T = 2n/R), each time for a very
short interval of time T + 0 (approximation of short kicks). Equation (1.2.5) in this case
takes the form:

I.="£11-6(1.19)
(i:: £I11 (1,9)

(2.1.8)

The phase 9 dependence of the perturbation (§ = Q) reveals itself by the fact that the
Hamiltonian h(1,0) is different from zero only at intervals of t; the indices ©,I denote
partial differentiation with respect to the corresponding argument:

By integrating the system over the interval 1 we obtain as a first approximation :
sI= )by (5,0.) + O (€% @)
A= (5.8}0/11- (f,,éo} + O ({z, ('c‘@)lj

(2.1.9)

*) The present state of the theory is presented rather completely in a paper by Sinai”).
See also Refs. 41 and 42.
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where I,,Oo.are the initial values. In the interval between kicks I = const., and the
phase varies by the value A0 = (T - 1) * w(I;), where I, is the value after the kick. The
total phase shift during the period is:

Lon

£

80= (T-T) o (Z )t [t +E2) 4; (1., 8)=
= T w0 (Z)+ET)h, (£,8,) +Of e ©u)™)

We can now describe the motion of the model by means of a system of difference

(2.1.10)

equations:

Iu+f =7,.- 21'0 (I,,,'B,‘)
g“_'.f = Aau + TQ(Iu+4)+£AI (I.,’&“)

(2.1.11)

where 1 = 1, and the index "n" denotes the number of the kick (step), the new discrete
time of our dynamical system. Let us recall that the Hamiltonian h(1,6) is a periodic
function of © with a period of 2.

Equations (2.1.11) are written to first approximation in e and can be put down more
accurately if necessary, using (2.1.8). In particular, let us write the expression for
AI with an accuracy ~ €2, which we shall need later on:

- I
sl = -E)h, + EC. . - . _
T=-Chy+ EELfh b~ hyy 4, ]
. . (2.1.12)
- €T . 3 v 43
il hoo + 0 (€3, @e) ]
Since the original system (2.1.8) is canonical, the Jacobian of the transformation
(2.1.11) 1is equal to unity with the corresponding accuracy:

{q(-zu(4 ) 9‘!+4 )
2(T., 6.)

=1+ O (%) (2.1.13)

which is easy to verify also by direct calculation.

Equations (2.1.11) determine the basic model of the interaction of the resonances.
It will sometimes be convenient to simplify it even further. As in the case of a single
resonance, the behaviour of the system to a certain degree does not depend on the specific
form of the function h(I,E))' , and therefore we shall choose the two most simple cases
[(2.1.18) and (2.1.15)]. Further, one can neglect in the first /¢ approximation (see Section
1.4) the last term in the second equation (2.1.11), which represents a linear correction
to the frequency {Section 1.6 (1.6.17)]. Finally, instead of the action variable I, one
can directly use the frequency of the oscillator w. As a result we shall obtain the

*) See Section 2.7.
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following most simple model equations describing the phenomenon of the interaction of the

Tesonances:
Opea = W+ £ (F-12)
Sl’ou-r - {?‘i + T Q“H.; (2.1.14)
or
&)u+4 = W, + £ Cos 2779/1'_
(2.1.15)

Frrs = 1/%"' }ZJ;;-C‘)«f-fj

Here the curly brackets represent the fractional part of the argument -- a convenient way
of specifying the periodic dependence. The coefficients of the model equations (2.1.14)
and (2.1.15) are selected so that the Jacobian [a(mml, tpml)/a(mn, wn)|= 1 exactly. The
reasons for the choice of two forms of dependence on ¢ will be clear from what follows
(see Section 2.4).

We chose for our basic model (2.1.11) a perturbation in the form of short kicks,

essentially in the form of a §-function. This choice is not very special or exceptional;

on the contrary, it is typical, since the sum in the right-hand part (2.1.6), when there

are a large number of temrms, actually represents either a short kick (or series of kicks)

or frequency-modulated perturbation. In the latter case periodic crossing of the resonance
takes place, which according to the results of Section 1.5 is also equivalent to some kick
[(.5.7) and (1.5.9)]. Thus it can be expected that the properties of model (2.1.11) will
be in a sense typical for the problem of the interaction of the resonances and stochasticity.

The transition to the difference equation (2.1.11) or, as they say, to the transform-
.ation, means essentially the integration of the original system of differential equations
over the period of the perturbation, integration which becomes trivial for the special
case considered. We thus obtain some information about the behaviour of the system in a
finite, and characteristic, interval of time. This is really a reason for simplifying the
original system.

The true significance of the basic model is explained in Section 2.6, where it will be
shown that it describes the motion near the non-linear resonance separatrix and in particu-
lar the stochastic layer. The latter turns out to be the origin of any instability of non-
linear oscillations. Thus it appears possible to study the general case of the interaction
of resonances, using the basic model only.

2.2 Kolmogorov stability

Let us return to Eq. (2.1.11). If the perturbation is sufficiently small (e + 0) and
Tw = 27k (k is an integer), i.e. if the system is near to the resonance, the difference
equations can again be replaced by the differential ones:
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f=% by (1,8)
o= (w(:j—w,,j-f- -3_- by (7,6)

where uy is the resonance value of the oscillator frequency w.

(2.2.1)

Let us study the nature of the motion in this case. First of all let us note that
the Egs. (2.2.1), of course, are not identical to the original ones (2.1.8), in spite of
some resemblance. The derivatives (2.1.8) relate to the interval of time << 7 (time of
action of the perturbation), whereas the characteristic time for the derivatives (2.2.1)
should be >> T (period of action of the perturbation). This means that both the differen-
tial equations {2.2.1) and the difference equations (2.1.11) contain some information about
the solution of the original system (2.1.8) during the perturbation period, as noted above.

Let us further point out that Eqs. (2.2.1) agree exactly with the equations (1.3.5) in
Section 1.3, describing single resonance. Consequently, in the approximation under con-
sideration there is no interaction of resonances and the motion has the character of limited
phase oscillations (Section 1.4).

Let us consider these phase oscillations more thoroughly for model (2.1.15). The dif-
ferential equations in this case take the form:

.::._g_-CaAZ.‘I;'
w T ¥

. w L (2.2.2)

’y — —

P
where k is an integer. The universal Hamiltonian (see Section 1.3) is equal to:
: 2
1 2?1/} £ J3
= & (w- - — 2% (2.2.3)
}G 47 T 25T ¥

The most important characteristic of a non-linear resonance is the width of the sepa-
ratrix determining the region of influence of the resonance. In the present case it is

(Section 1.4):
/€
(‘“")H =4 T (2.2.4)

The approximate replacement of the difference equations by the differential ones
(2.2.1) is thus equivalent to takihg into account a single resonance. Let us show this
directly. For this let us return to the original equations (2.1.8) which for model
(2.1.15) take the form:

L4

, d(£-uT): Gs 250
o

< =

ax=_ (2.2.5)
o= _«

2x
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Now by expanding the periodic 6-fumction into a Fourier series, singling out, as usual,
the resonant harmonic, for which Tw = 2rk and inserting ¢ = 8 - kt/T, we obtain exactly
system (2.2.2).

Let us consider more accurate conditions under which the difference equations (2.1.11)
can be replaced by the differential equations (2.2.1). For this it is evident that the
following inequalities must be satisfied:

I, ~1I.=celel; A4p<<{1 (2.2.6)

In order to satisfy these inequalities it is necessary first of all for the parameter
€ << 1. This is not, however, an additional limitation, since we always consider the per-
turbation to be small. Further, the value Tw must be near to a multiple of 2w:

]'T’co— k| << 1 (2.2.7)

This condition in its turn can be broken down into two: firstly, the initial de-
tuning must be small:

]‘To, - 27k << 1 (2.2.7")
and secondly, the variation of w in the process of motion must also be sufficiently small:

T (aw), << 4 (2.2.8)

Let us show in example (2.1.15) that condition (2.2.7') is wnimportant. Since it is
not comnected with non-linearity, let us assume that the system is linear, i.e. that
w = w, = const. In this case the second equation (2.1.15) gives Yy = Vo * n0y/2n:

9o = Twy, whence:
-1

W= w,+ £ > (o3 (2x¢ +£B,) @2.2.9)
k=1 ’

The latter sum permits a simple estimate:
{- e‘:("'1}0¢’ (2.2.10)

-t .

ST A cké,
2. € <€ -3
k:{ ‘{ - e ©
Its value is always small except for the resonance regions, where condition (2.2.7') is
fulfilled. '

In the general case the force f(y) in a transformation of type (2.1.15) has all the
harmonics: f(¢) = Sqf eZ“iqw and then the sum (2.2.10) diverges for any rational ©,/2n.
But this simply means that, besides the main resonances wT/2m = k (integer) in (2.2.2)
generally speaking the resonances of the higher harmonics wT/2% = r/q (rational) should
also be taken into account. This question will be discussed in Section 2.7. Going on
ahead, let us note that for a sufficiently rapid decrease in the amplitude of the harmonics
f q with the growth of q, the resonances of the higher harmonics can be neglected.

Joum o] = € [ Re
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There thus remains one important condition for the validity of the approximation by
a single resonance, and precisely condition (2.2.8) which agrees in order of magnitude
with inequality (2.1.3), since in the present case the distance between the resonances
A= 2n/T.

So far we have restricted ourselves to the first approximation only, taking into
account some rough effects of the second approximation. Naturally the question arises as
to whether some fine effects of the higher approximations qualitatively change the solution
after a sufficiently long time; in other words, are there not some kind of cumlative cor-
rections of the higher approximations?

The XBM theory enables us to construct a solution in the form of an asymptotic
series in powers of the small parameter e, the residual term of which is of the order of
R‘N ~ eN*l ot 3). Such series, as is known, diverge and therefore there is no guarantee
against exponentially small error, say v t » e'A/E. It is true that if the system has
finite damping the asymptotic solution remains valid for any t when there is a sufficiently
small fixed € 3). However, for conservative systems the question remains open').

The practical construction of asymptotic series is a highly laborious task. Apparently
the best technique for such construction was devised by Krusk.al").

Only relatively recently, in papers by Kolmogorov”), Amold") and Moser“)
technique for constructing convergent series was developed, which makes it possible in some
cases to solve the problem of the stability of the motion of a conservative system in an
infinite interval of time"). This progress was possible because the problem was formulated
in a different way. The perturbed trajectory is generally calculated for given initial con-
ditions. In the averaging methods) the calculation of the variation of the frequenc'ies of
the motion in each successive approximation plays an important part; this makes it possible
to avoid trivial secular termsa). Instead of this in the KAM theory the perturbed trajec-
tory, or rather the invariant surface (torus), is calculated for given frequencies and the
torus shifts a little and becomes deformed in the phase space in each successive approxi-
mation. In other words, in the KAM theory a different principle of splitting up the phase
space into trajectories is applied. It turns out that in order to conserve such tori in
the presence of perturbation it is necessary, firstly, for the system to be non-linear and,
secondly, so that the frequencies of the motion on the torus shall have some special arith-
metical properties, roughly speaking, it is necessary for their quotients not to be too
close to rational numbers (see Section 2.1.2). The change in the formulation of the prob-
lem and the success in solving it are connected with precisely this latter condition. How-
ever, this condition is of a rather specific nature, it is not physical. Although the in-
variant surface of the unperturbed system has 'good" frequencies with a probability of
unity, arbitrarily near to it are surfaces with 'bad" frequencies which are destroyed by
the perturbation. In a real system it is not possible to distinguish between these two
kinds of invariant tori. Thus real conclusions on the stability of the motion can be drawn
only for a two-dimensional autonomous or a one-dimensional non-autonomous system. In this

, @ new

*) In the case of small damping some effects may also be missed. See Section 2.10.

**) From now on we will refer to these papers as the KAM theory.
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case the invariant tori are inserted one inside the other and thus the 'bad" tori are con-
fined between the 'good" ones, which ensures genéral stability of the motion independently
of the mythical arithmetical properties'of the frequencies'). For the many-dimensional
case the question remains open for the present; there is only an exahxple of iﬁstability
constructed by Amoldn). This question will be more thoroughly discussed in Section 2.12.

Thus, in the limiting case of s -~ 0 (2.1.3) the motion of a system of the form (1.1.1)
actually has the c_haractéf of limited stable phase oscillations. However, in its present
state the KAM theory does not make it possible effectively to estimate the critical value
€cre The existing est:i.mates“) are clearly too low by many orde_rs of magnitude. The
numerical experiments (Chapter III) show that e. is of the same order of magnitude as the
border of stochasticity s ~ 1.

2.3 An eleinehtay éxémplé of stochasticity

Let us go over to the solution of the system of difference equations (2.1.11) in the
case when condition (2.2.8), or inequality (2.1.3) which is equivalent to it, is violated.

Let us begin with an elementary example. Let us consider model (2.1.14), rewriting
the equations in the form:

Oupqg = P ™ & ("/’ /2 )

(2.3.1)
Pre: = {‘f’“ +Tw,+t T (- 4/?_)}
Condition (2.2.8) in the present case may be written in the form [see 2.2.4)):
eT » 1 (2.3.2)

The secona of the equatmns takes on essenually the character of phase extension with a
coefficient ¢T." 'This it can be replaced in its turn by a model transformation of the form:

Prve = !/4 ¢, } (2.3.3)

It is difficult to. jmagine a simpler (and rougher).model of .a dynamical system.
Nevertheless, it.enables us.to trace, the most important. features of .the_phenomenon.of
stoc.hasticity._, Mareovei‘ this is the only model whose properties .are completely known and
fm‘thermore /in the form of rigorous mathematical theorems with all. the necessary conditions
and reservations ').. It can therefore serve as a safe point.of departure,.from which we
will endeavour to.progress further by means of less rigorous methods of qualitative esti-
mates, phys1cal‘ (model) .considerations and numerical experiments.

*} We shall call this case one-dimensional.

++) The main results are in the papers by Rokhlin?2) and Postnikov’®).
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When k > 1 the motion of the system (2.3.3) has all the attributes of a random pro-
cess so far known -- ergodicity, mixing and positive l(-entropyn) (see below). As men-
tioned above, we shall call such systems stochastic*).

The ergodicity of system (2.3.3) means the uniform distribution of the sequence ¥, in
the segment (0,1). The mixing is closely connected with the correlations in the system.
Let us consider several different trajectories with initial conditions: (’), Yo (2), cens %(r).
Let us combine them in one trajectory of an r-dimensional point (v (), ..., v ). ¥e win
speak of the absence of r-fold correlations in the original system (2.3.3), if the combined
r-dimensional system possesses ergodicity, i.e. if the trajectory of the point (‘pn(l), ceey \pn(r))
uniformly fills the r-dimensional hypercube when n + =,

What is known as weak mixing means the absence of pair (twofold) correlations").
The term "weak' shows that this property is not sufficient for obtaining stochasticity.
It turns out“) that with weak mixing only, the continuous distribution function (of the
ensemble of the systems) in the phase space even in the steady state undergoes strong,
although also infrequent, variations; this is unsatisfactory from the point of view of
statistical mechanics. Let us recall for purposes of comparison that when only ergodicity
is present there is no steady state at all, but the distribution function varies almost

periodically®®).

Infrequent but strong oscillations of the distribution function when there is weak
mixing are apparently due to the higher correlations (r > 2). If the distribution function
relaxes to a steady-state function (constant), i.e. if the oscillations of the distribution
function decrease infinitely when t -+ =, one talks of strong mixing or simply mixing. It
is natural to assume that (strong) mixing is equivalent to the absence of correlations of
any mltiplicityﬂ . In order to give a full picture let us mention, going on a little

further ahead, that in the special but very important case when the relaxation process goes
according to an exponential law, one speaks of the positive K-entropy of the system.

By virtue of the ergodicity, the correlations of several trajectories are equivalent
to the correlations of several points taken successively in the same trajectory:
i, oees ) > @iy ooy Wekg).  However, in this case all shifts in tine
between the points (|k; - kjl) must increase infinitely with the growth of n. Correlations
with constant shifts are called autocorrelations. These always exist in a mechanical
system, since its motion is unambiguously determined by reversible dynamical equations.
Thus mixing means asymptotic (i.e. with Iki - kjl + «) dying down of the autocorrelations.

The notion of mixing is also comected with the notion of the completely uniformly
distributed sequence introduced by l(orobov“) (see also Ref. 24). This last term means
the absence of autocorrelations of any multiplicity with arbitrary non-zero shifts
(ki b d kj ¥ 0). This sequence obviously camnot be given by dynamical equations. However,

*} Another term used in ergodic theory is K-systems, in honour of Kolmogorov who discovered
them, ’

+) For other definitions of mixing and the connection between them see the book by Halmos?®).

1) This assumption still remains only a more or less plausible hypothesis.
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the dynamical sequence is asymptotically completely uniformly distributed when there is
Let us consider pair autocorrelation more thoroughly. We determine the correlation
coefficient by

2% <
= e RTI

where averaging can be carried out over Y, by virtue of the ergodicity, and q is an integer.
An advantage of this definition of the correlation coefficient for a system of type (2.3.3)
as compared to the standard

P = <(t-<t>)(t-<¢>)>

- = 2
<(h-<%>)">

is that the integer part of y is automatically excluded, which considerably simplifies the

calculation. At the same time |p n(z) (q)}| has the properties of a standard correlation
coefficient').

(2.3.5)

From (2.3.3) and {2.3.4) we have:
. 2re(k*r g)
@)( - - (2.3.6)
VS ¢ } J&'c'(é “+7/

For integer k the correlation coefficient vanishes, because of the nature of its
definition"), for all q except q = -X"; in the other remaining cases it is of the order
of:

a) { . —n bk
/fh (i)/ ~ Ikn_(‘?/ = (2.3.7)

and asymptotically decreases exponentially.

From this estimate one can also draw interesting conclusions on the space structure
of the mixing, which is characterized by the parameter q. In fact, expression (2.3.4) re-
presents the qt'h Fourier component of the correlation, i.e. it characterizes the correla-
tions in the region of scale 1/q. From estimate (2.3.7) it follows that the correlation
coefficient for a given q does not decrease immediately, but only after some time (number
of steps), when K> q. In other words, the mixing process spreads gradually into increas-
ingly small regions. Assuming that Kl q, one can obtain an estimate of the size of the
region up to which the mixing extends in time:

+) The idea of such a definition arises from Weyl'su) criterion for uniform distribution
of a sequence (see also Ref. 24)2 ,&gt us ngte &hat {2.3.4) is the standard correlation
coefficient of the quantities e<"1¥N and e<™1QVo,

++) See also Section 2.11.
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— bk
<’/q)n ~ e (2.3.8)

Thus the size of the region not yet affected by mixing also decreases exponentially with
time.

Let us consider, finally, yet another, probably the most important, property of a
stochastic system -- local instability of motion. This means that trajectories that are
close together at first rapidly diverge. For model (2.3.3) we obtain directly:

([V’}n = (”(-V’),' k* = @?"}0‘ e ek (2.3.9)

i.e. the instability also develops exponentially at the same rate as the correlations
(2.3.7) decrease and the correlation length (2.3.8) is reduced.

Local instability of motion is the specific mechanism which ensures mixing and decrease
of the correlations in the mechanical system.

The connection between local instability and stochasticity was first noted, apparently,
by Hopf?®) and Hedlund®®), analysed in detail as applied to mechanical systems by Krylov®®),
and rigorously proved for a rather general case in recent papers by Anosov®?’ and Sinai“’”).
Local instability appears to be a very convenient practical criterion of stochasticity,
since it needs only the investigation of linearized equations. It is also not out of the
question that local instability plays a decisive part in understanding the nature of the

statistical laws (see Section 2.13).

Using relation (2.3.9) the whole mixing process for our model can be visually traced.
At first [n < In (1/6 ¥4)/1n k] the segment 6y, simply extends until it reaches the size
of the whole region (Gwn ~ 1). After this begins the mixing of the trajectories emerging
from (6y), throughout the whole region (0,1). At the moment when (Gq;)n ~ 1 the correlation
length ~ {(8¢) g, since the trajectories of this segment (&§¢,) just begin to mix. This con-
dition leads, of course, to the previous estimate (2.3.8).

The distinctive feature of a stochastic system is just the exponential development of
local instability and the development of the resulting process of mixing and decrease of
the correlations. Exponential law ensures fast transition to ''random’ motion with a high
degree of accuracy. It will therefore be understood that the characteristic rate of this
exponential process is of the greatest importance for the stochastic system. It was in-
troduced in Ref. 25 and is generally called entropy. In our case:

b= bnlt (2.3.10)

Sinai“’”) established that this definition of entropy was equivalent to the original one
in Ref. 25, which was more complex. This quantity had already actually been widely used
by Krylov”) and may therefore be called Krylov-Kolmogorov entropy, or K-entropy.

The term entropy for the quantity (2.3.10) 23) cannot be regarded as felicitous,
because there is confusion with the usual thermodynamic entropy. In fact these quantities
are completely different even in dimension.
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Thermodynamic entropy characterizes the statistical state of the system and depends
only on the distribution function®’):

M= - Jf b f oy (2.3.11)

where uy is the invariant measure of the region (the volume of the phase space for
Hamiltonian systems). In particular, thermodynamic entropy is constant in a steady state
(f = const.). For the classical system it is defined except for the constant, whose value
is connected with phase space quantization”) namely with the fact that the quantum
system cannot occupy a region in the phase space less than some Buyy - This condition
leads to the standard expression”)

H = - ff L (/. ‘/‘ae/ 4/( (2.3.12)

For a purely classical system one can also introduce some minimum permissible phase
volume (A“kl\) from the following considerations. In its physical meaning entropy charac-
terizes just the stochastic motion of the system. On the other hand, although in principle
a classical system may also occupy an arbitrarily small volume, its motion will not be
stochastic in the regions smaller than correlation volume Auc(t), similar to the correla-~
tion length 1/q (2.3.8) for model (2.3.3). It is therefore natural to choose Ay, as the
minimm permissible volume when calculating the entropy: &u, " 8u.. As a result we
obtain the relation:

/-{[f'} = —/7{ le (/ 2 ft//q;q (2.3.13)

defining a new entropy which now depends not only on the statistical state (f) but also on
the dynamics of the mixing [Auc(t)]. In this form it is difficult to use, both in statis-
tical and dynamical theory. However, it is easy to obtain from it the quantity character-
izing mixing dynamics only. For this let us choose any specific statistical state, for
example, steady state (f = const.). Defined, in such a way, the dynamical entropy perma-
nently increases with time (in a state of statistical equilibrium!) for any system with
mixing. In the case of systems with an exponentially decreasing correlation length the
entropy (2.3.13) proves to be asymptotically proportional to time. It is therefore natural
to introduce as a characteristic its mean rate of change:

L _ &‘: (_, '/Zu (4/4‘ (tj/ :({“l 2.5.14)
. £

This is precisely K-entropy; it is of the same dimension as the frequency, and is there-
fore sometimes called entropy per time unit (or per one step). We will call it K-entropy.

2.4 Stochasticity of the basic model

Let us turn to the more real non-linear resonance model given by the difference
equations (2.1.11). In order to study stochasticity it is most convenient to investigate
the local stability of the solution.
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)

For this let us write the linearized equations in the variations™’:
ETvee=(1-choy )01~ 5k, F6.

‘ (2.4.1)
[.9“*‘ = [Tbl(f- £ 401)+£ A]]]'Jju * ({—S/lgj 7—”’ .+€','-l.6’}[an

By equating the right-hand sides of the equations obtained to A - 61 and A - 60, respec-
tively, we shall find the characteristic equation for A:

Az.. (.24- K)A+1=0 (2.4.2)

where the coefficient

W~ - iTw'/z“ (2.4.3)

We put the last term of the characteristic equation as unity, since it is equal to
the Jacobian of transformation (2.1.11), which in its turn is obtained from the exact
Hamiltonian equations (2.1.8). In fact for this it is necessary to take into account the
subsequent terms of the expansion in € (Section 2.1). In the expression for K there also
appear additional terms of the order of €2, €?Tw’, €’Tw’, ... It is, however, essential
for the factor Tw’, which may become large, always to participate only in the first power
and therefore the additional terms mentioned are small in comparisoxi to the main one

(2.4.3).

The only coefficient of the characteristic equation (K) is closely comected with the
extension of the phase: B

dB..s
-’—49. ~ 1+ X+ 5-/119 (2.4.4)

The validity condition for the approximation of the single resonance (2.2.8) or (2.1.3),
for system (2.1.11) takes the form:

K << 1 (2.4.5)

In this paragraph we shall deal with the opposite case of K 2 1. Thus the last term in
(2.4.4) can be neglected.

The roots of the characteristic equation are given by the expression:

,\=4+1£-t,/7((4+-75ﬁ | (2.4.6)

9

Depending on the value of A the solution may be of two qualitatively different types.
The first corresponds to the complex conjugate roots and takes place under the condition

*) Another name for (2.4.1) common in the ergodic theory is tangent transformation.
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~Y <K< (O (2.4.7)

It is easy to verify that in this case |A\;] = |A;| = 1, and consequently the linearized
transformation (2.4.1) represents rotation by an angle of ¢,:

~Jr (1 + &
£ ¢ =+ ‘/;‘ (1+%/,) (2.4.8)
7 1 1+ X/2
which corresponds to the oscillatory nature of the solution of (2.4.1) with a frequency of
$o/T. This is the case of local stability of motion.

The quantity K is a periodic fumction of ©; 1let us introduce the amplitude:

K, = wax K] (2.4.9)

When Ko << 1 the solution of (2.4.8) gives well-known phase oscillations (Section 2.2) near
to the stable equilibrium state (hg = 0; hyy * w’ > 0). It is important, however, that
such oscillatory solutions are possible, generally speaking, for any K,, including

K, >> 1, near to the points of weak phase extension (heo =0; K= 0; denﬂlde)n = 1).

let us discuss this a little more thoroughly.

First of all let us estimate the size of the region of local stability in the phase
space of the system (AI, 40). This can be done using the condition that the parameter K
does not go outside the limit of the interval (2.4.7). We obtain the size of the stable
phase region immediately (2.4.7)

-4
60 < ¢4 l %—GK—I ~ 7{0-1 (2.4.10)

The latter estimate is valid provided that the function K(©) is sufficiently smooth. The
permissible value of Al is obtained from the second equation (2.1.11), with the requirement
that the phase variation eml - en shall not exceed the value (2.4.10):

£
al < Xz (2.4.11)

Thus the phase volume of the region of local stability turns out to be < eKo™’.

Further, let us note that when K, >> 1 the stability (hee = 0) and constaz‘mcy of 1
[he = 0, see (2.1.11)] are mitually exclusive as a rule. Therefore even in the stable
region I varies. This means that the system leaves the stable region after one step
because of the variation of the term Tw in (2.1.11) and thus the actual size of the stable
region proves to be considerably smaller (see Sections 2.8 and 3.5).

However, a special case is possible, when the variation of Tw is equal to an integral
multiple of 27:

Tk, = 2k 5 ks 1

/
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Here a stable process of increasing or decreasing the energy of the oscillator may take
place. Such a process is used to accelerate charged partii:les in a microtron and histori-
cally this was the first proposal for the use of the phenomenon of phase stability in
accelerators7) .

Since the left-hand side of the last equality » K, and the size of the stable region
shrinks abruptly with the growth of K,, in practice microtron conditions are essential in
the region Ko v 1. More complex periodic conditions are also possible, under which the
quantities 1,0 pass through several different values before returning to the original ones.
Such conditions are thoroughly studied by Momz"z), where they are called generalized
microtron regimes. The role of all such stable regions and the related estimates will be
discussed in Section 2.8.

Let us now go over to the solution of (2.4.1) in the case of the real roots of the
characteristic equation, that takes place for values of K outside the interval (2.4.7).
At the edges of this interval A = 21. Excluding this trivial case one of the real roots
is always greater than unity in absolute value, and the other smaller, because of the con-
dition A; + A, = 1.

Let us first consider the simplest case, when the roots A1,2 and the eigenvectors of
the transformation EC,Zn are constant (do not depend on 0). Then the solution of (2.4.1) can
be written in the form:

"

3.""‘ g, X— k-} 7,‘ = Ko A (2.4.13)

where £,n are the coordinates along the eigenvectors: A = A3 = 1/A; > 1. Model (2.1.14)
has just this property and is an exception in this sense (see below).

The description of the motion by the variables £,n, namely the description of the
relative shifting of the points of the phase plane (not necessarily close), may be called
the transverse flux"””). In the simplest case which we are discussing the structure of
the transverse flux is very simple: all the trajectories asymptotically approach the
n axis when n + «, and the £ axis when n + -=. The flux of such a structure will be
called asymptotic. Let us note that the two special trajectories of the transverse flux,
along which either continuwous extension (£ = 0) or continuous contraction (n = 0) takes
place, are asymptotes. According to the aforementioned results of the papers by Anosov“)
and Sinai“’”), the stochasticity of a Hamiltonian system is equivalent to the existence
of an asymptotic transverse flux in the vicinity of any point of the phase space, or in
other words, to the splitting up of all the phase space into asymptotic trajectories.

The regular nature of the transverse flux necessarily leads to residual autocorrela-
tions, vanishing only when n + «. Any initial region of the phase plane extends exponen-
tially in the direction of n and contracts along £. The mixing process begins after the
length of the region extended in the direction of n reaches the maximm size permissible
for this system'). The initial region is then transformed into a set of increasingly thin

+) This limitation is always fulfilled for systems of the oscillator type, which are being
studied in the present paper, at least for some of the variables (phases). Let us note
that the extension in such systems occurs mainly just in phase (see below).
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(along &) layers crossing the phase plane along the axis n and uniformly filling it like
"flaky pastry". The initial stage of the mixing process for model (2.1.16) is shown
schematically in Fig. 2.4.1.

b4
1
4
4
q
&
' ¢

d 919y 3 3 3

Fig. 2.4.1: Schematic picture of the mixing process for model (2.4.16)
with £(y) = ¢ - 1. The initial region is represented by a square; the
figures indicate the number of the step. The direction of the extension
coincides approximately with the diagonal of the phase square, and the
direction of contraction with the axis ¢.

The general character of the mixing process here is the same as for the model of
Section 2.3. However, there are also significant differences due to the fact that we are
now considering a Hamiltonian system, the motion of which is reversible in time, in con-
trast to the model of the previous paragraph.

The first difference is due to the fact that the mixing time (n;) depends now only
on the width of the initial region along n(4n,) and increases indefinitely when An, -+ 0,
while the region along £ may be any size: my ~ -In (4no)/1n A + =, Let us note, however,
that the area of the initial region also tends towards zero together with An, for any finite

BE,.

Another more important difference is that the initial region, which generally speaking
is of a very complex structure and has a large quantity of thin layers wmiformly covering
the phase plane, can always be chosen such that in the process of motion it will shrink to
a region of simple form. In other words, a process which is the reverse of the mixing
process will take place. For this it is sufficient merely to change the time sign and
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trace the reverse process. The possibility of such a process appears to be inconsistent
with statistical irreversibility, and this leads to the so-called Loschmidt paradox”).
This will be discussed (for the nt! time!) in Section 2.13. Let us only note that for any
initial region consisting of layers of finite thickness, or what amounts to the same, for
any non-singular initial distribution fimction, the shrinking process lasts only for a
finite time, inevitably changing subsequently to a process of extension [élong the other
eigenvector (2.4.13)] and mixing'). This is easy to verify by again tracing the reverse
process (in time).

Thus in a stochastic system mixing always takes place asymptotically (t + #=) for any
direction in time! However, on the other hand one can always so choose the initial state
that the reverse process takes place during any finite interval of time.

Let us return to the general case, when the value of A and also the eigenvectors

change from step to step. The direction of the eigenvectors can be obtained from (2.4.1)
in the form of the ratio:

§1 _ _ 5hee
§6 1-A- z4h,,
For small X, (A = 1 + /K) the eigenvectors can always be orthogonalized and instability

occurs only for K > 0, i.e. roughly speaking for half the phase region. It is easy to see
that this region corresponds to an unstable equilibrium state.

(2.4.14)

For large K; (A = K) the vectors 35, -én’ generally speaking, are non-orthogonal (for
K < 0). The direction of the vector -én (extension) is almost constant (81/60 = 1/Tw’) and
forms a small angle with the axis ©. This shows that the extension, and consequently also
the development of instability (and mixing), goes mainly along the phase.

The direction of the vector 3; (contraction) generally speaking varies considerably
as a result of the dependence of hee on ©6. This can lead, in principle, to the solution
entering sometimes into the extension and sometimes into the contraction region, which
leads to limited oscillations instead of instability. Such a situation may arise when
'ég, -én are almost parallel, which corresponds to the phase values of © near to the stable
Tegion (hee = 0). The size of this region decreases by at least 1/K,. Therefore, when
X, >> 1 entry into this region will take place rather seldom, so that even if the system
enters the contraction region it succeeds in going over to the extension region again.
When K, >> 1 this transition takes place relatively fast (2.4.13) except for an exponen-
tially small region near the vector 35. It may be considered that frequent entry.into the
latter region is possible only for a very special dynamical system or very special initial
conditions**). ‘

Another important question concerns the possibility of capture in stable regions, or
regions adjoining them, where the vectors EE’ -én are almost parallel. Tids is not possible
for an autonomous system by virtue of Poincaré's recurrence theorem, valid for any

+) This process is essentially development and relaxation of a big fluctuation. A bright
demonstration of such a process was given by Orban and Bellemans (see Ref. 180).

*+) This question will be more closely studied in Section 2.8.
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Hamiltonian system with limited motion. For a non-autonomous system, which we are now
investigating, in principle capture is possible under microtron conditions with unlimited
energy variation. However, the size of the region of the initial conditions corresponding
to such capture is always small, since according to Liouville's theorem it cammot exceed
the size of the stable region [~ eK,”® (2.4.10) and (2.4.11)].

Thus we reach the conclusion that when X, >> 1 our model system is locally unstable
almost everywhere. The term "almost" signifies here the exclusion of a region that is
small but of finite measure, in contrast to the ergodic theory, where it relates to sets
of zero measure. This 'negligible" difference unfortunately prevents the rigorous appli-
cation of the latest results of the ergodic theory"’") to the problem under consideration.
Systems of type (2.1.14) are an exception, since they have no stable regions, because of
the special dependence K(©). ’

For model (2.1.14) with its constant 2, -ég’ .e’n the basic theorems"’”) lead directly
to the conclusion of stochastic motion, provided the parameter K lies in the unstable
region. In fact, the demonstration of stochasticity can be extended also to the more
general case of the variable A, '5;’ -én’ with, however, the necessary condition that X{©)
lies entirely (for all ©) outside the stable interval (2.4.7). This was recently shown
by Oseledets and S'mai‘so) (see Section 2.8). The proof was based on the existence of an
asymptotic transverse flux (see above). However, the direction of the asymptotes now dis-
agrees, generally speaking, with the local direction of the eigenvectors EE’ -én [compare
(2.4.13)].

Since K(®) is a periodic function, the absence of stable regions necessary for the
proof of stochasticity is possible only in the case of discontinuity of K(©) or its deriva-
tive. If this condition is not fulfilled then, according to Sinai's paper'?’), in order to
prove stochasticity an independent proof of ergodicity is required, or at least the exis-
tence of an ergodic component. Thus in the general case the question of the stochasticity
of the basic model is still open in the sense of rigorous mathematical proof.

Another difficulty in using the results of the ergodic theory lies in the different
formulation of the problem. Generally, mixing is considered in the whole region accessible
for the dynamical system (for instance on the full energy surface for autonomous systems).
The result of such mixing from the point of view of statistical description is a steady
(statistical) state. In this paper, however, we wish to go further, and in particular
to obtain the kinetic equation enabling us to trace the evolution of the statistical state
of the system (Section 2.10). For this it is necessary to split the motion into "fast',
which represents the mixing process, and "slow'", described by the kinetic equation. For
our model system the motion is fast in the phase ©. Accordingly, we need the mixing only
in phase. '

Let us show how the latter difficulty can be overcome by means of a new model, which
will be called elementary. We will base ourselves on model (2.1.15), in which we replace
cos 2mp by arbitrary function f£(¢). Further, let us multiply the first equation of
(2.1.15) by T/2n and introduce a new variable:

—
Po = 3;:"] (2.4.15)
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The idea of this variable is that the variation w, interests us only in so far as it leads
to the variation of the phase wn. As a result we obtain a new transformation, describing
the elementary model:

Pues = {‘/’.. + kfle )y
"fu-ﬁf = {‘//" + ‘/)“*75

(2.4.16)

with a single parameter

L _eT (2.4.17)
27

The essential difference between the new and the old model is that both the variables (¢,y)
are now periodic, the phase plane is limited (system in a square or on a torus) and for

k 2 1 all the  region, as well as the ¢ region is passed through in one step, i.e. one °
can consider the classical problem of mixing in the whole accessible region of the phase
space of the system.

Model (2.4.16) is the most simple non-trivial model of stochasticity in a Hamiltonian
system. With its aid it is possible to go more or less straight over to the real physical
problems. Therefore in the next paragraphs the behaviour of the elementary model will be
thoroughly studied analytically (Sections 2.7 and 2.8) and by means of numerical experi-
ments (Chapter 3).

Turning to the question of the K-entropy of the Hamiltonian system, let us first con-
sider again the simplest case (2.1.14). Since K-entropy (2.3.14) is asymptotic (in time)
like all the other quantities of the ergodic theory, only the asymptotic behaviour of the
transverse flux is essential, i.e. actually, only its asymptote with extension, towards
which all the other trajectories tend when t + =, For model (2.1.14) according to (2.4.13)'
the asymptote is characterized by constant extension with a coefficient A’, where the index
+ shows that the eigenvalue is chosen > 1, corresponding to the extension. The asymptotic
motion, in this case, thus coincides with the motion of the model of Section 2.3 and this
means that the K-entropy will also be the same as (2.3.10):

L= Lul? (2.4.18)

In the general case of the variable A, ’ég, 3‘1, the K-entropy depends on the extension
coefficient on the asymptote of the transverse flux A;. This coefficient, generally
speaking, will be variable, since the position of the asymptote in relation to the vectors

e, 'én, changes. According to Sinai’ 7 the entropy is equal in this case to

£
A = < lu A: > (2.4.19)

where the averaging is done either along the trajectory of the system, or by virtue of the
ergodicity over the phase space, or to be more precise, over the ergodic component in the

presence of stable regions.
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For our basic model (2.1.11) the expression for the K-entropy can be simplified when
Ko >> 1. According to (2.4.6) in this case:

Aty kK= K, F(e/ (2.4.20)

Further, let us note that A; differs from A" only by the factor depending on the angles
between the direction of the asymptote and the vectors 'ég, gn' From (2.4.19) in this case
we obtain: :

h=AkK +C—> Luck, (2.4.21)

where C is a constant ~ 1, depending on the specific form of the system. The latter ex-
pression becomes valid when In K, >> 1. More accurate estimates of the K-entropy for some
cases will be given in Section 3.4.

2.5 The border of stochasticity

In the previous paragraphs we have thoroughly discussed two limiting cases of very
small (as compared to unity) and very large values of the parameter of stochasticity K,.
With some reservations, in the first case the motion is stable and in the second it is
stochastic. The question of the position of the border of stochasticity separating the
two cases naturally arises. In other words, it is a question of deciding under what con-
ditions stochasticity arises in the system, or, on the contrary, the motion becomes stable.

Let us point out that stochasticity is the most dangerous instability of a non-linear
oscillator. In fact, stochasticity means a diffusion process which makes the energy of
the oscillations change, roughly speaking = vt (see Section 2.10). The proportionality
factor is in a sense maximal for a given perturbation (Section 2.12). The only faster
process is linear resonance, in which the energy varies proportionally to t. However, for
a non-linear oscillator such resonance is not possible, because the frequency of the
oscillations changes with the energy. Microtron regimes, considered in the previous para-
graph, are an exception, in which also the energy may vary = t. But such regimes require
very special initial conditions, at least when K, >> 1. But stochasticity takes place in
a wide parameter region (K, 2 1). Hence, the border of stochasticity is at the same time
a criterion for the occurrence of the most dangerous instability of non-linear oscillations.

It is not usual in ergodic theory to formulate the problems of the border of stochas~
ticity. Although there is also in the theory the term "ergodic component" referring to the
situation concemed, the approach generally adopted is to ask whether the system under con-
sideration is stochastic. In our case, namely for systems of the non-linear oscillator
type (1.1.1), the approach should be different and we should ask what the stochasticity
region of the system concerned is like. We are first of all concerned with a region of
values of the parameters of the system, such as the parameters of perturbation e, non-
linearity a (Section 1.3), etc. The border of stochasticity defines the critical values
of these parameters, corresponding to the transition from the stable to the stochastic
region. If these parameters are constants, i.e. do not depend on dynamic variables, the
problem can be formulated in the classical way: is the system stochastic (in all the
phase space accessible to it) for given values of the parameters?
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Let us note that for an autonomous system it is sufficient to require the parameters
to be canstant on the energy surface, and the energy of the system can also be considered
as one of the parameters.

In the general case the parameters determining the border of stochasticity or, as we
shal) say for the sake of brevity, the parameters of stochasticity, depend also on the
dynamical variables. For instance, the parameter K depends on the phase (2.4.3). This
means that the border of stochasticity divides up the phase space of the system. For
autonomous systems this implies the dividing up of the energy surface, but for the sake
of brevity we shall simply speak of systems with divided phase space.

In the example given above (2.4.3) the stable regions are small when Kp >> 1, and in
a certain sense they can simply be ignored. However, cases are possible (see for example
Section 4.1) in which the border of stochasticity divides up the phase space into regions
of the same order of magnitude, so that neither of them can be neglected. This situation
is similar to the action of some weak additional conservation law; unlike the standard
one it does not single out a subspace of smaller dimension, but part of the phase space of
the same dimension. From the physical point of view it seems completely unsound to renounce
a statistical description in such cases. Consequently the problem arises of extending the
ergodic theory to systems with divided phase space. The difficulties of this problem can
be seen from the following rather plausible hypothesis of Sinai'): for systems of the type
concerned the stable regions of the phase space form an everywhere dense set, which as it
were penetrates (saturates) the ergodic component. Thus in a rigorous formulation of the
problem the shape and even the topology of the border of stochasticity can be very complex.
From the physical point of view, however, such impregnations of the ergodic component by
the stable region are not of essential significance, provided that their dimensions and
over-all volume are sufficiently small. Therefore, the border of stochasticity can be de-
fined (6f necessity approximately) as some intermediate zone of the phase space having a
finite thickness, approximately separating the region of quasi-stability, namely stability
for the majority of the initial conditioms, from the region of quasi-stochasticity. Such
a border can probably also be introduced in a rigorous mathematical way, i.e. with all the
necessary conditions and reservations. An example of quasi-stability is discussed in
Section 2.2. This is so-called "Kolmogorov stability", with the region being penetrated
throughout by an everywhere dense system of unstable domains of small but finite measure
(see Ref. 35); the structure of this region will be discussed more completely in Sections
2.6 and 2.7. The term ''quasi'’ here again signifies the exclusion of regions of small but
finite measure in contrast to the classical ergodic theory.

Returning to the basic model (2.1.11), it can be asserted that the border of stochas-
ticity lies somewhere in the neighbourhood

K,~ 1 (2.5.1)

+) For a more thorough discussion of this hypothesis, see Section 2.8.
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This border, obtained for transformation (2.1.11) corresponds in order of magnitude to the
criterion of stochasticity (2.1.4) for the differential equations of motion, i.e. for con-
tinuous time. Indeed, according to (2.4.8), when K, < 1 the quantity 9; ~ Ko/T2; on the
other hand it is clear that A ~ 1/T, whence:

K~ 52 (2.5.2)

Thus the criterion of stochasticity (2.1.4) is confirmed for the special case of model
(2.1.11). It will be extended to the general case of the original model (1.1.1) in the next
section.

The physical border of stochasticity, defined above, in fact represents an intermediate
zone of highly complex structure, as was thoroughly described above. According to the
initial conditions, very different kinds of motion are possible in it: stable limited
oscillations (Section 2.2), isolated ergodic components unconnected, generally speaking,
with the main quasi-stochastic region (Section 2.6), and even systematic variations of the
energy of the oscillations similar to linear resonance (microtron regimes, Section 2.4).
The intermediate zone penetrates deeply on both sides, into the stochastic region in the
form of narrow stable regions (Section 2.8) and into the region of Kolmogorov stability in
the form of thin stochastic layers (Section 2.6). Nevertheless, it can be asserted that
estimate {Z.5.1) defines some real physical border, the border of strong stochastic in-
stability of non-linear oscillations.

This is the main conclusion of this paper. It is completely confirmed by numerical
experiments, i.e. by numerical integration of the equations of motion of very different
systems (Chapters 3 and 4).

2.6 The stochastic layer in the vicinity of the separatrix

This section will be devoted to a closer study of the structure of the region of
Kolmogorov stability (Section 2.2) and at the same time to extending the criterion of
stochasticity for the basic model (2.5.1) to the general case of overlapping of the reso-
nances. As noted above, the KAM theory (Section 2.2) establishes the stability only of
"good" invariant tori. A ''good" torus means one that is non-resonant and located ‘'far
away'' from all "bad", i.e. resonant') tori. The term "far away'' may be bewildering, since
the system oi resonant tori, generally speaking, forms an everywhere dense set throughout
the phase space. The answer is that the term "'far away" relates to the width of the reso-
nance. The fundamental result of the KAM theory is precisely just that, roughly speaking,
it shows that the total width of all the resonances becomes arbitrarily small when the
perturbation is sufficiently small.

Although the KAM theory does not deal with the behaviour of the system in the vicinity
of the resonant tori (it simply excludes these regions), it enables us to conclude that the
motion in these regions is umstable. This conclusion can be drawn by comparing its results
with Poincaré's theorem“) "). The latter maintains that under very general conditionsﬂ

*) With the resonance relation of the oscillation frequencies: I, nw, = 0, n, are integers
i KKk k
(see Section 2.12).

*+) See also Ref. 49 (Chapter 14, Section 2).
1) For example, systems with separable variables are an exception.
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a Hamiltonian system has no other analytical integrals of motion but the energy (or more
precisely all the additive integrals: energy, momentum and angular momentum). Comparison
shows that non-analytical (in the dynamical variables) integrals of motion may exist, which
are destroyed in the vicinity of the resonant tori.

This conclusion may appear strange, since we saw (Sections 1.4 and 2.2) that just near
the resonance there are stable phase oscillations. In fact, the region near the resonance
can be studied by means of the same KAM theoxy') » applying it to the phase oscillation
equations. It turns out that a large part of this region is stable. Then where are the
unstable regions? Poincaré already noted") that a likely place was the neighbourhood of
the separatrix (Section 1.4). Apparently the first detailed investigation of the neigh-
bourhood of the separatrix was made by Mel'nikov") who, however, was not able to estimate
the width of the unstable region. Such an estimate was made for the first time for a
special dynamical system by Zaslavsky, Sagdeev and l-'ilonenko").

Below, an estimatc is given of the width of the stochastic layer in the vicinity of
a non-linear resonance separatrix under very general conditions. In fact, the only -
essential condition is that the separatrix must pass through the hyperbolic fixed point,
i.e. the point of unstable equilibrium, at which both the velocity and the acceleration
vanish. This condition can be violated only for a singular phase oscillation potential
U(y). When the above condition is fulfilled, the frequency of the phase oscillations
Q + 0 as it approaches the separatrix, and the oscillations become anharmonic and non-
linear. In particular, the velocity of the motion during a great part of the period is
near to zero {the system is almost motionless near the point of unstable equilibrium) and
substantially increases only in an interval of time » ﬂ;‘, where QQ is the frequency of
the small phase oscillations. This means that the effective action of the perturbation on
such oscillations will also be limited by the interval ~ n;‘ and consequently when Q@ + 0
the perturbation may be represented as a §-function. Thus the oscillations near the
separatrix are described by our basic model (2.1.11), with the sole difference that it is
now necessary to take the variable half-period of the oscillations n/Q as one step of the
transformation. This means that we can directly use the criterion of stochasticity
(2.5.1) or, more conveniently, its equivalent (2.1.4).

Let us assume that the perturbation is characterized by a force ufw with a frequency
w. The system of resonances will now be determined by the spectrum of the oscillations
themselves. This contains frequencies k1 and has the form of a §-function's spectrum up
to frequencies v 00, and then decreases exponentiallyﬂ. This follows directly from the
uncertainty relation for frequency and time: Aw ¢ At ~ 1. The amplitude of the velocity
harmonics can most easily be estimated from the normalization condition (Parseval's
equation):

[y] - Ceo .I.‘._g.
Vi~ Vg o s (2.6.1)
.P

*) With some nodification"’“’”‘).
°)

»+} Ref. 36, see also footnote on p. 179 of Arnold's review /.
+) For analytical U(y), see, for example, Ref. 20.
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where A is the maximm value of the velocity and is approximately constant in the vicinity
of the separatrix; the parameter cq ~ 1 depends on the form of the separatrix: for
example, for a harmonic potential (1.3.16) we have:

_wkr
v = (90} . -.—g;) e Zzs (see Ref. 21)

Let us first consider the case when the perturbation frequency lies in the main part
of the spectrum (2.6.1), i.e. w Qo. The resonance condition has the form:

N, e _zi (2.6.2)
The essential difference between this system of ‘resonances and that considered earlier,
for example, for the basic model (2.1.11) is that now the distance between the frequencies
of the spectrum (2) is not equal to the distance between the resonant values of the
frequency (4 = Q -Ha= d®/dk), which enters into the criterion of stochasticity and
vhich as usual we will call the distance between resonances [see (2.1.2)]. The latter is
considerably smaller:

L2 2
Az 72 = 5 (2.6.3)

It remains for us to consider the second order phase oscillations, which arise owing
to the action of the perturbation ufw on the main phase oscillations (of first order), and
to estimate the size of their separatrix. The most simple is to use relation (1.4.3),
where eU, is now » ufwkvk/Q, which follows from the definition of U (1.3.4) and from the
fact that the perturbation of the Hamiltonian in our case is equal to: Hlk a ufmvkln. As
a result we obtain an estimate of the border of stochasticity (Q ~ Q s w):

/
$*a l [ fw T 2 “’zl ~ 1 (2.6.4)
Q4 ¢
where the derivative Q' is taken with respect to the action. It can be seen that there is
always a stochastic region near the separatrix, since 2 + 0, and Q' + « (see below). This
region is situated practically symmetrically on both sides of the separatrix, since by
virtue of the periodicity of the potential U(y) the "external" and "internal" phase oscilla-
tions are almost identical near the separatrix. By virtue of the aforementioned approximate
symmetry, the second order resonances lie not only inside the first order resonances, i.e.
inside their separétrix, but also outside it, in the immediate vicinity of the resonance.
For the sake of brevity we will henceforth keep to the term "inside" when referring to the
above situation. Similarly, the third order resonances lie inside the second order reso-
nances and so on. We thus obtain a hierarchy of resonances, also described by Greene").

The formation of a stochastic layer in the vicinity of the separatrix is thus due to
the overlapping of second order resonances, although the parameters of only first order
resonances appear in the final equations (2.6.12) to (2.6.17). The parameters of resonances
of higher orders may prove to be important when calculating the diffusion rate (see Section

2.10).
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In order to obtain a more definite estimate let us make the natural assumption that
the potential energy of the phase oscillations near the hyperbolic point (¢ = 0) has the
form U(y) = - m}y?/2, where m is a mass, and 9; is a constant representing the inverse
time of the exponential drift of the system away from the point of unstable equilibrium.
It is easy to obtain the asymptotic expression (W+ 0): = mQ,/1n]A/W] '). It is con-
venient to choose the constant A so that Q(Wo) = n¢:

2 == 1 (2.6.5)
Wy ¥ 5 -b.
én '.—h%'/ -+ -—‘2"'_‘ ’

Here W is the energy of the oscillations near the separatrix, and W‘b is the energy of the
small oscillations, and both energies are measured from the separatrix. For the non-
linearity of the oscillations we find:

_ P |
) 4 _ A
o' Q .eJ'Q' < Q‘?) (2.6.6)
7’—ch1'

Let us now fix the small perturbation parameter p so that fwv@ ~ nowo "). This means
that when p &~ 1 the energy of the oscillations changes considerably after one period
(" 9¢). Inserting expression (2.6.6) in (2.6.4) we obtain the following estimate of the
width of :})w stochastic layer along the separatrix in wmits of phase oscillation frequency
(u<<1)

ZS24

L. =
A4 . TS (2.6.7)
Cn A 2

Here we have preserved the sign for approximate equality (instead of the one for a rough
estimate), since the indeterminate factor (v 1) in the criterion of stochasticity (2.6.4)
is found in (2.6.7) under the logarithm.

It is more natural perhaps to take the energy width of the stochastic layer which is
equal to (2.6.7):

\A
F,I ~ /[ (2.6.8)

The width of the stochastic layer in units of the action I is also of the same order. Here
we neglect the disparity of the frequencies Q & % A~ 2 v w. For the case when w << 9¢
see below. N

*) We assume that there are two identical hyperbolic points. In the opposite case one
should put: 1/ » (1/fq + 1/Q2)}/2; the non-hyperbolic stop point corresponds to

fla = =,
«+) Here and below we assume that the amplitude of the phase oscillations Yo ~ 1.

+) A comparison with Ref. 38 and with the results of the numerical computation is given
in Section 4.2.
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It is clear that the estimates obtained remain valid for any oscillator having a
separatrix. Now, however, we are interested in the non-linear resonance separatrix, for
which we can even further specify the above-mentioned estimates.

If there is a single resonance, the only perturbation will be the non-resonant
harmonic (Section 1.3) with a frequency of w ~ QO//E (Section 1.4). This frequency lies
far away in the "'tail" of the spectrum (2.6.1) and therefore there appears in (2.6.4) an
additional factor n e‘C/ e {c ~ 1), which can be included in the parameter u, by putting:

- c/ vE 2.6.9
e (2.6.9)
The pre—exponenﬁial factor here is ~ 1, since the parameter is determined by means of (see
sbove): v £y /M, v £ /9 v 1; £ v e; @, /E. As a Tesult we obtain the following
estimate of the size of the stochastic layer caused, if one may so express it, by a self-
perturbation, i.e. by the same perturbation that is responsible for the formation of the
separatrix (e << 1):

S = 'Qc' ~o I'Q" /-Q.r ~ T_!___.574.£ . _.__.'Q" ~ £
2 ~ ~ RNe ¢ ! W (2.6.10)

expressed in terms of frequency or:
C
We

expressed in terms of energy.

(2.6.11)

This width is very small and agrees in order of magnitude with the splitting up of
the separatrix (far away from the hyperbolic points) obtained by Mel'nikcv") (see also
Ref. 21). Hence it follows that the tongues of the split-up separatrix, the length of
which increase infinitely as they approach the hyperbolic point, spread along the unperturbed
separatrix and the stochastic region splits up into increasingly thin layers. This is a
typical mixing process, similar in structure to that described in Section 2.4 for the
elementary model (see Fig. 2.4.1).

Our result (2.6.11) agrees with Ref. 37 in the sense that it can be concluded from the
latter that the width of the stochastic layer in any case is not smaller than (2.6.11). From
our estimates it can be concluded that it is also not greater.

Let us now turn to the more intéresting case when there are several resonances. First
let the system of resonances be determined by the perturbation, the spacing &w between reso-
nances and their width being of the same order. From the general expansion (1.3.2) it can
be seen that the nearest non-resonant perturbation in this case has a frequency w; = Aw.
Since in estimate (2.6.11) v ~ Qo/w, we now obtain a new estimate [see (2.6.1)]:

Gy

- Co _Q“‘_ (2.6.12)

Sy~ e
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But the stochasticity criterion (2.1.4) follows directly from this. It is essential, how-
ever, to have two different criteria. The estimate (2.6.12) shows that when the condition
Q° " wy is fulfilled the resonant region is almost completely destroyed, both inside and
outside the separatrix, i.e. the width of the stochastic layer becomes of the order of the
width of the resonance. The criterion (2.1.4) characterizes the overlapping of neighbouring
resonances. When both criteria are simultaneously fulfilled this ensures the formation of
a wide stochastic region, determined by all the resonances.

Now let the system of resonances be determined by the oscillator itself as in the
motion near the separatrix which has just been considered. Taking into account that
w =9 (1.3.2); 8= 9/k (2.6.3) and (Mw)y ~ 2 /k [(2.1.2), Section 1.47], we find that
both criteria [(2.1.4) and (2.6.12)] again agree: (w)yy/B ~ 9 fun

The two limiting cases considered above are characterized by the presence of a single
perturbation or oscillation harmonic. It is clear that in itself a harmonic (sinusoidal)
form is within some limits wunimportant (for further detail see Sections 2.7 and 2.8). What
is important is the structure of the resonance spectrum, which in both cases can be called
locally equidistant. The essential property of this structure is the finite (non-zero)
distance between resonances. The general case of a discrete spectrum of resonances that
is everywhere dense will be considered in the next section.

Thus, on the basis of the properties of the special model (2.1.11), we validated the
stochasticity criterion (2.1.4) for a system with a locally equidistant spectrum of reso-
nances. The most simple case of such a spectrum is a pair of resonances of the same order
of width. According to the criterion (2.6.12) this is already sufficient for obtaining
the stochastic layer inside the resonant region, i.e. of a width of ~ /& ").

Now we can estimate the relative fraction (6) of the stochastic component in the
region of Kolmogorov stability. Since (2.6.12) gives the width of the stochastic layer in
relation to the width of the resonance, in order to obtain the required estimate it is
sufficient to multiply (2.6.12) by s = (Am)H/A; in both the limiting cases considered
above we obtain:

~-c/s
S 5. e (2.6.13)

vhere the stochasticity parameter (2.1.2) s < 1 in the region of Kolmogorov stability.

Let us have a closer look at the simplest case of two resonances, mentioned above.
Let us first of all ascertain how the mutual destruction of the resonances changes if their
width is substantially different. The perturbation parameter u will in this case contain
an additional factor (see p. 52) fp/f q ~ (R p/Qq)’, where the index p relates to the des-
troying resonance and the index q to the one that is destroyed. The frequency of the
phase oscillations in estimate (2.6.12) characterizes the destroyed resonancé: 0 0™ Qq‘
and the minimm perturbation frequency

)

+) This conclusion was recently verified by means of a numerical experiment” and by

"'real" experiments’®}).
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W, = Fax (p, 2, ) (2.6.14)

on the border of overlapping. The special case when a weaker resonance is entirely inside
a stronger one, so that w; is substantially less than (2.6.14), will be considered below.
Estimate (2.6.12) now takes the form:

g

N Q 2 - .24
SI"I (_S'?__f) e .27 (2.6.15)

Taking into account (2.6.14) it will be seen that the most stable is the weak resonance,
for which the (absolute) width of the stochastic layer is exponentially small:

nq . éw (s Qq) . e'CQP/QQ; Qp >> ﬂq, while for the strong resonance (Qp << Qq):

(Qqéw) n Q2/Q . It is essential, however, for the destruction of the strong resonance
also to be only negligible'). Therefore, in the case under consideration the relative
fraction of the stochastic component proves to be small (v 2 /Q ) even under conditions
when the resonances overlap. Nevertheless, owing to the overlapping of the stochastic
layers of neighbouring resonances some diffusion from one resonance to another is possible,

although its rate may be very small (Sections 2.7 and 3.3).

This example shows the difference between the two criteria of stochasticity particu-
larly 'clearly: the criterion of the overlapping of the resonances (2.1.4), which determines
the possibility of some diffusion for part of the initial conditions, and the criterion of the
destruction of the resonances (2.6.15), which determines the formation of a continuous or,
more precisely, almost continuous (Section 2.8) stochastic region with a maximm diffusion
rate (Section 2.10).

Now let a few neighbouring resonances almost coincide: w3 << £ "~ Q_ . Then we can
consider them as one resonance with slowly changing parameters: U(y,A) and the characteris-
“tic time of variation of A is ~ 1/w;. The effectiveness of such perturbation is determined
by the accuracy of conservation of the adiabatic invariant. The latter always breaks down
near the separatrix where the phase oscillation frequency passes through zero. The width
of the stochastic layer in this case may be shown“s) to be of the order

w1
dwmq A (2.6.16)

We shall call the formation of a single resonance from a group of almost coincident
resonances renormalization of the resonances. It is seen from (2.6.16) that a continuous
limit transition takes place when w; + 0. Stochastic destruction of a narrow group of
resonances as a function of the perturbation reaches the maximum (full destruction) when
sl "). At the same time, when there is strong overlapping of a wide group of reso-
nances (much wider than the renormalized resonance) a system or renormalized resonances
forms, for which the condition: s’ ~ 1 is automatically fulfilled.

+) This effect can be used for stabilization of stochastic instability by an additional
strong resonance. The stable region appears inside the separatrix of this resonance.

++) This and other aspects of stochastic destruction of non-linear resonances have been
investigated in detail experimentally by Kulipanov, Mishnev and Skrinsky'®!).
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The application of the simple estimates of the width of the stochastic layer obtained
above [(2.6.12), (2.6.13), and (2.6.15)] requires some caution. In fact they are based on
estimates for u of the type of (2.6.9), which takes into account only the frequency spectrum
of the perturbation. This is certainly true if there is only one perturbation hamonic (two
resonances). In the case of several harmonics it is necessary to take into account their
phase relations which, in particular, may considerably reduce the value of u as compared to
the above-mentioned estimates. The simplest example is the basic model (2.1.11) when T » «~.
In spite of the strong overlapping of the resonances in this case (s >> 1) the motion will
be stable during each of the intervals T between kicks. This occurs precisely owing to the
special phase relation of the resonances. A more complex example of the effect of phase
relations will be considered in Section 2.9.

2,7 Full set of resonances

So far we have considered the interaction of an approximately equidistant set of reso-
nances, formed owing to the anharmonicity of either the perturbation alone (basic model) or
the oscillations themselves (separatrix, Section 2.6). In both cases the stochasticity '
criterion had a fully defined sense, since the mean distance between resonances A remained
finite (2.1.2).

In the general case a complete set of resonances is dense in frequency, so that
formally A = 0. Physically it is clear that the amplitudes of the high harmonics, generally
speaking, rapidly decrease with the increase of the harmonic number (for an analytical fumc-
tion -- exponentially). Therefore a finite number of harmonics actually works and this
means also a finite number of resonances. The more accurate result is that the total width
of all the resonances is finite and small (for sufficiently small perturbation). As already
noted above, this is also the main result of the KAM theory. However, the technical dif-
ficulties of constructing convergent series in this theory lead to excessive requirements
for smoothness of the functions entering into the equations of motion (smoothness of force,
as we shall say from now on for the sake of brevity). Originally the analyticity of the
force was even assumed”’") » although it was perfectly clear that this was simply a
technical requirement”).

Moser has recently developed a technique for 'smoothing" non-analytical functions,
namely approximating them by the sequence of analytical ones") ; as a result it turned
out to be sufficient to require the existence of a number (Lc) of continuous derivatives
of the force. The minimm value of L_ obtained by Moser is*®):

L, > 2v+2 (2.7.1)

where N is the number of degrees of freedom of the autonomous Hamiltonian system. For a
non-autonomous system and also for transformations, there are no estimates; as far as can
be understood from Ref. 28, in this case one should put: N + N + 1. Moser's result gives
essentially the upper (sufficient) limit of smoothness of the force, since it is determined
by smoothing technique.

In this paragraph we will try to give some estimates of the lower limit of smoothness
of the force necessary for Kolmogorov stability. It is assumed that an effective estimate
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of the stability conditions, taking into account the complete set of resonances, can be given
in first approximation (see below). Going on ahead, let us say that this assumption is

made not only to simplify the task, but also on the basis of the result of numerical ex-
periments (see Section 3.3).

The value of this hypothesis for obtaining practical estimates is evident, it simply
eliminates the need to calculate higher approximations, not to mention questions of con-
vergence. Let us note that the estimates of this paragraph are not equivalent to the first
approximation of the KAM theory"), since the size and the other characteristics of the
resonances are taken into account and not simply excluded.

We will limit ourselves in the main to the elementary model (2.4.16), which will be
written in the form:

+dq

%oﬁ-f = {"//n t Wopnq }

w = {‘-).."' if(‘{/u),f]
(2.7.2)

where f(y) is a certain fimction ("'force') which we will define more precisely later, and
€ is the small parameter.

The main resonances, to which we have so far restricted ourselves, lie at w = 1 (T is
an integer) and correspond to the fixed point of transformation (2.7.2). It is not diffi-
cult to see that in the general case the resonance takes place for any rational value of w:

w = (2.7.3)

L
1
Indeed, under this condition the phase y changes by exactly r periods after q steps. These
higher hammonic resonances {q > 1), as they will be called, thus correspond to the periodic
motion of system (2.7.2) with a period q.

The resonance condition (2.7.3) becomes especially clear if one changes over from
transformation (2.7.2) to the differential equations, i.e. to continuous time:

qe = r S (2.7.4)

where 2 is the basic frequency of the perturbation. Then the resonance (r,q) is the reso-

nance of the r™" harmonic of the perturbation with the qth hammonic of the oscillations.

For what follows it is important to understand that the high harmonics occur for two
completely different reasons. First of all, owing to the anharmonicity of the force as a
function of the coordinate:

> g |
2(q) = %4 £ ¢ 2.7.5)

The resonances thus arising will be called first approximation resonances or higher
harmonic resonances. Their width is determined by the coefficients fq, vwhich can be
obtained without any fundamental difficulties.
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However, there is also another reason for the occurrence of higher resonances, even
for f(y) = sin 2my, when fq = 0 {(q >1). This is as follows. The resonant frequencies
(2.6.4) are obtained from a Fourier expansion in time, whereas only the Fourier expansion
according to the coordinate (2.6.5) is easy to obtain. But the phase ¢ does not vary
strictly in proportion to time, since the frequency w in its turn varies under the action
of the perturbation, particularly umder the action of the non-resonant harmonics (Section
1.3). It is easy to see that modulation frequencies w + rQ appear in the first approxima-
tion. This leads to second approximation resonances of the form: 2w = rQ, and the ampli-
tude of such resonant temms is ~ ¢2. Similarly it can be sho»m’) that the resonances
qu = 1 are defined by terms ~ €9 decreasing exponentially with q. This gives grounds for
hoping that the influence of the higher approximation resonances will be unimportant.

In reality, however, the question is a highly complex one. A more accurate investi-
gation") shows that the terms of the qth approximation q1n 9. ¢4, In the case of a
non-analytical force with a power-law spectrum of the (2.7.6) type, this may lead to
divergence for vz)ary high harmonics. In fact, however, divergence does not occur, as was

28

shown by Moser™ .

It will be assumed that somehow or other the total (actual) width of the resonance
can be estimated in first approximation. In any event we can rely on thus obtaining the
lower limit of smoothness of the force necessary for Kolmogorov stability.

Bearing in mind the comparison with Moser's result"), let us choose as f(y) a function
whose (£ + 1)th derivative undergoes discontinuity of the order of umity. It is easy to see
that the asymptotic (when q >> 1) spectrum of such a function is given by the expression:

o -(lr2) (2.7.6)
T¢ 9
Let us consider some resonance (r,q). Ignoring the non-resonant terms the transforma-

tion (2.7.2) near the resonance (r,q) can be written in the form:

«b+1) 2747
*1) QT

/ I'4
¢c).h*‘ = { w, + £ q

¥4 4 . /’ (
9Lu et = !' yﬁ“ t DPusrq g
where we changed the variables: w’ = qw; ¥’ = qy. In the first approximation transforma-

tion (2.7.7) has a single resonance (basic, q’ = 1), the width of which according to (2.2.4)
is (awf)y /€ - ¢ WD/2

2.7.7

or in the variable w:

~ 3
(aw)y ~ vE- ¢ *F

(2.7.8)

For a given value of q there are q different resonances, corresponding tor = 1, 2,
eeey q (2.7.3). Simple summation of the width of all the resonances gives:
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é+1

(<4
(4s) s ~ JE- 2. G Tz (2.7.9)
§=7

This sum converges if £ > 1 ').

However, even in the frame of a first approximation simple summation of the width of
the resonances is not really justified. The point is that many resonances coincide or
almost coincide, or rather fall inside one another. The total (renormalized, see Section
2.6) width of such coincident resonances will, generally speaking, be smaller than the sum
of the width of the separate resonances. The summation rule (renormalization) depends on
the phase relations. If all the resonances are ''in phase'' the (&w) ‘21 proportional to the
amplitude of the perturbation harmonic accumulate; for ''random’ phases it is necessary to
sum up the (Aw)a. Apparently the latter case is nearer to reality, since the majority of
resonances do not coincide exactly and the phase relations vary with time. It turns out
that the convergence of the resonance sum does not depend on the power of renormalization,
which is denoted by n and left arbitrary for the present (see below).

Thus we estimate the sum width of all the resonances with q’ > q coinciding with one
of the q resonances, i.e. falling inside the resonant region (Aw) q (2.7.8). It is clear
that out of q’ resonances of the q'th harmonic only qf = (Am)q « q' will coincide, on the
average, with the resonance q. We have:

(Ao)q: = (aw)? -f-Z 74 é""}
§laget (,-gj/_’_ (2.7.10)

(Aw/f" (f 7 f;li«—-'f /

where (M)q}: is the renormalized width. The sum converges if:

[ > £ . 3 (2.7.11)

r
Renormalization is unimportant when € + 0, q + =, if:

£ =1 (2.7.12)

In the case of £ < 1, (Aw) qz >> (Aw) , 50 that it is natural when determining q! to take
(aw) q instead of (Aw) and ignore the value (Am) in the right-hand side of (2.7.10). We

obtam

(du)

- %l

f f+-1
z(z? )z(--n_ A-z_ (“e+3k v

(2.7.13)

X
|
By

+) A similar estimate was obtained in Ref. 46.
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when summing up expressicn (2.7.13) for all the resonances, the coincident ones
should be excluded. For this let us introduce the value G(q) -- the total width of all
the gaps (in frequency) between the resonances with q’ < q. Assuming that the reciprocal
distribution of gaps and resonances is an uncorrelated (''‘random'') one, we can write the
equation:

G(s+1) = G(?"(’/‘ f'("“’jq,:) (2.7.18)
When € -+ 0 the solution takes the form:

q-1

G (q) = exp {- Z. 9" (4) .y 17 (2.7.15)

q'=1

where we put G(1) = 1. Thus the conditions of the overlapping of the resonances are never-
theless determined by the direct sum of (2.7.13) for all the resonances. This converges
when:

g >17 (2.7.16)

This is also a necessary condition for the existence of Kolmogorov stability or the lower
limit of the required smoothness of force. Taking into account condition (2.7.12) this
limit is obtained from the most simple sum of (2.7.9).

The value of (2.7.16) is considerably smaller than the upper limit (2.7.1) which in
the present case (N = 2) is: L. > 6. The numerical experiments seem to testify in favour
of a lower limit (see Section 3.3).

Let us investigate the case of £ < 1 when the sum in (2.7.15) diverges and G+ 0
when q + «. Nevertheless, exponentially small gaps remain for any finite q. There is
doubt as to whether they really exist, for two reasons. Firstly, for this there must be
a very sharp edge to the resonant region [the destroyed separatrix (Section 2.6)].
According to the KAM theory there exists in fact a border of absolute stability. However,
in the neighbourhood of this border (on the separatrix side) in the general case there is
a very complex transitional layer, characterized in particular by very slow development
of instability (Section 3.3). Secondly, solution (2.7.15) is essentially connected with
the assumption made above concerning the "‘randomness’ of the gap distribution. This
assumption is admittedly violated in two cases: if € ~ 1, so that exponentially small
gaps appear already when q ~ 1, or if resonances of one harmonic overlap. In the first
case, the total overlapping of a small number of lower resonances is possible, the condi-
tions of which can easily be obtained (when € ~ 1) from (2.7.13). In the second case,
total overlapping is possible with any €, if q (Aw)qz + o when q + =, i.e, if:

2 (2.7.16)
Z< ~1+ w =~

(EN



This condition now depends on n, which was taken here as four (see above). Assuming that
q « (Mw) qz ~ 1, the minimum harmonic number that already ensures overlapping and determines
the diffusion rate can be estimated; we have (n = 4):

2
G~ £ 7728 (2.7.17)

We used the renormalized width of the resonances (2.7.13). From expression (2.7.10) it can
be seen that this is valid only for sufficiently high harmonics q > Q5> where

2
-4 (2.7.18)
9s ~ £

It is easy to see that indeed q; > Qg in the region of applicability (2.7.16) of expression
2.7.17).

Excluding the two special cases considered above, it can nevertheless be expected that
the gap distribution G(q) will be nearly "random". This is mainly due to the fact that
asymptotically (q + =) the position of the gaps depends essentially on the width of the
resonances determining the gap, and as a rule these will be resonances of different
harmonics having a different width. It is essential also for the distribution of the
resonances (2.7.3) to be asymptotically uniform (see below).

To sum up, we reach the conclusion that it is apparently not possible completely to
exclude the existence in the phase plane of gaps for any q, if

~f <t <« 1 (2.7.19)

These gaps, in principle, can completely stop diffusion, in spite of the absence of
Kolmogorov stability. The results of the corresponding numerical experiments and the
subsequent discussion are given in Section 3.3.

Let us now verify the criterion of destruction of the resonant region, which in the
general case of resonances of a different width can be obtained from estimate (2.6.15).
First of all let us make this estimate a little more accurate, taking into consideration
the fact that for resonances of different harmonics p and q we have the relation

f {o/p) (& /)7 :
p/fq ~ {Q/Fl (p/ q) » whence

y,
~ 4 (-Q t k-2 (2.7.20)
$rs P Ef) e ™

Let us note that when & > -3/2, namely in practice in all cases of interest to us, this

more accurate expression does not change the character of the estimate (2.6.15). Let us
recall that the index p relates to the destroying resonance and q to the one destroyed;

Qq is the width of the resonance, equal to q ¢ (Aw)}_, and as (Aw) it is necessary to use
expression (2.7.8) or (2.7.13) depending on the value of £.

From estimate (2.7.20) it can be seen that mutual destruction is possible only for
resonances of close harmonics as was thoroughly demonstrated in Section 2.6. In particular,
for the power-law spectrum (2.7.6) the following condition should be fulfilled:
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//,_7/ << § (2.7.21)

When this condition is fulfilled the criterion of mutual destruction of the resonances can

be written in the form*):
s,= 28 . 2¢ 5 4
P) < (2.7.22)
L4 / pe - LY
Here w is the frequency of the system near the destroyed resonance (r,q), but not
necessarily exactly equal to r/q, since what interests us is strong destruction of the
resonance and stochasticity; (k,p) is the destroying resonance complying with condition
(2.7.21).
Let us estimate the denominator (2.7.22). The lower estimate may be taken from

Moser's paperz‘):

e

Cy
_//)w—/< /] > —= >4 (2.7.23)
Noting further that the minimum value of interest to us w; = pw - ky = {pw}, when p = 1,
2, ..., forms a sequence which is ergodic for any irrational w 33), we obtain the upper

estimate:

[po-k, ] < %; < 4 (2.7.24)

Comparing (2.7.23) and (2.7.24) we see that there is an effective estimate:

_k 1 (2.7.25)
[pe-kI~ &
and the mmbers of p,q can be chosen close together, if they are large enough; this close-
ness enters into the constant c, ~ p/|p - ql.

Fulfilment of the criterion (2.7.22) depends now on the asymptotic behaviour of nq
when q + «». For both cases (2.7.8) and (2.7.13) s;3 ~ g2 - (Am)q + o, if:

f < ¢ (2.7.26)

Thus for a complete set of resonances the criterion of destruction of the resonant region
also agrees in order of magnitude with the criterion of their overlapping, if one does not
consider the possible formation of the gaps mentioned above. For the criterion (2.7.22)
such gaps are completely unimportant, since the value of wy; is determined, roughly speaking,
by the distance between the centres of the resonances and not between their'separatrices.

The only case in which there is a considerable difference between conditions (2.7.26)
and (2.7.19) corresponds to £ = 1. In this border case the resonances overlap, but the

») In accordance with the observation in the previous paragraph (Section 2.7) for the re-
normalized set of resonances s{ < 1 always.
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width of the stochastic layers is exponentially small. Consequently the total area of the
stochastic component, and also the diffusion rate, are negligibly small when € + 0.

Assuming that q® « (&w) ™ 1, we can find the boundary of destruction of the reso-
nances in q, which, it turns out, coincides with the renormalization boundary a; (2.7.18).
From estimate (2.7.20) it follows that the separatrices of the lower resonances (q < qz)
are negligibly destroyed. Since the total width of the undestroyed resonances (q < qz) is
just ~ 1, the stable regions occupy a considerable part of the phase plane. However,
they are separated from each other by a thick network of interwoven stochastic layers. The
scale of the mesh of this network is determined by the mean distance between the destroyed

resonances and is:
-2 2
(gto) ~ q4s ~ € 1-2 (2.7.27)

The estimates obtained in this paragraph are also important for the analytical force
f(¥) of a special form with sharp (in the section Ay << 1) variation of the (L + l)ﬁl
derivative. In this case the spectrum of f£(y) is a power-law one (2.7.6) up to q, v 1/6y.
When £ < 1 the previous stochasticity criterion € ~ 1 (2.5.1) changes by

/-7 (2.7.28)
E A 4‘_._

which is obtained from the condition: Qg v G-

Let us tum in conclusion to continuous time, i.e..to the differential equations
instead of the transformation. The amplitude of the resonance harmonic will depend in
this case not only on q but also on r (2.7.3). Let us put [compare with (2.7.6)]:

fqr ~ g - ¢ 2)_ r- /‘06 +2) (2.7.29)

.when q,r >> 1. The resonance sun (2.7.9) now takes the form:

£+3 _ b2

Do
q
(““’}2-_ ~ 'EZ. Z,, 4 T, r z (2.7.30)

q'zd r=4

Convergence, and hence also Kolmogorov stability, takes place under the condition:
£ >-1; b+ b, >-1 (2.7.31)

In particular, for analytical dependence on t(R.t + =) the only essential condition is the
first, which is considerably weaker than the previous one (2.7.16) for the transformation.
The latter is obtained from the second condition (2.7.31) if one assumes: "’t = -2
(6-function).

2.8 Quasi-resonances

Let us now make a more detailed study of the stochastic region. A troublesome
feature of this region for systems of the type of our basic model (2.1.11), a feature which
puts in doubt the possibility of ''real" stochasticity occurring, is the presence of "islets"
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of stability, which do not vanish even for values of the stochasticity parameter Ky + «
(2.5.1). For the reasons given below we shall call these "islets' quasi-resonances. Our
task, therefore, is to estimate the size and over-all area of these “islets". Let us again
restrict ourselves to the elementary model (2.4.16):

(Ptu-q = {‘Fk + k'f(‘f"‘)/?
th{-( = {‘/’u“‘ (Pui-«j,

‘which was also used for the numerical experiments (Section 3.5).

(2.8.1)

The stable regions are situated near the periodic trajectories of the system. The
simplest periodic solution of transformation (2.8.1) -- fixed point (period T = 1 step) --
can be stable only for special values of k (see below and Section 2.4). However, generally
speaking, there exists an innumerable set of other periodic solutions with T + =. More
precisely S:'mai“o) showed that a stochastic system has an everywhere dense set of periodic.
trajectories in the phase space. Of course, the measure of this set is equal to zero and
all the periodic trajectories are unstable. The following estimate follows from Ref. 40:

h(7-1)
\)(7-) ~ e (2.8.2)
)

where v(T) is the number of periodic trajectories with a period < T; h is the }(~-entropy‘k .

Our system is not stochastic in the full (classical) sense of this word because of
the presence of regions of stability around part of the periodic trajectories (2.8.2).
l-bwevef, it can be assumed that estimate (2.8.2) does not change essentially, at least if
the fraction of stable regions is sufficiently small.

Before proceeding with the estimates, let us explain the stability mechanism near the
periodic solutions. As was thoroughly described in Section 2.4, for stochasticity the
existence of a so-called asymptotic transverse flux is required. This means that in the
vicinity of every point of the phase plane the trajectories of the transverse flux should
tend asymptotically towards a particular trajectory (asymptote) any segment of which will
expand exponentially in the process of motion, at least on the average. It is not diffi-
cult to see that the easily proved property of local instability of motion is not sufficient
to fulfil this condition. Indeed, by virtue of the conservation of the phase volume, the
transverse transformation is characterized by two eigenvectors (directions), one of which
corresponds to contraction and the other to extension. As a result of this, in the space
of the directions of the transverse flux there are two cones [for a one-dimensional system
of type (2.8.1) -- two sectors on the phase plane]: the extension cone and the contraction
cone, depending on the variation of the length of the transverse vector (M,Ap). In the
process of motion these cones may overlap, i.e. cross ovar into each other partly or

*») When h >> 1, expression (2.8.2) also gives the number of periodic trajectories with a
period of T, as can easily be verified immediately. It should be noted that we changed
estimate (2.8.2) somewhat as compared to Ref. 40 (T -+ T - 1) in order to obtain the
right asymptotic form for T = 1; h + =,
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completely, which may lead to limited oscillations of the transverse vector instead of
continuous extension. This may in turn lead to the appearance of stable regions.

Let us first of all show that for model (2.8.1) the contraction and extension cones
do not overlap in the special case when there are no stable regions. This condition can
be written in the form:

/ fplz’9°7’ / > C >0 (2.8.3)

Now, even the minimm value of the stochasticity parameter K, = |k fﬁinl > kc increases
infinitely with k.
Using expression (2.4.14) we find for the direction of the eigenvectors (see

Fig. 2.8.1):

zég . = T -1 (2.8.4)

v

Fig. 2.8.1: Structure of transversal transformation for elementary

model (2.8.1) in the absence of stable regions (2.8.3): 0. indicate
the direction of extension and contraction eigenvectors; B8, B’ re-

present the border between contraction and extension cones (sectors)
before and after transformation, respectively.
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where the eigenvalues ), are determined by formula (2.4.6). When K; >> 1 the direction of
the vector -én is confined to the sector n/4 * 2/X;, and that of the vector -ég to the sector:
/2 £ 1/Ky. For what follows the minimm value of the angle between EE’ 'én, which is
obviously: Cnin ~ n/4 - 3/K;, is important.

On the other hand, it is not difficult to show that under the assumed condition that
Ky >> 1 the border between the contraction and extension cones, i.e. the direction for which
the length of the transverse vector does not change, is at an angle B < 1/v/2K; to the con-
traction axis. Under transformation, the border transverse vector swings round (without
any change of length) towards the axis of extension and makes an angle of B’ < 1//2K; with
it (see Fig. 2.8.1). The minimum angular distance between the latter direction and the new
border is:

This is, of course, also the condition that the cones shall not overlap in the process of
motion. This means that no transverse trajectory in the extension cone can ever enter the
contraction cone. It follows that the transverse flux is asymptotic, and the motion of the
system stochastic {Section 2.4).

The stochasticity criterion using the condition of overlapping of the cones, was
formulated and applied to model (2.1.14) by Oseledets and Sinai (see also Refs. 42, 150).

Let us now investigate the influence of the regions of stability, not imposing any
further limitation (2.8.3) on the function f£(y). In this case part of the periodic solu-
tions of (2.8.2) may be stable, which leads to the formation of regions (“islets") of
stability in the phase plane, i.e. to the appearance of a non-ergodic component.

Let us first consider the special values of the parameter k for the elementary model
(2.8.1). We shall limit ourselves to the case of T = 1 (fixed point) which leads to the
largest islets of stability.

For the fixed point of transformation (2.8.1) we have:
Q=9 ; L‘,f("/f,} =7 (2.8.6)

where T is any integer. The fixed point is stable when (Section 2.4):

-Y < »éo,"(s#/ < 0 (2.8.7)

The special values of k are determined from the compatibility [(2.8.6) and (2.8.7)]. This
condition is fulfilled within the interval

& ’
~ e Z % = 0 .8.
ok = k/(%}-f”(‘/a) g (#) (2.8.8)

around the value k, which corresponds to the centre of the stable region (2.8.7) and is:
L - L - 2
T ft) r-£"() (2.8-9)
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The phase area of the stable region is:
2 4
5//:} ""“f")”"([%;)) 4¢~4y/~1—;-’ (2.8.10)

It is essential for any dimension of this region to be arbitrarily small when k >> 1.

Let us note that on turning to the basic model (2.1.11) an additional factor
AI/Np = /T’ = ¢/ appears, so that the area of the non-ergodic component becomes even
smaller (see Section 2.4):

rk)~ </k3 (2.8.11)

let us now go over to arbitrary values of k. Supposing that:

1, = 5 (2.8.12)

k- L¥%y.)

is the probability of entering the stable phase region (2.8.7); here it is assumed that
there are two stable regions with identical values of f£”, Let us further assume that for
T, k >> 1 the periodic trajectories are "randomly" situated in the phase plane. This
assumption is very important for us, since in the opposite case it is very difficult to
obtain any quantitative estimates. It is confirmed intuitively because we are considering
an almost stochastic system.

Further reasons in favour of the above assumption can be found by considering the
mechanism of the formation of a large number (2.8.2) of periodic trajectories. When k << 1
the set of first order resonances forms a set of periodic solutions v(T) ~ T? (according to
a mmber of resonances ¥ = r/q; q s T). With regard to the periodic solutions connected
with higher order resonances (see Section 2.6), they lie inside the first order resonances.
It is therefore possible not to take them into account up to the border of stochasticity.

In particular, the stochasticity criterion is determined by the first order resonances only.
If k >> 1, the resonances of different orders intermix and spread more or less uniformly
over the phase plane.

Several mechanisms of formation of stable periodic trajectories in a stochastic region
are possible. The most simple (we shall call it the first) corresponds to the case when all
the T of the points of the trajectory are in the stable phase region (2.8.7). The proba-
bility of this is w{ and the number of such trajectories is (2.8.2):

"/) 79 (2.8.13)

1) T
Vg (T)~ w0 (T)~ v. (.
This estimate is very sensitive to the value of the parameter y = woeh. For a "force"
£f(y) = 1/27 sin 2mp (2.1.15), for instance, y = 2/n < 1. However, it is easy to construct
f(y) so that y > 1 (see Sections 3.2 and 3.5). At first glance it may appear that in the
latter case the fraction of stable regions will be rather considerable, since expression
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(2.8.13) diverges when T + =, However, experimentation shows that this is not the case;
moreover, it turns out that for large y the fraction of stable regions is even reduced
{Section 3.5).

Two effects may produce this result which appears strange at first glance. One of
them, apparently secondary, is the fact that estimate (2.8.13) is in reality the upper
boundary. This is due to the fact that the periodic trajectory of the transformation, all
the points of which are elliptical, is not necessarily stable. Possible instability is ex-
plained by the, generally speaking, variable frequency of the phase oscillations around
the periodic trajectory, which may lead to parametric resonance.

The main effect is probably that when vy > 1, considerable overlapping of the stable
regions takes place precisely because of the divergence of expression (2.8.13). But in
this case we can apply the general criterion of stochasticity according to the overlapping
of the resonances (Section 2.1). Indeed, the resonant region of a non-linear system signi-
fies, essentially, a stable region of quasi-periodic motion in the vicinity of the periodic
trajectory. The meaning of the overlapping of resonances as a stochasticity criterion in
this comnection is as follows. First of all, when the resonances overlap the trajectory of
motion can cross over from one resonant region to another, i.e. it is no longer localized
in the vicinity of the original periodic solution. This feature is also conserved in the
case of the overlapping of quasi-resonances, as we shall call the stable regions when
k >> 1.

On the other hand, the interaction of neighbouring resonances leads to the formation
of a stochastic layer in the vicinity of the resonant separatrix, the width of which in-
creases as the resonances converge and covers the whole of the resonant region at the
moment of overlapping (Section 2.6). Something similar also probably takes place for quasi-
resonances, although at present it is not clear what is the exact form of the second criterion
of stochasticity (2.6.12) and, in particular, what the quantity w; corresponds to in the
case of quasi-resonances. A peculiarity of quasi-resonances is that the stochastic compo-
nent is located among them, and not the invariant Kolmogorov tori as in the case of ordinary
resonances. This, of course, facilitates the destruction of quasi-resonances.

Another stability mechanism (the formation of quasi-resonances) is comnected with the
alternating entry of the transverse vector (8p,4y) into the extension and contraction comes.
Let us recall that the stable case corresponds to the swinging round of the transverse
vector and the unstable (stochastic) one to its extension or contraction.

As shown above, the extension and contraction cones of the elementary model (2.8.1)
do not overlap as long as the trajectory of motion remains in the umstable region. Hence
it follows that it is impossible for the transverse vector to enter the extension and con-
traction zones alternately. However, it becomes possible when there is even one point of
the periodic trajectory lying in the stable phase regiun (2.8.7). In this region the
transverse vector swings round and may therefore change over into the contraction region.

The transverse motion splits into three phases: extension, contraction and rotation.
If the period of the basic motion is T, the duration of the contraction and extension is
(T - 1)/2. During the extension, the angle of the transverse vector to the asymptote

decreases to:
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se p o 24 (7-4//:.~ e-/._ (7-1) 2.8.14)

where B, v 1. It is obvious that the rotation must be carried out with the same accuracy
by order of magnitude, since the motion along the contracting asymptote is symmetrical.
The probability of such rotation » wyBT, whence the number of quasi-resonances of the
second type is'):

(2
v, )(7‘} ~ w8 T () o, 7T (2.8.15)

The total mumber of quasi-resonances now proves to be infinite independently of the form
of the force, and from Ref. 40 it follows that they are located everywhere densely.

The size of a quasi-resonance can be estimated as AS ~ Ap(Ar)?, where Y,r are the
polar transverse coordinates, AP ~ 8, and Ar is determined from the condition of the re-
quired accuracy of rotation: Ar ~ B. Consequently, even the maximm size of the stable
region:

k(-1
Al ~ & ( ) (2.8.16)

decreases exponentially. The total area of all the T of the stable regions of the quasi-
resonances is:

‘S:Q)~ e SL(7-1) (2.8.17)

and for all quasi-resonances of “the type under consideration:

> 3h(T-1)
Saj(kj - Z W, T2e” (2.8.18)

T=Ta

The lower limit of summation for an arbitrary k is determined from the condition that
vé’) (Ty) ~ 1, i.e. that the quasi-resonances really exist:

A
Ty ~ (2/1-%) & (2.8.19)

Whence:

3k (/s ~ 1) o

*} This estimate is not very reliable in view of some umcertainty in estimate (2.8.2)
for the number of periodic trajectories: in particular, it is possible that the ex-
ponents v and £ do not fully counterbalance each other. Nevertheless, numerical ex-
periments confirm the order of magnitude of estimate (2.8.20) following from (2.8.15)
(see Section 3.5).
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For the quasi-resonances just considered, the phase oscillation period coincides with
the period of the basic motion: T = T. This condition is not compulsory, the trajectory
may enter in the stable phase regmn several times per period T, say N = T/T times. In
the general case the length of each period of the phase oscillations may be dlfferent

° }:gsl T1 T. 1f the Ti do not differ too greatly from one another, it can be
cons1dered approximately that the accuracy of each rotation will be determined by the
length of its period (2.8. 14) B; v e Sh(Ti-1) | e probability of a specific sequence
of stable regions ~ IINSI (woe ) c e th, and the number of stable trajectories of this

(third) type is:
1}
9,0’(7‘)«' yle- k. C(r,~) (2.8.21)

where C(T,N) is the number of d1fferent combinations of ’I‘ . Since our estimates are valid
for T To, one can put: C(T,N) ~ no , where ny = uT T/N (T>1; o< 1). Consequent-
1y O > 1)

V,w/ ~ (xToq) o (2.8.22)

The total number of such trajectories and also the area of the stable regions diverges for
any y. However, the minimm period from which the divergence begins depends on v:

-4
'7—“(‘1 ~ (o!a\/) (2-8.23)

By analogy with the ordinary resonances, one can assume that total mutual destruction of
the quasi-resonances takes place only for close frequencies of the phase oscillations (see
Section 2.6). Hence it follows that there remain undamaged quasi-resonances of all types
with T < Tmm’ their number decreases with the growth of Y.

The phase area of the stable region around the periodic trajectory on the assumption
that Ti z T‘b is given by the estimate, similar to (2.8.17):

] -3k (TQ-+
54(’) ~ T.e (73-7) (2.8.24)

and the total area of all the quasi-resonances of the third type is:

oo
r(3) S —_— N _34(Tp-7
S (k}a— Z-T.(,,(,/“,j.e (73-7) (2.8.25)
T=T4
where T; is again determined from the condition that quasi-resonances of this type exist
for an arbitrary k: 2‘..'11:;1 vs(’)(']‘) v 1. When To = const, N = T/T° -+ =, the sum diverges
if T° > Tpin (2-8.23).

+) This estimate is an upper one, as (2.8.13) for quasi-resonances of the first type, see
explanation on p. 67.
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Let us recall that the conclusion concerning the divergence of the sum (2.8.25), from
which the destruction of the overwhelming majority of quasi-resonances ensues is not
rigorous, since we can obtain only the upper estimate for S(’)(k) (see remark on p. 67).
However, an interesting feature of the problem under consideration is the fact that the
basic conclusion concerning the stochasticity of motion of model (2.8.1) when k >> 1 does
not even depend on the assumption that the sum of (2.8.25) diverges. Indeed, if the sum
of the areas of the quasi-resonances converges, it goes to zero when k + =, since the size
of each stable region decreases with the growth of k (2.8.24); if the above-mentioned sum
diverges, mutual destruction of the quasi-resonances takes place, excluding the finite
number determined by condition (2.8.23), and their over-all stable area again goes to zero
when k + =, Of course, one camot exclude the very special case when all the time S(k) v 1
when k + =, in spite of the fact that S, + 0, but such a situation seems to us highly im-
probable. This result is confirmed by numerical experiments (Section 3.5).

Thus we can now add a third effect to the two previous effects of the overlapping of
first order resonances (unification of stable regions and destruction of the separatrix) --
the formation of a large number of quasi-resonances which completely eliminate the last
centres of stability.

2.9 Periodic crossing of the resonance

Before going over to the final sections of this chapter, devoted to the general case
of the interaction of resonances, let us consider yet another relatively simple system
which can be reduced to the basic model (2.1.11) with discrete time. This is the periodic
crossing through the resonance of a non-linear oscillator.

1f the amplitude of the frequency oscillations considerably exceeds the width of the

resonance

aS) >> (4w )y ~ R4 (2.9.1)

‘the action of the resonance can be considered as a short kick; accordingly, we have a
system of the type of the basic model, whose border of stochasticity is determined by con-
dition (2.5.1). On the other hand, as follows from the results of Section 2.6, the general
criterion of stochasticity (2.1.4) must be valid.

The system considered in this paragraph is of special interest also because in one of
the writer's early papers on stochasticity!®) an erroneous conclusion was drawn about the
existence of two independent conditions of stochasticity which had to be fulfilled simul-
taneously. This conclusion was drawn precisely on the basis of the process in question.

Let the frequency, say, of the perturbation vary according to the law:

Q= 2L + ‘325-2 los 2.7 (2.9.2)
Under the condition Q, << AQ the perturbation has a locally equidistant spectrum with a
distance between resonances of Q, and a number of basic resonances ~ AQ/Q,. On the basis
of Parseval's equation (normalization condition) we obtain the estimate:
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/.
Q, 2
—— 2.9.3

E_? « ~ € g, o / ( )
where efy, efk are the amplitudes of the frequency-modulated force and its harmonics, res-
pectively. The general criterion of stochasticity (2.1.4) gives:

independently of the rate of crossing the resonance. Here v, is the amplitude of the
velocity, and @ ~ vel,vew' is the frequency of the phase oscillations near one of the
harmonics of the force, unlike Q P m, the frequency of the phase oscillations at
the moment of crossing the resonance (see Section 1.5).

Now let us consider another approach to the problem. When the resonance is crossed .
rapidly (V >> 1, see below) the change of the frequency (and energy) of the oscillator is
given by the expression (1.5.7), which leads to the first of the difference equations of
the type of (2.1.11). The phase equation can alsc be obtained from (1.5.7) in the follow-
ing way. Removing the brackets we find (k = 1):

+ 2 -2
(,1/::4,&’4- 827{ P éi_l-’,.é + Qg‘:_;.l (2.9.5)

Here the third term gives the ordinary phase change due to the change in the frequency of
the oscillator after crossing the resonance. The factor ] is explained by the fact that
this term takes into account only half the frequency change after the moment of exact reso-
nance (see Section 1.5). The other half is included in the second term, which when there
is arbitrary frequency variation Q(t) is replaced by J (Q(t) - wp) dt = J @ dt ~ wet, where
wo is the value of the frequency of the oscillator at the moment of exact resonance. The
last term of (2.9.5) is small under condition (2.9.1). In order to obtain the phase of the
next resonance, it is necessary to sum up expression (2.9.5) after the first resonance
(upper sign) and until the second (lower sign). Taking into account also the rules of the
changing of signs when the direction in which the resonance is crossed changes (Section
1.5), we obtain:

{of 2 2
Y=+ ) Qr -y £+ €9 | @o)y gy
! “ A 2. .,

where to; = T/2 = n/Q, is the interval of time between two successive crossings of the
resonance and it is assumed that w =  (2.9.2). Equality toy = T/2 is violated, firstly
as a result of the frequency variation: Aty ~ (Aw)2/9; this effect can be ignored,

like the two last terms in (2.9.6) under condition (2.9.1). Secondly, it is necessary to
take into account the finite amplitude of the phase oscillations, so that the moment of
Tesonance is determined by the intersection of the straight line and the sinusoid in

Fig. 1.5.1. This leads to additional change of the phase of the resonance by Ap ~ V7!,
This effect becomes considerable when there is slow crossing of the resonance (see below).
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Taking into account the above-mentioned approximations, the crossing of the resonance
can be described by the following transformation: '

25
Ouss T Qu = \/'17 2y 3 (ot L)

o S
‘/u-rl x %u +9 - ————ﬂ“+1

[ 4

(2.9.7)

vwhere the constant phase 6 = {T/ 2 dt and the sign is determined by the direction in which
the resonance is crossed (see Section 1.5). The stochasticity parameter for (2.9.7) is
found in a similar way to (2.4.9) and (2.4.3):

K, ~ 7z 24 S, /s ~ 1 (2.9.8)

The last estimate gives the criterion of stochasticity (2.5.1). Since fn AR - Q and
9; " ﬂf( (An/sz,)i (2.9.3), then Ko v (%/9)* ~ s* and both forms of the stochasticity
criterion (2.9.4) and (2.9.8) agree.

With slow crossing of the resonance, when

V= -—‘Sz;_ ~ “’Q'f".. Jaft | g% ey (2.9.9)
the change of the oscillator frequency is given by expression (1.5.9):
s6(w,3)=2YV2, b (v+5)(55V-3") +
+ -:—g—J?* ﬂ-#— 25V - §Y,

(2.9.10)

The phase change is determined, as usual, by relation (2.9.6), but the additional finite
"amplitude of the phase oscillations must now be taken into account, as noted above. This
is equivalent to changing over from the continuous phase y; determined by relation (2.9.6)
to the phase £ = ¢ - w/2 limited by the interval: -V < £ < /4nV. Since in this interval
cos £ ~ 1 - £E2/2, fram (1.5.3) we find (see also Fig. 1.5.1):

V{¢-#) = 1- 5/2 (2.9.11)

In what follows we shall need the derivative:

l,% - V3

df v Vs (2.9.12)

where we used the condition dy/dg = 1 (Fig. 1.5.1). The latter estimate is also easy to
obtain directly if it is taken into accoumt that the range of variation of ¥ is equal to 2n
and of £ to vZnV.
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Now we can approximately describe the slow crossing of the resonance by the transforma-
tion:
Wy ¥ @, T Aw (w,,, i)
(2.9.13)
Guse T 4, +6 - 5";‘_:{’2::_1

[ 4

Here the function Aw(wn,En) is given by expression (2.9.10), the link between ¥ and £
by equation (2.9.11) and the constant phase 8 is defined above. The stochasticity para-
meter is:

7(71 Cl{n...,-'. J%+4}~_fi AQ

: —_ (2.9.14)
~d‘/’n+4 d{.

vwhere the first of the derivatives is given by expression (2.9.12) and the second
~ VR ;790.

Relation (2.9.14) shows that in the approximation of short kicks (2.9.1) K, >> 1,
I.e. slow crossing always leads to stochasticity.

At first glance, criterion (2.9.14) is in no way connected with the parameter of the
overlapping of the resonances s. However, it should not be forgotten that the condition
of slow crossing (2.9.9) must be fulfilled, from which it follows that s > 1 always when
80 > Qo. If AQ << Qq, the parameter s loses its sense, since in this case there is in fact
a single resonance 2 = 2, while the width of the remaining ones is considerably smaller
and they can simply be ignored (see Section 2.7).

We still have to consider the case AR < Q,, when the short kick approximation is not

valid. Instead of this, let us turn to the phase equation originating from the equations
in slow variables of the form of (1.3.15):

I‘x—le,Cosf

i Q) (2.9.15)
7# T W - ~
where Q(t) is the periodic function of (2.9.2). We obtain:
{u' - .Q; Cogife = — (& (2.9.16)

This system has a separatrix in the vicinity of which a stochastic layer is formed
under the action of the perturbation in the right-hand side of (2.9.16). According to the
results of Section 2.6 the relative width of the stochastic layer in energy is given by
the estimate:

~ 2 -V
S~ wi 14 (2.9.17)

under the condition that the perturbation frequency is sufficiently small: £, < QO' In
the opposite case, the width of the layer is exponentially small (2.6.17). The results
of Section 2.6 are applied when there is small perturbation (u << 1), i.e. only for slow
crossing of the resonance. When the crossing is rapid, system (2.9.16) simply does not
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have a separatrix (Section 1.5). As regards stochasticity, which according to (2.9.4) is
also possible for rapid crossing, it is connected with a completely different mechanism,
namely mixing of the phase from one crossing of the resonance to the next.

For slow crossing of the resonance there are thus two mechanisms of stochasticity:
one which is the same as for rapid crossing and another connected with the stochastic
layer. The influence of the latter mechanism depends on the ratio between the range of
frequency variation (AQ) and the width of the layer: AQ/fzoG " %/Qo. The maximum influence
corresponds to the condition §, ~ QO {when Q, > no the width of the layer decreases exponen-
tially). In this case stochasticity occurs, which is not at variance with the general
criterion according to the parameter s, since AQ << 4 » Qo and this parameter loses its
sense, as noted above.

If Q¢ << no (and AQ << Q¢), the case when AQ >> Q, is possible, so that the stochas-
ticity parameter s 2 1 (2.9.9) has its ordinary meaning. From the point of view of equa-
tion (2.9.16) in this case stochasticity may also be expected, since the system passes
through a stochastic layer during approximately one phase oscillation period [ (1.5.3) and
(2.9.17)]. Moreover, with slow crossing capture is possible (Section 1.6), which increases
the time the system spends in the stochastic layer and consequently also the over-all
stochasticity of the motion.

Thus the general criterion of stochasticity according to the overlapping of resonances
(2.1.4) also applies to periodic crossing of the resonance as well as to rapid and slow
crossing. In the latter case stochasticity always occurs, in contradiction to Ref. 10, in
which it was assumed on the contrary that stochasticity is always absent for slow crossing,
on account of the approximate reversibility of the process (see Section 1.5). As we shall
see later this last effect leads only to a reduction of the diffusion rate and the K-entropy

(Section 2.11).

2.10 Kinetic equation

1f the motion of a dynamical system becomes stochastic, it no longer makes any physi-
cal sense to describe it in terms of a trajectory, because of local instability. The
changeover to a statistical description, the meaning of which also, in our opinion, lies
precisely in re-establishing the stability of the description, is usually carried out in
two stages. First of all, as the basic physical quantity, one introduces the distribution
function or phase density f(x,t) (x is the complete set of phase space coordinates) of an
ensemble of identical systems, differing only by the initial conditions. The variation of
f is determined by Liouville's equation:

¥ - 4 (2.10.1)

>
)

where L is a linear differential operator" .

It is customary to emphasize the equivalence of Liouville's equation to the dynamical
equations. However, it should not be forgotten that their solutions are physically iden-
tical only for singular initial conditions: f£(x,0) = §(x - X;), since, at least within
the limits of classical mechanics, we are concerned with only one single system of the
statistical ensemble. This fact, which is often underestimated (see for example Ref. 50)
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is of paramount importance when discussing the nature of statistical laws”) (see also
Section 2.13). The use of the continwous density of f(x,t) already means introducing into
the mechanics some random element and, in particular, excluding a set of special zero-
measure trajectories. These special trajectories should not be regarded as absolutely ex-
ceptional. For instance, the periodic trajectories of a stochastic system which form an
everywhere dense set”) (Section 2.8) are related to them. In addition, the introduction
of continuous density automatically excludes any fluctuation in the limit t + =,

With the above reservations, Liouville's equation is equivalent to the dynamical
equations and its solution for a stochastic system also proves unstable in the following
sense. Llet us introduce so-called coarse-grained phase density f(x,t,1), which is obtained
by averaging f(x,t) over the phase space cells, of a size XA + 0 ”). Only such a density
also has a direct physical sense. Indeed, we always have to do with a finite, although pos-
sibly also very large, number of systems N. Hence it is clear that the density is deter-
mined only for finite cells of the phase space containing many systems: £(x,t) - Ak >> 1.
1f, on the other hand, there is only one system and the density is found according to the -
relative time the system stays in the phase space cell, the system must enter the cell
again several times, i.e. the cell must have a finite size for any finite time of motion.

It is evident that the properties and behaviour of the coarse-grained density f depend
to a certain extent on the choice of one or another set of phase space cells. This is why
the notion of subdivision (of the phase space into ‘cells) is one of the basic notions of
the ergodic theory. In particular, as Sinaisz) recently showed, special (Markovian) sub-
divisions can be chosen, which enable one to change over rigorously from a dynamical des-
cription to a statistical (random) one in the form of a Markovian process.

Let us assume that

fx,t) = 7()’, £, A4)* /7(4"’: ¥, 4 ) (2.10.2)

where ?(x,t,A) is the fine~-grained density with a wave length A. It turns out that how-
ever small A - 0 is, the fine-grained f, generally speaking, has a considerable influence
over the development of the coarse-grained density f according to Liouville's equation.
This follows directly from the qualitative picture of the mixing process given in Section
2.4. It is obvious that we have to do with the instability of the trajectories of the
stochastic system expressed in other terms. Let us recall that the time of development of
such instability very weakly depends on the scale of A: T, v |In A| (Section 2.4).

In order finally to get rid of this instability, it is necessary to change over from
Liouville's equation to another one, which automatically excludes the fine-grained density.
This equation will be called kinetic*). In order to exclude the fine-grained density it
is natural to add to Liouville's equation the operation of periodic (for some characteristic

*) This definition is not generally accepted. Sometimes, for example, Liouville's
equation®?), or one related to it®%), is called kinetic. On the other hand, the term
"kinetic equation" is also used, since the work by Bogolyubov“‘) , in @ narrow sense
to designate only the equation for a so-called single-particle distribution fumction.
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interval of time At) averaging of the equation (for f) over all possible functions of 2,
or more precisely over a complete set of such finctions. If as the latter one chooses
é-functions in each of the phase space cells [f(x,t) = I, £, - 8(x - xi)] this will give
us a clear picture of averaging over the position of the trajectory of the system in a
phase space cell. Moreover, the trajectory distribution inside the cell is considered to
be uniform. This latter hypothesis, necessary for carrying out the averaging operation,
is the basis, explicit or implicit, of all the methods of obtaining a kinetic equation®®).
The "'complexity'' of the usual systems of statistical mechanics and the "'complication' of
their trajectories afford intuitive justification of this hypothesis. These intuitive
considerations are formulated mathematically“) by going to the limit N+ o, V + o, N/V =
const, where N is the number of particles in the system, and V its volume (for further de-
tails of this method see Section 2.13). Other justification can be obtained by means of
modern ergodic theory (see below).

let us explain the physical meaning of the averaging in terms of trajectories. As
already observed above, in reality we are always concerned with a single trajectory of a
single system (a finite number of systems, interacting or not, equivalent to one system in
the unified phase space -- so-called I'-space). The motion along this trajectory can be
split into two processes: mixing in a small section of the phase space (A + 0) in the
immediate vicinity of a given point of the trajectory, and transition from one such section
to another throughout the whole of the accessible region of the phase space. The latter
process is exactly described by the kinetic equation, while the first is equivalent to
averaging in time or, because of the ergodicity, per phase cell. From the physical, or
'rather, mechanical point of view, the initial process (in I'-space, see Section 2.12) is
averaging in time (first process).

The instability of the solutions of Liouville's equation for a stochastic system
generalizes the standard notion of an improper problem for the equation in partial deriva-
tives, a notion introduced by Adamar (see for instance Ref. 58). This means that there is
no continuous dependence of the solution on the initial conditions.

The Cauchy problem for Liouville's equation -- the wave type equation -- is always
proper in the usual sense, namely for a finite interval of time and with the 'distance"
between the functions determined through their difference [for instance, p(f,$) =
max |f(x) - ¢(x)|, see Ref. 58]. However, the parameter A of fine-grained density (2.10.2)
can be taken as the "distance" between the distribution functions. When A + 0 the func-
tions f(x,t), ¢(x,t) are considered to be close independently of the values |f|, |¢],
provided T + ¢ in the usual sense. It is evident that the distribution functions that are
close in the sense indicated are characterized by an infinitely small trajectory shift;
this is precisely the physical meaning of the new definition of "distance' between the
functions. If, further, the asymptotic solution of Liouville's equation with t + =« is
considered, the problem becomes improper and therefore requires special methods of solu-
tion. One of them is precisely the kinetic equation method.

Recently, completely independently of statistical mechanics, various methods of
solving improper problems of a completely different kind have been developed. The most
complete survey of this work is to be found in a report by Lavrent'ev”). One of the
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methods, using a regularizing operator, proposed by Tikhonov“'), recalls the kinetic
equation method in its approach. It would be interesting to make a more systematic com-
parison of both classes of improper problems.

In comnection with the averaging operation, the notion of the probability of transi-
tion (between phase space cells) naturally arises, and this can be calculated on the basis
of the dynamical equations and the above-mentioned hypothesis concerning the wniform
"'spreading” of the trajectory over the cells.

The transition probability enables us not only to obtain a most general kinetic
equation of an integro-differential type®'’*®), but also to describe the fluctuations
neglected by the standard kinetic equation. Description of the motion of the system in
terms of transition probability is called the Markovian process. Its characteristic
feature is independence from the previous history of the motion. For arbitrary subdivision
of the phase space the probability of transition between the cells of the subdivision, de-
termined by the measure of the corresponding regions, generally speaking depends on the
previous states. This did not allow of rigorous transition from the dynamical equations
to the Markovian process”) in spite of numerous attempts. Only recently Sinai succeeded
in constructing special subdivisions for which such transition proved possiblesz). These
Markovian subdivisions have, generally speaking, a very complicated structure. Therefore,
in the present paper, we shall restrict ourselves to obtaining the kinetic equation only,
as the simplest method of describing a stochastic process.

The solutions of the kinetic equation are generally speaking stable and thus again
have the usual physical sense. However, this stability is bought at the cost of part of
the solutions of the original Liouville equation, which are unstable. They describe the
growth of the fluctuations. A priori it is not at all obvious that the stable solutions
of the kinetic equation (of the type with relaxation to an equilibrium state) generally
exist and, moreover, describe in some sense the overwhelming majority of processes observed.
This is due mainly to the fortunate fact that our world is in a strongly non-equilibrium
state. If we had to describe the miserable phenomena which could still occur in a state of
statistical equilibrium it would perhaps be just these processes of formation of large
fluctuations that would be the most important. We should be faced with the very difficult
dilemma of nevertheless devising some way of making a stable description of the growth of
the fluctuations, or of generally rejecting the requirement for stability when describing
physical processes; In any case, the statistical physics of such processes would appear
rather wumusual from the modern point of view. As an instance, one can cite the present
method of describing the growth of large fluctuations a posteriori, namely under the con-
dition (afterwards) of the formation of fluctuations with given parameters"’“). Such a
description is made by means of an equation similar to the kinetic one and is stable. How-
ever, it is clear that the most important feature of the law of physics -- the possibility
of prediction -- will be lost. These questions will be discussed further in Section 2.13.

Since the processes of relaxation and growth of the fluctuations are reciprocally re-
versible in time, the kinetic equation which describes only relaxation is of necessity
irreversible. It is clear that this in no way means the physical disparity of both direc-
tions in time, or the existence of "the time arrow', the current expression”) , but is the
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consequence of deliberate exclusion of reverse processes which are in principle possible,
but are unstable (for more detail see Section 2.13). It is interesting to note that this
point of view, which is perfectly natural for present-day ergodic theory (see Section 2.4)
is not shared by many of the physicists (see for example Ref. 70).

As far as we know, so far no-one has attempted to obtain a kinetic equation by means
of ergodic theory. Generally the statistical element when obtaining a kinetic equation is
just to postulate in one form or another, for instance the assumption of the absence of
pair correlations in Boltzmann's first kinetic theory, the Bogolyubov condition of correla-
tion relaxations“’ss) or the random phase hypothesis in the quasi-linear plasma wave

theory“).

In this paragraph the kinetic equation for the basic model (2.1.11) will be obtained
without any a priori statistical hypotheses, on the basis of the results of the ergodic
theory (Sections 2.3 and 2.4). A comparison of our approach to the problem and that of
present-day statistical mechanics will be made in Sections 2.11 and 2.13. Now let us note
only that the kinetic equation which we are just about to obtain is similar to the so-
called master equation of statistical mechanics, since it relates to I'-space. This is the
only possibility for a one-dimensional system of the type of the basic model. In the many-
dimensional case a kinetic equation of another type in so-called u-space is possible (see
end of Section 2.12).

Since for our model the perturbation is small (e + 0), the kinetic equation must have
the form of an FPK diffusion equation (Fokker-Planck-Kolmogorov)®®***) (2.10.10). It is
determined, as is known, by the two first moments ((AI);), and ((AI)3), where the index 1
signifies that the mean value is taken per unit of time (one step in our case} and averag-
ing is carried out by means of transition probability.

Let us recall that the first moment ((AI),) describes the systematic variation of the
momentum and is equal to the mean rate of its variation. The diffusion itself is described
by the second moment ((a1)2), which is equal to the mean rate of I "'dispersion". All the
statistical properties of this process are linked just with the latter quantity and it is
only owing to this quantity that the FPK equation becomes kinetic in the sense indicated
above. Hence it can be concluded that for transition to the kinetic equation it is neces-
sary for the quantity (AI)? to increase (on the average) =« t.

As noted above, averaging over the transition probability or the phase space cells is
not different from an approximate description of the development in time of one of the
systems of the statistical ensemble determined by a single dynamical trajectory. There~
fore when calculating ((AI)f) the original averaging should be carried out in time. Let
us write the variation 1 for one of the systems of the ensemble in the form:

"
I,,=1,-¢ 2., /,a (é.) (2.10.3)
oy ! © k:o

where for the sake of simplicity we neglect the dependence of h, on which will be taken
into account when calculating ((Al)};) (see below). We find
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(‘.‘If:-‘ iz‘[é ll:(%} "“% Aa @.) 1;‘, (({.}_/ (2.10.4)

In order to obtain the kinetic equation it is necessary for this value to increase {on the
average} in proportion to time (= n}, namely it is sufficient to ignore the second sum.

It is precisely that sum which includes all the instability of the stochastic motion and

also its reversibility (and hence the fluctuations), since this sum depends on the correlation
of phases that are successive in time. Accordingly, it is sufficient for us to require

the absence of pair autocorrelations (Section 2.3). If, moreover, the motion is ergodic

in phase, then:

(1)} = < (AI}4Z> £% < A:> (2.10.5)

Let us note that the rejection of the second sum (Z;) in (2.10.4) is not a trivial
mathematical operation, since I, is of the order of the first sum ():}‘( hg (©) ™~ hg » /).
The rejection is possible only on the average, since I, oscillates. In principle, this
procedure is similar to the averaging method in non-linear mechanics’). Moreover, we
simply reject such special initial conditions when the second sum is much larger than the
first for a long time (fluctuations).

It would seem that it is the ergodic theory that provides justification for the re-
jection of I, in (2.10.4), even weak mixing being sufficient (Section 2.3). However, in
reality the situation is more complicated. The point is that according to the ergodic
theory mixing, and in particular the disappearance of pair correlations, takes place only
asymptotically when t + =, i.e. it takes place parallel to relaxation to statistical
equilibrium. But we wish to describe the relaxation process itself. Another aspect of
this difficulty is that mixing with respect to the phase 0, which we should like to regird
as a "simply random' ("microscopic'') parameter, is necessarily accompanied, by virtue of
the equations of motion (2.1.11) by mixing with respect to the momentum I, which should
play the part of a diffusion ("macroscopic'') variable. Therefore, at first glance it seems
generally impossible to apply the kinetic equation to inhomogeneous distributions and this
means that it completely loses its sense. These difficulties were thoroughly analysed by
Krylov”) who came to a pessimistic conclusion.

It seems to us, however, that a solution can be found by using an idea of
Bogolyubovs"’”) of introducing different time scales into the problem. In the case of
the basic model it is a question of two kinds of time -- the dynamical mixing time T, 1
(one step) and the I diffusion time: 1p~ e~? (steps, see below). Asymptotically when
€ - 0 we can thus separate both processes with an arbitrary degree of accuracy').

Let us make a more accurate formulation of the conditions of such separation of mixing
from diffusion. For this we will calculate (2.10.4), having split it into sub-sums with a

*) A comparison with Bogolyubov's theory, where other time scales are introduced, will be
given in Section 2.13.
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given difference m =k - £ (2 = 1,2, ...) and introducing the pair correlation coefficient
p(m) = (hy (0)) * hy (8,)) / (h} (©,)). The sum vhich is of interest to us turns out to
be asymptotically (n + «) equal to: I, ~n (hz)) . 2;;1 p(m), namely proportional to n
like the first sum in (2.10.4). Therefore the (FPK) kinetic equation remains valid also
when the correlation exists (with another diffusion coefficient), provided the sum Zp(m)
converges. In the opposite case I, increases faster than t and the kinetic equation is in-
applicable. '

The sum convergence condition can be written in the form:

pPls) < &% s 4, & — o (2.10.5a)
This is the more accurate condition of application of the kinetic equation for systems of
the type under consideration. From this condition it can be seen, in particular, that weak
mixing is insufficient since generally speaking there is no limitation of the rate of de-
crease of the correlations. Stochasticity is a sufficient condition because it includes a .
requirement for positive K-entropy (Section 2.3). In the latter case p(m) = e'h'm = g"
(8 < 1; h = K-entropy) and for the second moment the following expression is obtained, de-

fining (2.10.5) more exactly:
-7
<@I),z> = et< A; > (- ﬁ} (2.10.5b)

When the K-entropy is sufficiently great (h >> 1) correction is small. If, however, h << 1,
it is necessary to take into account not only the change of the second moment and consequently
also of the diffusion coefficient (2.10.12), but also of the dynamical scale of time T h-3,

It should be noted, finally, that the exponential decrease in the correlations when
h > 0, although not a necessary condition, considerably increases the accuracy of the
statistical description by means of the kinetic equation.

As noted above, the mixing process covers not only the phase © but also the momentum I,
vwhich on the other hand is an independent variable of the distribution function. In order
to overcome this difficulty let us split I into two parts:

I= 7+ _’f‘ (2.10.6)

a diffusion (I) and a dynamical () part, so that the mixing process affects only I and not I.
On the other hand the diffusion is now determined only with an accuracy of the order of the
value T, which must of course be sufficiently small for this whole procedure to have a
physical sense. The value of I can best be estimated from the slope of the extension
eigenvector, i.e. from the slope of the extending asymptote (2.4.14):

(A])°= _’f ~ ._f(._- << 1 (2.10.7)

-]
Thus there is a minimm size (AI,) of subdivision cell beyond which a kinetic description,
i.e. a description by means of a kinetic equation, becomes inapplicable. The distribution
function f inside the minimal cell should be considered constant.
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The size of the cell (2.10.7) may be decreased if one considers the transformation to
be in N steps. Then e + eN; K, KT: (see Section 2.11), but the ratio Tp/1 ~ Ne?)™?
decreases. The condition Tp ™ 1, determines the maximum permissible length of the dynami-
cal mixing process: N, €72. Whence the absolute minimum size of cell is:

(AI)":‘.“ ~ e- Ck/e'.

where h ~ 1n K, is the K-entropy and ¢ ~ 1 is a constant depending on the required accuracy
of description.

(2.10.8)

It should be stressed that the limitation of the size of the phase space cell, and con-
sequently also the permissible subdivision, relates only to the description of the relaxation
process by means of a kinetic equation and does not extend to the asymptotic theorems of the
ergodic theory. In particular, this limitation no longer applies for an equilibrium state.
Let us note, however, that in any case statistical mechanics has to do with finite, although
arbitrarily small, phase space cells, which is equivalent to using a coarse-grained distri-
bution function™. Often it is not specially stipulated [see for instance Ref. 65], but
simply implied that the kinetic equation gives an incomplete description according to part
of the variables (say, according to the momenta), while the remaining variables (the phases)
determine the transition probability. In certain problems these '"random'" variables are out-
wardly camouflaged, as for instance in the Boltzmann type of kinetic equation. Sometimes
imperfections of this kind lead to direct ambiguities, and in particular to the erroneous
assertion that the "exact” entropy of the closed system does not increase").

Returning to the FPK equation, let us note that the first moment ((AI),) must be cal-
culated with the same accuracy as the second (2.10.5), namely with an accuracy ~ €2. Let
us use expression (2.1.12) for this and take into account that 1 + 0 (et = comst);

. - - ] = L - . = 2
that all the functions are continuous. We obtain:

((3 I}1> = %_—;% <(AI),Q> . (2.10.9)
Taking into account this relation, the FPK equation
~p 2 /7 12% /7 2
5'5 =-,§6p. <6I)y>)« £ 25, (F-<Cz)>) (2.10.10)

comes as is lmown"), to the standard diffusion equation

-—

2f - 2/ z¥3 .10.

+) The recent revival of what is called symbolic dynamics") already described by Birkhoff
(Ref. 16, Chapter 8, Section 11) is connected with this.

++) See for instance Ref. 65.
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with a diffusion coefficient

2 2 z

B(1) = <GEI); > I /I‘ > (2.10.12)
2 . 2

The last expression shows, in particular, the validity of the estimate made above of the

diffusion time scale T e 2.

In what follows we shall omit the bar above the function f and shall consider, if this
has not been done by special reservation, that all the distribution fumctions are coarse-
grained ones (f + f).

Relation (2.10.9) considerably simplifies obtaining the FPK equation, since for cal-
culating the second moment a first approximation is sufficient. Landau showed®®) that re-
lation (2.10.9) follows directly from the principle of detailed balancing, i.e. from the
symmetry of transition probability in relation to the initial and final states. Unfortu-
nately, the principle of detailed balancing is far from always being valid, even when there
is a symmetry condition in relation to time reversal. In the latter case the reversal of
all velocities is implied, which generally speaking is not assumed when fornulating the
principle of detailed balancing.

In the general case it is necessary to add to the diffusion equation (2.10.11) the
temm -(3/31) [f ((AI)a)}, where ((AI) a) is the additional (anomalous) rate of variation of
the momentum I. The general relation between the moments in the absence of detailed balanc-
ing was obtained by Belyaevss). A simple example is the crossing of the resonance by a non-
linear oscillator (Sections 1.5 and 2.9). However, in this case it can also be said that
there is no time reversal, since the process is considered for crossing the resonance in a
given direction. A similar situation arises when charged particles move in a given external
magnetic field”) . Even for rapid crossing, generally speaking, a systematic shift appears,
which can be calculated from expression (1.5.7). However, (1.5.7) carmot be averaged simply
over the phase y,, which is no longer, generally speaking, canonically conjugate to the
momentum 1. This is due to the fact that the transformation (2.9.7) relates to a variable
interval of time, which itself depends on the dynamical variables. The scale of this effect,
leading to non-uniform mixing in y,, is characterized by the value V™! << 1 (Section 2.9) and
proves to be of the same order as the constant shift in (1.5.7). Let us note that this effect
is unimportant when calculating the diffusion coefficient.

Dissipation can serve as an even simpler example. Let us go over from the momentum I to
the energy W and put: ((AW)a) = W< 0. Then there is a steady solution of the FPK equation,
which can be written in the form:

f () = /(5}- ez/az’ jh,:_;'i Jlr/? (2.10.13)

This means that there are steady state stochastic oscillations of the energy of the system
under the action of the perturbation, which can be characterized by the effective "tempera-

. 2
Toe (W) == 55

ture':

(2.10.14)
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The energy spectrum of the system depends on the form of the functions D(W), W(W): in par-
ticular, the Maxwellian spectrum is obtained when there is 'balanced” (for the given dis-
sipation) perturbation: -D(W)/W(W} = T = const.

This simple example shows that even when there is damping in a non-linear oscillatory
system processes are possible which are described neither by the classical perturbation
theory nor by the KBM theory (see Section 2.2).

Let us note, in conclusion, that when there is an additional condition for the symmetry
of the momenta I of the system with respect to the sign of the velocities, the principle of
detailed balancing and with it also relation (2.10.9), which for several degrees of freedom

is written in the form") :

<(al:)>= 2, -::,;—33- <CI)(ade)> (2.10.15)
% <

directly follows from the time reversibility. As a simple example one can take a system of

weakly coupled oscillators for which the unperturbed canonical momenta depend on the squai‘es

of the velocities. In particular, for the one-dimensional case this follows directly from

the results of Ref. 38.

2.11 Transition to continuous time, or the general case
of the interaction of resonances

In Section 1.1 we began by studying the motion of a one-dimensional non-linear
oscillator under the action of external perturbations. In the special but perhaps more in-
teresting case of stochastic conditions we had to simplify the problem and go over to the
basic model (2.1.11). The most important feature of the latter is discrete time. Although
in itself the transition to the transformation in place of the differential equations does
not limit the generality of the problem, since such a transition can always be carried out
by means of an ordinary S-operator'), the specific form of the basic model (2.1.11) is un-
doubtedly a certain special case of the original problem.

In this paragraph we shall endeavour to extend the results concerning the stochasticity
of the basic model to the general case of the interaction of resonances (Section 2.1),
namely to a one-dimensional non-autonomous non-linear oscillator of type (1.1.1). What con-
cerns us mainly are the three basic parameters of a stochastic system -- the criteria of
stochasticity, K-entropy and the diffusion coefficient.

For the starting point for our argument we will take the elementary model (2.8.1)
which is almost stochastic when k >> 1. The term "almost" implies the existence, generally
speaking, of small "islets" of stability for any k + « (Section 2.8). This fact has so far
prevented a rigorous study of the stochastic properties of the elementary model (see
Section 2.4). Let us point out that our idea of its stochasticity is based not only on
physical intuition but also on the results of various numerical experiments, which will be
described in the following chapter.

With regard to extending the stochasticity criterion to the case of a arbitrary non-
linear oscillator (1.1.1) or to the case of continuous time, as we shall say henceforth

*) See for example Ref. 55.
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for the sake of brevity, this has in fact already been done in Section 2.6. Let us merely
recall briefly that this extension was possible because the mechanism of stochasticity is
connected with the expansion and overlapping of the stochastic layers of resonances, which
always exist in one form or another, the motion inside which, in the final analysis, amounts
to the elementary model.

From the point of view of the set of resonances (continuous time) the basic model re-
presents a special case in the sense that there are completely defined phase relations be-
tween the different resonances. The possibility of directly transferring the stochasticity
criterion for the basic model (2.5.1) and (2.5.2) to the general case of the interaction of
resonances shows that the stochasticity criterion does not depend on phase relations. This
conclusion is also confirmed, in particular, for the very special case of periodic crossing
of the resonance (Section 2.9). Unfortunately the same cannot be said of the two other
characteristics of stochasticity -- K-entropy and the diffusion coefficient.

Let us begin with the entropy, considering a transformation of the basic model type:

fo= pr kfCr)
Y= ¢t g K fl)

where f£(y) is a function that is periodic according to ¢ with a period of one. In what

follows we shall call the transformation a cascade, in order to stress the discreteness of
the time"). We shall give the description of the motion in terms of continuous time the
standard name of flux. What now interests us is the transition from the flix to the cas-

cade, the stochastic parameters of which we know how to calculate.

(2.11.1)

It is not difficult to verify that in the general case the cascade will not have the
form of the basic model. For this let us consider transformation (2.11.1) in two steps:

= P+ l:{(qz}-f- /if(({/* P+ £fcer)
% = (//+.Z(cf+ kfce)) + Lelerpekfly))

(2.11.2)
In the general case it does not amount to (2.11.1), especially as this concerns a trans-
formation with an arbitrary number of steps -- N. In the special case of k >> 1 the last
term plays the main role in (2.11.2) so that the effective value of the stochasticity para-
meter is K, ~ k?. In the same way, for a transformation with N steps KN ~ kN This result
could also have been obtained directly from the expression for the K-entropy of the basic
model (2.4.19), which, of course, should not depend on the interval of the transformation:
h=z (A/N) 1nl(~= 1n k.

The quantity KN n s§ is the parameter of stochasticity of the cascade, which thus depends
exponentially on the interval of the transformation. However, if we have a flux this
stochasticity parameter is given: s a n¢/A, and consequently the expression for the K-en-

tropy of the cascade (2.4.21) camnot in the general case be used for the ﬂux'). However,

+) In other words, it is not clear what is the characteristic interval of time of the cas-~
cade to which the parameter s? ~ k, of the flux corresponds.
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in the special case of short kicks or periodic crossing of the resonance the K-entropy is
actually determined by expression (2.4.19) with k, ~ s2. This shows that the K-entropy
essentially depends on the phase relations between the resonances and therefore a general
estimate of it is impossible.

Let us note that this problem does not arise for determining the border of stochas-
ticity, since at the border of stochasticity Ky ~ kv 1. This illustrates the remark made
above concerning the non-dependence of the stochasticity criterion on the resonance phase
relations.

In order to estimate the K-entropy of the flux one can, however, consider a case that
is in a sense "'typical", when the phases of various resonances are “random’, i.e. when
there are no special relations between them. Then the only interval of time characterizing
the non-linear interaction of the resonances will be the inverse frequency of the renormal-
ized phase oscillations (Q‘)‘:) and the renormalization, by virtue of the assumed randomess
of the phases, should be carried out with a power n = 4 (Section 2.7). It is easy to obtain
the law of renormalization of a system of resonances of the same order of width, by analogy
with (2.7.13):

[

4 o CA«:) ~
-
(ot a A
n-A [ P
A

(2.11.32)

where (A‘*’)):’ (Am)H are the renormalized and non-renormalized width of the resonance pw = q,
respectively; A is the distance between the resonance values of the frequency w. Here we
used the relation o™ p(Am)H (Section 1.4). In what follows we shall assume for the sake
of simplicity: p~ 1. It is easy to see that as a rough estimate of the entropy one can
put:

Y/ ey

L~ Q. ~ 4 /3 (2.11.3)
: 3 7

There is hardly any sense in making estimate (2.11.3), which we shall call "typical", more

accurate, because of its dependence on the phase relations. In particular, in the case of

the basic model:

Q
h= '3;7 l.. == (2.11.4)

Local instability, characterized by K-entropy, determines the process of phase mixing
[for a system of the type of the basic model (2.11.1)]. The latter can also be described
by means of the phase autocorrelations in a similar way to that mentioned in Section 2.3
for the elementary example of stochasticity. For reasons to be explained below we will .
slightly generalize the correlation coefficient determined above, putting:

2 23-"( n+ / «11.
PP g)= <& LTI @119
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Let us first consider the special case of the cascade (2.11.1) with £(y) = (1/2n) x
sin 2m and assume that n = 1. Expressing y; through ¥,y and integrating by virtue of the
ergodicity (k >> 1) over ¥,¥, we find:

L) = € -—-———-2,.,/, ,,,,, kp) ~ p i B

From this it can already be seen that the laws of correlation relaxation and of the de-
velopment of local instability do not agree, as was the case in the elementary example
(Section 2.3). Moreover, the dependence of the correlation coefficient on q, which occurs
when k < q (p v 1), is of a completely different nature from that described in Section 2.3.
These peculiarities are explained mainly by the fact that the correlation coefficient is
now determined primarily by the region near the stable phases (2.8.7): &y ~ k'i.

Let us now calculate pr(xz) (p,q). For this let us express ¥n through the previous
phases ¥__., ..., ¥ by applying (2.11.1) successively:
n-1

% = ¢Y+rnest /é/h//slf/'f-(‘f-’)/{i@«/-«-...
¢ P i) f = praps £ S G

When k >> 1 the successive phases can be considered to be random*). Therefore the random
quantity Sn(w) when n >> 1 is distributed normally with the parameters:

2 3
<.5'"> = 0; <5,, > = 6‘2::<fz> . %‘— (2.11.8)

(2.11.7)

When calculating p(z) mtegratmn over Y can now replace integration over S, having
assumed that dw/dS ne® */20% » Since dy is proportional to the measure in phase. Assuming
.that q = -p to eliminate the term with y in the exponent (2.11.5), we obtain the estimate:

@/, _ 27253  p2_.)2,3
P (Prp)~ exp [‘ ___3_,2...{/ > k2 (2.11.9)
The characteristic relaxation time of the correlations proves to be of the order of:

-2 /3
-~ _—

Coor = Meor ~ 1( (2.11.10)
which agrees with the "typical" estimate for the inverse K-entropy (2.11.3) [} ~k; A =2n
for discrete time (2.11.1)]. Meanwhile, in the case under consideration ("atypical'') the
K-entropy is defined by expression (2.11.4) or, in discrete time h =~ 1n k.

This difference is probably explained by the fact that the K-entropy is determined by
the behaviour of the system only on the asymptote, while the correlation coefficient is
some integral quantity. From the point of view of the mixing process the correlation

+) The small residual correlations (2.11.6) can be taken into account in the following
approximation, as was done in the previous paragraph (2.10.5b).
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coefficient is a more direct characteristic, so that it enhances the role of the "typical”
estimate (2.11.3) and (2.11.10). It should, however, be remembered that for a cascade of
type (2.11.1) with k >> 1 the difference between the K-entropy and the correlations can have
real value only for some very fine details of the mixing structure (q >> 1) which will not
be discussed here. For q < k the residual correlations are small, even after one step
(2.11.6).

Returning to the flux, it can be concluded that the characteristic damping time of
the correlations, and hence also the mixing, will be determined by the "typical’ estimate:
1, v b7 (2.11.3).

Let us take as an example yet another model, which can serve as a link between a
cascade of type (2.11.1) and a flux. The model is given by the transformation:

‘Pho-( = "Pu + EL; ’C:“ 2'7‘-(‘/1-"” 9:'/
‘7‘204 = 4’1« + (Puo—.{

where ©; is the sequence of T random phases, which then recur periodically. We shall from
now on call this model quasi-random. On the one hand it recalls the basic model, since

it is given by a transformation and the perturbation has a period T. On the other hand,
when 1, + 0, where the interval 1, corresponds to one step, the quasi-random model changes
over to the "typical” flux with a random discrete perturbation spectrum and the distance
between the lines of the spectrum is A = 2n/T. Bearing in mind the transition mentioned,
it is assumed that k << 1.

(2.11.11)

Ft)
T
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Vi £
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Fig. 2.11.1: Time dependence of the perturbation F(t) for the quasi-
random model: Tin is the duration of the interaction; T is the
perturbation period.
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Figure 2.11.1 is a schematic diagram of the time dependence of the perturbation for
the quasi-random model. The model has been further extended by introducing variable (in
particular random) distances between the kicks 7,(7; = Ts) and a finite width of the!
kick Tin’ keeping a constant period T. Transformation (2.11.11) corresponds to the case

of L7 1; Tin = 0. A flux results when TV Tine

Using the results of Section 2.4 one can find the eigenvalues of transformation
(2.11.11):

et /i 5 K= k-G 2504, + 80 ) (2.11.12)

and the directions of the eigenvectors (Fig. 2.8.1):

'Ifj 9: ~ 2 /7( (2.11.13)

If transformation (2.11.11) were unstable (X;> 0) in each step, then the K-entropy would be:
h = kl - {(/cos Zmp). However, in reality in roughly half the cases K; <0, i.e. the trans-
verse vector turns, and hence it can change over from the extension cone to the contraction
cone (Section 2.8). When k << 1, the difference between the two cones is insignificant and
itself depends on k. We can therefore write: h o K", where m > 3. For what follows it is
significant that h cannot depend on T, since under conditions of stochasticity (in a period
T) all the phases (wi + ei) are random.

Let us now turn to estimates in terms of continuous time, having formally represented
the cascade (2.11.1) as a flux with a §-function in time. By virtue of the periodicity,
the spectnum of the flux is equidistant: wpy=n - A= 2m/T. Taking into account further
that the sum of ):-f sin 2n B; ~ Tl, we obtain the following estimate for the amplitude of
the perturbation harmonic and the non-renormalized frequency of the phase oscillations:

Fo k. -

Since the value Q¢ depends on T, it cannot determine the characteristic time for the de-
velopment of stochasticity, and that implies also K-entropy (see above). Renormalization
with a power of n gives: ﬂ:e v Qg . (QN_.IA), or:

k f Tf-"i‘ :%? (2.11.15)
' Q‘fi [(?":) ) 2= ./

The dependence on T disappears when.n = 4 and we thus arrive at a "typical’ estimate
{2.11.3) for a special case of the quasi-random model (2.11.11).

Sl

2
~ fo (2.11.14)

Let us find the phase correlations for this model. It is not difficult to find out
that they are given by the same estimate of (2.11.10) as for the basic model (2.11.1).
The sole difference lies in the fact that for the quasi-random model this estimate is
valid for any k, and also when k + 0 (changeover to flux). In reality the only require-
ment in order to obtain (2.11.9) and (2.11.10) is that the quantity Sn(\p) be the sum of
the random functions (2.11.7). However, this is automatically provided for in the quasi-
random model for any k (2.11.11), provided the stochasticity criterion is satisfied in a
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3
period T [KT% 2 1; see (2.11.14)]. Using (2.11.10) and (2.11.14) we again arrive at a
"typical" estimate (2.11.3).

Let us now turn to the calculation of the diffusion coefficient of the flux. As shown
in the previous paragraph, for this it is sufficient to find the second moment ((AI)3).
Let the variation of 1 be given by the equation:

fg’ = Z‘ Fo- s [ oot + 8,6)) (2.11.16)
n

where the quantities wn(t) , © n(t) slowly vary under the action of the perturbation during

a time ~ Teor Since wy in fact signifies the differences of resonance frequencies, it

will be convenient for us to consider that they may be both positive and negative:

- < w, < ;. In what follows we shall assume for the sake of simplicity that the basic

part of the spectrum is situated symmetrically to the resonance: £; v R, ~ Cnax® The

stochasticity of the flux (2.11.16) corresponds to the condition T

cor ° 4, < 1, where 4,
is the mean distance between the lines of the spectrum ©p -

When t << Teor the spectrum can be considered to be discrete. We find:

e
al ~ Z ’,.f;: [L“ (0t 0.,) ~ S 3.] (2.11.17)
whence
(Af)zxi/(zﬂ)zkz“.f &.,2(1.){' ‘9)
. Punt, W, T -
/ 7t S “ = o (2.11.18)
Y F.

L Qifk DL Gos (2% 8, )-Ga(t e 8,

Llet us first of all consider the most simple case of a discrete spectrum -- an
equidistant spectrum (wn = 10 - BAy), corresponding to periodic motion with a period of
T = 2n/8,. let us further assume that in the limit N + « (4, + 0) the phases o, are dis-
tributed in a circle "“randomly", wuniformly and independently of F,. The last condition is
fulfilled, in particular, for sufficiently continuous dependence of F, on n. Then the
second sum (I) in (2.11.18) is equal to zero and (cos® [(w,t/2) + 8.1 = 1.

PR Al

The first sum is transformed in the usual way into an integral (see for example
Ref. 49):

2 ‘g\“o e
1 —— &
(a1) = 2 S F.. —-:)—“iﬂ-t— don =T Fo g (2.11.19)
- OO0 -~ A‘

whence the diffusion coefficient

> =T j(o) (2.11.20)

where -2
J(s) = _%-*_ (2.11.22)
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is the spectral density of the perturbation. Let us note that the value J(w) remains
approximately constant when there is local transformation of the form of the spectrnum, for
instance upon transition from a discrete to a continuous spectrum, provided the frequency
variation is not very big. Hence it follows, in particular, that expression (2.11.20) for
the diffusion coefficient is wmiversal. The other relations sometimes mentioned in the
literature in the final analysis can be transformed into the form of (2.11.20). For
instance, in Ref. 74 the diffusion coefficient is determined by the sum (in our symbols):
D~ I F; V(w,), where V() is the spectrum of the correlation function. In this case,
however, F_defines a spectral line of finite width ~ 'r;(‘) + SO that the sum I FI’l * V(W) v
a J(0) is simply the renormalization of the spectrum.

Another example is connected with the extension of expressions (2.11.20) and (2.11.21)
to the case of a complete set of resonances (Section 2.7), when the amplitudes an are of a
different order for different values of m, although the corresponding frequencies W 1Y
be very near. In this case one can divide the components of the sum (2.11.19) (this time
over m,n) into groups, in which the Fmn functions are fairly smooth. Relation (2.11.19)
is valid for each of such groups, but the general result is given by the sum“)

FZ
7(w) = Z (:" ) (2.11.21a)
[ 3] LI &

o
which as usual signifies the spectral density of the perturbation.

The result (2.11.20) was first obtained, apparently, by Bogolyubcv”) . Strictly
speaking it is valid only in the limit N + =, but it can also be used approximately for
finite, sufficiently large N. However, in the latter case there is a limitation on the
maximum permissible time:

-1

Cer = L = Duas. (2.11.22)

where ©pin ¥ Ag. For greater times (t » A, >> 1) expression (2.11.19) becomes invalid, but

from (2.11.17) it can be seen that the motion is in that case periodic (wn = #nA,), so that
the kinetic equation is of course inapplicable.

In order to complete the picture a lower limit was added to (2.11.22); in the present
case (2.11.19) 1.~ “’;a;x’ where w_ is the width of the perturbation spectrum, connected
by the uncertainty relation (“’max * Tin v 1) to the duration of the interaction t._ =-- one

in
of the characteristic time scales introduced by Bogoly'ubovs") "). For our basic model
Tin = 0. When t < Tin® expression (2.11.19) is determined by the whole perturbation
spectrum and not only by the value Fy. This leads to the diffusion coefficient depending
on time, i.e. dynamic correlations make their appearance and the FPK equation is no longer

valid.

+) In the general case this scale is determined by the correlation time T (see below).
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The requirements for the phases On formulated above are essential, at least the un-
iformity. The elementary model (2.11.1) with k << 1 (Kolmogorov stability) will serve as
a most simple example. Whatever the length of the interval (perturbation period) of T + =,
the kinetic equation will not be applicable to this system, since it is not stochastic.
Even in the stochastic case the value of the diffusion coefficient, generally speaking,
depends considerably on the phase relations between the resonances, as will be directly
seen from the examples given below.

The requirement for "randommess' of the phases 6, can be replaced, changing over to
the general case of a discrete spectrum, by a requirement for "randomness" of the frequen-
cies w,. Let Aw. characterize the order of the "random’* displacement of the line of the
equidistant spectrum. Then the additional phase displacements g vt - Ar’ and for
t > Mw', the phases become "random'. It is evident that in this case the lower limit
of the kinetic interval (2.11.22) is:

-7

T ™~ 4O, (2.11.22a)

In particular, in order to obtain the maximmm interval it is necessary that Awr e

On the other hand, for any Aw. the phases become random asymptotically when t + =.
The interesting theorem of Kac") relates to this case; it states that the sum

. A
3 = /;%— L2, Ces w (2.11.23)

is an asymptotically (N + =, t + =) random quantity, distributed normally with the parameters
(0,1) (mean and dispersion), provided the frequencies w, are linearly independent, i.e. if
l‘.n % wy ¥ 0; )‘n # 0 are integers. In this comnection it should be noted that the measure
of the linearly dependent frequencies is equal to zero").

For the kinetic equation to be valid it is necessary, however, for the following con-
dition to be fulfilled (also when going to the limit N + «=):

AW, >> 4o (2.11.24)

It would be natural to call just such a spectrum (in the limit 4, + 0) continuwous. It
is a sligthly stronger property than weak mixing (Section 2.3). The latter is equivalent
to a continuous spectrum in the sense that there is no eigenfunction of Liouville's _
equation“) '). From the results of this paragraph it follows that a continuous spectrum
with condition (2.11.24) leads not only to a decrease of pair auto-correlations but also
to integrability of the correlation coefficient, i.e. it ensures the validity of the
kinetic equation (see below). In what follows, the term continuous spectrum should be
understood to mean with condition (2.11.24).

+) Apparently this is equivalent also to the general notion of a continucus spectrum
{A, = 0) without additional conditions imposed in the phases or frequencies.
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By virtue of the foregoing, inequality (2.11.24) can be called the continuity con-
dition of the sequence Wy - The latter is also equivalent to the notion of a completely
uniformly distributed sequence (Section 2.3).

Thus, for the kinetic equation to be applicable in a discrete spectrum the set of
frequencies wy (or phases en) mst be "continuwous''. Let us see what this condition means
in terms of the time dependence of the perturbation F(t) = dl/dt (2.11.16). We require
the quantity (AI)2 = (JF dt)? = SF(t)F(t‘)dt dt’ to vary approximately in proportion to
time in some interval (2.11.22). Let us introduce the autocorrelation coefficient*)

e+t :
(u,t, 4, =[L dtFlt+e) FE) [ FE 1 s
£ Cartit)=[£ (7

by means of which the second moment can be presented, as usual, in the form:

ijzz F?ff’,. dee (2.11.26)

As in the case of discrete time (Section 2.10) the latter integral should converge and
should not depend on t;, t [in the interval (2.11.22)]. In the special case:

o (u) = e'“/'?—"n (2.11.27)
A
we obtéin
2. 2
I =(s 1)4 = F~ (2 (2.11.28)

where the bar, as usual, means averaging in time. The latter expression is valid when
tzT, **) and thus the lower boundary of interval (2.11.22) is now determined by the
correlation time:

~1

[
og A T << W 4,

T P A (2.11.29)

This inequality is a necessary and sufficient condition for the validity of the
kinetic equation for a discrete spectrum; it simply means that the interval (2.11.22) is
non-null. For "typical" perturbation with "random' phases 6, the correlation time becomes

fns . -1
: 4" N Te o
minimal Ty Tin

») The index ""A" signifies the linear model. The correlation coefficient for a flux is
usually called the correlation function; we retain the term 'correlation coefficient",
however, because it is convenient to have a single designation.

«+} For continuwously acting perturbation. For example, for a quasi-random model with a
kick duration of tijn and an interval between kicks of 1o we obviously have tmin * To,
although 1y "~ Tjp << To. However, in this case also the correlation time can be con-
sidered to be ~ 1o, since during this time the perturbation is equal to zero; the
correlation coefficient (2.11.23), however, vanishes for 1, > u > Tin by virtue of the
peculiarity of its definition.
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By comparing expressions (2.11.29) and (2.11.22a) we arrive at the interesting
estimate:

T a0, ~ 1 (2.11.30)

which shows that the "random" displacement of the line b fills the role of its effective
width (in the discrete spectrum!).

So far we have considered the discrete spectrum, i.e. perturbation (2.11.16) with
constant frequencies wy and phases e Such a case occurs, for example, in a pure linear
system, say in a system of linear oscillators with linear coupling. Such a system is
certainly non-ergodic, since it can be transformed into normal coordinates, i.e. into a
system of independent oscillators. Nevertheless, it is possible for such a system to have
the statistical behaviour described by the kinetic equation, in the interval (2.11.22).
For the reasons given, the case of a discrete spectnum will be called the linear
(statistical) model. As already noted, such a model was first introduced by Bogolyubov
and at present is the most widespread in statistical mechanics (see for instance Ref. 49).
This model will be more thoroughly discussed in Section 2.13 and we will do no more than
note in passing that it bears no relation to the ergodic theory and its main drawback is

71)

an upper time limit (2.11.22).

The upper 1imit of the interval (2.11.22) is often called the Poincaré cycle and is
believed to be connected with his recurrence theorem. This conclusion is valid, however,
as we shall see, only in the case of a discrete spectrnum, i.e. for a linear model. Taking
into account the non-linearity and the resulting stochasticity, the spectrum becomes con-
tinuous and the upper time limit (2.11.22) no longer exists.

Let us make a more detailed study of the foregoing case. Let us represent the
perturbation F(t) in the form

Ft) = f£C&£)- v(¢) (2.11.31)

where f(t) is the given external force (divided by the frequency) having a discrete
(in particular equidistant) spectrum with a mean distance between lines of 4; v(t) is the
velocity of the oscillator. It is obvious that the formation of a continuous spectrum is
comnected precisely with the last quantity v(t) = vo,(t) * cos ¢(t) and is the result of
the mixing process in the phase ¢(t).

Taking into account the fact that for small perturbation v, (t) varies insignificantly

as compared to the phase, the velocity correlation can be expressed through the phase
correlation (2.11.5):

- U/
Pr(e) = ‘r{“ui_.zr Yo~ p¥pg) e
vt

An explicit estimate of the latter correlation coefficient cannot be given in the general
form, but from the consideration mentioned at the beginning of this section it follows that
plgz) decreases with u exponentially with a characteristic time, determined by the ''typical"
estimate of the K-entropy (2.11.3).
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The perturbation correlations F(t) depend, generally speaking, in a complicated way
on the linear correlations (2.11.25) of the force f(t) and the non-linear correlation of
the velocity v(t) (2.11.32). Let us consider the two limiting cases.

First let

T h o< ! (2.11.33)

We will call this case quasi-linear by analogy with the corresponding approximation in
plasma wave theorys‘). In this approximation the correlations are determined by the ex-
ternal force: p(F,F’) = p(f,f’) when u ¢ T[f = f(t); £’ = £f(t + u)] and decrease with a
characteristic time 7 A (see above). When u 2 T the linear correlations p(f,f’) increase
again on account of the quasi-periodicity of f(t}. In the simple case of a periodic force
f(t), the correlation coefficient p(f,f’) is also periodic. This leads to a strong in-
Crease in linear correlations in the intervals: kT < u < kT + Tps k=1,2, .... Itis
here that the velocity correlation: p(F,F') = p(v,0’) becomes significant with a charac-
terestic time 1~ h™! (2.11.3). The schematic variation of the total correlation co-
efficient is shown in Fig. 2.11.2 as a continuous line; the dotted line represents the
non-linear correlations p(v,v’).

It can be said that in the quasi-linear case there is a region of applicability of
the linear model, confirmed for t > T by the non-linear model.

In the opposite limiting case

>~. [ »>» {1 (2.11.34)

the linear model is not applicable at all, but the decrease of the correlations is charac-
terized by the dotted line in Fig. 2.11.2, provided the following additional condition is
fulfilled

Ouey 2 b ~ 82,2 (2.11.35)
The physical meaning of this condition is that there must be several renormalized reso-
nances which destroy each other. In the opposite case only one renormalized resonance is

formed and the maximm perturbation frequency ~ Wpax << QN:’ so that only a narrow
stochastic layer forms near the separatrix of this resonance (2.6.16).

Let us note that conditions (2.11.35), (2.11.33) and (2.11.34), are generally
speaking independent, since 13! ~ Mw. < w . . But for "typical” ("random') initial phases
Gn we have: bop vowp s SO that the developed stochasticity corresponds only to the quasi-
linear case {2.11.33).

In conclusion, let us consider a few examples of calculating the diffusion coefficient.

Let us begin with the basic model (2.1.11) which was thoroughly studied in the previous
Section. Let us express the diffusion coefficient for it through the continuous time (flux)
parameters,  introducing the é-fumction into the transformation. Let us assume hO(O) = cos O
= cos wt to be definite, then Fn = ¢/T, and from (2.11.20) we obtain:



- Q0§ -

Fig. 2.11.2: Schematic diagram of the autocorrelations of the perturba-
tion F(t) in the quas1-11near case. The dotted curve represents th non-
linear correlations p(v,v') with a characteristic time ~ h~! Ao‘/
the continuous curve represents the total correlations p(F,F’ ) termmed
in the interval of applicability of the linear model (t < T) by the linear
correlations p(f,f’) with a characteristic time T,V Aw‘

, £?
2 = AT

which agrees exactly with (2.10.12), if it is taken into account that T characterizes the
duration of one step.

(2.11.36)

The diffusion coefficient can be estimated in another way, which can be useful in
some cases. Keeping in mind the picture of "touching' renormalized resonances, we can

write:
2 3 14 2
. (P 2
D, ~ (Au)z Q‘*z-vQ*,z'v ._A_‘L ~.§__(¢0’) (2.11.37)

The index w shows that the diffusion coefficient is obtained according to the frequency.
The latter expression shows that it agrees in order of magnitude with (2.11.36).

The first of the estimates (2.11.37) is valid for any ''tjpical” system, and the
second only for resonances in the first harmonic: pw = q; p = 1. Comparing it with the
"'typical" estimate of K-entropy (2.11.3), we arrive in this case at an interesting relation:

3
D, ~ L (2.11.37a)
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Let us note that if o is not a canonical variable it is necessary to change over to
the I diffusion coefficient: DI =D= Dw + (d1/dw)?, before inserting it in the kinetic
equation.

Let us consider the quasi-random model

t'= o+ o e 2m (s
wi=¢+ ¢’

modified so as to obtain the resonances of the pth harmonic: pw = qf2, where w = 2mp/T;
= 2n/T. The distance between resonances, i.e. between the values of the perturbation
frequency: A4, = 2n/T. In temms of continuous time [compare with (2.11.14)] we have:
Q; ~ pFo pk/v;f; (Am)f_1 ~ k/p/T. Renormalization gives (2.11.3a): 2; ~ (pk) /3;
(aw);  k-p"7. Using the general estimate (2.11.37) we find: D~ ()2 2~ k&,
which agrees in order of magnitude with the general fornulae [ (2.11.20) and (2.11.21)7]:
D, ~ F§/a ~ K2,

Let us now study the diffusion by periodic crossing of the resonance.

The simplest case is fast crossing of the resonance, which is described by transforma-
tion (2.9.7) of the basic model type. From expression (2.10.12) we find directly (for
symbols see Section 2.9):

2 2
<Ge), > R.
D, = — 1 —.Q_ = =fe, =L¢ 2.11.38
“ 3 3 V. ( )
or in the flux parameters:
14 2 L8
Do~ S s F (w’)? (2.11.39)

e, Ky 29
The latter estimate agrees with the general expression (2.11.20). However, the region
of applicability of this expression, as for the previous example, is determined by the con-
dition t > T = 21/Q,, so that the quasi-linear region in the present case is completely
absent because of the special phase relations between the resonances.

For slow crossing of the resonance the frequency change is almost constant and almost
reversible (Section 1.5). Let us therefore consider the total frequency change Aw . Per
modulation period, i.e. after two crossings (there and back). From expression (2.9.10) we
find

20,2V,

O (e LT e AT L) gy
_ S (34- .i-)

VYo Vaav-3 v+l
{2.11.40)

Since the £ distribution is now already completely non-uniform (see Section 2.9), without
further calculation one can obtain only the estimate:
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D= E21)p 162.V 24 | PMV}Z...
w

%
A : z 3
w16 @RIk g yys (610G M
Seu i ' feke’d (2.11.41)

Here the numerical factor takes into account the number of combinations from the logarith-
mic terms in (2.11.40).

Let us note that for slow crossing the dependence of the diffusion coefficient on the
parameters (2.11.41) is roughly the inverse of what it is for fast crossing (2.11.39). In
particular there is the seemingly paradoxical result that the diffusion coefficient de-
creases with the increase of the perturbation. The explanation is that the parameter V
decreases similtaneously (with a given ), and with it also the phase interval E, in which
a difference effect (2.11.40) ensues.

Thus for periodic crossing of the resonance the diffusion rate as a function of
Qf( ~ F (the perturbation) or V (rate of crossing) has its maximm in the region of V ~ 1.

Above, we ignored the possibility of capture upon slow crossing of the resonance. In
fact, when V + 0 capture plays a considerable part (Section 1.6) and the diffusion process
becomes extremely camplicated. On the one hand, as a result of the decrease in the phase
oscillations the process is found to be partly reversible and this leads to a reduction of
the diffusion. On the other hand, stable capture is possible only for one direction of
resonance crossing, and this causes a systematic frequency displacement. The biggest
possible value of the diffusion coefficient can, apparently, be estimated as:

(5
Disay ™~ (2) 2. (2.11.42)

It does not depend on the perturbation at all.
2.12 Many-dimensional non-linear oscillator. Arnold diffusion

In this section we shall try to extend the results obtained above to a many-dimensional
autonomous system consisting of a number (N) of weakly coupled non-linear oscillators. As
noted in Section 1.1, a many-dimensional oscillator can be reduced in a first approximation
to a one-dimensional non-autonomous oscillator of type (1.1.1). Since, as Anosov“) showed,
a stochastic system is coarse'), the higher approximations cammot jeopardize the stochas-
ticity or even substantially change its parameters. However, such a conclusion does not
apply to the region of the Kolmogorov stability, where the many-dimensional system is con-
siderably different from a one-dimensional one“).

Let us first consider a more ‘accurate transition to a one-dimensional oscillator in a
first approximation. The essential difference from the given external perturbation is that
the perturbation frequencies now are not constant, since they represent a combination or
the frequencies of other non-linear oscillators.

+) i.e. structurally stable; a notion introduced by Andronov and Pontryagin"). See also
Ref. 85.
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The main resonance of a many-dimensional oscillator is the so-called simple reso-
nance, or resonance with a multiplicity of one, i.e. simply one resonant relation between
all the frequencies:

e
2—: n, o, (I,’J = (n,0)= o (2.12.1)

This relation defines the series of intersecting surfaces (for arbitrary integers n;) in
the momentum space or a beam of planes intersecting at the origin in the frequency space.
In what follows, frequency space should always be understood, unless a special reservation

is made.

Let us write the equations of motion in the form

* I ¢9 -t ~ Py ,9
I,=-¢ _;(9(_‘—1—) €2, n, H.,e (e’
k n) ) (2.12.2)

O= Wy (I;)-r- 3 PH(L;,6;)
‘ LEp
where H = Z(n) ﬁ( n) el("’e) is the Hamiltonian; all the quantities without indices and
in brackets represent N-dimensional vectors, and k, j =1, 2, ..., N. Ignoring in the
first approximation the temm with 8}1/31k (Section 2.3) and introducing the resonance phase:

Foy = 1,8 (2.12.3)

we can write near one of the resonances in the absence of overlapping:

y,(n ]

-

J e-cfn, HC»/
(2.12.4)

y«(h,: (#, 0

“and the phase equation is:

e ~ “ -
()me- <¢iz o’ ')I “; /1(”)6 %"__,__Qze“yiu (2.12.5)

where Q(n) is the phase oscillation frequency of the resonance concerned, which is deter-
mined by a certain mean non-linearity for all the oscillators. The phase oscillations
change the plane (2.12.1) into a resonant layer with a thickness of

(Atc)(") ~ (2.12.6)
where |(n)| is the modulus of the vector (n). The latter expression generalizes the
notion of the width of a one-dimensional resonance (Section 1.4).

A resonance with a miltiplicity k occurs when there is similtaneous fulfilment of k
resonant conditions (2.12.1), which occurs in the region of intersection of k resonant
layers. The motion near the multiple resonance is described by a system of k phase equa-
tions of type (2.12.5):
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LYY e . — 2 ‘_. (,{I J.
¢ == Z‘ , .er. e (2.12.7)
J

where the indices 1, j =1, 2, ..., k signify the number of the vector (n), and the phase
frequencies are given by the expressions:

2 _ [ YA J. ’\—J
Q= g ST A
: . ~ o (2.12.8)
I““—"-—ci Ze,hk['ﬁl.e

Gf= (nhw)

In particular, for small oscillations eVl & wj (the sign depends on the choice of a
stable or unstable fixed point respectively, see Section 1.4) and a.system of linear equa-
tions is obtained.

As already noted, in the stochastic case there is no reason to expect any new effects,
but it is of interest to obtain many-dimensional estimates in a more explicit form.

First let us consider the total set of resonances and determine the critical value of
the smoothness parameter of the 2. (Section 2.7). As in the one-dimensional case it depends
on the convergence of the sum I_ ~ z(n) (&) m "~ }:(n) n(n)/l(n)l. As usual we shall con-
sider only first order resonances and moreover restrict ourselves to non-renormalized reso-
nances. As explained in Section 2.7, in this way we obtain the lower estimate for Loy
which supplements Moser's upper estimate"). What follows depends on the type of perturba-
tion chosen. Let us study two cases. In the first we put:

~ -(:+3)
H(m; ~ I‘l n, (2.12.9)

&
This expression generalizes the one-dimensional (2.7.6) and means that the smoothness of
the perturbation is characterized independently for each degree of freedom by its own para-
meter £;. Inserting (2.12.9) in (2.12.6) and using (2.12.5) we find:

/A
—t = ~(l-+3)1 "2
21’ >0 5 ("Z:‘ i, Hk-j;j n,J. J )ﬂw’)] (2.12.10)

where only the quantities on which the convergence of I, depends are left. The convergence

is determined by the limit n; + . For a given (w) all n, = = |(m)]. Therefore the sum

-(2;+3)/2

J converges, if:

l = Z.,,M >-7 (2.12.11)

L Im ™

which agrees with the result of Section 2.7 for continuwous time (2.7.31).

However, the perturbation can also be determined otherwise:
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~ —(@+3)
H,, ~ 1~ @

vhere |n| = Zilnil. Moser accepted just this determination’®) (see also Ref. 20). It
signifies that the combined derivatives of the force are continuous only up to number £ in-
clusive. The sum in which we are interested now takes the form:

Zspo > <§‘l “;n, l‘tl-e—s

oy

(2.12.12)

1, - &+3
) /zjo-;; > (Z;«"" *

and converges under the condition:

f > =3 (2.12.13)

Comparing this value with Moser's result"), we find that the critical value of the smooth-
ness of the perturbation lies in the interval:

LN-3 < !‘ < RN+ 2 (2.12.14)

Let us note that the width of the interval for zc, which is five if £ is a real number, and
four if £ is an integer, agrees with the width for the one-dimensional transformation:

1< “c £ 6 (Section 2.7). This question will be further discussed in the section devoted
to numerical experiments (Section 3.3).

Let us now make a more accurate estimate of the border of stochasticity according to
the overlapping of the first order resonances. We shall limit ourselves to the case of
almost harmonic oscillations, i.e. we shall assume that in a zero approximation there is
only the basic hammonic wy for each degree of freedom, and the amplitude of the higher

harmonics nyw; are of the order of ni-l

Let us further assume that an m-fold interaction takes place'). When calculating the
number of frequencies of the perturbation (and of the resonances) only those combinations
of oscillators which include the one whose motion interests us should be taken into account.
Then in a first approximation over € the quantity of resonances is:

- Lo 4
N, = C"’:. 251, G~ (2.12.15)
- (=-1)7
This expression is easily extended to the case when there are n, first harmonics of com-
parable amplitude:

- % 4
o = ~
A= Col @re) .. @row) - (2.12.152)
1 ~= z -~ (w-1)7
In the second approximation (e?) the number of resonances increases considerably for two
reasons: firstly on account of the higher harmonics, and secondly on account of the
appearance in each of the oscillators of the basic harmonic of all the rest.

+) i.e. direct interaction only between m degrees of freedom.
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The first effect can be ignored when 2m v& < 1. Indeed, it increases the number of
resonances 2m-fold, but in return the width of the resonance is reduced by /€ times. In
the opposite case (2m v >> 1) the total width of the resonances increases the maximum by
m VZa (/&)™ « e™ times independently of N. This effect is neglected in what
follows.

The second effect is the main one and it leads to an increase of the number of reso-
nances by m - ™1 Nm'l/(m - 1)! ~ N; times, so that N, ~ N}. Similarly it can be shown
that N, le. It is not difficult to verify that the position of the border of stochas-
ticity by order of magnitude is the same in any approximation. Indeed, Zs(k) « ek/Z Nk «
(Ve N;)k ~ 1. The latter estimate follows from the fact that vE N; is a dimensionless
quantity (for further details, see below). It is true that this cannot be said of the
stochasticity parameter s(k) « Zék), which diverges when k + =, if v&e Ny > 1. However,
this divergence is fictitious since it is necessary to renormalize the resonances (see
below).

Thus it is sufficient for us to determine the border of stochasticity in the first
approximation. In the subsequent estimates we shall encounter sums of the form:
Iy = ).": nifi’ where n, = 1 and fi are some quantities. For such sums we shall take a
"typical" estimate, corresponding to a "random': set n;: Ip v £fv/m, where f is a certain
mean value of fi' By putting: 8w/3I ~ aw/I, H ) wl, we obtain for an m-fold interac-
tion: R e (eem)? (2.12.5); |@m)| ~ /4 and (&) gy ™ wea)d; 0 wAET v wh s the
frequency interval of the quantity Z': nw, occupied by N; resonances. The border of
stochasticity is determined by the relation: s~ N; ¢ (Aw) (n)/ﬂ ~ 1 or™

2
(), ~ Z = “7'[("“{)_-/] (2.12.16)
. S ”41 (d‘.,,)th-?_

Thus the critical value of the perturbation decreases, at least « N2 (m = 2). Hence it is
clear that macroscopic molecular systems -- typical objects of statistical mechanics -- are
always far inside the region of stochasticity. In particular the size of the non-ergodic
companent decreases, at least « N™* (Section 2.8).

Let us note that for the normalization used above (ﬁ(n) ~n~ w]l) the small parameter ¢

characterizes only one resonance. Since the total mumber of resonances with N; >> 1
(2.12.15) is very great, the following additional condition must be fulfilled:

3

2

hy

M, « 1 (2.12.17)

») It is interesting to note that the value (ea)_ is here m times greater than in Ref. 76
(see also Ref. 13). This difference can be e)scplained by the fact that in Ref. 13 and
76 the border of stochasticity was determined from the overlapping of the resonant
layers in N-dimensional space. However, this condition is not sufficient, since the
phase oscillations inside the layer take place in a fully determined direction (Aw n))
(2.12.4), while the motion along the layer is, generally speaking, slow (see belowf.
Therefore for stochasticity it is necessary for the chain of vectors (Aw(p)) correspond-
ing to the various resonances, to be closed or, in other words, for the one-dimensional

widths of the resonances to overlap (2.12.6).
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where the new parameter £ characterizes the total perturbation, written by means of
Parseval's equality.

Let us now find the renormalized width of the resonance (Aw) (n)z = &)y vhich,
according to the results of Section 2.11 determines") the dynamical time scale T, (local
instability, correlations, mixing)‘.. Renox;malizing in the "typical" case with a power
n = 4, we obtain: (&w); v (&) ) Ao ah (2.11.3). But according to our previous esti-
mates (Aw) m) " w/Ea and:

o w V- ——-—-—-——-——-(‘;-‘{)'/

A~ — ~
AN e Cz”).‘;-q (2.12.18)
Whence we find:
_~1s 2/ (2.12.19)
(a0)g ~ w5 % (xF)

Let us verify that the renormalized \lvidth of the resonance does not diverge in the
higher approximations: (Aw)}gk) n (sZka) 5 ~ EZR/S. but according to condition (2.12.17)
£ << 1 and this series rapidly converges.

According to the results of Section 2.11 the entropy and diffusion coefﬁcient') are
expressed in the '"typical" case through the renormalized width of the resonance (2.11.37)"):

> 3 3
Do~ h ~ (Aw)z " .'.r‘:_:__._. (a{{)z_ (2.12.20)

The diffusion coefficient depends only on the square of the total perturbation (£2), which
acts as if it were completely random. In Section 2.5 it was said precisely in this sense
that stochastic instability leads to the most rapid diffusion possible for the given
perturbation.

let us now go over to the region of Kolmogorov stability. ‘As already noted (Section
2.2) the situation in this region is essentially different from the one-dimensional case.
The most important difference is that the invariant tori, whose dimensionality is obviously
equal to N, do not divide the (2N - 1)-dimensional energy surface in the phase space of the
system“) "*). In the momentum (frequency) space, the invariant tori are represented
simply by points distributed among the everywhere dense web of interwoven and intersecting
resonant surfaces (planes) (2.12.1).

Each of the resonant surfaces represents, as we know, a layer of thickness (2.12.6)
inside which are invariant tori similar to the ones outside (this already follows from the
results of Arnold's paper") and has been thoroughly investigated by Moser")) , but outside
is the stochastic layer (Section 2.6). It is precisely these numerous intersecting

*) In the general case we have the diffusion tensor (2.10.15)}; the following estimate
relates to the diffusion along one of the axes: ( (Am)i) = 2D, - t; for the total
N-dimensional vector: (|(Aw)]?) = 2ND, * t.

*+) When n; v 1 (2.11.3a).
=++) Let us recall that the case we call one-dimensional is that where N = 2 for an auto-
nomous system (Section 2.2).
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stochastic layers which form an unstable (ergodic) component of the motion in the region
of Kolmogorov stability. The first example of such instability was studied by Arnold")
and subsequently it was learnt that a similar instability mechanism is very general for
many-dimensional motion") (see also Section 2.6). It leads to a peculiar diffusion along
the system of intersecting resonances, which we shall henceforth call Arnold diffusion.

In order to understand the mechanism of Arnold diffusion let us return to the basic
equations of the many-dimensional resonance (2.12.1) to (2.12.5). Let us note first of
all that for each given resonant term the phase factor ei(n,O) is identical for all the
camponents of the vector (I) and therefore the variation (AI) is directed along the vector
(n). For the main resonance, which we will call guiding resonance henceforth this gives
the direction of the phase oscillations, and the phase factor takes the form: ew(n),
where w(n) is the resonance phase (2.12.3). Each of the remaining terms in (2.12.2)
characterizes the perturbation of the resonant torus directed parallel to its vector (n).
The phase factor for each of these perturbing resonances can be written in the form:
el @tVM) here w; = (An,w) is the detuning of the frequency in relation to the guiding
resonance. If the system is inside the guiding resonance, the perturbation of the neigh-
bouring resonances leads only to the deformation of the resonant torus. However, at the
edge of the resonance, inside the stochastic layer, the increments of the integral:
sar S@t¥m) o uy Q‘Er‘l); TS e-c/sn; s, v Q(n)/wl for each half-period of the phase
oscillations with a frequency of Q(n)’ form a random sequence on account of the random
phase shift of the phase oscillation with respect to the perturbation. A thorough analysis
of this stochasticity mechanism was made in Section 2.6. The momentum perturbation is of
the order of

-
JaIl]uyr ~ € pro Sl (2.12.21)

where the vectors (n), (n’) relate to the guiding and perturbing resonance respectively;
€0 v E fi(n - :

As already mentioned above, the direction of the vector (AI)m, is along (n’) and
generally speaking this is not identical to the direction of the stochastic layer. Diffu-
sion (2.12.21) is therefore possible only over a small distance of the order of the thick-
ness of the stochastic layer. For long-distance diffusion at least two perturbing reso-
nances with non-parallel (n’);, (n’), are necessary. Then one of them will certainly have
a component along the stochastic layer, which is the one that gives Ammold diffusion proper,
and the other will have a component across the layer, which ensures reflection from the
border of the layer. The diffusion will thus go along the line of intersection of the
stochastic layer with the plane of the vectors (n');, (n’);. For the diffusion to go in
any direction along the (N - 1)-dimensional resonant surface, there must obviously be N

linearly independent perturbing rescnances.

This is possible only for a non-autonomous system, i.e. umder external perturbation.
If the system in question is closed there are (N - 1) perturbing resonances only since they
form, together with the guiding resonance, the full set of N linearly independent resonances.
Thus, for a closed system Amold diffusion can go only along some (N - 2)-dimensional surface
which must be, obviously, the intersection of the stochastic layer with the energy surface of
the system. No other limitations of the Arnold diffusion seem to exist. At least we can
assume it as a hypothesis which is in accordance with Poincaré's theorem“) on the absence,
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in the general case, of analytical integrals of motion except the energy (see also Ref. 152
and Section 2.6). In the light of the KAM theory it is natural to assume that the destruc-
tion of all the other integrals occurs precisely in the stochastic layers of the resonances
as a result of Arnold diffusion.

The diffusion coefficient can be roughly estimated as: D, ~ IAIII’m v * Bpyr OF taking
into account (2.12.5) and (2.12.21):

2
%) ~.Ilto~ £, - 2</5.,
A

- e (2.12.22)

Ryl €

In order to obtain more explicit estimates of the diffusion rate let us put:

—_ /2 "
£h ~ §.e ° (2.12.23)
where n is now the maximm harmonic mumber. We consider that for each degree of freedom
the amplitude of the perturbation harmonic decreases as e‘n/n" the interaction being m-fold
(Section 2.12}. It would be more accurate to write: exp (- Em=1 In }/ms), but for our rough
estimates we shall put: }:m n, = m = mn/2, whence (2.12.23) also follows ). In fact the
parameter m now charactenzes the nunber of frequencies for which hammonics are taken. The
diffusion coefficient is determined, mainly by the exponent, which has the form"):

/- tes Mt /‘f [P

exp-i’——i-"+—'!-—'2‘3 {)
1o Yu, " l/_‘i‘ -(k')d-

The argument of the exponent reaches a maximum when'

wl = (—ZC (w-1)n, € __) (2.12.24)

“an ol z
The latter inequality is necessary for the validity of the approximation used (Section 2.6).
It is violated in a certain interval n, which can be determined from the condition:

i _
_5_5.)4*’ < B o Taw (2.12.25)
i L"lo
Here we used estimate (2.12.29a) for €ge If e/es is not too small, the unknown interval
is:
,’ 2” 7“(‘, .A/ —
he = =2 = r < —(4— = A (2.12.252)

When E/ES < (ZN/e)ZN always n’ > n. In the interval (2.12.25a) optimal n’ = n (Section 2.6)
and in the exponent only the first term may remain. Indeed the second term in the exponent
is always small in comparison with the first, and the relation of the third to the first is:
(n’/n)/(N - 1). On the border, when n’ = n, the third term gives the correction factor
[N/ON - 1)]. With only the first term remaining in the exponent, we obtain:

+) This estimate makes sense if different frequencies and n, are of the same order of
magnitude.

»+) Here we use estimate (2.12.28) for w;, see below.
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h
3

3/2_
n /"

9

e 2
g ~I - e (2.12.26)
From the validity condition of this expression (2.12.25) it is seen that always DA <Dy
(2.12.29). This estimate on both borders of interval (2.12.25a) changes approximately in-

to estimate (2.12.29), which is easy to verify, using (2.12.25).

Let us now turn to the region n > n. (orn < n":). It should be explained that in the
majority of problems one is required to estimate the rate of Amnold diffusion due to the
resonances with a given n, or more precisely an n of less than a certain value. The last
condition determines the mean distance between resonances A . The specific form of the
function An(n) depends on the form of the interaction, see for example formulae (2.12.15a)
and (2.12.18) which are valid for m << N,

Now let us consider the opposite limiting case m = N. A rough estimate can be made
as follows. The total mmber of different combinations of the components of the vector (n)
is (Zn)N, since each component can assume values from -n to n. Assuming that for large n
the distribution of the vectors (n) and (w) is on the average isotropic, one can estimate
the mean distance between resonances as'):

()
a, ~ -:-:/- . (2.12.27)
The main error of this estimate is due to the non-uniform density of the resonances (see
Fig. 4.3.1), which can be taken into account in (2.12.27) by introducing a special factor:
w ~+ ko,

Expression (2.12.27) gives, in particular, the estimate of the perturbation frequency
w; , which we used above:

[ 7% )
Wy~ el ~ T (2.12.28)

The mean *'gap” between the resonances Ay determines the density of the network of
stochastic layers along which the Arnold diffusion spreads. From estimate (2.12.22),
taking into account (2.12.23) and (2.12.24) we obtain

)
24,\_]'2“). fl'-

.
. “ 2

(2.12.29)

1 cnylr-1) -w v,., w
J["~“ ‘CXP “(A’-‘f}{ nem T / (f € - —9—:0 j

where the critical value g/ is determined from the expression:

o
., ~ ég_»_ [ £, w0 ~ “’(E:,) (2.12.29a)

In the latter estimate we used the effective value of the parameter n,, which follows from
the appearance of the exponential factor (2.12.23) e-mn/Zno’ whence noofs 3 2ng/m.

+) We omit here the numerical factor since it depends greatly on particular specification
of the set of rescnances in question.



- 106 -

Thus the rate of Armnold diffusion decreases with the growth of n according to the
double exponent law. This clearly characterizes the degree of Kolmogorov stability in the
many-dimensional case. Let us recall that in the one-dimensional case the stability is
eternal (Section 2.2). In practice a dependence of type (2.12.29) determines a limit:

= L] -~
1, __ﬁ—.“/n. ” 7 (2.12.29b)

beyond which the rate of Arnold diffusion becomes unobservably small. It should be noted
that this limit corresponds just to the condition n ~ n. (see above). This means that
estimate (2.12.29) can in practice be used only near the border (2.12.29b).

It turns out, however, that in some cases more rapid diffusion along the set of re-
sonances is also possible. The appearance of the double exponent in (2.12.29) is due, as
we saw, to the fact that the value s, Q(n)/An in estimate (2.12.22) itself becomes ex-
ponentially small, since @ n decreases with the growth of n exponentially, and An only as
nN (2.12.27). But this does not apply to resonances with a multiplicity of two, i.e. at
the intersection of two resonant surfaces. In this case s, 1 always and the exponent
disappears from the estimate (2.12.22). Furthermore, since the majority of resonances
with a multiplicity of two consists of resonances of the same order of n (n nmax) , total
destruction of the resonance takes place, i.e. the width of the stochastic layer becomes of
the same order as the width of the resonance itself. Thus there forms a relatively wide
channel along which the diffusion spreads at a comparatively high rate. In order to
distinguish this special kind of diffusion we shall call it streamer diffusion. This name
is connected with the fact that for the minimal dimensionality, when this diffusion is
possible, the stochastic layer of a resonance with a multiplicity of two in the frequency
space has the shape of a narrow tube (streamer) along which comparatively fast diffusion
spreads, a picture which recalls streamer breakdown in gas.

Streamer diffusion is possible only when resonances with a multiplicity of two form
an intersecting network in the frequency space. From geometrical considerations it is clear
that this is possible under the condition:

M 2 7, A, z 3 (2.12.36)

where Na’ NH is the number of degrees of freedom (of the dynamical frequencies) for an
autonomous and non-autonomous system respectively. Thus for streamer diffusion one more
degree of freedam is required than for ordinary Amold diffusion.

An estimate of the velocity of streamer diffusion is obtained from (2.12.22) and (2.12.23),
taking into account that s~ 1; n v n’: .

3 Ax
ZJ/I. . 4 .,

. (2.12.31)
e €
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The quantity Dc’ of course, also decreases rapidly with the increase of the harmonic number
of the resonance, but not as catastrophically as D,. Except for a mumerical factor v 1 in
the exponent, Dc is identical with DA (2.12.26). Both mechanisms give roughly the same
diffusion rate when n ~ 1, provided it comes within the region (2.12.25). In the opposite
case streamer diffusion proves to be even slower in this region. It is significant, however,
that the law (2.12.31) is valid with any n, whei-eas in ordinary Arnold diffusion a double
exponent appears for large n. Therefore streamer diffusion plays an important part only in
the region n 2 n. (2.12.25a). ‘

Let us note that for streamer diffusion two resonances are sufficient, instead of three
as for ordinary Arnold diffusion (see above). This is due to the fact that both resonances
now coincide in space and their vectors (n) are always non-parallel. However, in the present
case the requirement for a component of the vector (AI) [or (n)] along the streamer is non-
trivial. In particular, this condition does not apply when (AI), (Aw) are parallel:
(A1) | | (Aw). Since (AI)||(m) (2.12.2), from the resonance condition (2.12.1) it follows
that: (Mw,w) = 0, i.e. the vector (Aw) is perpendicular to the resonant plane, and that
means also to the streamer, so that diffusion does not occur. Since the non-linearity
matrix 3w, /3l = aza/alialk is symmetrical and can be transformed to the principal axes,
the condition for non-parallelism of the vectors (AI), (Aw), which is necessary for streamer
diffusion, amounts to a requirement for the eigenvalues of the non-linearity matrix to be
different.

Resonances with a multiplicity > 2 do not lead to qualitatively new effects.

The diffusion coefficient (2.12.29), like (2.12.31), does not yet determine real
diffusion in the momenta space. Indeed, Arnold diffusion spreads along the resonant sur-
faces, which in the general case form a very complicated system; in places where the sur-
faces intersect, '"random' (on account of the stochasticity of the motion) transition from
one surface to another will take place, so that, as a whole, Arnold diffusion represents a
combination of two random processes: diffusion along the stochastic layer and transition
from one layer to another. If the mean length between two intersections !'I is sufficiently
small, the total length of the diffusion trajectory L along the system of intersecting
layers can be estimated by the ordinary formulae of the random walk theory”):

L~ (a1) 2//1 (2.12.32)

vwhere Al is the total variation of the momentum in the diffusion process. Then the diffusion
time can be estimated according to the formula:

t X
4 5/
£ ~ L . —9;.(-4--! - Sl (2.12.33)
A4 zd Aﬁ I f:/t . 7

1 _ .
where we put P.I ~ An/w = A I/ow.
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Let us note that the law of this "double diffusion™ is unusual, since the diffusion
time t) is proportional not to the square but to the fourth power of '"spacing" AI. Let us
introduce the "double diffusion'' coefficient:

3,
A i) o TV &l £72 A 2.12.34
zs < dt G1)"> 7 o o 572 ( )

The relations obtained remain valid also for streamer diffusion, substituting

Dy

-+ Dc'

The rate of Arnold diffusion (2.12.29) decreases exponentially with the decrease of
the stochasticity parameter s?  e/e s+ Moreover, the diffusion takes place only for special
initial conditions, the relative measure of which ~ 6§ << 1 (when s < 1; Section 2.6).
However, the total system of resonances, and that means also the stochastic layers, is
everywhere dense. Therefore the problem of the motion in the region of Kolmogorov stability
is asymptotically (when t + «) improper, since any arbitrarily small variation in the initial
conditions displaces the trajectory from the stable component to the stochastic one and
vice versa. let us note that in the present case we cannot simply average over a small
volume of phase space, as was done when solving the kinetic equation. This is due to the
fact that in a large part of the phase space the system is stable and therefore such aver-
aging does not correspond to any real process in the system, and reference to the "practical”
uncertainty of the initial conditions is insufficient in mechanics.

It is possible, however, to regularize the problem as follows. Let us add to the
dynamical system some '‘external" diffusion process with a diffusion coefficient D,. For
example, in the case of the motion of a particle in a magnetic trap (Section 4.4) the scat-
tering always present in residual gas is such a process. This additional diffusion eliminates
the singularity of the initial conditions and, moreover, enables us to neglect the resonances
of very high harmonics, leaving only a finite number of resonances. However, contrary to
the behaviour in a stochastic region, the motion will now substantially depend on the
additional diffusion, also in the limit Dy + 0.

The diffusion process will take place in two stages. In the first there occurs
"'external" diffusion with a coefficient Dy up to the nearest resonant surface, i.e. over a
distance ~ £y In the second stage the "external" diffusion occurs 'parallel" to the
Ammold diffusion., In the most simple case, when the number of resonances is not great, so
that 21 ~ (AI), one can neglect the "double diffusion" and assume that the diffusion along
the stochastic layers with a coefficient D, is roughly the same as the diffusion in I. Then
the total diffusion coefficient in the second stage of the process is Dy + DA * w, where
w < 1 is a reduction factor of the diffusion rate, because the system spends only a small
part of the time inside the stochastic layer. If n’ A n, estimate (2.6.13) gives
A S, e-c/sn. Comparing this with estimate (2.12.22) one can conclude that the reduction
factor w is equivalent to some change of numerical coefficient in the first exponent of

the expression for DA'
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Let us note that the total diffusion coefficient depends essentially in any case on
the "auxiliary" parameter Do,. The latter should not be too large, otherwise the stochastic
layers stop functioning at all. The critical value of D, is determined from the condition
of leaving the layer in a time of the order of one phase oscillation, which is just the
order of the diffusion rate in the stochastic layer (Section 2.10). Hence the conditions
for the existence of Arnold diffusion:

3, = :54 (2.12.35)
However, an observable effect of this diffusion takes place for considerably smaller
Do < D, w.

Let us note that the dependence of the diffusion time on the perturbation parameter
will have the characteristic shape of a transition curve with two plateaux for small and
large perturbation. In fact, in both limits the diffusion coefficient is equal to Do, but
the diffusion distance is different: (AI) and 2;, respectively. The ratio of the diffusion

times at the plateaux is therefore:
I 2
L ~ ("——- (2.12.36)
4

Let us now consider the more interesting case of a large number of resonances:
2, << (8I), vhen "double diffusion" takes place [r2.12.33), (2.12.34)]. This means that the
kinetic equation takes on a more complex form than usual (2.10.10). In view of the roughness
of the estimates relating to “double diffusion", we shall not solve this equation but will
use the simple estimate for ordinary diffusion: d(8I)%/dt ~ D, and for "double diffusion':

d(AI)*/dt ~ D, (2.12.34). Hence the total diffusion rate is:

dear)® ). - S (2.12.37)
Ll (14 55) 0 &7 s,

By integrating this equation in the most simple case w = const, we obtain the total
diffusion time:

~ 30—1['(41)1_ g b (14- (AJJ:-’/::/] (2.12.38)

Z

4

which again depends essentially on Do.
Some experimental data on Arnold diffusion will be given in Sections 3.6 and 4.4.

For streamer diffusion the picture remains qualitatively the same, but the effective
diffusion coefficient D(": = D - w decreases not so much:
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o 2 2 is./‘ VA - { L
D, ~ Do S0 ~1w- n¥ T e "o (2.12.39)

oL M2
as DA (see above)}. In the latter estimate we used relation (2.12.31) and the expression

for s_:
n

H
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5, ~ s~ ‘/;_f_.n . e (2.12.40)

The ratio of the diffusion times on the plateaux will be smaller than (2.12.36), since
instead of the "absorbent" resonance surfaces which are necessarily intersected in the
diffusion process Dy, there are now '"absorbent' tubes (streamers), which may be by-passed
("missed"). However, the increase in the lifetime is slight, since the probability of a
miss rapidly decreases as the streamer is approached.

As a model, one can examine the diffusion between two concentric cylinders with absorp-
tion only on the imer one. Simple calculations show that the diffusion time is proportional
only to the logarithm of the ratio of the cylinder radii. In our case this relation » S,
since the mean distance between streamers is of the same order as that between the resonance
surfaces. Thus, instead of (2.12.36) we find:

/<~ (-‘3’%/)7} lus. | (2.12.41)

In conclusion, let us make a few remarks about the kinetic equation in the many-
dimensional case. If the mmber of degrees of freedom is not great, the distribution
function as usual describes the ensemble of identical N-dimensional systems in the
2N-dimensional T'-space. The equation for such a distribution function is called the
master equation“®). However, as a rule the complex systems of statistical mechanics consist
of a very large mmber (n + =) of identical elements ('‘particles"), interacting with each
other. In this case a new possibility appears: besides the master equation one can write
the equation for a so-called single particle distribution function describing the density
of "particles" in the phase space of one 'particle", which is called y-space. Since the
total number of particles n is always finite, then in u-space (as in I'-space) only a coarse-
grained distribution function has direct physical meaning (Section 2.10).

In a similar way one can introduce the kinetic equation for s-particle phase density
(s << n), describing the distribution of the subsystem of s "particles'.

For a many-dimensional oscillator a "particle" is a one-dimensional oscillator, weakly
coupled to the others, for instance a phonon in a crystal lattice. If such a one-dimen-
sional oscillator is considered to be non-autonomous with a given external perturbation, we
arrive at the master equation in the most simple I-space (Section 2.10). But if the same
one-dimensional oscillator is assumed to be a "typical" representative of the system of
interacting oscillators, we obtain the kinetic equation in p-space. In both cases one of
course obtains the same equation (Section 2.10) and the only difference is the physical
meaning of the phase density.
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2.13 Remarks on the nature of statistical laws

Since we have to do with statistical mechanics and in particular kinetic equations, it
is difficult to resist the temptation to make a few general remarks on the nature of
statistical laws, irreversibility and other such problems that are still somewhat mysterious.
It is hoped that these remarks will not prove to be a mere repetition of well-known argu-
ments. In this question we have the advantage of the detailed investigation made in this
paper into the transition from dynamical to statistical behaviour for a very simple,
probably the simplest, mechanical system ~-- the elementary model, which represents a one-
dimensional non-linear oscillator under the action of given periodic perturbation.

To the main question of whether the motion of such a system is a '‘true' random process
we reply in the affirmative, unlike many other authors engaged in investigating this problem.
Among them is Krylov®®), whose point of view in other respects is very close to ours and
vwhose ideas are in fact extended and developed in the present paper.

If this assertion is accepted, it opens the way to a general explanation of the statis-
tical laws of nature on the basis of the classical mechanical model. In this case the
statistical laws are valid in a dynamical system, in so far as the motion of the system is
stochastic in the sense given to this term in the present paper (Section 2.3). This point
of view is perfectly natural at present for mathematicians with their ergodic theory (see,
for example Ref. 42) but, strangely enough, apparently alien to physicists, in any case in
current statistical mechanics?7»*®) in which the so-called linear model exercises completely
sway (see Section 2.11 and below).

The most unexpected result of the above point of view proved to be the possibility of
statistical behaviour of extremely simple systems right down to the elementary model, which
has only one degree of freedom. However, for the ergodic theory this was not unexpected.
Hopf2?) already pointed out this possibility for a system with two degrees of freedom,
although it was only recently that Sinai succeeded in demonstrating the stochasticity of the
motion of a real mechanical system -- a system of hard balls in a box, which in the simplest
case has only two degrees of freedom!°®), This result sharply contradicts the idea which
is of very long standing in physics, that the statistical laws are valid only in a very
complex system with an enormous mumber of degrees of freedom N + «.

Let us now turn to the basic assertion made above, that the statistical laws correspond
to a certain special case of motion of a classical mechanical system, namely stochastic

motion.

There are two kinds of possible objection to this assertion. One of them, the less
important, is connected with the "islets" of stability which always exist in the stochastic
region of the elementary model (Section 2.8). This means that as a rule one always finds
special initial conditions of finite, even though very small, measure, for which the motion
is not stochastic. With regard to this objection it can be said only that such stable
regions, generally speaking, really exist and can be observed for simple systems (Section 3.5).
Let us note, however, that such "islets' of stability are characteristic just for oscillatory
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systems, for instance, for a crystal lattice, if ane turns to the typical macroscopic
molecular cbjects of statistical physics. At the same time there are no stable regions at
all in gas, and probably in liquid. At least this was demonstrated by Sinai for the gas
model as a system of hard balls, mentioned above!®%), Furthermore, even for oscillatory
molecular macroscopic systems the stable regions are extremely small (Sections 2.8, 2.12):

al . -7 (2.13.1)

7T =
At this point one is tempted to use phase space quantization to prove that very small Al
are completely impossible“). Such a proof is not possible, however, as explained by
Krylov®®). Roughly speaking, it is a question of the type of description of the motion
changing simultaneously with the quantization, ﬁamely it is necessary to change over from
the phase space of classical mechanics to the Hilbert space of the wave functions, in which
the motion of the quantum system is described, as usual, by a trajectory.

Finally, and this is our main argument, both types of statistical physics system (with
and without stable regions) always interact with each other through molecular collisions,
and also through electromagnetic (thermal) radiation. Under these conditions the stable
regions can remain only for very simple macroscopic or molecular systems with a small mumber
of degrees of freedom (2.13.1), and during a short interval of time as campared to the time
of relaxation with the surrounding medium. Similar effects are actually observed, in
particular, in so-called unimolecular reactions, for instance thermal dissociation, if the
mmber of atoms in the molecule is greater than 2. At present there are two contradictory
theories on such reactions, one of which [that of Landau'®®) and Kassel'*)] is based on
the unlimited stochasticity of intramolecular motion, whereas the other [that of Slater”’)],
on the contrary, assumes the existence of a full set of integrals of motion. In reality,
as confirmed by direct experiments and mmerical calculations®®®), when collisions are rare
4 certain intermediate case occurs that is typical for a system with divided phase space
(Section 2.5). In order to avoid confusion, let us point out once again that divergences
from statistical behaviour are limited in this example by the very short interval of time

between two successive collisions.

The second considerably more profound objection to our general conception of the
statistical laws is comnected with the very nature of mechanical motion as motion along a
trajectory reversible in time. This problem has been most thoroughly studied by Krylov®®).
It is also closely comnected with the Loschmidt paradox, arising from the contradiction
between the dynamical reversibility and the statistical irreversibility of the motion.

Krylov's main objection to the classical mechanical model of the statistical laws
amounts to the following. Since dynamical motion is reversible, its irreversible statistical
properties (for instance the increase or decrease of the entropy) will wholly depend on the
initial conditions. Let us further consider the usual organization of a statistical ex-
periment as a multiple repetition of a process under given macroscopic initial conditions.
Then in order to obtain statistical behaviour the distribution function of the microscopic

initial conditions for a given macroscopic state must be uniform in sufficiently small
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regions of the phase space. Meanwhile the evolution of the distribution with time leads

on the other hand, to an increasingly singular state which is easy to verify by investigating
the inverse motion. Thus we find it virtually impossible not only to prove, but even to
introduce a postulate concerning the initial microscopic conditions.

Sometimes this objection is "developed" still further and it is asserted that from the
point of view of the dynamical model the probability of the entropy increasing or decreasing
is generally identical, since by virtue of Liouville's theorem the phase volume of the two
states with different entropy through which the system passes in the process of motion is
identical. It will be easy for us to begin by refuting this explicitly incorrect assertion,
which is in fact based on a misunderstanding. The point is that if the term "phase space
volume" is interpreted literally, in any real situation it is equal to zero, since we always
have a finite mmber of systems (and of particles in a system), and also a finite mumber of
repetitions of the experiment (see Section 2.10). If some indefinite phase volume is
introduced, determined approximately according to a finite number of points in phase space,
it is not conserved in the process of motion.

Llet us examine this latter case more thoroughly, using as an example a system of
N >> 1 oscillators of the type of the elementary model, weakly interacting with each other.
We shall describe the state of this system in p space (Section 2.12), which in the present
case is identical with the phase square of the elementary model. The state of the system
is represented by N points in this square. Let them be distributed statistically uniformly
and independently so that the system initially occupies "all" the phase space. This does
not prevent it, however, from congregating in the process of motion in a very small
region £ of the phase square. Let us estimate the probability of this, assuming that the
region £ has a simple form. Let us consider the inverse process of mixing, when the
region £ is transformed into a system of narrow strips with an wer?ail area of £, uni-
formly distributed over the square (Fig. 2.4.1). It is evident that all the N points must
“lie on one of the strips of this system: the probability of this is w& = £N or, if we are
interested in the congregation in any small region £ (decrease of the entropy): w = EN'l.
But this is exactly the probability corresponding to the fluctuation. Thus Liouville's
theorem does not contradict the smallness of the fluctuations, which lead, in particular,
precisely to a decrease of the entropy.

The example taken is also the answer to Krylov's second objection regarding the evolution
of the distribution function. Undoubtedly, the continuous [ﬁne-grained (Section 2.10)]
distribution function tends with time to become singular, as can easily be understood from
the picture of the mixing in Fig. 2.4.1. However, as already noted, such a function does
not correspond to any real experiment, i.e. it is essentially unobservable and should
therefore be excluded from the theory and replaced by a coarse-grained distribution
function (Section 2.10). The latter tends to become uniform according to the ergodic theory.
This gives the possibility not only of eliminating the contradiction pointed out by Krylov,
i.e. of introducing a postulate concerning the initial microscopic conditions, but also
opens the way to proving this postulate. It is now natural to assume that the initial state
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(t = 0) of the process concerned (t > 0) in a system is determined by the finite state of
the previous process (t < 0) in the same system.

Here, however, there are two difficulties. The first is due to the fact that wmiform
distribution occurs, according to the ergodic theory, only in the limit t + =, This diffi-
culty is not important, since when there is positive K-entropy the mixing process nms
exponentially fast and in practice is completed in a comparatively short time. However,
there is still the other difficulty, connected with the organization of the statistical
experiment. As noted above, multiple repetition of the process under study is assumed,
with the same macroscopic conditions. This requirement is not very definite, in the sense
that it does not mention the microscopic state. This gives rise at least to the suspicion,
if not the certainty, backed essentially by our somewhat hazy idea of our freedom of will,
that we can "create" any initial micro-state and so obtain any course of the process in
contradiction to the statistical experiment. Of course, on the other hand there exists an
intuitive idea that the microscopic co-ordinates are in fact "inaccessible'" to the experi- -
menter, so that in practice it is not in our power to influence the microscopic state of
the macroscopic system. But this does not constitute a proof, and in any event there is
always the chance that we shall somehow learn how to do this in the future, or, to quote a
popular modern catch-phrase: '"Nothing is impossible for science!"

It seems to us that these doubts can be banished on the basis of an analysis of the
most important property of a stochastic system -- the local instability of motion developing
exponentially with time. It is not difficult to verify that owing to this property there
is no system in nature that is closed in relation to its dynamical motion, except the whole
Universe. As an example let us consider the motion of gas molecules in a model with hard
balls of radius r, with a mean free path £. Let us study the perturbation of this motion
by the gravitational field of a single proton at the "other end' of the Universe, i.e. at
a distance R ~ 102® am. Taking into account the fact that the perturbation is tidal and
that a change in the gravitational field of the proton is esséntial on account of its
displacement, we obtain the additional angular deviation of the gas molecule:

(a6), ~ ._35_3_; (EZJ 3 (2.13.2)

where x is the gravitational constant and v the velocity of the molecule. This perturbation

will grow according to the law:
| ) "*
@), ~ (26). /7] (2.13.3)

where n is the mumber of successive collisions of the molecule and in
eu (‘ o}o
=

. 4/

collisions becames (40); ~ 1, i.e. the trajectory of dynamical motion changes considerably.
If one takes a gas under normal conditions: m ~ 1072* g; v ~ 10° an/sec; £ ~ 10~° cm;

n, ~ (2.13.4)
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r ~ 10°* cm, then estimate (2.13.4) gives: n, = 60, which requires only ~ 10~% sec. This
limiting exémple easily shows that from the point of view of molecular dynamics there is
only one closed system -- the Universe as a whole, which naturally also includes the experi-
menter. The latter thus has no control either over his own or any other microscopic state.
This state is determined by the initial conditions of the Universe at t = -=, and not at all
by '"creating" the initial state in a specific statistical experiment. The violation of
statistical laws in such a model in an infinite interval of time is possible therefore only
for initial conditions of zero measure. The fact that the Universe is not in this special
state is the minimal hypothesis of our model.

Being minimal, this hypothesis is not trivial, for the same reasons as those behind
Krylov's second objection: when t + += the phase point of the system tends towards a
certain exceptional position, whereas its initial value (t -+ -«) should not be exceptional.
It seems to us, however, that this difficulty is psychological rather than physical. The
point is that the two exceptional regions (t + *=) are completely different. Formally they
differ only (!) by the change of the sign of all the velocities, and this has a kind of
hypnotising effect. But we know that even negligible variation of the initial conditions
of a stochastic system leads to a complete change in the trajectory of motion. With regard
to the above-mentioned exceptional regions when t + e, then as can easily be seen from the
picture of mixing in Fig. 2.4.1, they represent two systems of intersecting strips. There-
fore any exceptional region t + +« is wniformly distributed over all the exceptional regions
t + -~ in other words it completely loses all its exceptionality when the velocity is

reversed.

It seems to us that in this lies the answer to the Loschmidt paradox concerning irre-
versibility in statistical mechanics.

With regard to the predominant direction of the thermodynamical processes in the
Universe, this is determined by its strongly macroscopic non-uniformity of cosmological
origin. The most important thing here is the dominating role of gravitational interaction
in the Universe. When there is such interaction there is no steady state at all, on account
of so-called collapse (unlimited contraction), which terminates the development of both the
Universe as a whole and of individual sufficiently massive stars'®?),
passing that the absence of thermodynamical equilibrium makes thermal death of the Universe
impossible. As far as we know, this simple consideration was put forward very recently by
Zel'dovich and Novikov!®7), If singularity does not cease to exist upon the collapse of
the Universe*), a state will occur which could be called the cosmological death of the
Universe. If singularity ceases, as one can, apparently, conclude fram the work of Lifshits,
Sudakov and Khalatnikov'®®) **) then the Universe periodically has the chance of starting
life "all over again" (and of course of making a better job of it!).

Let us note in

*) For the closed model of the Universe, which in our opinion is more probable!$®),

**) See moreover p. 551, of Ref. 157.
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Let us now briefly discuss a few possibilities of eliminating the minimal hypothesis
formulated above. 1Is ;uc.h a hypothesis really necessary? Can one select such special
initial conditions, e'ven of zero measure, that statistical behaviour proves impossible
regardless of the stochasticity of the system? It may turn out that such conditions simply
do not exist independently of their measure. In order to understand this, let us return to
the numerical experiment with the elementary model and assume that there are absolutely no
stable regions in it, as in the case of molecular collisions. Since this relates to real
numbers there are always exceptional initial conditions for which the motion does not obey
any statistical law. The measure of such trajectories is of course equal to zero, but they
exist, However, a mumerical experiment is always limited in principle by rational mumbers
because of the finite mumber of digits of the computer mantissa, the measure of which is
also equal to zero. But two sets of zero measure and completely different nature certainly
do not intersect. In any event here there is a theoretical possibility of rigorous proof
that all initial conditions lead to stochastic motion. The question arises as to whether
the same effect does not also occur in nature as the result of space-time quantization, if
the latter really exists. The answer to it is not at all evident, as was seen in the
example of phase-space quantization mentioned above. However, this possibility is not
excluded. It is interesting that in this case even a reversal of the velocity does not
lead to violation of the statistical laws, since the trajectories of the forward and return
motion are not at all identical, on account of "round-off" ("quantization"). It is inter-
esting to note that the motion is nevertheless in a certain sense reversible, since the
dynamical equations including the "round-off" procedure do not change when time is reversed.

It is significant that the absolute value of the space-time quantum in practice is of
no importance, as a result of the exponential development of the local instability of the
stochastic motion. So, for example, even though the quantum has an order of gravitational
length (v 107%5 am for an electron) its influence on the dynamics of the motion of the gas
under normal conditions (see above example) will be effective already after ~ 16 collisions,

or ~ 10~ * sec.

A new peculiar phase-space quantization has been studied by Krylov"). As noted
above (Section 2.3) the usual quantization (Au ~ h) does not lead to the expected effect,
as a result of the change in the type of description. In order to avoid this difficulty,
Krylov put forward the hypothesis that macroscopic systems do not have a definite ¥ fumction,
because of the special complementarity assumed by Krylov between the microscopic (quantum)
state and its macroscopic (thermodynamical) characteristic. This leads to the quantization
Ay >> h and gives the possibility of explaining the statistical behaviour even in the
classical formulation of the problem (see above). This hypothesis cannot be examined more
thoroughly here, since the present paper is restricted exclusively to classical mechanics.
Let us only say that the development of this hypothesis seems to us extremely interesting
and, furthermore, that it means essentially that quantum mechanics is inapplicable to a
macroscopic system and consequently that there is no continuous transition through a quasi-

classical region.
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The other possibility of eliminating the minimal hypothesis is connected with the fact
that the exact dynamical laws of nature may prove to be irreversible in time. Now this is
one of the possible explanations of the anomalous decay of the K-meson'®®). It is again
significant that under conditions of exponential local instability of the stochastic system
arbitrarily small irreversibility of the dynamical equations might be sufficient.

Sametimes it is assumed that quantum-mechanical motion is essentially irreversible as
a result of the so-called "reduction” of the Y fimction (wave packet) by measurement, i.e.
by interaction with a macroscopic object, which is not described by the Schroedinger
equation?’). In fact in present-day quantum mechanics there is no clear wnderstanding of
the process of measurement, so that this whole question remains open. However, in our
opinion there is a more plausible hypothesis, which is in a sense the opposite: that the
"reduction" of the ¥ function is itself due to the statistical properties of the macroscopic
measuring apparatus. This hypothesis is based on the following consideration. 'Reduction'
of the ¥ function must not necessarily be accompanied by the transformation of the original
¥ function into one of the states whose superposition it was before the measurement. It is
sufficient for the original pure (or coherent) state to have been transformed into the mixed
(or incoherent) one, i.e. for the phase relations between the superposed states to have
become indefinite. In the latter case there is no interference between the states and the
¥ finction gives the classical probability, when the system "in reality” is in one of the
states before, but we do not know exactly which. In contrast to this, before the measurement
the system was "in reality" in all the states simultaneously (pure state). But the destruction
of the phase relations between the superposed states, necessary for the transformation of
the pure state into the mixed one, is also apparently inevitable as a result of the inter-
action of the micro-system with the statistical apparatus. This hypothesis of course needs
detailed investigation, which does not come within the scope of the present paper. Let us
point out that this problem has been discussed for quite a long time in the literature
(see, for example, Ref. 162).

In conclusion let us compare our point of view with the linear model of present-day
statistical mechanics, introduced by Bogolyubov’}) and more fully developed by Prigogine
and his school*®) (see also Ref. 161). As already mentioned in Section 2.11, the latter
model does not need ergodicity but it is valid, i.e. it leads to statistical laws, rigorously
speaking, only in the limit of a very large mmber of degrees of freedom N + =, For a
finite N the application of the model has an upper time limit (Section 2.11). For macro-
scopic molecular systems this upper limit is very great'®®) and in practice is insignificant.
It is essential, however, that even when N + « a statistical description is possible only
for the small sub-system N,/N + 0 *®), This condition can be formally satisfied by taking
only the retarded solutions of Liouville's wave equation (2.10.1) (with the additional
requirement N, V » =; N/V = const., V is the volume of the system) thus excluding the
reaction of the whole system on the sub-system studied. For the reason mentioned, this
condition is sometimes incorrectly linked with the principle of causality*®). It seems to
us better to speak of definite initial conditians [t_he absence of incoming (advanced) waves],



- 118 -

since in fact the total solution of Liouville's equation (retarded + advanced) must also

satisfy the principle of causality.

In the light of the above condition it can be said that the linear model makes it
possible to obtain the Gibbs canonical distribution for a sub-system in a thermostat without
a microcanonical distribution of the whole closed system. The sub-system achieves statisti-
cal behaviour because of the additional demands on the parameters of the whole system
(thermostat) of the type of a requirement for random phases or frequencies (Section 2.11).

A linear model is possible in statistical physics and is very convenient by virtue of
the relative simplicity of its mathematical technique. However, it is not necessary and,
in fact, does not correspond to real molecular dynamics, since real macroscopic molecular
systems are stochastic (Section 2.12). This is contradictory to Prigogine's assertion that
such systems are not ergodic and have a full set of integrals of motion"®). The inaccuracy
of the latter assertion is evident, if only from Sinai's example!®®). The origin of the
error is that the series representing these integrals, generally speaking, diverge. Accor-
ding to the KAM theory they converge only when the perturbation is sufficiently small,
outside the stochastic region. Let us note in passing, that in the stochastic region, and
more precisely, even for weak mixing (Section 2.3), Liouville's equation (2.10.1) does not
have eigenfumctions at all (except a constant).

Nevertheless, there is a region in which the linear model is very important. Let us
explain by taking a gas as an example. In his approach to statistical mechanics
Bogolyubov"‘) introduced two characteristic time scales: the duration of the interaction
upon collision (‘rin) and the time between collisions (‘rcl). The latter turns out to be
just of the order of the mixing time (v h™!) *°). Therefore our non-linear model works
only for t >> 1 a’ i.e. only in a diffusion (hydrodynamical) region, where gas relaxation
(diffusion) takes place in co-ordinates (compare with the diffusion of the basic model,
scale s Section 2.10). Gas relaxation in momenta takes place just in a time v T 1’ S°
that it cannot be described by a non-linear model. In the best case the latter gives only
the order of the relaxation time®®). For the basic problem of the foundation of statisti-
cal physics such a lower time limit is unimportant -- what is more important is the absence
of an upper limit. However when it comes to applications it is very important to extend the
region of applicability of the kinetic equation in the direction of lower times. This can
be done precisely by means of the linear model with an additional special limitation on the
conditions of the system. The most general limitation of this type was obtained by Sandri®?)
and called by him ""the principle of the absence of parallel motion', which means the absence
of strong correlations at the initial moment (t = 0). According to our way of thinking,
this 'principle"” can be validated on the basis of the previous motion of the system (t < 0)
taking into account the mixing. Llet us note that "the atsence of parallel motion" according
to Sandri does not at all mean, as is sometimes supposed®S), the total absence of collective
processes. It is only necessary for there also to be random relative motion of the particles,
or more precicely, for the pair correlations to grow no faster than v,% when v,, + 0, where

vy2 is the relative velocity of two particles”).
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QIAPTER 3

NUMERICAL EXPERIMENTS

This chapter gives the collected results of numerical experiments with the elementary
model, which is apparently the simplest but is at the same time adequate for the basic prob-
lem concerning the motion of a system of weakly coupled non-linear oscillators. In this
chapter we shall mainly study the basic criterion of stochasticity according to the over-
lapping of resonances, and also some details of the structure of the motion of a system with
divided phase space. In our opinion the experimental results obtained below form a suffi-
ciently reliable basis for the theory of stochasticity developed in this paper. Further
experiments with more complicated models will be presented in the next chapter.

3.1 General remarks

In the last chapter by means of semi-qualitative physical considerations we established
the existence and estimated the position of the border of stochasticity for a one-dimensional
non-linear oscillator under the action of external periodic perturbation. This is the main
result given in this paper. Unfortunately, attempts at rigorous mathematical analysis of
the problem have so far met with insurmountable difficulties, due mainly to the very com-
plicated structure of the phase plane of the system (see Sections 2.8 and 3.3). Under these
conditions it is natural to tumn to experiments. In the present case, however, it is not
necessary to carry out "real" experiments, i.e. to observe the motion of some kinds of real
mechanical systems; furthermore, this is not so simple to do from a technical point of view,
since conservative systems are what interest us most. Apparently the best approximation
would be the motion of protons in colliding beam storage rings"). However, no such rings
have yet been built"). A rather less suitable experiment (because of radiation damping) is
the motion of electrons in a magnetic trap under ultra-high vacum. Such experimen'ts have
been carried out®!~®?) with interesting results, which will be discussed in Section 4.4.

Of course, the cham of "real"™ experiments is that in investigating even the simplest ques-
tion one may encounter a new fundamental law of nature by chance. However, if we limit our-
selves a priori to so-called “'constructive" physics*) (see Introduction), i.e. solely to the
consequences of firmly established fumdamental laws of nature, in the present case the laws
of mechanics, a much simpler and in a sense more powerful method of investigation is what

is known as numerical experimentation, which in the present case is taken to mean mumerical
integration of the equations of motion by a digital computer. Of course, one can consider
the computer itself to be a specific mechanical system and calculating in it as a special
case of a "real' experiment, exactly as, let us say, the motion of electrons in a magnetic
trap can, in its turn, be considered as an analogue (electronic!) computer. Nevertheless,
this ''special" case (the computer) is sharply distinguished by its umusual, or one could
say unlimited, flexibility, bearing in mind the principles of conStruction of the computer
and ignoring the merely technical limitations of the present day. Of course the latter
must be carefully taken into account; as in any experiment, they determine its ultimate pos-
sibilities. For the computer the main limitations are:

*) This apparently not very felicitous term is used to signify such wide areas of physics
as, for instance, statistical physics or chemistry (see below) as distinct from the
narrower and more specialized problems of technical and applied physics.

**) The author is happy to be wrong now on this point after the successful putting into
operation of the first proton Intersecting Storage Rings (ISR) at CERN.
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a)  computation speed (v 10% operations per second for typical present-day computers;
b)  operational memory size (v 107 bits);

¢}  number of {binary) digits of the mantissa, on which the computing accuracy depends,
and also the degree of continuity of the quantities in the computer presentation (= 50).

The best type of dynamical system for computer experiments is a cascade, i.e. a trans-
formation with discrete time. With the above-mentioned limitations one can confidently
work in times ~ 10° steps {iterations), rising in individual cases to 10°° steps
(Section 3.3}, On changing over from a cascade to a flux, i.e. to differential equations,
the situation deteriorates considerabliy, since in order to ensure reasonable accuracy one
is obliged to take an extremely small integration step and the actual duration of the pro-
cess under investigation is considerably reduced. The situation is extremely had for the
Integration of equations in partial derivatives, especially many-dimensional ones; here the
operational memory of the computer is utterly insufficient. In this connection we wish to
draw attention to a computing system of a new type, "Illiac-4", now being installed at the
University of Illinois (USA), which is a combination of 256 central processors of ordinary
computers®®) [see also Ref. 87)]. For a certain class of problem, including the integration
of equations in partial derivatives, the effective computation speed of this machine reaches
10° operations per second. This would be indeed an enormous step forward in the technique
of numerical experimentation!

Thus we must turn to numerical experimentation. Of course, the laws obtained by this
method must also somehow be derived by simple deduction from the equations of motion. The
ergodic theory works in just this way. It is interesting to note that the difficulties oc-
curing here are connected not only (and probsbly not so much) with proving the corresponding
theorems, but alse with formulating them. For, the more complicated the phenomenon the
greater the gquantity of increasingly intricate conditions that have to be introduced in
order to ensure the "mathematical rigour' of the theorem. Therefore, in a number of cases
the result can be obtained much faster by inductive means (as in fundamental physics), i.e.
by means of generalization, extrapolation, analogy, check experiments, etc., with the
specific aim of constructing an approximate theory and, what is wore important, the whole
system of notions and models comnected with it, which enable us to approach the practical
problems of applied physics. It is therefore natural for the main value attaching to ex-
perimentation in this region to be heuristic, i.e. it should help us to guess a correct ap-
proximate theory or at least to understand correctly, even though qualitatively, the funda-
mental features of the phenomenon concerned. Therefore, it is net necessary for us to
integrate the very complex equations of motion of real mechanical systems, it is sufficient
to examine the most simple models that are adequate for the main problem. It is evident
that the correct choice of a model i alsa one of the main difficulties of such experimenta-
tion.

The conception under discussion is generally well-known and widely applied in such

areas of "constructive" physics as oscillation theory, hydrodynamics, statistical mechanics
*
and even chemistry J. Here we should like only to point out again two important aspects:

*)  See for example the very interesting Nobel lecture of Mulliken'?®) where he says in
particular: '... I should like once more to express my conviction that the age of compu-
tational chemlstry has already begun, when hundreds (if not thousands) of chemists will
switch from laboratory work to computation for the study of newer and newer problems'.
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firstly, the need to combine experimentation (*'real" or mumerical) with analytical theory,
even though semiqualitative, without which it is completely impossible to orientate onesclf in
the inexhaustible sea of phenomena of applied physics; secondly, any use of mmerical ex-
perimentation is just a heuristic method and not simply a way of obtaining specific mmerical
data’).

In this connection it should be noted that perhaps the main advantage of mmerical ex-
perimentation, apart from its simplicity and convenience (when there is a good computer
available!) is the possibility of extremely "pure', i.e. fully controlled, organization of
the experiment and extremely flexible variation of the conditions, umattainable in a "'real"
experiment. Furthermore, a computer offers wide scope for processing, including logical
processing, of computation results, even without output from the machine, and these possi-
bilities are beginning to be used also in "real™ experiments, for instance by on-line com-
puters. The main drawback of mmerical experiment, better termed "apparatus' effect, which
needs careful watching, consists of so-called "computation errors', which boil down to
round-off "errors', i.e. connected with the finite number of mantissa digits in the computer.
The space of all quantities in computer experiments can be said to be '"quantized". This
"apparatus" effect will be thoroughly discussed in Section 3.3.

Below we describe mmerical experiments with the most simple models specially constructed
for investigating the fumdamental characteristics of stochasticity. In the next chapter we
shall deal with some applications of the theory developed to more or less practical problems.
The numerical experiments carried out in this comnection may also be considered as a continua-
tion of the experiments with the most simple models, although they are already considerably
more difficult to interpret on account of the much greater complexity of the corresponding
dynamical systems. This last remark applies also to the incomplete numerical experiments
with the most simple many-dimensional system, described in Section 3.6.

Quite a mmber of papers have appeared recently on the subject of numerical experiments
similar to those described in this and the subsequent chapters. Perhaps the closest results
are those obtained by Hénon and Heiles®?) and Greene“?). References to other papers are
made in the course of our report.

In what follows, for the sake of brevity we shall replace the term "numerical experi-

ment" by the term “experiment"; this will not lead to misunderstandings, since everywhere
in this paper except in Section 4.4 we mention only mmerical experiments.

The majority of the experiments described in this chapter (except for Section 3.6) were
carried out on the BESM-6 at the Computing Centre of the Siberian Section of the USSR Academy
of Sciences, in co-operation with Israelev.

*) There is a very interesting discussion of the heuristic role of the computer in an even
wider class of so-called mathematical experiments, not necegsarily connected with the
integration of differential equations, in a paper by Ulam®3). It is also extremely use-
ful permanently to associate computer experimentation with the experimenter's theoretical
conclusions. This continuous link between man and machine has even been given a special
name, the "synergetic approach” °3:%*). It seems to us, however, that this is a typical
experimental situation and the ''synergetic approach" can be considered simply as a
special case of "real" experiment.
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3.2 Choice of model and processing
of computation results

The detailed analysis made in the previous chapter showed that the phenomenon of sto-
chasticity can be reduced, ultimately, to an elementary model (Section 2.4), which for con-
venience we will re-write again in the form:

/= {(‘9 o+ k-ﬁ(%); (3.2.1)
¢'={ v+ g

where the brackets signify, as usual, the fractional part of the argument. The possibility
of simplifying the problem in this way is due, in particular, to the fact that the elementary
model describes the motion in the stochastic layer near the non-linear resonance separatrix,
which is the 'nucleus" of any stochasticity (Section 2.6). Therefore cur basic experiments,
described in this chapter, were carried out with the elementary medel (3.2.1). Only in the
last section shall we introduce the results of some experiments with a many-dimensional
system. The model for these experiments, close to the elementary model, will be described
there (Section 3.6).

The form of the function £{y) in (3.2.1) (“'force") was determined mainly by reasons
comnected with choosing the case that would be the simplest for computing while being non-
trivial. Non-triviality signifies the presence of "islets™ of stability in the stochastic
component, or of quasi-rescnances (Sections 2.8 and 3.5). An example of a trivial “force"
is the function*)

)E(ﬁo) = ¢ — T/g (3.2.2)

for which stochasticity was rigorously proved recently by (seledets and $Sinai under the condi~
tion of local instability {Section 2.8).

The "saw" type "force' used below is of the same type:

_ _J¥-Tr w2
A FIVP

(3.2.3)

However, if we "smooth out" the peaks of the "saw" by the quadratic function:

795»1("”} = “{7““ d- /\'(5”“‘*'/2.)'1 (3.2.4)

for ¢ =~ }{ and similarly for ¢ = 0; 1, this "smoothed-out saw' is already a non-trivial 'force'",
since these quadratic sections lead precisely to the formation of regions of stability
{Section 3.5).

*) Trivial only in the stochastic region but not in the region of Kolmogorov stability
(see Section 3.3).
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In the majority of the experiments use was made of the most simple non-trivial “force':
2
fle) = —¢ + 1/4 (3.2.5)

Here the minimmn number of multiplications was chosen and the linear term (-y) improves the
smoothness (only the derivative is discontinuous); the coefficient 1/6 eliminates the con-
stant drift @ (< £ > = 0), leaving only the diffusion.

For some control experiments an analytical “'force" ) was used:

e 2
£¢) = ‘-r‘—‘—";‘,?% (3.2.6)

Finally, for the study of stable regions use was made of the transformation:

_ 3
5: - f: (:/’ (3.2.7)

w}uch is essentially equivalent to the elementary model (3.2.1) (with £ = -y3), but does not
contain the factor k") and what is most important, makes it possible to avoid taking the
fractional parts (for stable trajectories). As a result a record computation speed was
achieved for the latter model -- 7 usec per step (3.2.7), while the computing speed for
model (3.2.1) with a '"force'" (3.2.5) was about 20 usec per step. In order to achieve maxi-
mon computation speed the program was written in computer language. In particular, it was
possible to fit all the main loop of the computing of transformation (3.2.1) proper in the
fast registers of the BESM-6, which obviated the need for relatively slow access to the
operational memory. Moreover, the normalization and round-off were suppressed, i.e. in fact
fixed-point was used; this further increased the computation speed.

The main output data was a histogram of the distribution function of the trajectory in
the phase plane, i.e. the mumber of times the trajectory entered each of the bins of the
phase square. It is not given, as a rule, on account of its extreme ctﬂizersaneness even for
very rough subdivision of the phase plane (32 x 32 bins, 1024 numbers) ). On the basis of
the histogram a much more compact phase map can be constructed (see for example Figs. 3.3.1
and 3.3.2), which records only the fact of whether or not the trajectory enters each of the
bins.

The finest division of the phase plane in order to obtain the histogram was
128 x 128 = 16384 bins. For a phase map it is not necessary to occupy a whole word of the
machine memory for each bin, it is sufficient to use one binary digit"). This makes it pos-
sible to increase the number of bins to 512 x 1024 = 524288. With this mumber of bins the

*) The factor 2n in amplitude was introduced for easier comparison with (3.2.5).

**) The introduction of this factor into (3.2.7) is equivalent to the transformation
Y~ ¢//k: v+ y//k

***) See also Section 3.6 where individual sections of similar histograms are given.
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Fig. 3.3.1: Phase map of system
(3.2.1) for *force" (3.2.5); di-
vided into 32 x 32 bins: k = 1;
Yo = 05 Yo = 0.765; t =5 x 10°
steps; the stochastic region is
hatched; the bins completely free
from the trajectory are shown by
an unbroken line; between the un-
broken and dotted lines are bins
with considerably less density of
trajectory (only part of the bin
occupied by the stochastic com-
ponent); the small circles repre-
sent the stable trajectory with
initial conditions ¥ = 0;

Po = 0.460; t =5 % 10%,

Fig. 3.3.2: The phase map for
"force't {3.2.5): 128 x 128 bins;
k=0.2; t=5x%10"; the
stochastic component is hatched.
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output of even a phase map becomes impossible, and one has to limit onself to computing the
empty and full bins and to the output of characteristic sections of the phase plane map

(see for example Fig. 3.5.2). Let us note that all array dimensions for the distribution
function and phase map were chosen equal to some power of two, which considerably simplifies
programing in computer language. Some special processing methods will be described below.

3.3 Kolmogorov stability

Let us begin with a description of experiments on Kolmogorov stability. It should be
recalled that this means the existence of non-resonant invariant tori?®), which for system
(3.2.1) have the form of curves crossing the whole of the phase square along the axis y.
In particular, for an unperturbed system (k = 0) they are simply straight lines: = const.
According to the KAM theory (Section 2.2) this invariance does not, generally speaking,
extend to the resonant regions, situated for transformation (3.2.1) in the vicinity of ra-
tional values of the momentum:

‘fp = L (3.3.1)

r,q are integers. If the resonances of this system overlap, the non-resonant tori, and with
them also the Kolmogorov stability, vanish.

According to the estimates in Section 2.7 under the condition:
< 1 (3.3.2)

overlapping of the resonances of the higher harmonics (of the first order) takes place for
any k + 0.

For "force" (3.2.5) & = 0 (discontinuity of the first derivative) and therefore it can
be expected that there will be no Kolmogorov stability for any k. Figure 3.3.2 gives the
phase diagram for k = 0.2. It will be seen that the stochastic component crosses the whole
region along ¥, leaving only isolated islets of stability. This in fact signifies the
absence of Kolmogorov stability as determined above.

For smaller values of k, however, the region occupied by the trajectory is limited in
¥, at least during the computation time t, = 10°. Moreover, towards the end of the motion
(t 2 0.7 x to), no diffusion at all can be observed to within the size of the phase bin
(o4 = 1/128).

For the other *force' (3.2.3) with the same smoothness parameter £ = 0 the stochastic
component remained limited in § even for k =1 during t = 5 x 10°.

At present it is not quite clear whether this means the existence of some region of
Kolmogorov stability, i.e. incomplete overlapping of resonances, or a very small diffusion
coefficient. It can be asserted only that the resonance regions occupy a considerable part
of the phase plane, since out of ten randomly chosen initial conditions [for *force" (3.2.5),
k = 0.01] it turned out that four lay inside resonances of high (q ~ 100) harmonics (motion
limited in ), six fell in narrow (Ad ~ 107?) stochastic bands (probably destroyed separat-
tices) and there was not one case of Kolmogorov stability. A summary phase map is given in
Fig. 3.3.3. The resonance Tegions can be clearly seen inside the stochastic bands. However,
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Fig. %.3.%: Summary phase map of the meticn of system (3.2.1) with a
“force” (3.2.5) for different initial conditions k& 0.01; t© = 107;

the size of the given section of the phase plane (AP,AY) 15 3/512 x 1/128;
it is divided into 374 = 128 bins. The wide ergedic bands are hatched,
the narrow regions {one or two bins wide) represent stable trajectories
inside first order resonances.
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the most interesting feature of the motion in our opinion is the overlapping stochastic
bands with diffusion limited in . This shows especially clearly the extraordinarily com-
plicated structure of the phase plane of the system under consideration, if moreover it is
taken into account that the bin size (&p,Ay) in Fig. 3.3.3 is approximately

(3 x 107%) x (6 x 107%).

A no less interesting case is illustrated in Fig. 3.3.4 .), which gives the phase
map of the motion for "force" (3.2.3) and k = -1.145. Here the grey circles show the region
of the phase space actually occupied by the trajectory of motion, and the black circles and
crosses represent the periodical extension of the "grey'" region along the axis §. Both
regions overlap (the overlapping bins are represented by crosses), nevertheless the diffusion
is limited by the "grey" region, at least during the computation time (3 x 10° steps). This
shows that there are possibly very narrow gaps in the set of overlapping resonances of dif-
ferent harmonics. A similar hypothesis was discussed in Section 2.7.

It is possible to explain the stopping of the diffusion in a completely different way --
attributing it to so-called "cycling", i.e. the appearance of periodical motion because of
the finite mmber of points of the computer phase space (see below). "Cycling" is facilitated
by the fact that in some segments along \ the diffusion can be very slow (Section 2.7).

In order to verify the above assumptions, experiments were carried out with an artifici-
ally reduced number of mantissa digits. This was done by "cutting off' the lowest digits of
¢ and ¢ after each step of the transformation. Some of the results of these experiments are
given in Table 3.3.1, which gives the mumber of bins of the phase square (out of 16384) fil-
led by the trajectory, depending on the number n of binary digits of the mantissa "cut off",
for two values of the parameter k.

If gaps are the reason why the diffusion stops, then an increase of n should facilitate
diffusion on account of "jumping" over these gaps; if the "cycling" is responsible, the op-
posite effect should be observed, since "cycling” appears more easily when there are less
digits. From Table 3.3.1 it can be seen that the dependence of the diffusion on n is of a
complicated and contradictory nature, and it is possible that both factors are operative.

In any case this question requires further study.

Table 3.3.1
7 0 6 11 14 15 16 25
k =~ 0.148 ,6815 4528 11270] 13807 § G896 | 14427
kz 0.03 1246 808 , 144

*) This drawing is borrowed from Ref. 76 where a similar problem was studied.
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Fig. 3.3.4: Phdse map of model (3.2.1) with a 'force" (3.2.3):

k = ~1.145; = 3 x 10%, the black circles and crosses represent the
periodical extenswn :l]Ollg the axis  of the region occupied by the
trajectory and denoted by grey circles; bins common to both regicns
are marked by crosses.
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Let us note that a similar effect of stopping the diffusion had also been observed
earlier in mmerical experiments by Courant®’) and Hine®®). Thus the motion in this case is
in a sense even more stable than could be expected from the first approximation (Section 2.7).
Nevertheless one has the impression that in the case studied (L = 0) there is in fact no
Kolmogorov stability outside the resonances, in accordance with the estimates of Section 2.7.
According to the results of Ref. 76 the same apparently takes place for the case £ =1,
whereas for £ = 2 the results of this paper are not inconsistent with Kolmogorov stability,
again in accordance with the results of Section 2.7

08

Fig. 3.3.5: Phase map for the analytical "force" (3.2.6): 128 x 128 bins;
k = 0.62; t = 107. The hatched region represents the stochastic layer in
the vicinity of the separatrix of the main resonance.

For purposes of comparison Fig. 3.3.5 gives the phase diagram of system (3.2.1) with
an analytical force (3.2.6), for which the amplitude of the hammonics decreases exponentially.
It can be seen that there remains only a small unstable band along the resonance separatrix
(Section 2.8). Recent numerical experiments!®*) seem to point in the direction of the former
cause, i.e. the existence of extremely thin gaps of less than 107'2, since for double pre-
cision computation the diffusion drops considerably.

It is inconvenient to use force (3.6.2) for numerical experiments, since it takes too
long to compute the sine. It was therefore used only for the check experiments (see below).

Let us now return to the isolated stable regions which can be well seen in Figs. 3.3.1
and 3.3.2. They lie inside the resonances of various harmonics. The largest region of
stability corresponds to the basic resonance q = 1, although in Fig. 3.3.2 one can distin-
guish stable regions of resonances of up to the fifth harmonic inclusive.

The reason for the increased stability of these regions is that the trajectories here
are limited in ¢ (see for example Figs. 3.3.1 and 3.3.6) and do not generally speaking cross
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the singularity of the "force™ £(). On the other hand, the KAM theory aiso applies, with

77,176,708} 14 the internal region of the resonances. It leads to the con-

some modification
clusion that under specific conditions there exists a sufficiently small stable region
around an elliptical point (around the periodical solution, in the general case). The size
of the stable region is determined in the present case by the width of the stochastic layer
in the vicinity of the separatrix. It can be estimated by the formuiae in Section 2.6, or
according to local instability (Section 2.4). In particular, the complete disappearance of
the stable region in Fig. 3.3.1 corresponds to the transformation of the elliptical point of

transformation (3.2.1) from a "force' (3.2.5) (Yo = % - 1/VIZ = 0.21) into a hyperbolic

point. This takes place under the condition k > ks 47{1 = 2Wy) = 7 which can be considered
as a form of stochasticity criterion (Ref. 47, Section 2.4). Since for the case in Fig. 3.3.1
k = 1 << 7, the stable region must be of a considerable size, determined in practice by the
singularity £{¢) at the point ¥ = 0. The same conclusion can be reached by considering the
parameter of destruction of the separatrix s, = w1/9¢ (Section 2.6), where the perturbation
frequency w, = 27 and the phase osciliation frequency is cbtained by linearizing transforma-
tion {3.2.1) at the point $ = ¢ which gives: ﬂ¢ = 7k, Assuming that s; & 1 we obtain:

k; a~ 2n2.  The relation k;/kS w3 characterizes the accuracy of the estimate: s, ~ 1.

A fundamental question arises: is the approximate border thus determined the same
border of eternal stabiiity whose existence follows from the KAM theory? In other words, is
not the border of stability in Fig. 3.3.1 substantially displaced if the time of the motion
is considerably increased?

Model {3.2.7) was chosen for carrying out this experiment. A similar experiment had

been carried out earlier by Laslett?!) with the transformation:
’ 73

e + - P

7 f Y ’

pl=prg G/

The motion of this system is similar to the motion in the stable region in Fig. 3.3.1

(3.3.3a)

[”force” (3.2.5)]. The reason for choosing a more symmetrical transformation (3.2.7) was
comected in particular with round-off errors (see below)., Moreover, transformation (3.2.7)
has a 'real' border of stochasticity, i.e. it has a region of strong stochasticity deter-
mined by the overlapping of the resonances, while the border of stability for transformation
(3.3.3a), as in Fig. 3.3.1, is determined by the destroyed separatrix. In the latter case
there is some indeterminacy in establishing the distance to the border of stochasticity,
since in any neighbourhcod of the chosen initial conditicns there are always destroyed
separatrices of resonances of sufficiently high harmonics. Unfortunately, in Ref. 91 the
position of the border of stochasticity was not determined at all, so that we can do no more
than make a rough estimate of it according to the critericn of local stability {Section 2.4),
which gives a value: q ™ 0.5. In this case the energy for the stable trajectory studied
in Ref. 91 is approximately 200 times less than at the border of stochasticity, i.e. this
trajectory lies far inside the region of Kolmogorev stability.

In order to find by experiment the approximate border of stechasticity in our case
{in a short time} an auxiliary system was used:
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Pree = {‘P:_ 8 (¢.- 4/1)317
Y’:H = {’7‘/: * $0“11j

the phase map of which is given in Fig. 3.3.6 for t = 5 x 10°. The fractional parts here

(3.3.3)

s X -gog 2% age- K5

K

7

0 v {

Fig. 3.3.6: The phase plane of system (3.3.3); the notation is the same
as in Fig. 3.3.1; the ergodic trajectory corresponds to the initial con-
ditions W§ = 0; ¢§ = 0.830; the long computation trajectory ¢} = 0;

v6 = 0.735 is represented by small circles; the crosses re?resent the
other stable trajectory near the second order resonance: ¥g = 0;

v = 0.803; for all three trajectories t = 5 x 105,

are indispensable, since in the oppositencase the trajectory in the stochastic region
rapidly runs to infinity: ¢ vV, v C(3 ); C > 1. By computation this leads to overflow.
The transformation coefficient 8 and the shift of y by i were chosen with a view to con-
venient arrangement of the stable region in a standard phase square 1 x 1.

From Fig. 3.3.6 it follows that the border of stability lies somewhere in the interval
0.69 <y s < 0.93 (¢ = 0). The more accurate measurements of Ref. 76 lead to the value

b = 0.80 (for t = 10%).
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Let us note that the position of the border of stability cannot depend on the singu-
larity of the "force' comnected with taking the fractional part in {3.3.3) (discontinuity of
the function £(§}). Indeed, the border in this case is clearly separated from the location
of the singularities (¢ = 0; 1); therefore the latter can in no way influence the trajec-
tories of the system that are located between the border and the singularities.

The stable (for t = § x 10%) trajectory, represented in Fig. 3.3.6 by crosses, lies
precisely on the border. However, it is not continuous, i.e, it may be situated in "islets"
of stability inside the stochastic region {see Section 3.5). This is just how it is in
reality, according to Ref. 76. In this connection, a more 'mormal' trajectory was chosen
for the long computation, marked in Fig. 3.3.6 by small circles, for which ¢ = -0.67 (§ = 0}.
This is 12% less than the critical value for the phase and 40% less for the energy.

This trajectory was computed in t = 10'° steps. After every 100 steps the position of
the system was marked on a phase map with a minimum bin size [1/512 (in §) by 1/1024 (in ¢)].
The trajectory occupied 1876 bins, and this number did not change for t > t; = 10°,

The latter vaiue is of the order of magnitude expected, which can be estimated as

2.
£y ~ wfp«—:— (3.3.4)

where L is the length of the trajectory (number of bins) and v = 1/100 is the frequency of
output on to the phase plane. The estimate is based on the assumption that there is "random™
intersection of the bin by the trajectory, so that out of L bins there may be one in which
the length of the trajectory will be ~ L times smaller than the average.

In order to reinforce the result obtained, the following additional processing proposed
by Arncld was carried out. In the lower horizontal segment of the trajectory with minimum
curvature {Fig. 3.3.6) a square was chosen with sides 27'% = 4 x 107%. Exact values ¢, V¥
of all the points (about 100) entering this square during t = 10°® were printed out at the

begiming and end of the long computation. The values obtained were interpolated as a straight

line by the least squares method, separately for the beginning and end of the long computa-
tion. The differences M between the co-ordinates of the peints and of the interpolation
line (A¢ = 0), proportional to the distance of the points from this line, were piotted de-
pending on time (Fig. 3.3.7) and on ¢ (Fig. 3.3.8). The quantity o, = 107'% serves as the
unit length along the axis AP and is egual to the maximum round-off error.

In Fig. 3.3.8 no correlations are observed between M, ¢, for example, due to the curva-
ture of the trajectory or entry inte a high order resonance. It can therefore be concluded
that the scattering of the points is due to some "diffusion’. The diffusion process can be
especially clearly seen in Fig. 3.3.7. It may be due either to round-off errors or to the
fact that we have not yet reached the region of eternal stability of the KAM theory. In
order to check this last assumption the experiment was repeated for a trajectory lying con-
siderably nearer to the fixed point (Y = $ = ) than the long computation trajectory
¢ 1.7 times smaller, energy 2.9 times lower), and also for a trajectory lying further away
{§ 11% larger, energy 23% higher). In both cases the diffusion coefficient turned out to
be the same as for the long computation, so that the diffusion must be related to the effect
of round-off errors.
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Fig. 3.3.7: Weak diffusion due to round-off for transformation (3.2.7):

Ay is the deviation of the experimental.points from the interpolation
straight line in units of the maximm round-off error (space ''quantum')
by = 107'%; ¢, = -0.316 (long computation); the points on the left
rel:;e trc:d the beginning of the long camputation and those on the right
to the end.
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Fig. 3.3.8: Search for the correlation 49, ¢ : O - the begiming of
the long computation; x - the end of the long computation (see
Fig. 3.3.7).
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It thus appears very likely that the long computation trajectory lies in the region of
eternal stability of the KAM theory. In other words, the strict border of stability for
transformation {3.2.7) is scmewhere in the interval:

D.6¥ < % < 2.0, (3.3.4a)

As already repeatedly noted [see for instance Refs. 89 and 90 the border of stability in
the general case is not simply a line, but there is a whole transitional region of alterna-
ting stable and unstable layers of increasingly fine structure, corresponding to higher
harmonic resonances. Some of the regions are characterized by a relatively long time of
development of instability. So, for instance, according to the data of Ref. 76, when the
computing time is increased from 3 x 10° to 10° the border shifts from ¥ = 0.88 to ¢ = 0,80,
i.e. by approximately 10%.

This transitional region for the transformation in question {3.2.7) was thoroughly
studied recently in Ref. 184 using double precision computation. It was found that both
boundaries of the region are rather sharp: the upper one is at ¢ = 0.62 (y = 0) where the
trajectory's "lifetime" (up to running away to infinity) drops from t, v 100 steps down to
t, v 1 in &p v 2 x 107%;  the lower boundary is at ¢ = 0.52, as compared with ¢ < §.56
according to (3.3.4a) 75), where the lifetime increases steeply from £y v 3 % 10" up to
t, v 10% in A9 ~ 3 x 1073, The latter must lie very close to the border of XM eternal
stability since a stable trajectory was found {certainly in the region of Kolmogorov stability
in M =~ 8§ x 107° only. This trajectory proved to be stable with an accuracy better than
167%% {in @) during the computation time t = 107,

Although the example we have studied of a trajectory stable for such a long time is
(of necessity!) unique, it gives grounds for hoping that the position of the strict border
of stability according te the KAM theory can in fact be estimated in order of magnitude by
means of the relatively simple stochasticity criteria obtained in the present paper
(Chapter 2Z). In any event this correspondence has been observed in all (about 100) cases
of computation for a time t ~ 107.

The accuracy of this assertion is determined by the residual diffusien in Fig. 3.3.7,
which can be explained by round-off errors {see below). Let us note that this diffusion
does not contradict the KAM theory, since the round-off errors are eguivalent to some rough
(with a great number of fine discontinuities) perturbation, which is inadmissible for the
theory.

The residual diffusion ceefficient is (see below): D =4 x 107%7, In Ref. 91 this
estimate was considerably reduced on account of the use of double precision computation:
D~ 1.6 x 167%". However, in the experiments in Ref. 91 there was systematic accunulation
of round-off errors (drift): VQ = dg/dt &~ 1.3 x 107!, This value should be compared to
/O~ 6 x 107'" in our case, so that the accuracy achieved in Ref. 91 is all the same con-
siderably greater. It is true that the trajectory chosen in Ref. 91 apparently lies sub-
stantially further from the border of stochasticity and was computed in a considerably
shorter time (t ~ 187). In this connection let us note that the increase in accuracy does
not necessarily compensate for the reduction in the time of motion, since instability may
develop according to an expenential law (see Section 3.6).
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From Fig. 3.3.7 it can be seen that there is a conspicuous stopping of diffusion after
t ~ 10%. This is apparently explained, at least in part, by "cycling", i.e. the appearance
of periodicity of the motion. *Cycling'" necessarily occurs sooner or later as a result of
the finite number of points (S) of the phase plane in the computer presentation. The maxi-
mum possible time until "cycling' begins is obviously: Tc = S, after which one of the pre-
vious points of the trajectory is necessarily reached and consequently an exact repetition
of the motion begins. In the case under consideration S is determmined by the area of the
ring along the trajectory, the width of which (d) depends on the scattering of the points
in Fig. 3.3.7: S=L -d=2 x 102 x 1600 = 3 x 10'%, where L = 2 x 10'2? is the perimeter
of the trajectory in units of maximm round-off error Ay = 107'2 which is the computer space
"‘quantum’.

In order to obtain a more realistic estimate of the quantity Tc we shall assume that
the round-off is characterized by 'random' diffusion with a coefficient D, (see below).
Then the probability of the trajectory arriving in one of the previous points in a step is
equal to the relative density of occupation of the phase space by the trajectories: )
w(t) = t/L - d(t), where d(t) & 2/2Z Dot. The beginning of the ‘'cycling" is determined (on
the average) from the condition: [ oC wdt =1; this gives

R
T~ (34 /222 ) & (3.3.5)

Putting here the experimental value obtained below") Do = 4 x 107%, we obtain: T.= 6 x 107,
This does not contradict the data of Fig. 3.3.7, but it also does not prove that the limita-
tion of the diffusion is necessarily due to the "cycling". This question will be discussed
further a little later on.

Let us note that in the stochastic case L - d ~ L2 ~ S = 102", and T /S 10'2, so
that “cycling" is completely insignificant. The diffusion coefficient can be determined
from the mean displacement (4y) . between the points in Fig. 3.3.7, which are separated by
an interval of time T:

(3.3.6)

The results of the computation of Dexp’ for all three trajectories (see above) are
given in Table 3.3.2, which also gives the mean values of the diffusion coefficients for
all the trajectories. Moreover, it gives the experimental root-mean-square errors, which
satisfactorily agree with the expected values. The variance between different values of
D__ , including those for various 1, does not substantially exceed the statistical errors.
The least probable are three small values of Dexp for 1 = 10% (probability ~ 61). However,
if rejecting the end of the long camputation, which is possible, corresponds to “cycling”
and is therefore insignificant, the probability of the two remaining cases is increased to
163, which is no longer a substantial deviation.

*) Here and in what follows all lengths are in units of Ap.
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Table 3.3.2

long computation
. Yo = -0.316 $o = -0.187 | \p, = -0.350 < Dpyp >
Beginning End
108 | 3.2x107° | 3.5x10"% | 5.5 x 1073 4.3 x 107 (4.1 £ 0.9) x 10°°
107 | 5.7 x10"% | 2.8 x10"* | 2.4 x 10™? 1.5 x 107° (3.1 £ 1.6) x 10~°
10®° | 4.7 x107% | 1.1 x107? 0.9 x 107? 1.0 x 1073 (1.9 + 1.9) x 1073

The distribution of large values of (A\p)_[ was also studied. At the beginning of the long
computation they agree well with the normal law, and at the end there are two jumps, the
probability of which is ~ 1072. The latter may also signify the "cycling" effect at the
end of the long computation. If this case is refused, one has the impression that the
accumslation of round-off "errors' indeed follows a diffusiom law.

The same result is obtained from an additional series of experiments with artificial
reduction of the number of mantissa digits by 2, 4, 8, 12, 16 binary digits out of 40. The
mean diffusion coefficient of this series is < D > = (5.6 * 1.2) x 107%, which agrees well
with the results in Table 3.3.2.

When 20 digits were "cut off' "cycling" was observed for t =~ 10°. If estimate (3.3.5)
is applied here, we obtain T. = 6000, i.e. almost 200 times less than the value observed.
This result can be explained, for example, by the strong correlations of neighbouring values
¥, ¥. If this really is the main cause, strong correlation of approximately 200 neighbour-
ing values can be expected. This hypothesis is partly confirmed below when the diffusion
coefficient is calculated. If it is applied to the long computation, "cycling' can be
expected only when t ~ 10!°, i.e. only at the very end of the long computation. Then there
‘must be some other reasons for the limitation of the diffusion after t ~ 10°, which can be

clearly seen in Fig. 3.3.7. The question as a whole requires further study.

It should be pointed out that according to the results in Table 3.3.2 if there is any
change in the diffusion coefficient it decreases rather than grows with 1. Hence it follows,
in particular, that within the limits of statistical fluctuations there is no permanent
drift, i.e. no systematic acamulation of errors. Let us write the upper limit of possible
drift in the form: Vv = d(ay)/dt < .’Ig;pTz 6 x 10™¢ (in units of 4,).

The absolute value of the diffusion coefficient De = 4 x 10~% (Table 3.3.2) does not
correspond at all to the expected value for random errors (A). The latter can be calculated
according to the formula: D_ = <A*>/Z. The quantity <A?> depends on the round-off algorithm.
In our case the lowest digits of the product were simply rejected, which corresponds to a
randam quantity of A, uniformly distributed in the interval (-Ar, Ar). Since in one step of
the transformation (3.2.7) there are two multiplications'), D, = <> = 3, i.e. it is
approximately 80 times greater than the experimental value. This discrepancy may signify

*) Since we used fixed-point arithmetic (Section 3.2) there was no round-off when doing
addition.
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strong correlation of neighbouring errors. Let us assume, for example, that the correlation
decreases according to an exponential law: p = e-n/n", where n is the number of steps.

Using expression (2.10.5b) for the diffusion coefficient taking into account the correlations,
we obtain: n, = 80.

let us now have a closer look at the accumulation of random errors, limiting ourselves
to the most simple case of interest to us in fixed-point arithmetic. In this case the error
is determined simply by the lowest digits of the product. But this operation is similar to
one of the standard kinds of pseudo-random number generator (Ref. 95, 96, see also Sec-
tion 4.7). Thus, the problem of round-off error accumlation is brought mainly to the study
of various pseudo-random mmber generators. The specific mechanism of such a generator de-
pends on the computation algorithm. In the present case the generator turns out to be rather
poor, judging by the value of the correlation cited above. Precisely such a generator has
not been studied, as far as we know, but similar ones containing the squaring operation in
fact give poor results®S). If our transformation contained the operation of multiplying by
a constant, we should obtain a generator of the type of system (2.3.3), which is stochastic,
with an enormous constant k n A;‘. Various tests of this generator show that it gives ran-
dom numbers (usually called pseudo-random) of very good quality (Section 4.7). Accordingly,
in this case the accumulation of errors must take place according to a random law. This
last result is confirmed, apparently, by the data of Ref. 91 on the investigation of trans-
formation (3.3.8a), which contains just such multiplication by a constant. The "error dif-
fusion" in this case agrees with the merely random diffusion®!).

A slightly more complicated question is that of constant drift, which was observed in
Ref. 91 (V_ v q « A ™ 1073!), but is absent in our experiment. There are apparently two
most important differences between the two experiments:

i) We used fixed-point arithmetic while Laslett”) used floating-point mumbers;

ii) Our transformation (3.2.7) is symmetrical with respect to the sign of , ¥, in contrast
to Laslett's transformation (3.3.3a).

Asymmetrical round-off was used in both experiments: < A > = Ar/Z # 0, but for fixed-
point arithmetic this is equivalent to a constant '"force" in the equation for the 'momentum",
which only slightly displaces the trajectory of the system; in the case of floating-point
arithmetic this "force" is proportional to the 'velocity', i.e. it becomes "'dissipative".

To be more precise, the '"force'" is proportional to the velocity modulus if, as is the case
for the majority of present-day computers, a negative number is represented in a complementary
code. But in such a case, for symmetrical oscillations the mean ''dissipation' vanishes and

for asymmetrical ones it remains.

The most radical means of preventing drift is to introduce symmetrical round-off, which
is provided for in the majority of computers but requires additional time. Another method
is to change over to fixed-point arithmetic, if the algorithm of the problem permits. This
considerably increases the computing speed also, particularly if double precision is used.
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3.4 Stochasticity
In this section we will discuss the experimental results relating to the behaviour of
the elementary model (3.2.1) in the region of stochasticity, i.e. when k >> 1.

Is the motion in this case really stochastic?

Let us begin with K-entropy (Sections 2.3 and 2.4). For the experimental determination
of K-entropy Sinai's equation”) was used:

/ /7
- ;h: e 4 T
no= lic Calelr) (3.4.1)

vhere £, 2’ is the length of the transverse vector (Section 2.4) before and after the trans-
formation respectively, and averaging is carried out along the trajectory of the main motion.
We chose & = 1077, so that for the largest value of k = 10° the value 2’ ~ 107" << 1.
Mmerical calculation of transformation (3.2.1) was carried out for two trajectories, the
initial points of which were % apart, and after each step of the transformation the length
of the transverse vector (-ft) was brought to the initial value of £ = 10”7 without changing
its direction.

An analytical estimate of the K-entropy is given by expression (2.4.21), which can be
made more accurate for the elementary model, on the basis of Sinai's equation (2.4.19):

+
b= <« lalq > (3.4.2)

where k; is the projection of 2" in the direction of the asymptote, which generally speaking
is not identical with the direction of the extension eigenvector (6‘), if the latter turns
(Section 2.4.8).

However, for large kf’ the direction of the eigenvector hardly changes, as can be easily
verified by using expression (2.4.14) or (2.8.4):

%9*2 { — 1'/,4’4:/, (3.4.3)
A narrow phase region near the stable phase region (2.4.7) is an exception:
~9< k- fUy) <0 (3.4.4)

the probability of entering which is ~ 1/k. In the main region the variation of
+
© ~ 1/k.

Let us note also that the regions of the values (sectors) e’, © do not overlap for any
kf’. Indeed, it follows from (2.8.4) that the full range of variation of o is:

U0 <236"< .2 (3.4.5)

and the range of variation of © is precisely complementary to (3.4.5). In the majority of
cases the contraction vector is directed almost along the axis §:

7 -/ A {
f} (?“'9/*" kg” (3.4.6)
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Hence it follows that the asymptote practically all the time makes an angle of ~ 1/k
with the direction of the extension vector, only occasionally (with a probability of ~ 1/k)
deviating by an angle of ~ 1. In this case one can put approximately: X as 2" with an
accuracy of ~ 1/k. In fact the accuracy of this equality is even better, since the ratio
).a/f varies both ways and partially compensates for the deviations. Let us explain in
this connection that A, is an oblique projection-of Az’ along the eigenvectors, which are
generally speaking non-orthogonal (Section 2.4).

Thus the K-entropy can be estimated a?:cording to the fornula:

A x < Cu At > ' 3.4.7)

where the averaging is carried out over ¥, and in the stable region (3.4.4) one should put
A" = 1. Let us note that it would be incorrect simply to exclude all the stable phase
region (3.4.4) from the mean (3.4.7), since according to the data of the next section the
stochastic trajectory occupies almost all this region except for a very small fraction of
"'islets" of stability.

The K-entropy was calculated for a ''force" of two forms: (3.2.5) and (3.2.6). In the
first case the integral (3.4.7) can be calculated to the end and gives:

A’=[H(—§+()+ /—/(é-{/]/k
H(x) = X.gu(x-..m - Vx=1

(3.4.8)

In the case of force (3.2.6) an explicit estimate can be obtained, if use is made of
the approximate expression (2.4.6):

A= [ e Ik

/ {

(3.4.9)

where the sign is identical with the sign of £/. Limiting ourselves to the first term only,
the accuracy of the K-entropy estimate again will be a little better than ~ 1/k, since the
contributions from the subsequent terms almost counterbalance each other. For force (3.2.6)
we obtain:

‘ .
. = Sc(n{/- o |k Cos27¢ | = Eu.é- (3.4.10)

A similar estimate for force (3.2.5) gives:

L = (gh /<} - 1 (3.4.11)
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The results in Table 3.4.1 enable us to campare the experimental values of the K-entropy
with the various estimates. As already noted above, the initial distance between the trajec- -
tories was chosen as £ = 1077, Increasing it to 10”° changes the experimental value h fram

3.615 to 3.72 [k = 100.2; force (3.2.5)]. The usual mmber of steps when calculating the

K-entropy according to formula (3.4.1) was t = 10*. Reducing this figure to 10® leads to a

change in the K-entropy fram 4.234 to 4.242 [k = 142.0; force (3.2.6)].

The results in the table show the very good agreement between the experimental values
of the K-entropy and the analytical estimates, even the most simple ones [(3.4.10), (3.4.11)]
This also shows indirectly that when k >> 1 (in fact, when k 2 10, see table) the stochastic

component occupies practically all the phase plane of system (3.2.1).

Table 3.4.1

“"Force' (3.2.5) "Force" (3.2.6)

/( Exp. Estimates Exp. Estimates
value  |(348) |(3.4.11)] value | (347) | (3.4.10)
6.21 0.058 0.608 0.828 1.157 1.138 1.138
14.0 1.654 1.855 1,628 1.848 1.848 1.848
25,0 2.24] 2.225 2,218 2,637 2,628 2,526
50.0 2,814 2,813 2,612 3.227 3.2]8 3,218
100.2 3.615 3.608 3.607 3.014 3.014 3.814
142 3.92.38 3.855 3.858 4.254 4.263 4,263
200 4,808 4.268 4.268 4,603 4.605 4.600
1000 5.926 5.008 5.008 6.208 6.215 8.215

This result is confirmed by direct experimental verification of the ergodicity of trans-
formation (3.2.1). In itself ergodicity is a weak property, completely insufficient for
stochasticity. However, when there is the additional condition of local instability of
motion almost everywhere, as is the case for our model (3.2.1) from (3.4.4) when k >> 1, the
establishment of ergodicity is decisive evidence of stochasticity, according to the latest

results of Anosov®!) and Sinai®*s'7),

A rough check of the ergodicity was made by a phase map with the smallest bins (512 x
1024 = 524288 bins). From the results in Tables 3.4.2 and 3.4.3 it follows that for suffi-
ciently large k the trajectory in fact goes through all the phase plane bins'). From the
analysis made in the next section it will be seen that the stochastic component may neverthe-

less not occupy all the phase plane, but the area of the stable regions (and their dimensions)
decreases, generally speaking exponentially with the growth of k, and for special values of

k proportionally to k™2.

*) With regard to the last three cases in Table 3.4.3, see next section.
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Table 3.4.2

""Force'" (3.2.5)

k 4 -8 16 32

Number of empty bins 42038 60 0 0
Fraction of ;

the area x 10% 8000 11.4 0 ! 0
1]

Total number of phase plane bins = 512 x 1G24 = 524288

Table 3.4.3

“"Force' (3.2.6)

/( 3.67 478 | 568 |8.64 | 10.5 {251 | 37.7 | 50.3
Number of empty
bins 48058 | 10262 | 1681 | 24 0 45 8 1
Fraction of : :
the area x 10°% £300 | 180 | 320 | 4.6 : O 8.8 1.5 | 0.76
| 1

Total number of phase plane bins = 524288

A finer check of the ergodicity consists in investigating the uniformity of the occupa-
tion of the phase space by the stochastic trajectory. For this the phase square was sub-
divided into N» = 128 x 128 = 16384 bins and the mumber of times the trajectory entered each
of the bins (ni) was calculated. The criterion of uniformity used was the variance:

D= <(ni - M2 >, vhere M = < n; > = t/N; is the mean value of the number of entries, t is
the time of motion (mmber of steps) and averaging is carried out over all the bins. The
predicted value of D is: D/M =1 % v/Z/N; = 1 + 0.011; the last term gives the root-mean-
square deviation. The experimental value for force (3.2.5) when k = 16, t = 107, is

D/M = 1.017. The probability of such a deviation is about 12%.

Finally the stochasticity was further checked by watching the process of occupation of
the phase plane bins by the trajectory. For random motion for not too long a time there
must remain a certain mumber of empty bins (Ny), which can be calculated according to the

standard Poisson distribution:

- AL
Ne=HN,"e + /N (3.4.12)

where N; = 512 x 1024 = 524288 is the total number of phase plane bins. The results of this
experiment are given in Table 3.4.4. It should be pointed out that in the present case
M = t/5N,, since output on to the phase plane was carried out every fifth step.
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Table 3.4.4
_ !

t, steps 10’ 2x10" 3x10’ ax10" S0’
Number of empty bins,
experiment 11831 258 <] | 0
|
Expected mumber of t o
bine for rondom Y 1500 251 5.8 0.12 251073
occupation + 107 = 16 r 24 2 0.35 = 0.05

To sum up, it can be said that the motion of the elementary model (3.2.1) when k >> 1
really appears. to be "random'". The question arises as to whether finally this is the result
of round-off errors or, in other words, special properties of the 'quantized" space of the
camputer. In our opinion this is not so, for the following reasons. To begin with, round-
off "errors" are in no event random and are determined by an exact and invariable algorithm
of the computer. The latter forms a kind of dynamical system, which in its turn is open to
the question of whether it is stochastic or not. This depends on the camputation algorithm;
in the typical case, when there is multiplication in the algorithm, the round-off is ap-
parently stochastic. But even in this case its influence is negligible for a stable system
(Section 3.3). Even if round-off "errors" were not accumlated diffusely but systematically,
which is possible in some cases®!) , they would be considerable only in an interval of time
~ A;‘ = 10’2, Therefore round-off can have an important effect only under the condition of
local instability, which in itself already signifies stochasticity. In other words, the
influence of round-off '"errors" is not the cause of stochasticity but its effect. Let us
note, however, that these 'errors' can substantially sharpen the transition to stochasticity
and, in particular, make it considerably less sensitive to the initial conditions. This is
due to the fact that at the moment when local instability appears, the original dynamical
system (3.2.1) immediately becomes much more complex, since it begins to be ''sensitive to"
the round-off algorithm. As an excuse, we can only say that probably something like this
happens in Nature, too; this was thoroughly discussed in Section 2.13.

Finally, it should be mentioned that motion in ''quantized' space may possibly have
exclusive properties, since the measure of such space in relation to continuous space is
zero, and all the theorems of the ergodic theory are valid except for zero measure. It
seems to us, however, perfectly improbable that two sets of zero measure and of a completely
different nature could be identical.

In spite of all the above optimistic remarks in connection with the purity of mmerical
experiments, further study (both experimental and analytical) of the characteristics of the
"quantized" space of the computer is certainly desirable.

3.5 Intermediate zone of the system
with divided phase space

In the previous section it was established that for sufficiently large k the motion of
the elementary model really satisfies all the tests for stochasticity. Let us now study the
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intermediate zone (k ~ 1) which also gives us a better understanding of the mechanics of
stochasticity.

The main feature of the intermediate zone are the 'islets' of stability, or quasi-
resonances, penetrating a long way into the stochastic region and apparently existing for
any k + « (Section 2.8). Furthermore, the intermediate zone extends deep into the region of
Kolmogorov stability. This is revealed, first of all, by the fact that the observed border
of stochasticity depends on the time of motion, and near the border there is a region of very
slow diffusion. The corresponding results are given in Section 3.3 and we shall not return
to this question. Moreover, the whole region of Kolmogorov stability is penetrated by
stochastic layers of resonances, which is of considerable importance for the many-dimensional
system (Section 2.12). Some experiments with the simplest many-dimensional system will be
described in the next section.

In this section we shall restrict ourselves to investigating the quasi-resonances in
the intermediate zone. As was shown in Section 2.8, the largest quasi-resonance corresponds
to special values of k, lying in the intervals (2.8.8) and (2.8.9) and to the period T = 1.

An example of such a quasi-resonance is given in Fig. 3.5.1 for k = 60; t = 10°. The
size of the stable trajectory (AP = Ay = 1/32) lying, to judge from its improper form, rather
near to the boundary of the stable region, agrees well with estimate (2.8.10):
89~ &)~ 2/k = 1/30 [£* = 2 for "force" (3.2.5)]. The relative area of the stable region
is in this case (4/kf)? ~ 107° (2.8.10).

!

1
04

%s

Fig. 3.5.1: An "“islet" of stability for a special value of k = 60.1993377;
$o = 0.01; yo = 0.483; t = 10%; size of bin (1/512) x (1/1024); the
picture does not contradict the ideally thin curve corresponding to an
absolutely stable trajectory.
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For values of k outside the intervals of (2.8.8) the area of the stable regions decreases
considerably faster, as seen from Table 3.4.2 (see previous section). The table gives the
mmber of phase plane bins not occupied by the stochastic component, depending on k.

The phase map for one such case is given in Fig. 3.5.2 ["'force" (3.2.5); k = 8;

t = 10°]. Two "islets" of stability can be clearly seen. More detailed analysis shows
(see below) that there is also a third "islet", denoted in Fig. 3.5.2 by a dotted line. It
is narrower than a phase plane bin and therefore remained unnoticed. The period of motion
in this case is T = 3, and the figures on the phase diagram show the sequence of motion.
Two "islets" (1,2) lie in the stable phase region (3.4.4) and one of them (1) strongly
spreads out in the direction of the extension (see Section 3.4). The third islet (3) lies
in an unstable region in ¥ and strongly spreads out in the direction of the contraction.

1 -
v [
v
0| .

10 e J
o 2 : 3
-%T

0
DD

%2 ¥ 34,

% ¥ . %2 e

Fig. 3.5.2: "Islets" of stability in the stochastic region ["force"
(3.2.5)): k=8; t=10" T=3. The figures show the sequence of
motion. "Islets" (1,2) lie in the stable phase region, and islet (1)
spreads strongly in the direction of the extension (in the unstable
region). "Islet” (3) is situated in the unstable region and spreads
strongly in the direction of the contraction.
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Fig. 3.5.3: The stable trajectories inside the second order resonance,
situated in a narrow region (3) (Fig. 3.5.2): k=8: t = 2 x 107; for
the middle trajectory the dots correspond to the end of the computation,
the crosses to the beginning; the scale along the axes differs by a
factor of 10 and the figures give the last decimal digit of the rumbers
in the centre of the diagram.
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Figure 3.5.3 shows three trajectories inside one of the "islets' (3), which were in
fact used to establish the existence of three stable regions for the case presented in
Fig. 3.5.2. The dots in Fig. 3.5.3 denote the values obtained after computation lasting
t = 2 x 107 steps (for the middle trajectory). A striking feature is their regularity, which
becomes still more remarkable if it is noted that they agree with a3 high degree of accuracy
(better than 10™*) with the values obtained right at the beginning of the computation,
denoted in Fig. 3.5.3 by crosses. They coincide in both coordinates, which may indicate
that they fall in the vicinity of a second order resonance of a very high harmonic (q = 108).
The dimensions of the 'islets" agree in order of magnitude with the estimates of Section 2.8
[(2.8.16), (2.8.18)]. Thus for "islet” (3) Fig. 3.5.2 gives: &9 = 0.04; Ay = 0.003, and
the fornulae of Section 2.8 give the estimates: A¢ ~ 0.1; Ay ~ 0.01 (T = 2), if expression
(3.4.11) is used for the K-entropy of the 'force" (3.2.5).

The case considered partly confirms Sinai's hypothesis (see Section 2.5) that the stable
phase region may "damage' the stochasticity also outside this region. However, it is the
dimensions and over-all area of the stable regions that are important. From the results in
Table 3.4.2 it can be seen that the last quantity rapidly vanishes with the growth of k
within the limits of accuracy of the experiment, when the minimm distinguishable size on
the phase plane is ~ 10 °.

A negligible fraction of the stable regions may be due to the specific form of the
"“force" (3.2.5). Indeed, for this force there is only one stable phase region (3.4.4) near
v = }. It is not possible for there to be a periodical solution (T > 1) lying entirely in
region (3.4.4), which may lead to a considerable decrease in the mumber of stable regions.
In order to test this assumption the experiment was repeated with "force" (3.2.6). In this
case there are two stable phase regions ¢ = %; %, so that the above-mentioned limitation
drops.

The results of this experiment are given in Table 3.4.3 and Fig. 3.5.4. With the ex-
ception of the last three values of k, lying just on the left-hand border of the stable
interval (2.8.8) for all the remaining (unspecialized) k values the area of the stable
regions very rapidly decreases with the growth of k. The law of decrease agrees in order of
magnitude with estimate (2.8.20), which for "force'" (3.2.6) can be written more specifically
in the fomm:

ORI X

Here we used expression (3.4.10) for the K-entropy of the "force" (3.2.6). Estimate (3.5.1)
is shown in Fig. 3.5.4 by a continuous line. It is very sensitive to the quantity w, (k).
Therefore for the other "forces' the k values of the experimental points in Fig. 3.5.4 are
converted according to wo: kg e = 4/Two [see (2.8.12)]. )

According to the results of Section 2.8, a fraction of the stable regions is sensitive
to the value of the parameter y = w, - eh. When vy > 1, the mumber of quasi-resonances of
the first type and their over-all area formally diverge (Section 2.8), i.e. the fraction
of stable regions can be expected to be considerable. For '"force" (3.2.8) y = 2/e < 1, as
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Fig. 3.5.4: The dependence of the number of stable bins of the phase
plane (Ng) on the parameter kogf for various cases: O - force (3.2.6);
v = 0.63; x - force (3.2.5); y = 0.74; DO - force (3.2.3) and (3.2.4);
the values of y are indicated near the dots; the continuous line is

an analytical estimate according to formula (3.5.1).

also for force (3.2.6): Y = 2/n. Precisely for this reason a special "force" of the
"'smoothed out saw" type (3.2.3), (3.2.4) was constructed, for which any values of y depend-
ing on the parameters &, A, and k are possible:

4¥qk'()‘/e)7f1; k 5‘2/).5
g (A )T -
J\ (Z) y ke 2L/, (3.5.2)

{ /A ‘
;4: 2—; - “{'}"\‘9_—- —Aé‘. ; e - 2.;‘{...

The results of the experiments with "force" (3.2.3), (3.2.4) are also given in Fig. 3.5.4,
the value of the parameter y being indicated next to the experimental points. Contrary to
expectations, the stable area in the case of y > 1 proves to be even smaller than estimate
(3.5.1). A possible explanation of this interesting result in terms of the mutual destruc-
tion of quasi-rescnances under overlapping is given in Section 2.8.

Apparently this can also explain the fact that the experimental results are of the same
order of magnitude as estimate (3.5.1), at least for "force" (3.2.6), which takes into account
quasi-resonances for the second type only. However, if quasi-resonances of the first type
are significant only when vy > 1, the total mumber and area of quasi-resonances of the third
type are already divergent for any y (Section 2.8). It is evident that they, like the quasi-
resonances of the first type for y > 1, mutually destroy each other when they overlap.
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In spite of the fast reduction of the area of the quasi-resonances with the growth of k,
it is not out of the question that their total mmber is unlimited, and they form an every-
where dense set of stable trajectories (Sinai's hypothesis, Section 2.5). The estimates of
Section 2.8 give precisely this result; however, they are not sufficiently accurate, so
this question still remains open.

In spite of all the experimental results given above, there is still some doubt as to
whether the whole system of stable regions is so fine that it escapes observation (like one
of the stable regions in Fig. 3.5.3). It seems to us that the answer to this question is
given by the following gross experiment. We have in all about 100 cases of computation with
k >> 1. A stable region was not entered in any of them, in spite of the quite different
initial conditions.

3.6 An example of weak instability of
a many-dimensional system

In this section we shall give a brief description of the first attempt to observe
Arnold diffusion for a two-dimensional non-autonamous oscillator, given by the transforma-
tion:

I, = I¢—‘P49+/“°‘f)a
I: = I, - lf?:'f So P1.
‘f’c’= $o t I;
‘Pz"" P, + 1,

It is easy to see that this model is an extension of the elementary model to the two-dimen-
sional case. The choice of f(¢) = <9 is due to the desire to have more resonances with
conservation of the analyticity of the force (see below).

(3.6.1)

*
Numerical experiments on Arnold diffusion were carried out together with Keil ) and
-
Sessler ) on the CDC-6600 computer at CERN, in Geneva"). Model (3.6.1) was chosen after
many preliminary experiments.

Before going over to the experiments themselves let us obtain some simple analytical
relations for model (3.6.1) which will be useful later on.

If |@i| << 1 and |uePj| << 1, transformation (3.6.1) can be approximately replaced by
the differential equations:

: b

Iz~ ¢+ pop;
¢.= I;

t'i"

(3.6.2)

with the conserved Hamiltonian

*) E. Xeil, CERN, Geneva, Switzerland.

**) A. Sessler, Lawrence Radiation Laboratory, University of California, Berkeley,
California, USA.

***) We thus ignore the external perturbation, whose effect in fact turns out to be very
weak (see below).
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2 10 o
H-_— %(If—o—]z}-(--;;-o—(‘ﬂ -r-sz/—-/“bfp,ﬂ (3.6.3)

In view of the sharp dependence of the potential energy on the co-ordinate ¢, it can be con-
sidered approximately that the unperturbed motion (ue = 0) takes place in a rectangular
potential well; it is characterized by the frequency:

7 k4 ,
W g ¢, (3.6.4)
and spectrum:
g . = -2
~ L (1) . (2 3.6.5
?2,,_,,4 Iz( {) '709 ( nt+ ’) ( )

The last expression is valid for harmonics that are not too high: n < 10, while an approxi-
mation to a rectangular potential well is valid.

In approximation (3.6.3) there are only coupling resonances: mw, = nwz, the effect of
which can lead only to an energy exchange between oscillators, while the total energy H
(3.6.3) is conserved. Since the latter depends also on the coupling energy Hj = -uop1¥y2,
the maximm value of the amplitude of one of the oscillators, say ¥,o, is reached under the
condition ueYro = v:o or:

10-H, = H. (3.6.6)

vhere H, = 920/10; H = Hy + Hy + Hj.
Variation of the total energy of the system H is possible on account of the external
Tesonances:

N o, +I’sz = 29 (3.6.7)

where we took into consideration only the first harmonic of the external perturbation with
a frequency of 2n, since under the condition §° << 1 assumed above, w ~ §* << 21 (3.6.4).
From the shape of the spectrum (3.6.5) it follows that maximm amplitude corresponds to one-
dimensional resonance n = 0 (or m = 0), and w; = 0, whence the minimal oscillation harmonic
necessary for an external resonance is equal to: m= 27n/w, where w, is the maximm value of
the frequency for given initial conditions.

Let us now turn to a description of the mumerical experiments.

The largest part of the computing programme, including the rather laborious data
processing, was written in FORTRAN. However, the main loop for computing transformation
{3.6.1) proper is written in the symbolic operating code of the CDC 6600 (ASCENT) in order
to obtain the maximm camputation speed*) . We managed to place the whole of this loop in
the instruction stack of the CDC {600's central processor, thus eliminating the relatively
slow reference to the operative memory. Moreover, advantage was taken of the possibility of
two parallel multiplications in the CDC 6600. As a result it proved possible to reduce the

*) The possibility of combining these two languages was in our opinion a considerable
advantage of the compiler of the CERN camputer.
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time for the computation of one step of transformation (3.6.1) to 9 usec in spite of the
large number of multiplications. The processed camputation data was put out periodically
after a specific mmber of steps and included, in particular, a map of the two-dimensional
projection of the four-dimensional phase space of the system onto the plane (,,§:) (see,
for example, Fig. 3.6.4), and also part of a histogram near the edge of the distribution
function of the trajectory f(y;,p,) (see, for example, Fig. 3.6.5). The purpose of this pro-
cessing was to find out whether the edge of the distribution was sharp or smooth. It is
easy to see that the latter indicates that there are no invariant tori, i.e. that there is
some instability of motion. Indeed in the one-dimensional case the phase trajectory is an
ellipse and its projection onto the axis § leads to the singularity f(§) = [|¢§ - %i_ near
the edge of the distribution. For a two-dimensional system with u, = 0 the distribution
function occupies a rectangle in the plane (¥,,.) with a similar singularity around the
edge (Fig. 3.6.7). If up # 0, but there are invariant tori, the singularity is conserved,
but now with a more complicated outline, reflecting the configuration of an invariant torus
(Fig. 3.6.9). Finally, if the edge of the distribution becomes smooth, this points to the
destruction of the invariant tori and their transformation into a layer of some thickness
(in four-dimensional space, Fig. 3.6.5).

First of all it is necessary to determine the region of one-dimensional stability
(3.6.1) when yp = 0. This can be done as in Section 3.3, by one trajectory, the initial
point of which certainly lies in the region of stochasticity. In order to prevent the tra-
jectory from drifting into "infinity", i.e. the computer's overflow, it is necessary to
limit the phase plane of the system by taking the fractional part (Section 3.2), which is
equivalent to periodical boundary conditions. In the present case a square was used:
-1<1,V{y<1. The phase map of the system for t = 10° is given in Fig. 3.6.1, where the
circles mark the bins occupied by the trajectory. For I, = 0 the initial phase ¥, should
lie in the interval (-0.78, +0.78). The accuracy of this value of the interval is determined
by the bin size of the phase map and is about +2.5%.

Let us compare this result with the theoretical estimate, which it is easiest to obtain
from an analysis of the local stability (Section 2.4): K, = -Shp: < -4, whence: ¥, < 0.9,
which is very close to the numerical result given above.

As noted in Section 3.3, at the border of stochasticity in the intermediate zone the
instability develops very slowly and therefore the border of stochasticity observed depends
on the time of motion. The value given above for the stable-interval relates to t = 106.
When t = 2 x 10° the border of stochasticity shifts outwards by approximately 4% (along Vo).
It is not out of the question that when t > 10° it shifts inwards again a little, although
according to the KAM theory there is certainly a border of eternal stability (see Section 3.3
and below).

Probably the most interesting experiment with model (3.6.1) is the umique case of very
weak instability which was observed when: up = 0.00115; Iio = Iz0 = 0; Yio = 0.375;
$20 = 0.721. Figure 3.6.2 shows the time dependence of the increase (AS) of the area (S) of
the above-mentioned two-dimensional projection (§,,$:) of the trajectory of motion in a
linear and logarithmic scale.



151

(p+1.0)x 50

1 W 30 40 s [ ] 7e r | {J s00
]

s § 5 s - s s s 3
1 MBI D L T T P R S A L] POANIIIINIIIND) tisacnsensesca-eracansss IMAUBQIIVOYY
T AT W o asetsecs W r il SHININIIMNININ L, .. SIOYUNIPN b
$ MMM MY, L., P T NN 1IN IVINGII NI Ve, ae PP o o DOUY D H
4 RO VI NI L, LA N AR NS N ENE N RTINE XS T VN . ene s JO0UY120 )
L B TS LR RER AR L (TR TN A NN WD AR AR AT N n“;“.”;,'\s RIS DS Y MY IIIIIVVV0 10 ~ 0
® AAMVIINVN OB GTIINIINIIS NP0 I) vy PRMIVY I pNY I IINY 1INV IIINEWOUIJUY - b
7 AR AN YRV P RU I 1300 S Y Y - N ) 03911 32 A IINIIN 1 1D VINIII ) HINONDNIND )
B AT CIR W NIV L RIS VINN I PUANIIIINNNY DM aTAININNI NN F VNI NIDIDIDOOVN 130 ¢ )
AR LR AN T N A RS R N PN NN IR N RN CHONNB DB SIN NI 3NV RIINIINNSID N DIOVUDN PN v ¥
1T ANINIII A IR I 1YY MM IRNINENRANELIG LI SN SRS ERNSANUNLFLR R UAFNNY L - DI UL )
TN e (N RRURIF RS ASER LR NS ARNRYNERR N NS 10 11 W 11 Ay

SRR ENINELID DALY VNIV NNIIINIINIIII0000DU0 ¢
AN RINRRL RS R VSRS SR RPARARL PR LR RS NEKT LTI AP IV
RNV RS 039 QRN IINN RN VDDV IIVI D DIBUL0 § M 0
LARERTENIYS 3N $ARIINYIY WS IV IIVI DS N SANUG D0 1 b
21303134 KIIVINIVNIININ 100301 D0 * ¢
BISEF LR AN AR SN NN - T IS AV RN

IR LA L AR A R RNT S
13 aamMveirn
16 70331
1% ANy
16 MGV d W, 4.
17 BOM VI N), g0 0 [FRLEST IS VI
HL SN A NS AR RT.WFIT. Y TH WIIBUI I WA sInred b i), RRTTHT. B T AU
16 AN IO VI VIS0 1D 0 0L I 03N e Vg -uunrnn -3‘( WA 319N I 0V qan.e P IQIDN0 Db 110
23 MAIIV I DA B EV AR NI ID 00U P FY T TR S e ot 43 a g0 0Y Il £33NV NIV IOVI I D D000 Ju
21 ORI IMNIBARIE NIV I ESRIIINION NIV D0 DA et R0 AR BB BRI VI SN IV HMIVIIIVWID MIO0V04I ..

D2 0AININNIOINIWNIIININIIILION ISV IR B - . € IN3 )N 0 4 u.onwnn»ouwmon
23 AN LNL I I IV I 1IN I ’ 13D 0N 1IN0 I I NI NT B IIOVIN0 QD -

26 AN NN NIDI I VIS 03400 ) I EIEIRRL NP SISO BSRSTR LR URL AR RN A RN . 1.1 b T I
29 TI0IV0 0 A0 Y I D V02D 1201 10} 1302300030332 060095 130900 Y W VIS IIINTTVIIOVV0 N ING 1 Y
20 NIV 1IN DI E D D 0J D IO 3D I POV b3 0003 1300 0N Y 133343 1 M1 1D 12DV DY BILIJVDUPIING ¢ 0
27 MINN AN NI I IS0 YN PIRN LIRSV RV IINC A EN Y IN I 13 2V NI U Y DD ON0VD-I D0
29 AMIININNNRANGA D IV K2 DI 0NNV
29 ANO NI VIR N WD MIOU IS
33 VNIV NN NI I ISP W IINIOL I N D A e AR A SERANRING I IINE WAIIINVIININ VI PIIS B Y D I IAPIY4 0 o+ b
31 930NV 0 nAB Y VIV 4 I KDL IIN ) I b ] RN N I R X PP UR P RS RF FERRNER ANY UL 1T OB VT N )
32 NANGIIVIINO EAOWNIN IS IINIONIIIDI I B BT DO S e BN RN DT 3 W 0 ATAINNCJI NIV ITIIINY B D 1IOQUY )00 LY
33 B0J0INI I AR YY1 0 I NIIIIIONIIDI NI R AU DD NN - N B RN IY IV ARSI R IV IV IV TNV I3S0UNN D00 1)
34 A3I007.0) W WADYOWIY 43 by 1 1ION 1EN D VD b 0 CHPON TR D 30 N33 W 10D WD L2 JUU0AINY + ¢
35 A0V MMICIAICE LI IIIVIADRION DI S 1 e AN LTS ONN 4D D€ T 6 3A 30N e 1Y 3 5 M BN FJUQUD L 100 4t
38 MHIBUIVIIDNAIOAN I 1 3 IIVIOUIIN ) I I hp-t) MARN NI RN 1 EAININIA I W 123V ID VD IOON0 IV + )
37 NA3ADIINI P ON0INAII I 1D 1300021 W I 0 V200040 U W PN NAIN D IN M 1T ST WIFDIINPUVY I WY
38 0000129 VANEADGAIINVIY B IIOUIIO I SIS L DRI KV BRI NINNIYINC IONINININT T T 1333330 1V 0BN0UDHIV0 ¢ )
39 D000 I WOADIMNIINI RN IDNIOUIII IR B2 D 20 o0 150230 8D 1NN PN IN I NI M 1Y 3D I VI II D HO00U0:IJUE
43 0NN IWMINADNO D VI II W IIRIONII0 130 W M 1D 1 00 S 113133303343 100 1IN I 0 2 58D W IINII00VBNIV0 NG
41 903000 1M WA VIV I B PID0II0 NN 1 a3 230 061 3J 1393933300323 WBIIININIY ¥ 13I0 33V 1334300001004
472 AN00I I MWNO NN ININIISITIIN 3330 B 1 4 1V s S0 1D ) 1V DIINIJ AW PN IIAININ W D 033301V35530000UIVO Y
43 70300131370%0N0% ), . 0.0 n......n......n......u......-n...... 0o s8I0 MW 23283 WIDDIIOVD0NING 3

44  POIDIIIINNY

43 230303019, . o < 9300300000000 1+

s 703000333 . . +e.3430000003003 )

67 003003301 . o 3198000300 14
. 3

Lo

—

+

- 4. 03000303), 00uy

o™ 48 00300330)1, d 0030031
Py 80830024
x
Oy
©

CURNEANNU NN RS TR N LR )
AUR T RRRS RN NELRRTTIAF R RN
VYW I NIV I Y.

.
S8 ABIPBYIIM
e 31 60300771V SODVINIVEDY
32  MDIO0IININNN, » s BOVOLIVONY
83 ND2OIIIIWY),
$4  n00303337000
9% n030I0)395000f

-+ 0 00D0U0I)
.00 s DUQUIVOIV
.+« BU080IN0

37 007323331 1006N0N0N, . 4000 « 0000000V
98 NNIBIYINI OB IV W) . o3, e300 0+ 0903020903.0000000 3000
SS9 DO300TII I ION0MON 1300230280 )N 0))'!’)’10&’ o I INIINIIIIIVUOGNIG

01 ON0INY 110 HOAN YONN 113D W 133308333 1 W 3 W0 30323359009 12700 I3030133 DU 133939 W IV MIOULGIIU0 14
A1 AOI0UN ) 1Y 40 MHNAIOND DY V0.5 D0I0U I I0DW Ju B8 3V D 83 129003500093 1IN 1803 13A N3N 30 I3 IDIIN I )D1300004I00 * 5
62 0333023135000 WA 0 0D 353330035 3 hua Bt 5.9 13 0.1 148 5309 310X 19903 ID W I A 11IA I 30 53 333V 3D 2 2 DOOUY IV )
63 ANINGIISIMIOANICII VI D 0 19DIO0IIN 3D bt F5 1D B0 A 12 15050393039 IV J0DININJII M 13 3333 WINIF0UOUINEG Y
a4 0AINDI)I I WDAONO W IINEILIIIIN0INN I MB35 ¢ 610 VDD IDIINOTI I 300 2:0 33 M 3030 49 30 3T W IV III00U0H IV ¢
65 A0I0NITI I M ONNIOIIIM SIS IDIIN0IIIIWN W S T 5519 3593818335002 908 W AINININIG 1O 1933 133030 2900004 IuD " )
35 0H3001)1IMINA0IOIYIINIIWIIII00INNIM L 103353052 B3I L0 I0INVININ NI 3333 WIIIII000PHIV0 NS
A7  D0I0DIIVIWNWMADIEI NI IVIIIII00II0 ) b ¥ SHRA A IR M ISNE LN I 33N 0 23 M1 IDINIVB0000N ID0 10
88 ABINIVIIWINARINIIN) 19D IDII0UIINY M M LD 1B L 1830033002919 0DV -3090 1390 1Y W IIIUINOUD.IuU 1 )

Fig. 3.6.1: Ths region of one-dimensional stability for model (3.6.1);
Mo = 0; t =10".

Phase maps of the projection of the motion on to the plane (§:,§2) are given in
Figs. 3.6.3 and 3.6.4; the first of them relates to the beginning of the motion (t = 107
steps), and the second to the very end (t = 3.648 x 10°), when the trajectory emerges into
the region of one-dimensional instability. A histogram of the distribution in the latter
case is given in Fig. 3.6.5, where it is clearly seen that its border is smooth and con-

sequently some instability takes place.
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Fig. 3.6.2: An example of the weak instability of a two-dimensional non-
autonomous oscillator (3.6.1): we = 0.00115; ¥, = 0.375; P20 = 0.722;
I;0 = I20 = 0; S is the area of projection of the motion on to the plane
(91,9:); A4S is the increase of S in the process of motionm; Te is the
T1se-time,

The law of the development of the instability in time is surprising. First of all it
is striking that the increase of the area (AS) takes place in portions. This, however, may
be due to the finite size of the phase plane bin; so, for example, the first ''step" in
Fig. 3.6.2 corresponds to 19 bins only, and the whole area S comprises about 5,000 bins.
An analysis of the phase maps, which were put out periodically in At = 107, shows that the
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Fig. 3.6.3: Phase map of the case in Fig. 3.6.2 near to the beginning of
the computation: t = 107. The circles mark the bins occupied by the
trajectory and the dots give the coordinate network.
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tion: t = 3.648 x 10°. The circles mark the bins
occupied by the trajectory and the dots give the coordi-
nate network.



- 155 -

I L ] [] (] ¢ [] r ] " [] ¢
(P, +1.0)x 50

ruLy) b4 e 14/ r” re [ I3 [ 13 (2] (1] [ 2]

1 . ) [} 4 [ [ [] [} [} [ ]

] [ [} [ ] t [} v [ [ ] [ ] »

3 . [ [J 4 [} t: . [ [] *

a ] [ [ [4 ] ° Ld [ [ ] [ ]

L} [] . ) r ® ? t (] [} °

[y 4 » ] 4 [ [ e [ [ ] []

’ . [ [ 3 ] [] ] [ [] v

N [} [ [ 4 [} ] [4 s [ [)

. [ [} [ r [ [ 3 0 L3 s

14 [ ] [ [ ] [ 4 (] [% 13 [ [ [}

13 (] 3 [] 4 [y 3 4 [] [] [

13 4 . 2 . 2 ° 1 [ ] .

13 3? 12 1] s¢ L 2 ? [ [ ]

14 9 o 3 39 30 30 [14 ] 3 [}

18 %2 348 384 204 236 278 198 29 19 13

16 aey 1 a0 are 487 L) 404 o % 9

1?7 493 9 e LT 40 ar? [ 2% ] 429 30 148

10 ace 98 .8 .7 [ a3 938 3 38 30

10 17 ] 4%s S0 a0 a4) a0 830 % 1] 408

20 e L 7 a0 e .83 L1 ae® 334 ase [1]]

” e % a3 et 37 a9 .08 el e 300

23 sty ot 478 14 ey a8 LYy it 27 93

23 [11] 400 arg [T} .79 7] ] 43?7 11} g 08

24 a4 919 400 o 907 LIt} L% o0y 1 o0

o9 Py a0 144 (1] [ 1] 983 ? (3 a8y 344

2 Py a9 ans 918 834 T o83 38 478 409

I'td ) [Ty} (134 90¢ 408 a7y (74 134 630 43¢

20 [ 11] e ave s8¢ (34 L2 L1 oy a0 (1]

20 ats a2 a0s o« 93 478 34 a8 3¢ 479

3 430 a3 401 1] 43¢ a7 474 93 (Y1) vy

3 ace ad0 a8 a4y ary a0 o990 o0 (3] e

2 o oas 9 a3 a9 ©W3 a3é @ (17 a7y

33 430 e a4 age [IY ] 21 (13} o« oy asp

3e (1T a1 304 e 36 430 e e o2 LT}
7~ Pii) 30 ond gt [ 334 t 1) agh oy 390 o33
-5 3 63 4 38y as 360 a3 302 00 atp 93
- rts aey b [T 400 e 434 LI rry) 30g t L TY 436
4+ 3 393 394 308 age 360 @ 300 1 98 %0
- 3 a1 s a0 I7e @ 300 300 {11 3% 3
. 0 1T 302 LT L2 304 [ 34 379 s 37 200
QO = g 433 303 309 30 300 300 oo 316 200
® 43 e a0 388 344 [ 144 134 L34 m 330 303
® o3 ace se4 309 30 b 24 ] 300 e 38 393 200
by 3% 348 T e 364 09 "1 e 7y 73

b DL a8 300 307 30 e 209 ae? 948 1o fe8
Q 4 07 309 Jo9 30e L 11 00 30! £ 1] A4 . ep

Fig. 3.6.5: Part of the histogram of the distribution of the projection
of the trajectgry on to the plane (§:,§.) for the case in Fig. 3.6.2:
t = 3.648 x 10°. )

increase in the area occurs smoothly along the whole perimeter, which shows the rapid energy
exchange between the two degrees of freedom. Measurement of the local instability shows
that this exchange takes place already in t ~ 10° (see Table 3.6.1).

The most surprising thing in Fig. 3.6.2 is the unexpected steep rise of the curve AS(t)
at the end of the computation. The data of the phase maps show that almost immediately after
the beginning of the rise, the energy exchange between the oscillators ceases and the increase
in S is on account of only one of them.

On the whole the function AS(t) is exponential rather than linear or proportional to
vt. If the last sharp rise is excluded, the dependence AS(t) agrees best with a linear func-
tion, although one certainly cannot exclude the possibility (because of large experimental
errors) of a dependence like AS = Mo = /T, corresponding to ordinary diffusion (MPo << Yo).
In the latter case the mean diffusion coefficiert is: Dv = d(apo)?/dt ~ 2 x 10723,

If it is assumed that there is a linear law S(t), the mean rate of development of in-
stability is: V, = d(8p.)/dt ~ 4 x 107!}, However, this case appears unlikely. As far as
we know, the only mechanism leading to a linear law is connected with the so-called microtron
resonance (Section 2.4). However, this contradicts the local instability of motion dis-
covered experimentally (see below).
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The weak instability discovered cannot be explained by the computer round-off errors. In-
deed, the relative error of single round-off in the CDC-6600 does not exceed €o = 27*7 = 107",
Even if it is considered that all the errors accumilate one way, then the error of ome step
(for §) is: €1 = 40 <P® > + 2up €0 < Y2 > + €0 = £, and for the whole computation:
€y < €0 x 10° = 107%, which is considerably less than the size of a phase bin & = 2 x 1072,
As a check the trajectory of system (3.6.1) with the interaction "switched off” (u, = 0) was
computed during t = 10°, Figures 3.6.6 and 3.6.7 give the phase map and distribution histo-
gram respectively. The stability of motion in this case is evident. Similar results are
also obtained with the interaction "switched on" (even though ue = 0.00915) for special
initial conditions, for example for ;o = 0.375; ¥20 = 0.522 (Figs. 3.6.8 and 3.6.9;
t=5x107).

The mechanism of weak instability is most probably connected with Arnold diffusion

along one of the strong resonances. In this case the motion must be locally unstable. In
order to check this assumption two trajectories very close together at the beginning (AI = 0;
&9 ~ 107!°) were computed simultaneously and the distance between them was calculated depend--
ing on time (divergence of the trajectories). Figure 3.6.10 shows the divergence in phase;
it does not contradict the exponential law with a rise-time T = h™! ~ 10°, where h is the
K-entropy of the system. Approximately the same result is obtained for the momentum diver-
gence of the trajectories.

Nevertheless the question is in fact more complex than it may appear at first glance.
In Fig. 3.6.11 the data of Fig. 3.6.10 are plotted in a log-log scale and do not contradict
(especially Ay.) the linear divergence of the trajectories. The latter can be explained as
a simple frequency shift of the non-linear oscillations.

It is evident that the chosen interval t = 3000 is too short for any firm conclusion
for the given value of the perturbation u, = 0.00115. An example of local instability when
there is greater perturbation is given in Fig. 3.6.12. There is no doubt here as to the ex-
ponential nature of the divergence of the trajectories (on the average). Let us point out
‘that the law of variation is identical for all four quantities (Ali2; Mf12). The exponen-
tial divergence contimes up to AI &~ I = 3.4 x 10”*, The subsequent insignificant increase
of Al is explained, probably, by phase oscillations in the coupling resonances.

For weak instability (uo = 0.00115) additional measurements of the local stability were
made for different initial conditions in the interval: 0.5 <\, < 0.75 (I, = 0) and
t = 10°. In 11 cases out of 26 clearly expressed local instability was observed. An example
of instability is given in Fig. 3.6.13, where A = AI. The difference Al increases by more
than 10 orders and reaches 4~ 107? (initial trajectory shift AI ~ 89 ~ 107**). The K-
entropy in this case is h = 2.5 x 10™", i.e, four times less than in Fig. 3.6.10. Figure
3.6.14 gives an example of a trajectory which was interpreted as stable. In spite of the
great dispersion of the points the non-exponential character of the dependence 8I(t) can be
fairly well seen. Mcreover, in contrast to Fig. 3.6.13, here the motion is explicitly
regular (strong periodic excursions of the points upwards), which is incompatible with
stochasticity. But there is an especially sharp discrimination between stable and unstable
cases by the maximm value of Al at the end of computation. For example, in Fig. 3.6.14
the final value of AI = 3 x 10~%}, i.e. it differs by more than seven orders from the um-
stable case in Fig. 3.6.13. Such a clear discrimination can always be achieved, provided
the computing time substantially exceeds the characteristic time for the development of
instability: ht >> 1.
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Fig. 3.6.6: Chsck experiment: the same as Fig. 3.6.3, except that
e =0; t=10".
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Phase map of the stable region of system (3.6.1):

Fig. 3.6.8:
0 0915; Wlo = 0.375; vzo =~ 0.522; 110 = Izo =0,

Ho =



05 x (0} +'9)

L4 1§ 8]

€s5=>0006oRason ¥

88?7
3047
2244
1041
1819
213
2383

Fig. 3.6.9:
Fig. 3.6.8.

- 160 -

SINSULAR]TY

-
»
-
L

LA A X X X XYY XN XY XYY N YN T :
AR AN P REARET AN AV R R EY IV N F NP XE Y Y]
IR Y S SRPCN FEWIPCAY I S NN i T W 1Y

9

33 2990

134 3693 2028
3060 224 1840
2090 178¢ 31944
17 0 1400 1410
1937 1497 135%¢
1920 $30: 133
1052 1472 1382
2756 1049 199¢
o33 2189 26064
. K 937

(] 2 3

[ °® J

(] 2 2

(] " 9

(] . v

1] : )

. : J

[} 3 )]

| 2 ]

[} 3 i)

[ b} v

] bt v

[ 3 v

[] 3 v

s ’ v

[} 9 0

[ 2 (]

[ 2 ]

[} b v

(] 2 "

1381
$e02
2400
1895
1913
1323
1328
120¢
1343
1443
1935
2385

LA

0o e

g Olus

oecaoeaeooaooee..o-o=

*
-
o
»

4

»
"
[ J

(¥o+ 1.0) x 50

”
h

PR P XS I

D AN~ I PR I VN )

L1 1)
2297
2ree
1031
198¢
1444
1309
1338
1433
1008
4018
1404

LR R RN RN A RRE BT I ) CRRW W IR W

-~
*

Histogram of the distribution of the stable trajectory in

LN R L X KX X X RF X FY X N F ¥ R ER WP wws

2056
1073
1573
1006
202
3008
2293



- 161 -

] l‘r!
9 al,=al, =0 §
sy, = 17L-10""
-§} ap = 1.56- 7"
L,= lo=0
gl” = 0, IS
oo = o727 \
/I(‘H: 0. C’Offf
.7’ Av" : —
Te= 1150
-gP
AP,
.9 g
-10>
i 2 - s
1002 Qoce % Jonn
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Fig. 3.6.11: The same as in Fig. 3.6.10, but in a log-log scale.
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A sumary of the results on local instability is given in Table 3.6.1. The mmbers in
the first colum show the computation sequence for a random choice of ¥io, Y20. All the un-
stable cases are grouped at the end of the table in order of decreasing K-entropy (the mean
values of the K-entropy: for two momenta and two phases are given). The values of the K-en-
tropy are clearly divided into five groups, as shown in the table. The last colum gives
the mean values of the K-entropy per group. The different groups correspond, apparently,
to resonances of different harmonics. The difference of the resonances according to their
magnitude shows that the overlapping is slight. This result is also confirmed by the value
of the relative fraction of umstable initial conditions, which according to the data of the
table is: & = 11/26 = 43%.

Table 3.6.1 illustrates once more the clear discrimination between stable and unstable
cases according to the values A \nax and thus the applicability of the method of investigating
local instability.

Unfortunately the available experimental data does not make it possible unequivocally
to link the discovered weak instability with Armold diffusion, nor does it contradict such
a hypothesis. Let us demonstrate this, using estimate (2.12.22). The main expression
(2.12.29) is inapplicable in the present case because of a big difference in frequencies
for an external resonance (see below). Let us choose coupling resonances as guiding reso-
nances, and external resonances as perturbing resonances. The harmonic mmber of the latter

is determined from (3.6.7) and (3.6.4) and is equal to (2.12.23):

m' _ 2n'_ 875
ﬁ—"ﬁ'; ® T 97 (3.6.8)

Further, £ v po/p® (3.6.1); an~1; ¢ = 0.7. In view of the marked uncertainty of the

estimate of the Arnold diffusion coefficient, let us use its experimental value, given above:
n~ 2 x 107!? and estimate the unknown parameter n, instead. As a result we obtain

noe = 3.5 which does not contradict the expected value no ~ 10 (see beginning of section).

Nevertheless, one carmot completely exclude the possibility that the observed weak
instability is some complex one-dimensional effect. In particular, stability of motion
when po = 0 (Figs. 3.6.6 and 3.6.7) does not exclude this possibility either, since negative
coupling energy may lead to an increase in the amplitude of the oscillations when yo ¥ 0
(3.6.3).

It is obvious that this phenomenon calls for much more detailed experimental investi-
gation. It seems to us that even a single case of weak instability which has in fact been
observed shows that the problem as a whole is sufficiently interesting and important.
Another case of possible Arnold diffusion will be discussed in Section 4.4.
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Table 3.6.1
< bl 2
N 7 ¢<h> x 10
‘Pld 120 A‘:“ ‘A’l{oz A cax “l’ﬁ"oz
.l o | o.sse | 210710 5.10°°
2.l oo | o618 107! 2.1078
3.| o506 | 0.723 | 310710 3.1078
a.loe | o.es | 607! 41072
6. 0.5:17 | o.s15 | s5.1071! 2.107°
7.| o.610 | 0.580 | 8.1071! 6.10°° .
s.{ 0.672 | o0.842 | s.10”M! 2.1078
-10 -8
1.{ c.500 | 0.588 | 3.10 2.10
12.| 0.588 | o0.503 | 3.10710 5.107°
15.| 0.e01 | o.018 | 4.107M! 8.107°
17.{ 0.531 | o0.726] 2.1071° 1078
16.] 0.588 | o0.714| e.107! 2.107°
21.] 0.60 | o.e10) 7.10"M! 2.1078
2a|o0.e81 | o.e08]| 510710 z.1078
26.] 0.514 | o0.560 | 210710 1078
5.| 0.687 | 0.744 ]| 21071 | 1.2 8.107! 1.2
-1
14.] 0.516 | 0734 21077 | 12 8.10 L1
0.} 0744 | 0.833] 107! | 1.2 8.107] 0.8
_ 11
2. 0750 | o.s08| 107! | 10 g.ac”! 1.1 ’
24,1 0.628 | 0.553] 7.107% | 1.0 810! 1.1 )
16.| 0.682 | 0.660] 7.107% | 0.8 9.107! 0.9
13.{ 0.522 | o0.558] 4.107 | 0.5 | s.107 0.54 0.54
10.] 0.525 | o.512] 3.107 | 0.33 | e.107! 0.31 0.22
20.| 0.747 | o.es8{ 3.10"! | 0.15 8107} 0.15 %o e
22.1 0.55¢ | o.856] 7.1072 | 0.13 | 8107} 0.13
25.| 0.555 | 0.745] 51072 |0.025 | 7.1072 0.025 0.025
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CHAPTER 4

SOME APPLICATIONS

This last chapter of the present paper is devoted to some applications taken from the
most varied regions of mechanics. Their choice is rather arbitrary and merely reflects
current success in the application of the developing theory of stochasticity to specific
problems. Some of them have been completely solved right up to the stage of practical ap-
plication (Sections 4.1, 4.2, 4.7), and others have only been formulated (Section 4.3). In
some cases rumerical experiments were used, which may also be regarded as further proof of
the general theory (Sections 4.1, 4.2, 4.6). In our opinion the questions of special inter-
est are those connected with Arnold diffusion in the Solar System (Section 4.5); however,
here there is still a great deal that is unknown.

4.1 Femrmi stochastic acceleration

The stochastic method of acceleration is generally comnected with the name of Fermi, who .
proposed one of the variants of such acceleration as an explanation of the origin of cosmic
rays® s), A little earlier (in 1948) a similar proposal for ordinary (terrestrial) accel-
erators was made by Burstein, Veksler and l(olomensky‘"). However, this paper was not
published and remained little known until 1955!°®). At the present time there are a large
number of papers devoted to the various aspects of statistical acceleration in plasma [see
for example the review by Tsytovidx‘“)]. However, there is a question that has not been
clarified in any of these papers and in fact has not even been posed: under what conditions
is the motion of particles in plasma, accelerators, etc., stochastic? Is Fermi acceleration
always possible? Clarification of the latter question by means of mmerical experimentation
in the simplest one-dimensional model was undertaken by Ulam*®?) with a negative result.
From the point of view of the present paper this result is perfectly natural, since for
stochasticity of the motion, special conditions have to be fulfilled which are more strict
the simpler the system. For the above-mentioned one-dimensional Fermi acceleration model
the question was clarified in co-operation with Zaslavsky in a paper!®?) of which we will
also give an account. To complete the picture let us recall that the condition of stochastic
acceleration in plasma were explained a little later by Zaslavsky, Sagdeev and
Filonenko!®*»10%),

As already mentioned, in Ref. 102 the simplest case of Fermi acceleration was inves~
tigated: the motion of a light particle between two parallel infinitely heavy and
absolutely elastic plane walls, one of which is motionless and the other oscillating
according to a given law. Numerical computation of the motion of such a particle!®2) gave
3 negative result: acceleration was practically not observed. The velocity of the particle
sometimes reached three to four times the velocity of the wall and in the majority of cases
was of the order of velocity of the wall, whereas according to the Fermi mechanism the mean
velocity of the particle should grow infinitely in proportion to the time®®).

Let the wall oscillate according to a "saw-shaped"” law, so that its velocity varies
linearly with the time during each half-period. Further, let the minimm distance between
the walls be £ and the amplitude of the oscillations of one of them a. Then the motion
of the particle is described by the following exact set of difference equations:



heq = TV. + V(‘l"a - "/l) (4.1.1)

\"4 (4.1.2)

— q_ Vies . 1
khﬂ— -y, . +4 Tfi ) (U:,., < -./_f;; (4.1.3)

2 (1- #, + L/
70"= 2’&/{‘ + L 4',_“)1/1/ #e fZ (4.1.4)

Here v n is the velocity of the particle after the nth collision; V/4 is the amplitude of
the velocity of the wall; ¢ n is the phase of the oscillations of the wall at the moment
of collision varying from 0 to 1 when the wall moves in one direction and from ] to 1 when
the reverse motion occurs. The brackets { ... } denote, as usual, the fractional part of
the argument. The plus sign in (4.1.1) corresponds to formula (4.1.2) in the previous
step, and the minus sign to fornula (4.1.3).

As will be seen from what follows, an interesting case is:

Ls»ra; vio>> V (4.1.5)

Then the set (4.1.1) - (4.1.4) takes the form:

vV, =U:+-\/(‘/’“—4/z)

e - (4.1.6)
hy 1t ad i 1£6 b.;*’ J

This transformation is of the same type as the basic model (2.1.11). According to the results
of Section 2.4 the stochasticity parameter can be determined as: K = (d\pn +l/dwn) -1(2.4.9)
and is equal to:
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2 /v
Kx- 7ia -(V, (4.1.7)

whence the border of stochasticity (2.4.7):

v, . 1 /_4 (4.1.8)
1% g VvV e

The stochastic region thus covers the interval 0-v,. In order to obtain considerable
acceleration (v >> V) it is necessary to fulfil the rather umexpected condition:

Qa << Z (4.1.9)

Under the condition Av/v ~ V/v << 1 the kinetic equation takes the form of an FPK equation
(Section 2.10):

2U(nt) o DL )
—-'r[)_aé = i_u-’ (a(v’)' _7!%1—1___ (4.1.10)

where the diffusion coefficient in velocity is (2.10.12):

%(U')? A "Z(d‘f/z>z . Z/"VZ (4.1.11)

A
As a boundary condition it was proposed in Ref. 103 to use the condition of the absence
of flux at the border of stochasticity:

) 32.6_/ = 0O (4.1.12)
oV :1{1

This condition, of course, is not exact, siice there is a transitional zome, but it makes
it possible to obtain an approximate solution of Eq. (4.1.10). In particular, the steady-
state distribution (3f/3t = 0) proves to be simply umiform: f£(v,t) + vi~%.

In order to check the degree of approximation of such a solution, the exact set of
difference equations [(4.1.1) - (4.1.4)] was computed during n = 10° collisions with the
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following parameter values: a =1; V =4; vy = 0. In order to reduce the effects of the
finite mmber of digits the mantissae of the quantities £ and V were chosen in the form of
a set of random mmbers. The result of the mmerical experiment was a distribution fumction
F(v,t) proportional to the particle sojourn time in a given interval of velocity. The
relation between f and F is given by the expression:

/ o
F{g;—é):_—é——!f[?f; z_‘/df (4.1.13)

Figure 4.1.1a gives a typical steady-state distribution function for t >> to, where
the relaxation time is t_~ vi/2D & 24v,2/V? ~ 10% (for the case in Fig. 4.1.1a:
%/a = 10*; v, = 50); along the x-coordinate the particle velocity is plotted in units of
the maximum wall velocity. The arrow denotes the maximm velocity reached by the particle
during 10° collisions. The distribution function is cut off rather sharply near the border
of stochasticity v; ~ 50 (4.1.8), illustrating the accuracy of the boundary condition
(4.1.12). The fluctuations in the distribution function in the stochastic region are de-
termined by the mmber of independent particle transitions through the whole acceleration
region: N~ t/tr. For the fluctuations we obtain the estimate:

AF[ -
L~

(4.1.14)

When &/a = 10* (Fig. 4.1.1a) AF/F » 1/10

Figure 4.1.1b illustrates the validity of the stochasticity criterion Il(l‘i ~ 0.5
(4.1.8) for various £/a. Let us note that the parsicle penetrates quite far (particularly
when there are small £) into the transitional zone .

A further interesting experiment was carried out by Israelev. He investigated the
local stability of transformation (4.1.1) to (4.1.4) by the method of returning to the
initial point. In other words, for various initial conditions n = 10* forward collisions
were computed, and then by means of an inverse transformation the same number of backward
collisions. A stable trajectory should then almost return to the initial point. Table 4.1.1
gives some results of this experiment for the case when £/a = 2500 (vy = 25).

The first mumber in each box (v,) gives the initial value of the velocity, the third
(vn) the final value after n = 10* ‘collisions in one direction, and the second (van) after
the reversal. Four regions are represented in the table. The first (I) is the wide stable
region with high velocities (v > v)); the fourth (IV) is the wide stochastic region (v < wv;).
The most interesting are the two narrow regions (II,I11I) at the border of stochasticity, one

*) Considerable penetration of the trajectory behind the border of stochasticity is ex-
plained by the fact that the transformation under consideration is not smooth so that
the region of stability does not actually exist (compare Section 3.3).
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A
Fa)

. 20 40 60 8o ico

F(v)

Fig. 4.1.1. Distribution fimction for Fermi one-dimensional stochastic
acceleration: a) Barticle velocity v in units of maximm wall velocity
(V=14); 2/a=10"; b) particle velocity expressed through stochasticity
parameter K : 1 - £/a = 400; 2 - %/a = 10%; 3 - 2/a = 4 x 10%.

of which (III) is stable and the other (II} unstable. This again proves the connection
between local instability and stochasticity, and also the complex structure of the transi-
tional zone (Section 3.3).

For stable trajectories the values v, and vip agree with a relative accuracy of

~ 10~*. The divergence is determined first of all by round-off errors, to which for
transformation (4.1.1) to (4.1.4) are also added the errors of the square root computations.
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Table 4.1.1

1 11 111 v
Stability | Instability Stability Instability
Vo 100,135814 28.0140073 27.0832487 25.4028922
Van 100,135814 78.8256083 27.08.32485 78.1138416
Vn 101.653878 22.2647118 27.94286606 25,3236604
Vo 50.1388452 28.0138€73 28.0311874 18.8875432
Van 50.1388120 23.8628307 25.0341874 41.8D01285386
Vn 48.2772544 32.8258519 27.0211408 18.5240320
Vo 208.0538478 28.003¢%673 25.45013R7 10.1569183
Van 28.0538476 34.1160266 25.4501454 18.8937€83
Vn 30.0626240 43.5787423 26,12336580 16.736333¢

If it is considered that the latter are of the same order as the round-off and are also
symnetrical, the relative accuracy of the reversal can be estimated as (see Section 3.3):
28 - vIN/3 ~ 1072, where N~ 10 is the mmber of operations in ane step of transformation
(4.1.1) to (4.1.4); b = 273% and the factor 2 takes into account the mean value of the
mantissa (floating point arithmetic). This estimate agrees with the observed accuracy of
the reversal except in the last case in region III, which probably indicates weak in-
stability near the border of stochasticity.

To sum up it can be said that in the one~dimensional case the Fermi acceleration
process essentially depends on the fulfilment of the stochasticity conditions.

If we now turn to the case of two or more dimensions the situation changes substantially.
In particular, Sinai showed!®®) that for elastic collisions of disks or balls stochasticity
always occurs. This result follows directly from the simple fact that, as can be easily
shown, in this case strong local instability of motion always arises (Section 2.13). Of
course rigorous proof of stochasticity is considerably more canplicated”‘). It applies
also to the general case of the collision of bodies with a convex surface!*%). This latter
condition is exactly that which ensures local instability of motion. At the same time the
presence of concave sections of the surface may lead to the appearance of regions of
stability. A modification of the case of the motion of a particle between walls, considered
above, can serve as a simple example, if one of the walls is made concave and the many-
dimensional problem studied. It is clear that the transverse motion in this case will be
stable'), and consequently the border of stochasticity will remain the same as for the plane

*) If the curvature radius is larger than the distance between walls.
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walls., In the case of a convex wall the transverse motion is always unstable and the
border of stochasticity disappears.

As already noted above, a stochastic accelerator (stochatron) was proposed in Ref. 100.
However, in this paper it was assumed that the phase of the accelerating voltage should be
random, but this is not so simple to realize in practice. We see now that this requirement
is actually superfluous. In this respect the Fermi mechanism®®) is much closer to the ideas
of the present paper than the processes studied in Refs. 100 and 101.

Stochastic acceleration at a fixed frequency was first applied, apparently, by
Volosov et al. for pre-heating plasma in the stellarator!®?s1°?), The stochasticity cri-
terion for this case was obtained in Ref, 107. '

Below we give the derivation of a similar criterion for the ordinary accelerator, to
which the original proposal referred’®®), but working at a fixed frequency w,. In a short
kick approximation the equation of motion of the particle in such an accelerator can be
written in the form:

W, = W, +eV. Gy,
"f’.u-« = ¢+ Tt.). (4.1.15)

where T,W are the period of revolution and total energy of the particle, and Vo is the
amplitude of the accelerating voltage. According to the general theory (Section 2.4) the
criterion of stochasticity is detemined by the relation:

K:, = ,e-V; w, -:—;l—; ’ z 4 (4.1.16)

‘Developing the expression for dT/dW in the usual way®), we obtain an estimate of the
maximen energy of the stochatron in the form:
W e
o S We ) -y
eV, © | Ty

(4.1.17)

Here w is the rotation frequency of the particle in the accelerator, vy is the relativistic
factor, a = Q2 is the momentun compaction factor, and Q the mumber of betatron oscillations
per turn. From this last expression it can be seen, in particular, that stochasticity is
always absent near the critical energy: vy = u"i = Q. However, as a result of the
"infiltration" of the particle into the transitional zone (see for example Fig. 4.1.1)

more or less slow crossing of this region is possible.

To complete the picture, let us note that the ordinary microtron’) works just at the
border of stochasticity (4.1.17) so that, for instance, raising the accelerating voltage
inevitably makes it go over to stochastic conditions.
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Going back to the stochastic heating of plasma’®?»}°?), let us note that its effec-
tiveness can be even greater than follows from the simple theory!®?»!*?). In particular,
instead of uniform distribution in velocity, in the real system maximum density can be ex-
pected to appear near the border of stochasticity, i.e. near the maximm energy, due to
the capture of the particles in the stable regions owing to the presence of dissipation.
This effect has apparently been actually observed in the experiments by Volosov's group.

In conclusion let us make some remarks concerning high-frequency heating and the con-
finement of plasma in magnetic traps. This method has become increasingly popular recently;
in particular, a separate section was devoted to it at the Third Conference on Plasma
Physics and Controlled Fusion (Novosibirsk, 1968; see also Ref. 109). Since this concerns
rather dense plasma, the alternating field is equivalent to the oscillating wall, so that
it is necessary to take into account effects comnected with the border of stochasticity. On
the one hand these effects can lead to the limitation of the maximm temperature of the
heating. On the other hand, for instance for high frequency confinement in magnetic traps,
they may in fact considerably impair the confinement on account of the increase in the longi-
tudinal velocity of the particles., '

4.2 Dynamics of the lines of force of the
magnetic field in the stellarator

The objective of this section is to make some calculations, or rather estimates, of
the conditions of stability of the motion of a single particle in a magnetic field of the
stellarator or levitron type. '

In general it can be considered that the magnetic moment of a particle is conserved
with a sufficient degree of accuracy (see Section 4.4), so that the important thing is the
stability of the drift trajectories of the particle. Further, limiting oneself to a region
sufficiently far away from the separatrix, for the overwhelming majority of untrapped particles
the deviation of the drift trajectories from the lines of force of the magnetic field can
be neglected“’). Thus it is necessary to investigate, as is usual, the stability of the
lines of force, which can be regarded as trajectories of a dynamical system, namely an
oscillator, since the main feature of a stellarator field is the finite velocity of the
rotation (w) of the lines of force in a plane perpendicular to the magnetic field.

This oscillator is subject to various perturbations (inaccuracies of manufacture,
race-tracks, toroidality, etc.) with a period equal to the perimeter of the stellarator.
The main danger comes from the resonances. They can be controlled in two ways.

Firstly, one can choose the "frequency" w far away from all the resonant values, as is
generally done in charged particle accelerators. For this it is necessary, however, for
the oscillator to be almost linear, i.e. for the "frequency" w to depend weakly on the
rotation radius (r) and for all the stellarator region of interest to us to be outside the
resonances, Such stellarator fields are possible (for instance, a double helical field
with a large pitch) but apparently undesirable, if only because the size of the separatrix
then decreases considerably*).

*) Let us note, however, that a double helical field with a small pitch makes it possible
to eliminate the most dangerous central resonance by the proper choice of the value of
w(0) 111) (see note on p. 178).
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Another known means of controlling resonances is to make the oscillator non-linear,
i.e. to make its "frequency” depend on the rotation radius (on the amplitude): w = w(r).

The mumerous papers on research into resonant perturbations in the stellarator (see
for instance Refs. 110, 112, and 113) may give the impression that an increase in non-
linearity (dw/dr) always leads to increased stability. Similar hopes also existed in the
initial design stage of strong focusing accelerators. In reality, however, the situation
is different. Although non-linearity does stabilize resonances (Section 1.6) it leads also
to the appearance of new instabilities. The most dangerous of them is apparently stochastic
instability (Chapter 2). As far as we know, stochastic processes of this kind as applied
to a stellarator were first studied by Sagdeev and Zaslavsky"‘) . Below we will make a more
thorough examination of the destruction of the internal region of the magnetic field of the
stellarator, according to Ref. 89.

As an unperturbed system let us choose a straight n-helical magnetic field created by
2n conductors with a current J in each, wound with a pitch of 2n/a on the surface of a
cylinder with a radius a. Let us relate the toroidality of the real stellarator to the
perturbations. Let us assume that the equations of "motion' of the lines of force have
the form!!%): ’

L
ds 7 . . 8- ; S= ;
__i-=.2zn.s - 5n8; Brp-az; S=(L);

L
_~4 L XX ]
‘—’-‘f—z_us" L GsuB; sc.=c:’{,’ .2.1

where Hz is the strength of the longitudinal field and r, \§, z the cylindrical co-ordinates.
For (4.2.1) to be correct it is necessary, generally speaking, for both quantities ea,

s << 1, However, the estimates by order of magnitude will also be correct in a wider region,
in fact everywhere except in the immediate vicinity of the separatrix. The same remark
-also applies to the other strong inequalities. The quantity s = (r/a)?, canonically con-
jugated to the angle Y was chosen as a variable. In accordance with Ref. 115 let us intro-
duce the dimensionless "frequency" w by the formula § = owz, where \§ is the mean angle of
rotation,

The mean rotation of the lines of force, which is also the main factor for the stability
of the stellarator field, is rather similar to the betatron oscillations in an alternating
gradient accelerator or to the stability of the Kapitsa pendulum’?2,!7%),

Let us assume Ithat the perturbations (constant in time) are described by the same
equations as the main field (4.2.1), but with their own parameters e,, m, a1. Let us
further assume that the perturbation is a set of short uncorrelated "kicks", i.e. the
parameters €;, n;, a3 are constant over a length £ (correlation length) satisfying the
inequality:

a << b << (n,«,) (4.2.2)
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There is a similar formulation of the problem, for instance, in the stability calculations
for a strong-focusing accelerator®). As a result of the closure of the stellarator, any
perturbation will be periodic with a period L (perimeter of the stellarator).

Let us first consider a single "kick" at the point z = 0, From Eqs. (4.2.1) under
condition (4.2.2) we find:

n
AS=2e,n,S5T ¢ Sun,p
L7

(4.2.3)
A= £, S * ‘([ los ny P

The first equation determines the displacement of the magnetic surface, depending on the
angle § in the region of the perturbation. The latter changes under the action of the per-
turbation [the second equation in (4.2.3)] and also as a result of the rotation with a
""frequency’ w, by a quantity alw (per period). As a result, the action of the perturbation
under consideration can be described by means of the following set of difference equations,
similar to the basic model (Section 2.1):

Sy = sA,(I-f-f{-:-’!a\.y,”)

A+ 4

(fﬂ+4 = %AI + dL hq N (5_,‘/4.4) -+ ?A/ a‘$ %.4/ (4.2.4)
*” :

= -1
L/:,t-n,,(,o”; ;~=2£1H125a;

Under specific conditions (see Section 2.2) the difference equations (4.2.4) can be
replaced by the differential equations:

5'=4:—1§s Siy

¢ = 4, (w-o,)+ F Cos ¢ (4.2.5)

Here Ly =n; L; w_ = 2m/ol; (m = 0, 1, ...) '!°) is the resonant value of the "frequency"
w '); the dot dengtes differentiation with respect to the "time" N. Everywhere in what
follows, s denotes the parameter of the magnetic surface, i.e. we shall ignore its small
deviations from the cylinder!!®). The phase frequency of the oscillations (4.2.5) is:

. daw (s
2 7 . c_

Let us note that the frequency &, is here measured in units of (al) ’.

*) The resonances of, the higher approximations: w(p) = (2mm/a L £ pn)/(n; 2 n?“)!
p=1, 2, ... }*?) have an additional small factor of the form [(e/a) + sW2- ]p
and can be important only near the separatrix.
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Let us first estimate the stabilization of the resonances by non-linearity, as was done
in Section 1.6. In the linear case (0’ = 9¢ = (), system (4,2,5) determines the resonant
{unstable) bands of the width:

ld, (@), = 2% (4.2.7)

At the same time the non-linear width of the resonance (size of the separatrix) is:
a L (Am)H ~ Qo. According to Section 1.6 the stabilization condition can be written in

the form: (Am)H 2 (aw), or (squared) ).

dSw’ h-2 _
£ =02 = Bl 2Ep (4.2.8)
where WL = alw is the total rotation angle of the line of force around the stellarator, and
we used the relation: u_ = P2 115)

The stochasticity parameter for system (4.2.5) is:

K==Luslss’s Cos;b-_—Q; G o (4.2.9)

Let us determine the border of stochasticity from the condition: Ko = @ @2 = 4, This choice
of border is confimmed, in particular, by the results of the mmerical computation given in
the previous section (Fig. 4.1.1). The condition of stability of the motion thus takes the
form:
2 - 2
g‘ < = ———
~ LS w’ n-2) @,

(4.2.10)

The last expression is exactly the opposite of (4.2.8). This means that the permissible
perturbation reaches a maximm in the region:

. = 7o~ <L, E'.;.‘ ~ 1 (4.2.11)

The formulae given above are directly applicable only when n > 2. For a double helical
field one should assume that}'*): (n-2) WL + A$L; the latter is the difference between
the rotation angles at the axis of the stellarator and at the radius r under consideration.

If the condition of non-linear stabilization of the resonance (4.2.8) is violated, the
line of force withdraws into the wall in a time (number of turns):

*) The stabilization condition of the resonance in the centre of the stellarator (w, = 0)
has a different form: £ Sal, w=n; § . This resonance is es?eciallsr dangerous,
since it leads to the destruction of a rkgion of the size r = ¢,/ (30} Sw_hen n = 1).
vwhile for peripheric resonances the size of the region destroyed is Ar « ve,.
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n
2N
M~ 3 (4.2.12)

In the stochastic region, when condition (4.2.10) is violated, the diffusion coefficient
D ~ (Es/ny)? and the "lifetime" of the line of force is:

s* u, 12 2
My ~ > <_'$L) ~ A/’, (4.2.13)

The estimates obtained cease to be correct in the immediate vicinity of the separatrix
where, in particular, the higher hammonics (kw) play a part. This problem was studied by
Zaslavsky, Sagdeev and Filonenko?®). However, the solution they obtained was not final,
namely the dependence of dw/dI on w was not disclosed. In Section 2.6 it was seen that for
very general conditions the behaviour of the system near the separatrix is wumiversal and is
described by expressions (2.6.7) and (2.6.8). It follows from (2.6.8) that the spatial
width of the stochastic layer in the stellarator being proportional to the energy width is
always small and is completely negligible in the sense of a limitation of the stable region.
It is interesting to note that the width of this stochastic layer is not exponentially small,
as in the case of the non-linear resonance (Section 2.6), but simply proportional to the
small perturbation parameter. This characteristic was already discovered by Mel'nikov”) .
The explanation is that in the case of the stellarator the perturbation frequency, for
example on account of toroidality, » w, whereas the destruction of the separatrix of a reso-
nance some way from the border of stochasticity is usually due to the action of high frequency
perturbation,

The frequency width of the stochastic layer (2.6.7) is always great and therefore it is
impracticable to rely on the use of a large rotation angle in the immediate vicinity of the
separatrix of the stellarator. Figure 4,.2.1 gives “the results of numerical computation from
a paper by Gibson!!®) (toroidal perturbation). In the case concerned Q. = o - 9, where
Yo (= 9,) is the rotation angle at the separatrix and ¥s the rotation angle at the border
of stochasticity. The interpolation line equation is given in Fig. 4.2.1 and the expected
dependence takes the form (2.6.7):

Yo Qo pu Lt 4+ 22,0, 2
-7, = 1+?-91.eu e e, “—JZ,, (4.2.18)

From the results in Fig. 4.2.1 we obtain: Q,/QQ = 1.28, whence the last term x 0,06, which
cannot be regarded as a serious deviation from the interpolation line.

The stochastic instability of the lines of force can be used to create a so-called
Skornyakov trap‘”). The distinguishing feature of this trap is the region of "turbulent
motion" of the lines of force, in which the lines, at first close together, rapidly diverge
considerably. Stochastic instability also has this same property. The reason for using
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l Fig. 4.2.1, Decrease of the rotation
angle of a magnetic line of force in
dependenge on the /;atio of the stella-
rator radii € = r/R (toroidal pertur-
l H ';%" teossbt bation): ¢ is the maximm rotation

angle at the separatrix; is the
rotation angle at the boundiry of the
stochastic layer.
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such a "turbulent” region is the hope that inside it the development of plas‘ma instabilities
will be hampered. Indeed, the spatial non-uniformities (fluctuations) occurring in the
plasma, moving along the rapidly diverging lines of force, will spread out and mix, which
is equivalent to some damping. The difficulty of creating a Skornyakov trap lies in the
fact that the turbulent region must be completely surrounded by a reliable "laminar" layer
of regular magnetic surfaces to ensure heat insulation. In particular, the stochastic in-
stability considered in the previous section is completely unsuitable for this purpose,
since the turbulent region extends as far as the separatrix.

. One of the possible methods of creating a "turbulent" layer in a stellarator by means
of an additional short "resonant" winding is described in Ref. 89. Two other methods will
be mentioned here.

The first was proposed by Mel'nikov and does not require any additional equipment at
all. It is based on the fact that the separatrix of the central resonance w = 0 (which is
always the case for n > 2, see note on p. 178) is destroyed by toroidal perturbation, which
automatically leads to the formation of a stochastic layer. The width of the layer depends
on the ratio of the perturbation frequency [w, = 1 for toroidal perturbation'!'®)] to that
of the phase oscillations Q¢b (4.2.6). For the central resonance the frequency ﬂo can also
be estimated from the relation: Q¢ ~ $/s ~ 2E/n; v E, since As &~ s and ¢ ~ 1. This estimate
is of the same order of magnitude as (4.2.6) on the edge of the resonance: al,w " E (see
above). The transition to dimensionless '"frequency' is effected by means of the transfor-
mation: no - QQ/uL. Whence:

A XL L ow (4.2.15)
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In this last estimate we used the above-mentioned condition { ~ a Ly w for the size of the
central resonance (m ~ 1). Since it is desirable for £ << 1, a large width of the
stochastic layer, corresponding to the condition w; < QQ, is possible only for a very small
a, which leads, in particular, to "discontinuity" of the field when it rotates in the stella-
rator. For continuity of the field it is necessary for oL 2 2n/n n 1.

The second method of creating a *'turbulent' zone is based on the destruction of the
central resonance by a special winding, the pitch angle of which (a;) is identical to that
of the line of force at the edge of the resonance: a, = aw. The total rotation angle of
the additional winding is then equal to: ajL = auwl ~ £ << 1, so that there are again dif-
ficulties with the field continuity, but only for the additional winding.

The entropy in the "turbulent" region characterizing the rate of decrease of the in-
stability®®) will be of the order (per z unit, representing time):

h ~ w ~ _Z;_.— (4.2.16)

This value is smaller (when £ < 1) than in the method described in Ref. 89, where
h= (In n;)/L ~ LY, if the error in formula (15) of this paper is corrected.

At present the possibility of stabilizing plasma instabilities in a Skornyakov trap
remains highly problematical. The main difficulty here is due, apparently, to the border
between the "turbulent’” and 'laminar" regions, where large gradients of plasma density may
occur, facilitating the occurrence of plasma instabilities. Nevertheless, in view of the
simplicity of the additional equipment required for creating a "turbulent" layer, it appears
expedient to carry out the corresponding experiment.

4.3 Arnold diffusion in the interaction of

colliding beams

Below only the simplest case will be considered —- that known as weak-strong inter-
action, when the influence of the weak beam on the strong one can be neglected. This is
usually the case for colliding electron-positron beams and will be even more so for proton-
antiproton beams*). Weak-strong interaction smounts in fact to an interaction between a
single particle and a colliding bunch, A convenient model of such an interaction, which is
fully acceptable for our estimates, is proposed in Ref. 13.

For proton, and especially antiproton, storage devices even very weak diffusion can be
important, since under natural conditions there is absolutely no damping of the oscillations
and the necessary lifetime is a few hours!2®), Recently, Budker proposed artificial cooling
of protons by means of an accompanying electron beam“‘), in which case everything would
depend on the damping time in fact realized.

It is convenient to characterize the intensity of the interaction by the frequency
shift of the small (linear) betatron oscillations (4v); as the small dimensionless parameter

*) For a description of colliding beam technique see Ref. 80.
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let us choose € = Av/v, When the amplitude of the oscillations is of the order of the
transverse size of the bunch the non-linearity reaches a peak, equal to: a Vv E 13),

The resonance condition takes the form:

NaVyt+ My Ve + PVe=0 (4.3.1)

where all the frequencies are given in units of the revolution frequency ws; n;, nz, p are
integers; vs is the frequency of the external perturbation, which we assume to be §-shaped
(any p). Taking into account that in the present case m = 2, the amplitude of the pertur-

bation harmonic can be written in the form [see (2.12.23)]: :

e/

R A (4.3.2)

The parameter n, depends on the shape of the beam and the amplitude of the oscillations a.
In particular, for a cylindrical beam shape no v a/ro, where ro is the transverse dimension
of the beam'®). Let us also introduce a dimensionless parameter of the coupling between the
betatron oscillations 82, which in some cases can be very smal1l2®),

The resonance density can be estimated in the same way as in Section 2.12, taking
N = 3, since the external perturbation, as we assumed, has many harmonics. Moreover, the
resonance density must be inversely proportional to the constant frequency of the external
perturbation v,. As a result we obtain from (2.12.27):

oo
A ~ — (4.3.3)
=" h}

An example of a set of resonances up to and including the fourth order is shown in
Fig. 4.3.1. It can be seen that the density of the resonances is very non-uniform. This
_effect can be included in the parameter v, (4.3.3).

Fig. 4.3.1. Set of resonances n,v; +
+ navy + pvp = 0 for vo = 1; |n,1¢
+ n2T < 4; p is any integer; 40
different resonances in all,
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Let us first of all estimate the border of stochasticity, which is determined by the
overlapping of the main resonances (n < no). Using expression (2.12.29a) in which we put:
€ + eB? (the majority of the resonances are coupling resonances), we obtain:

L2 -
€,~ -5 By (4.3.4)

Turning to the estimate of the rate of Arnold diffusion, let us note that in the present
case we are interested in the expression for the diffusion coefficient as a function of the
mmber of the resonance harmonic (2.12.29)., The point is that the main deleterious result
of the interaction of the colliding beams is the '"blow-up" of the weak beam, leading to a
decrease in the so-called luminosity of the colliding beams®®). The frequency of the beta-
tron oscillations changes, roughly speaking, by a value Av = ev of the total frequency
shift under the action of the oncoming bunch. It is therefore clear that the action of the
resonances will be substantial for the majority of the particles, if this frequency change
exceeds the mean distance between guiding resonances An (4.3.3). -

¥When € << € expression (2.12.29) can be simplified, neglecting the term n/2n, in Mn
and putting [2n2 C(N - 1)/N°n]} I/N ~ 1. Further, if one considers the diffusion along
coupling resonances wnder the action of other coupling resonances, DA is in addition multi-
plied by a factor B® (Section 2.11). This case is typical. Taking into account, finally,
that a v £ and N = 3, we obtain from (2.12.29) the following estimate for the Arnold
diffusion coefficient:

1
2A(n}~12u,wﬂ’~ex,,(-s(-‘;-‘-)’.e‘"o/ (4.3.5)

Since Armold diffusion occurs inside the stochastic layers, the volume of which can be
ignored when £ << €g (Section 2.6), in practice it can become substantial only in the
presence of additional ("external'') diffusion, for instance on account of gas scattering or
some other kind of fluctuations in the storage rings. "External" diffusion ensures the
entrance of the particle into the nearest stochastic layer and subsequent Arnold diffusion.
If the latter is sufficiently great the 'blow-up'" time of the beam will be determined by
the "external"' diffusion up to the nearest resonance surface, i.e. by a distance » An’
instead of (ev) in the absence of Arnold diffusion. Since the diffusion time is proportional
to the square of the distance, the beam "blow-up' time will then be reduced by

/ 2y
< = a2, (4.3.6)

times (see Section 2.12).

By means of (4.3.3) and (4.3.6) we find:
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£
h 1/, ~1/3 . = ——
o kY. y Y ¢ I (4.3.7)

Substituting this in (4.3.5), we obtain:
% L%
2 3 T3 v
2'4.‘,] o,evfl . ex/a(-gf/?‘r} cebr 7 (4.3.8)

The value of Dy is determined by the required lifetime ("blow up" time) of the beam
T Dy v I?/t. Putting: B =g (ev-mo)y’ and k = 1, we arrive at the equation for the lower
limit vy,, determining the region of influence of the Armold diffusion:

67, X7 [{ﬂ,}’,} " 2. B]= 1 (4:3.9)

This expression shows in particular that the threshold of vy, depends weakly.on the coupling
coefficient B?, provided the latter is not too small: 82 >> (In B)™® = A™2, The equation
for v, can be written in the form:

24,5 b (Apts) = 1 (4.3.92)

Putting y; = % in first approximation we find:

)’4‘: [‘?fﬁ (%/ﬁj]""" (4.3.10)

It is evident that the latter expression is valid only for A8 >> 8; if this is not so it
is necessary to solve equation (4.3.9) more accurately.

From expression (4.3.10) it can be seen that the critical value of the frequency
shift (Av), depends substantially only on the frequency of the external benurbation Vo
and the field smoothness parameter of the oncoming beam ny; dependence on the other para-
meters is weak, including that on the coupling parameter of the oscillations B2 and on
time T.

When (Av) increases above the threshold itlcan be considered that n/n, = const (4.3.5),
and DA increases on account of the factor (By)'/‘ (4.3.8). Then from (4.3.7) it follows
that:
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2
/( = [(%‘-;—j (4.3.11)

Let us also write down the expression for the harmonic mumber of the resonances deter-
mining the Arnold diffusion. From (4.3.5) we have:

ngx 6n, un [(Br) s ., BJ (4.3.12)

The estimates obtained were based on formula (2.12.29), which is valid when n’ > n (Section
2.12). Let us find the condition under which it is possible for n’ = n, and the diffusion
coefficient is given by the estimate (2.12.26). Using expressions (2.12.25) and (4.3.7)
we obtain:

£ e
€ 7 <_6-j = O. 1 (4.3.13)
Estimate (2.12.26) in our case takes the form:
’ 2 3 L/ o
2, ~ 7 o‘,f:V/} e (4.3.14)

Let us consider the influence of synchro-betatron resonances on Arnold diffusion. The
simplest effect is a considerable increase in the density of the resonances. For this it
is necessary only for the spectrum of the synchro-betatron resonances to span the distance
between resonances (4.3.3). The width of the spectrum depends on the mechanism of synchro-
-betatron interaction. For colliding beams the main effect is apparently the modulation of
the frequency of the betatron oscillations, which takes place for two reasons. Firstly, on
account of the modulation of the non-linear frequency shift, when the width of the spectrum
may here reach Ac A ox Avr, where n is the harmonic number of the betatron resonances, and
A\:r the total non-linear frequency shift of the radial oscillations; secondly, on account
of the modulation of the revolution frequency, the width is Ac ~ nwc/q [q is the high
frequency harmonic number®)].

The overlapping condition can be found from the following considerations. In the
equation of the resonance zinivi = 0, the tem v v A c should be of the order of the
variation of the residual sum between neighbouring resonances, which in its tum
~nA v vo/n? (4.3.3). Hence the overlapping condition: a2 vo/n? ~ n « (Av),;, where n
is determined by the time of the Arnmold diffusion and (Av); = (sz); is the Arnold diffusion
threshold, without taking into account the synchro-betatron resonances. Then the last
expression for the width A, leads to the synchrotron frequency limitation:



- 186 -

V. 2 X9 (4.3.15)

Y

The Armold diffusion threshold will now be determined by the distance between the synchro-
betatron resonances, which is vc/n“’), i.e. it decreases by nA /v_ times, which at the
boundary (4.3.15) is ~ (vn/q). In fact, the decrease will be even greater, since the rate
of the Arnold diffusion also increases on account of the increase in the density of the
resonances’) and therefore resonances of much higher harmonics begin to work. The first
expression for A LS (Avr) leads to the condition Avr > (4v),, i.e. it does not lower
the threshold.

The modulation of the magnetic field of the storage ring acts in a similar way. Again
there is frequency modulation with a spectrum width By ™ nvE, vhere £ = A H/H is the ampli-
tude of the modulation. From the overlapping condition by 2 nAn, we obtain the limit of
dangerous modulation:

Vo
§ 2 553 (4.3.16)

In this case the decrease in the Arnold diffusion threshold (by v,,/n’vm times) will be con-
siderably greater on account of the small modulation frequency Vo and alsc on account of
the increased Amold diffusion [see above and (4.4.15)].

The action of radio-frequency modulation is considerably more complex. On the one hand
it leads to frequency modulation with a threshold (4.3.16) for a quantity q&w = qAw/w. 1t
is true that the amplitude of this perturbation may already be considerably smaller than that
from the oncoming beam. On the other hand, the perturbation modulation spectrum may span
;he gap between neighbouring synchro-betatron resonances, which under condition (4.3.15)
leads to an even greater lowering of the threshold of Armold diffusion. The above-mentioned
gap is ~ v./n in betatron frequency!®®) or ~ v_/vn in revolution frequency. Hence the
botmdary of dangerous modulation of the radio-frequency is:

vV v,
3. Vg T quin® (4.3.17)

This last estimate is given in the limit (4.3.15). The amplitude of such perturbation may
also be small (see above).
Finally, the effcct of modulation of the synchrotron frequency itself is also possible

under the action of various factors. However, spamning the gap between the synchro-betatron
resonances in this case already calls for rather considerable modulation Avc/vc 2 nt.

*) See similar estimate in next Section (4.4.15).
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As we saw, the action of (frequency) modulation amounts to splitting up each resonance
plane and forming a distinctive multiplet of the parallel planes. When the distance between
these resonances is sufficiently small they begin to destroy each other with the formation of
a solid stochastic "corridor'. 1t is significant, however, that this phenomenon does not
change the Arnold diffusion, since the vectors (n) of all the resonances of the multiplet are
parallel (see Section 2.12). )

Returning to the synchro-betatron resonances, let us note that they may also lead to a
more important effect than a simple increase in the density of the resonances, namely to
streamer diffusion (Section 2.12). The high frequency accelerating voltage is here the
external perturbation destroying the conservativeness of the system. In other words, this
perturbation shifts the system out of a constant energy surface and thus ensures streamer
diffusion.

For diffusion to take place over a considerable distance, neighbouring streamers must
intersect. This is possible if the dynamic frequency variation

Vo
av 2 4, A~ v (4.3.18)

Here we are considering four frequencies -- two betatron frequencies, the revolution frequency
and the frequency of the external perturbation. The last must have a sufficient number of
harmonics (v n). In the opposite case the necessary (4v) considerably increases (see below).
This requirement is usually not satisfied in storage rings. Firstly, the accelerating
voltage, as a rule, has only one harmonic, and secondly, under synchrotron operating condi-
tions the revolution frequency on the average remains constant. Streamer diffusion in this
situation is possible only outside the limits of the synchrotron separatrix, which may be of
importance for very low energy protons or electrons (see Section 4.4).

Under ordinary conditions it is necessary to bear in mind the synchrotron oscillations,
the frequency of which will also be a third dynamical frequency in addition to the two
betatron ones.

For considerable streamer diffusion it is necessary, as noted above, for neighbouring
streamers to intersect. This is possible precisely on account of the variation of the syn-
chrotron frequency itself Avc. If one puts Avc " Ve, the condition for intersection of the
streamers proves to be the same as that obtained above for crossing the gap An " vo/n?
by the synchro-betatron resonances. From the width of the spectrum of the latter, due to
the non-linear frequency shift: . ~n * (Av) (p. 185), we obtain the streamer diffusion
threshold in the form

vV,
v ), ~ — (4.3.19)

Modulation of the revolution frequency gives a threshold identical to expression (4.3.15).
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The harmonic number of the resonances n is determined by the time of the streamer
diffusion for which, taking into account "external” diffusion, estimate (2.12.39) should be
taken. Let us re-write it for the problem under consideration, taking into account that
N=3; e+c+B8% anve; m=2;, we=uwy; weobtain:

o 2 avy3_ 5 2
DT w,v(;-)ﬁ nie

< (4.3.20)

Let us specify this estimate in the simplest case 8* ~ 1; Avr ~ Av. Using estimate
(4.3.15) and again introducing the beam '"blow-up' time t ~ I’/Dé, we obtain the equation
for the critical value of the synchrotron frequency:

) ) -=-3
o), x 15, 2%1. .}eu[u,?: v ﬁvl’) .’(_:%)9:)2/’]'} (4.3.21)

3
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This depends weakly on the strong beam current J = Av, provided (w,Tv) * (Av/v)® » 8% >> 1
(4.3.20). Combining in a similar way (4.3.19) and (4.3.20) we find the streamer diffusion
threshold in current from the equation:

(a0), = L2 {fn[(\’Zu.}-(%ﬂ){ (.‘.’;:.)%Jj e (4.3.22)

np3

Effects (4.3.21) and (4.3.22) work independently. The 'blow-up" time decreases in approxi-
mately inverse proportion to the square of the amount by which the corresponding quantity
exceeds the threshold [see (2.12.41) and (4.3.11)].

Modulation of the magnetic field or the high frequency may lead to an increase in
streamer diffusion, but it cannot bring this about by itself (without synchrotron oscillations)
since the modulation frequency is not a dynamical variable.

As an example let us choose the following parameters for a proton storage ring:
T=10% sec; v=10; vo =1; wo = 10° sec™’; B2 1; (8v)g ~ 1/20. The last value
is taken from mumerical experiments®’»!27) and from experiments on electron storage
rings“”‘”). In all cases the quantity (4v), lay in the interval 1/10 - 1/40. Hence the
parameter np ~ 2 (4.3.4) can also be estimated.

Solution of Eq. (4.3.9) by the successive approximation method gives: y; = 1/50 whence
(av)y ~ 10”, with resonances working up to n = 8. The streamer diffusion threshold (4.3.22) is
(&v)2 ~ 2 x 10™* (n =~ 8), i.e. roughly the same as for ordinary Armold diffusion. Finally,
the synchrotron frequency threshold (4.3.21) is: (v .),/q ™~ 5 x 107 (n = 6) when Av = 1073,

In fact the synchrotron frequency should be even smaller: "c/q < 2 x 10-*, which follows
from estimate (4.3.15) with n = 8. 1In the opposite case the ordinary Arnold diffusion
threshold decreases in addition by ~ vn/q = 80/q times. The tolerance is of the same order
for both the magnetic field modulation and the frequency modulation (qAw/w) (4.3.16).
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The case of the cylindrical beam which we are considering is probably the worst. An
effective way of preventing Arnold diffusion appears to be to decrease the coupling between
the betatron oscillations, i.e. the coefficient 82, and also the anharmonicity parameter n,.
Moreover, the working point of the storage ring (vi,vz) should be located in the region of
minimun density of resonances. The most radical means would be to cut off the high frequency
completely, but this might reduce the luminosity of the colliding beams'2?%). Increasing
the high frequency harmonic mmber to q 2 nv also helps (p. 186).

When the intensity of both colliding beams is comparable the large-size beam plays the
role of the weak one, since the parameter no is very small for a narrow beam'®). When the
dimensions of the beams are comparable, their mutual "blow-up" is possible, in which event
(Av) decreases to the threshold value., In this case the process can be considerably compli-
cated by the coherent oscillations of the beams’2”), but these are comparatively easy to

" suppress, for example by means of a feedback’27).

The estimates obtained above are of course very rough. They can be refined in specific
cases by means of a mmerical experiment. According to Ref. 76, for this it is sufficient
to investigate the local stability of motion in a comparatively short computation.

It would be still better to carry out model experiments on electron storage rings.
Although in this case the time of the Ammold diffusion is considerably limited by radiation
damping, it can be made long enough to observe this process (up to 1 sec in the rings de-
scribed in Ref. 133)*).

4.4 Magnetic mirror traps: conservation of the adiabatic invariant

The confinement of a charged particle in an open magnetic system of the type of a
magnetic mirror trap is effected, as is known, at the expense of the conservation of the
orbital magnetic moment of the particle (u), which is the adiabatic invariant of Larmor
rotation''?). An adiabatic invariant is not an exact invariant and until recently its con-
servation conditions were still unclear. In particular, in a paper as early as 1528,
Andronov, Leontovich and Mandelstam®®®) showed in a simple example of the Mathieu equation
‘that an adiabatic invariant can be destroyed when there is arbitrarily slow but resonant
periodic variation of the parameter. For periodic perturbation, Firsov introduced corrections
to the adiabatic invariant which made it possible to remove the substantial deviation of the
invariant up to increasingly high orders of asymptotic expansion!'®). This direction was
pursued by Kruskal in a paper”) showing that the improved adiabatic invariant is conserved
in all orders of the asymptotic expansion. Of course this does not mean rigorous invariance,
but it is equivalent to an assertion that the variation of the adiabatic invariant is in any
event "exponentially' small (see below and Section 2.2). Only relatively recently Arnold
was able to demonstrate the eternal conservation of the adiabatic invariant for a one-
dimensional non-linear oscillator and, correspondingly, the eternal stability of motion of
a charged particle in an axially-symmetric magnetic trap'?®). The requirement for axial
symnetry is essential here and is connected with the topological features of the KAM theory,
which were mentioned in Sections 2.2 and 2.12.

As we already know, the KAM theory does not give the critical value of the perturbation.
This can be estimated from the numerical experiments in Ref. 123 and from Rodionov's experi-
ments with electrons'?!). In both cases it turned out that the border of instability is

*) There is a unique possibility of experimentation on Armnold diffusion using the proton
colliding beams (ISR) now in operation at CERN.
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determined approximately by the simple criterion of the overlapping of the resonances'®),
However, it remained unclear whether the stability observed was eternal, in conformity with
the KAM theory, or whether the time for the development of instability simply increased. A
series of experiments'22,%3-%3,131) yere devoted to this problem. All these papers report
the discovery of very weak instability developing during up to 10°® reflections of the electron
by the magnetic mirrors. A particularly thorough investigation of this weak non-adiabaticity
was made in Refs, 82 and 83.  An example of the dependence of the mean lifetime of an electron
in a trap on the strength of the magnetic field is shown in Fig. 4.4.1, taken from Ref. 83.
The curves correspond to different pressures of residual gas in the trap and different methods
of measuring the lifetime. The non-adiabaticity manifests itself in a more or less sudden
reduction of the latter. The formation of a lower "plateau", i.e. independence of the life-
time on the low magnetic field, was completely unexpected.
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Fig. 4.4.1. Dependence of the lifetime of electrons in a magnetic
mirror trap on the strength of the magnetic field H.

The nature of this weak instability has not been clarified experimentally. At present
only two hypotheses can be put forward.
According to the first, the instability discovered is due to the fact that the real

magnetic field of the trap was not axially-symmetric, in spite of all the measures taken.
In this case the system becomes three-~dimensional and the KAM theory can no longer guarantee
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stable motion, in spite of the invariant tori. Furthemmore, Arnold discovered a specific
mechanism of instability in this case“), which in Section 2.12 was called Arnold diffusion.
This second hypothesis will be examined thoroughly below.

Let us first of all discuss the second hypothesis, accord;.ng to which very weak in-
stability is also possible in an axially-symmetric trap on account of the indeterminacy of
the border of stochasticity and the penetration of the stochastic sections deep into the
region of Kolmogorov stability (Section 2.5).

The motion of the particle in the trap can be described by means of a transformation,
if the variation of the magnetic moment during a half-period of the oscillation between
the mirrors is integrated (for a trap which is symmetric in relation to the median plane).
The result of this integration is presented in the most convenient form in a recent paper
by Hastie, Hobbs and Taylor!?“), Their calculations are based on the observation, already
made in Ref. 123, that the main variation of u occurs in the median plane of the magnetic
field. This can be explained as follows. If the lines of force diverge without curving,
then the magnetic field H is locally axially symmetric., Hence, in this case the magnetic
moment is exactly conserved, since it is proportional to the generalized momentum, If the
lines of force curve, the axial symmetry is destroyed even locally, the generalized angular
momentum is not conserved and only adiabatic invariance of u is possible. Since the curving
of the lines of force is proportional, roughly speaking, to H" (the prime signifies the
differentiation along the lines of force), we arrive at the following expression for the
local parameter of the adiabaticity!?*):

3. v H” Q
£ = _._-“— — —— oo
=2 o, Vin v oo (4.4.1)

Here Wy = el/mc is the Larmor frequency; © is the frequency of the longitudinal oscillations;
v, is the particle velocity component along the line of force, and the mmerical coefficient
is introduced for the sake of convenience. Let us note that the latter expression loses its
sense near the axis of symmetry of the trap, over a length of the order of a Larmor radius,
because of the conservation of the generalized angular momentum., Above it was mentioneg that
the variation of u very strongly depends on € a and consequently it is in practice local )

and takes place at the maximm of €4+ In the simplest case, but of course not always, this
maximm coincides with the median plane.

According to Ref, 124, the variation of the magnetic moment after transition through '
the median plane is given in first approximation by the expression**):

*) For a sufficiently smooth (non-resonant) magnetic field configuration. In the opposite
case the region where u is changing and Au itself increases considerably, and all ex-
pressions of this section become invalid.

**) By using the estimate e_ ~ Q/w, (4.4.1) we arrive at the typical expression, Ay e"‘H/Q,

for the variation of th# adiabitic invariant when there is analytical variation of the
parameter, which we repeatedly used in this work (see also Ref, §5§.
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Here ¢ is the Larmor phase at the maximm of € and A is a certain complicated exﬁression:

"%‘Z{;:’:'/‘"[‘,‘g(”*% ZHH v-nnf (R)]~—/‘ (4.4.3)

where p is the Larmor radius; R the radius of curvature of the line of force; r the distance
from the axis of the trap; &2 = H/H". Expression (4.4.2) is valid when r << & 128)

The phase shift between two successive transitions through the median plane in first
xppmxmatmn is:

apx [, (n)dt= 9(,@,,;,4 ~ & )

If in the same approximation € and A are considered to be constants, we obtain a trans-
formation of the basic model type:

-t
/'-«’-.-/\«4 .f_cest/»-; £=/}e £
.S‘,’-.-.- (’P'f' 6(/4’_}

(4.4.5)

The stochasticity criterion takes the form (r/p)e'llea ~lore, ~1.

-Taking into account the results of the mmerical experiments described in the previous
section, one can hardly hope for any kind of residues of stochasticity when the value of
the dimensionless small parameter ed8/dy < 10~* °2,°3) (e, < 0.1: T~ p). It is true that
the exact equations of motion are more complex than transformation (4.4.5) and it may be
thought that it is just these small corrections that lead to slow diffusion., However,
according to the KAM theory small perturbation does not destroy the invariant tori. Never-
theless, since the limit of applicability of the KAM theory has been established experimentally
only for a very special system (Section 3.3), the question still remains open.

Let us return to the first hypothesis, The resonance condition now has the form:

pRy1¢2+2& =0 .46
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Here ng << 1 << w are the frequencies of the drift and the longitudinal oscillations, and
the mean frequency of the Larmor rotation, respectively. As in the previous section, we
can again use the Arnold diffusion theory developed in Section 2.12,

The mean features of the problem are as follows:

1. An electron in an asymmetrical trap represents a three-dimensional autonomous oscillator
with threefold interaction (m = 3). Estimate (4.3.3) for the density of the resonances
remains valid:

Lo

L, ~ 3

(4.4.6a)

and the parameter wo ~ w also takes into account the deviation of the density of the
resonances at a given point of the frequency space ({28, Q, w) from the mean (<wy> = w).

2. The working point (Qg, f, w) is given by the parameter of adiabaticity

2y o 2 g (4.4.7)
) =

The exponent for € (2.12.23) is now written in the form: IpI/an + |q|/2n, + |2]/2n,.

In (4.4.7) let us put £ = 0;1 so that the temm £/2n, can be neglected. Further p v q (4.4.7)
but probably n, >> n,. The latter is due to the fact that the azimuthal non-uniformity is
usually also limited along the trap, i.e. it is operative for a time < 2~'. Hence

n_> /2 >> 1. Consequently, only one of the three terms of the exponent remains. Now

g
taking into account the relations (4.4.2) and (4.4.3) we arrive at the estimate:

e-'/i‘ (4.4.8)

~ i‘_'

The mmerical coefficient in the exponent was chosen here according to (4.4.2). The
frequency of the phase oscillations of the triple resonance [p. q, L # 0 (4.4.6)] is given
by the estimate (a ~ 1):

.523"‘ ‘:’—ﬂ v f(Qa/__(Z ~ (.Tf..ﬁ (4.4.9)

Here the factor ng/n (instead of the exponent) takes into account the fact that the azimuthal
perturbation, although it is also operative for a short time, is almost repeated through a
half-period of the longitudinal oscillations. The stochasticity parameter for an asymmetrical
trap can be written in the fomm:

25 w z 20

— A [ n, ~ " —_— -~ b

v ,_,o)iqin, s~ P o (2) 3p (4.4.10)
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The mumerical value of the parameters is based on the experimental results of Ref. 82, which
show the strong effect of azimuthal non-uniformity when g2 ~ &/t 210%. In the Arnold
diffusion region the dependence Hcr (8) is very weak (see below).

3. According to (4.4.1) €, = v,/H = (sin 8)/H, and the change of the angle of slope of the
trajectory to the median plane A9 = -rp , where 7_ is the time of diffusion due to gas
scattering, There is still an angular interval (sin © = 0), where the Arnold diffusion is
not considerable and everything is determined by gas scattering. This region is at least
partly responsible, apparently, for the formation of the lower plateau in Fig. 4.4.1.
Putting A© ~ 6 we can obtain the shape of this plateau from the condition (sin ©)/H =

= (sin ec)/Hc:

o

2. aresin - (H/Hﬂ_ ) Siw 9.-.] (4.4.11)
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where H_ . is the critical value of the magnetic field above which Arnold diffusion stops
playing a part (for a given pressure of residual gas); To is the lifetime of the electron

in the upper plateau and ec is the angle of the loss cone. Law (4.4.11) works only for
particles in the region © = 0, the mmber of which depends on the method of injection. The
lifetime of the remaining particles is determined by the diffusion up to the nearest resonance
as in the problem in the previous section. In this case, as we know, two plateaux are also
formed (Sections 2.12 and 4.3). Let us estimate the step between them. For this let us
compare the distance in frequency to the nearest resonance 4 and to the exit from the trap
A9 v Q. Using (2.12.36) and (4.4.6a) we find:

z -
k~ (‘i% ) ~ £ 7 (4.4.11a)

where we put wp v w v eaﬂ; na ea". The shape of the curves in Fig. 4.4.1 is determined
by a complex combination of both processes (4.4.11) and (4.4.11a).

Additional information about the structure of Arnold diffusion in a magnetic trap from
the point of view of the hypothesis under consideration can be obtained from the very
interesting results of Ref. 83 shown in Fig. 4.4.2.

This is a diagram showing an example of trapped electron distribution (spectrum) in u
in units of the maximal Wnax® The point “/“\nax = 1 corresponds to the motion in the median
plane (0 = 0). The point on the extreme right of the spectrum (u/umax =~ 0.,4) 1lies on the
loss cone. The upper spectrum (a) was plotted immediately after injection (107 sec after)
and rebresents some kind of fast processes in the trap. The picture of Arnold diffusion
is comparable to the lower spectrum (b), plotted 3.4 sec after injection. The most
interesting feature of this spectrum is the minimum, which is identical to one of the main
resonances nf? = & (n = 7), whose position is marked by an arrow. The presence of a minimum
in the spectrum testifies to particle losses, probably due to the diffusion along the sto-
chastic layer of resonances. Similar losses occur also in the resonances n = 6;8 (Fig. 4.4.2b).
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Fig. 4.4.2. Electron dis-
tribution in the trap in

.7/ magnetic moment y;

/p a) 10~3 sec after injection;
- P~ b) 3.4 sec after; is
0.9 0.6 . 0.8 0 the maximm value of y,

A slight disagreement with the calculated position of the resonances can easily be explained
by experimental errors, since the spectrum in Fig. 4.4.2 was obtained by differentiation of

the directly measured integral spectrum,

According to the results in Fig. 4.4.2 one can determine the reduction in the lifetime
of the electrons as compared to the upper plateau:

S - 2
k~ Z‘ﬂ‘)z(:.s):‘,f’
e/ 2 o0&

(&u is the distance between resonances), which agrees in order of magnitude with the value
k = 16 from the results in Fig. 4.4.1. However, it is substantially different from estimate
(4.4.11a), which in this case gives: k ~ 10%. The reason for the difference is obvious
== in the case in Fig. 4.4.2 the lifetime is determined by the diffusion up to the nearest
main resonance n? = w, and not the three-frequency resonance nQ + 20g = & as assumed in
(4.4.11a).

A possible explanation of the peculiarity noted is connected with the structure of the
transitional region in the ©(u). As already noted above, for sufficiently high y + Mnax
Arnold diffusion is absent (ea + 0). Therefore in the transitional region only the strongest
resonances can manifest themselves. At the same time in this region there are generally
quite a mumber of particles, since it corresponds to a large solid angle (small ©). There-
fore the measured lifetime of the electrons in the trap depends essentially on the processes
in this region. Three-frequency resonances operate effectively, apparently, only in the
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Tegion u/umax < 0.6 (Fig. 4.4.2), vwhere the lifetime therefore sharply decreases, which
leads in practice to the absence of particles in this region (Fig. 4.4.2). The formation
of a stochastic layer near the loss cone coinciding with the separatrix of the particle
oscillations in the trap might be a competing process here. However, the width of this
layer according to the estimates of Section 2.6 is negligibly small: &u_ ~ e"/ €a 7 1/400
(4.4.2).

It remains for us to estimate the rate of Arnold diffusion. For this it is necessary
once more to obtain an estimate of DA (Section 2.12) taking into account the remarks made
above. The exponential factor takes the form (2.12.29):

(4.4.12)

1 _4 4
A= texp (-3(582) “e.p) 3 e%%)

It is difficult to find the exact value of the mmerical factor in the first exponent
(B~ 3); it is obtained below from experimental results. Let us find the diffusion co-
efficient in a similar way to that used in Section 4.3: -

(4.4.13)

B-e’/“‘) \
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The results of Ref, 83 lead to the following values of the parameters for © = G)c = 50°
(on the loss cone): €, = 0.18; w=3,5x10% 1 =100 sec. The most indefinite quantity
is the azimuthal non-uniformity. As already noted above, in the majority of experiments no
special noruniformity was introduced and according to measurements with an accuracy of
0.5% the field was uniform. On the other hand, in special experiments increasing the non-
uniformity up to 10% did not change H__ within the limits of experimental errors of 20% 02),
‘On the basis of these results one can apparently put: (AH/H) = 82 ~ 10-2, Fortunately
the value B, which we want to determine, depends weakly on the non-uniformity: B « (AH/H)'/ ¢

Before calculating B, let us find the relation between 1 and D,. Since D, very
sharply depends on €g0 i.e, on y, the diffusion time will be cons1derab1y less than the
quantity u?/D,. As a rough estimate one can assume that T & (An)’D where Ay is determined
from the condition that the exponent in (4.4.13) T = B(8e, y=i/s . e‘/“‘:il is reduced by a
unity. Putting: ac/e, v bu/u and 6e, = 1, we obtain: u/Au AT~ (u meae’/n ) = m(eacTnB’).
Assembling all the relations, we find: B = 2,0, The difference from the expected value
B ~ 3 cannot be considered serious in view of the roughness of the estimates. If one attempts
to take into account the factor neglected in the exponent: (Cwp/4un,?)?/® = 0.62, putting
wo “w; Camngnl1, then B= 1.9, Although this already agrees better with the experimental
results, one should not attach much importance to this in view of the arbitrary choice of some
parameters. It can only be asserted, apparently, that our hypothesis does not contradict
the experimental results.

The Arnold diffusion coefficient depends very strongly on the parameter of adiabaticity
(4.4.13). This leads to a rather sharp fall in the lifetime for H » Hu, (Fig. 4.4.1).
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Even in a semi-logarithmic scale the dependence of &n T on €, is exponential and may give the
impression that there is a limit of absolute stability®2),

Estimate (4.4.13) shows how difficult it is in such experiments to escape from the
influence of azimuthal non-uniformity, Thus, for instance, decreasing the non-uniformity
100 times, from 10% to 0.1%, leads to reducing Hcr by only 46%.

Of course, for serious confirmation of the above-mentioned hypothesis on the nature of
the weak instability of particles in a magnetic trap, additional special experiments are
necessary.

In conclusion let us consider what effects the variation of the magnetic field of the
trap in time may lead to. With continuous growth of the magnetic field the transverse
energy of the particle increases « H(u ® const.), and the longitudinal energy only as vH,
since the square of the frequency of the longitudinal oscillations is proportional to the
effective "potential" energy of the trap uH., As a result the pitch angle of the velocity
of the particle to the line of force increases, i.e. the particle is dragged deep into the
“potential” well, The stability of motion naturally increases.

The most interesting case is the periodic variation of the magnetic field, which can
take place, for example, on account of the residual pulsations of the rectified current
feeding the magnet coils. Thus in experiments described in Refs. 82 and 83 the field
pulsations reached a magnitude of 0.1% in the centre of the trap and about 0,03% in the
magnetic mirrors. The pulsation frequency was 300 cps. Since under the conditions of
these experiments the pulsation period is much smaller than the lifetime of the particles
in the trap, new resonances appear. On account of the spatial non-uniformity of the
pulsations, frequency modulation can be assumed to occur at all degrees of freedom. As is
knawn”), the spectrum of the frequency-modulated oscillations is equidistant, the distance
between the lines being equal to Qp (modulation frequency) and the total width of the
basic part of the spectrum ~ Aw -~ the total interval of frequency variation., For .

AS >> Ry = a condition that is generally satisfied —- each resonant plane splits into a
multiplet of Nw ~ Aw/Rp parallel planes ~ y/n apart, where n~! ~ Q/u ~ €, (4.4.6). The

origin of this small factor is easy to imagine from geometrical considerations (see also

Section 4.3).

If now &u/n 2 A N (.4.46a), the mean density of the resonances sharply increases and
at the same time also the Armold diffusion. Putting n ~ 1/ea, we find the tolerance on
the field modulation:

2
a

3;r~ = (e—HH-)cr' ~ fa 2 3% (4.4.14)

The mmerical estimate is obtained from the condition 6e, v 1, determining the boundary of
the region in which Arnold diffusion may in practice be important (4.4.13). For £ 2 £ cr
the increase of the diffusion can be estimated as follows. First there is an increase in
the density of resonances: wo/w v (AD/R)~} ~ (E/Q0)~* (4.4.12). Furthermore, the width
of each resonance decreases by (AYE/Q‘,)1 times owing to the reduction of the amplitude of
the perturbation of the resonant harmonic by (AG/QO)! times as a result of the splitting of
the resonance., The diffusion coefficient consequently becomes:
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vwhere we used the value B = 2, obtained above (4.4.13). The main new factor in the exponent
(2/60)} is in the typical case ~ 10.

If the magnetic field modulation is in resonance with particle oscillation in a trap,
streamer diffusion may occur. The process is exactly similar to the case in the previous
section, where in fact we studied the same problem of particle motion in a magnetic trap of
special configuration. Streamer diffusion will not be thoroughly studied here. Let us only
note that for this the frequency of the external perturbation (modulation) should be suffi-
ciently high, at least of the order of the drift frequency ﬂg.

4.5 Stability of the Solar System

The problem of the stability of motion of the planets, although not a pressing one from
a practical viewpoint, has long attracted the attention of astronomers, mathematicians and
students of mechanics by its beauty and difficulty (see for instance Ref. 129). From the
very beginning it was clear that very fine effects of the mechanical motion of a conservative
system are important here. Even the simplest non-trivial case of two planets leads to the
well-known and still completely unsolved three-body problem. Stability means here the
absence of any significant and, what is more important, cumlative energy exchange betvieen
planets. As is known, in another similar system -- an excited multi-electron atom -- this
energy exchange occurs in the relatively short time of ~ 10" turns and leads to so-called
auto-ionization'*®). It is clear that these two systems differ essentially by the perturba-
tion strength (e ~ 10~° for planets and € ~ 1 for the atom, see below). However, the question
.arises as to whether the apparent stability of the Solar System during ~ 10'° turns is
rigorous stability or only very slowly developing instability. Like other similar questions
(see for example Section 4.4) this problem was solved to some extent only by the KAM theory”).
The peculiarity of the problem under consideration, unlike, for instance, the motion of a
particle in a magnetic trap (Section 4.4) lies in the fact that even in the simplest case of
two planets with nearly circular coplanar orbits (known as the plane three-body problem) the
system is many-dimensional in the sense of the KAM theory (Section 2.2), i.e. the four-
dimensional tori do not divide a six-dimensional surface of constant energy and angular
momentum in phase space. This means that in spite of the invariant tori, Arnold diffusion
and slow instability are possible along the everywhere dense system of stochastic layers
of resonances (Section 2.12). Only in the case of two planets of substantially different
mass, when one can neglect the reaction of the light planet on the heavy one, under the
additional condition of the co-planarity of both orbits and the circular orbit of the heavy
planet (so-called restricted circular three-body problem), does the KAM theory lead to the
result of the eternal stability of such motion. Below we give some preliminary estimates of
the rate of Arnold diffusion for planetary and similar systems.
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Let us once more recall in order to avoid misunderstandings that the actual lifetime
of a planetary system may be considerably longer depending on the initial conditions and
the additional "external® diffusion (Section 2.12). To take into account the effect of
these latter factors would be outside the scope of this paper. In this section we will
thus give a lower estimate of the lifetime of the solar system. However, taking into
account the fact that in the process of evolution of the system the planetary orbits could
vary considerably (see, for example, Ref, 141), this estimate will probably not be too far
from reality,

The main peculiarity of the system under consideration is so-called Coulomb degeneracy,
meaning that the unperturbed motion of a planet has only one (*'fast') frequency instead of
three (in non-relativistic approximation). This degeneracy is removed by interaction with
other planets, and therefore the other two frequencies are always small (''slow’'). Having
used the result of Ref. 144, let us re-write the non-resonant averaged equations for the
variation of the parameters of the unperturbed orbit, mainly for the variation of its fre-
quencies. We shall restrict ourselves to the case of small eccentricities and inclinations
(e, i << 1), which is the second characteristic feature of the Solar System; this is valid
even for the majority of asteroids, not to mention the large planets. We have:

ot =z

—:{?é=-—£a)o f’_sl Ha 20’

2/ ‘et .2, (4.5.1)
‘-(;,—é-——i‘*’(4‘?*—£("’f“ u-‘!))

.‘_,..“.3-’=—sz (.’-—.e'_z__’“-f-.;.z‘:(e!'-%i)o{&.zw:)

At NS
£= % (3)

Here Q', w’ are the longitude of the ascending node and the angular position of the perihelion
measured from this node, respectively“’); m, ao are the mass of the perturbing planet and
the semimajor axis of its orbit; w, a are the frequency and semimajor axis for the perturbed
planet (ap >> a); € is the small parameter of the problem. From the equations written it
can be seen that one slow frequency is connected with the precession of the eccentricity
(w') and angular momentum (') vectors; it has an order Q ~ ew. The second slow frequency
depends on the difference w’ + 20’ and is v ewe? ~ ewi? (e ~ i).

For the Solar System the latter frequency can be neglected, in view of its smallness
(v 107° w). Therefore streamer diffusion (Section 2.12) is possible only for No = 3 planets,
taking into account one slow frequency 2, or for Ny = 4 in the fast frequencies. Ordinary
Arnold diffusion can occur for No = 2 (taking into account ) and for No = 3 in the fast
frequencies,

Let us estimate the amplitude of the various resonances. The Hamiltonian of the inter-
action of two planets is m/r, where
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rtxrf+n*- 2r,r, Cos (.-, )
r= e (4.5.2)
1+ ¢ C.._uf

T, ¥ are the coordinates of the planet in the plane of its unperturbed orbit with a para-
meter To 143) | After expansion of 1/r in powers of cos (Y2 - {1) the harmonics of the
difference frequency n(w, ~ w,) appear, the higher the nearer the planet orbits. The power
expansion coefficients for n >> 1 take the form

S z/ o
. =~ _._Z_r,_f_‘s_) [ 20w (4.5.2a)
& qz* r-zl “)’7/3* “,:/J

where we used the relation w = ri’/ 2, A1l these harmonics give one and the same resc;nance:
w: = wz. In order to obtain the other resonances njw; = nw, (M1 ¥ nz), it is necessary
to expand r;, r2 in (4.5.2) in powers of eccentricity, or take into account the frequency
modulation y(t) for motion in an elliptical orbit. Both effects turn out to be of the same
order and give a small factor e, where q = |n; - ny| is the so-called order of commensu-
rability (of the frequencies)!®®) *). The total mmber of two-frequency resonances = nq.

Resonances with slow frequency § appear as a result of eccentricity modulation in
(4.5.2). The amplitude of this modulation ~ i? (4.5.1) and the harmonic mumber (p) of the
frequency 0 does not exceed the order of commensurability: p < q. An additional small
factor ~ i?P appears. If e, i << 1, the "slow" resonances (including the frequency Q)
cannot £ill the distance between the "fast' resonances, since this would require too high
harmonics p. Therefore Armold diffusion over considerable distances is impossible under
these conditions. However, such diffusion may begin after a considerable increase of
e,i as a result of Arnold diffusion along resonances with a small p ~ 1. We shall
estimate it later.

According to the above estimates the amplitude of the resonant harmonics for two planets
turns out to be of the order of:
Q@)

) 9.2 ”
En~ el exp ('"n—.,) (4.5.3)

*) In this section the letter e always signifies eccentricity, whereas the symbol exp will
be used for the exponential.
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where the parameter ng can be estimated from the power expansion coefficients of the per-
turbation m/r (4.5.2a):

2/
- 2(nnz) '?
1 gu, 1h2)

(4.5.3a)
“;'/3 ~ i :/3

With regard to the harmonic mumber in (4.5.3), n = m;, if the expansion is taken in e; and
inversely.

Let us now consider three planets. Their combined resonances are possible only in
second approximation in the small parameter €, since direct gravitational interaction is
two-particle. In order to estimate the amplitude of the resonances let us note that in the
case of three planets the quantities r;, r» in (4.5.2) in first approximation contain small
perturbations due to the interaction with the third planet. In second approximation this
leads to three-planet resonances. When the perturbatiori m/r is expanded two independent
frequency differences appear (for example w, -~ w; and wy - wy). Their harmonics are simply
mutiplied, which leads to a set of resonances with two independent harmonic mumbers. This
gives ~ n? resonances even for circular orbits. When ellipticity is taken into account
additional resonances appear as in the previous case. As it is easy to verify, the order
of commensurability is now: q = [n, + n + n3| (n; @; + Nz w2 ¢+ ny wy = 0); the total
mumber of resonances ~ n? (q + 1). The corresponding small factor in the amplitude of the
Tesonance remains as previously eq, like the factor i%P for the pt]'l harmonic of the slow
frequency. The resulting estimate of the amplitude will contain an extra factor € and
exp (~-n/n,) owing to the appearance of a second frequency difference. The exponent in
estimate (4.5.3) takes the form (n; + n;)/no = 2n/ny = n/ny, where n is now the maximm value
of the harmonic mmber [compare (2.12.23)]. The final estimate for the three planets gives:

a)
z .2 n .4
E” A £69L ,’,exlg -—-71—;) (4-5)
In a similar way one can obtain an estimate of the amplitude of the resonance for an
arbitrary mumber of planets:

(.J,) N, -1 2,3 N b
£E,‘ A E: ? o </ ex - C.d
..f. ¢ r 2“’) (4.5.5)
q=|Z, |

Here it is assumed that the masses of all the planets and the parameters of their orbits are
of the same order.

The total mmber of resonances is now & nm°'1) x (q + 1) and the mean distance between
them:



- 202 -

“,Q
[ S
1 hw'_f'ff'f'fj

4a, (4.5.6)

Let us first consider the case of N, 2 3 planets, when Arnold diffusion may occur in
fast resonances. Moreover, we can put q = 0, since e << 1 [(4.5.5) and (4.5.6)]. Let us
first find the border of stochasticity, for which (2.12.29a) can be used. Putting: o v 1;
m=No; N=No - 1; eWo) o, No-1 o cbtain:

25
fo Y A
€ ~ @—-’- ) o— 1 (4.5.7)
S No
The minimm is reached for the smallest No = 3: €, v ne"t.

This estimate was obtained taking into account only N, frequency resonances. They
are in fact the majority, but they are very weak on account of the reduction of the effective
interaction parameter (4.5.5). For Ny >> 3, it is therefore reasonable to consider the
opposite limiting case of pair resonances, the number of which is obviously equal to
No - 1 = Ng. Then the stochasticity criterion (2.12.29a) becomes:

£, ~ Y (4.5.8)

Hence it follows that for a sufficiently large No the system necessary becomes stochastic.
This applies, for example, to star clusters'’). If one considers that the masses of the
~stars in a cluster are of the same order, then € ~ 1/Np, since each star moves in the field
of all the others. From estimate (4.5.8) it then follows that the border of stochasticity
corresponds to Ny v 3. A double star, of course, is absolutely stable in the absence of
external perturbations. A multiple star with No > 2 may also be stable if the masses of
its components or the distance between them are substantially different, which further
reduces the interaction parameter € (4.5.1). Our Solar System is like this.

A many-electron excited atom behaves in a similar way, which leads in particular to
auto-ionization, which was mentioned at the beginning of this section. Also in this case
the stochasticity may be violated if the interacting electrons are at a considerable
distance (in different shells).

Actually the picture is the same for the nucleus, since in estimate (4.5.8) the
specific nature of Coulomb interaction was not used. Furthermore, the Bohr statistical
model, assuming stochasticity of motion, can be invalid, particularly when a small mmber
of mucleons are excited. This effect has been observed experimentally"“).

Let us return to the Solar System and estimate Arnold diffusion, first in fast
resonances. Let us divide the resonances into guiding and perturbing (see Section 2.12).
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For the former, the effective perturbation parameter can be written in the form:

e, n el [(4.5.5), p = q = 0], and one should have: No 2 3; for the second, let us
express the perturbation parameter through the number to independent frequencies N = Nj -1
(4.5.6): g2 ~ cN; the quantities Ny, N§ can be different. In the estimate for the dif-
fusion coefficient (2.12.29) let us put exp(m/4neN) ~ 1, since we want to estimate the
maximm diffusion rate in the lower resonances n ~ 1. Moreover, let us assume that the
factor [2N/n, (N - 1)] (...)]'/N v 1 (2.12.29). Introducing the diffusion time T over AI ~ I,
we obtain the estimate:

A
(o )~ /T, £]° exp (54 2"),..

, (4.5.9)
Mot 1 - A

Yot 1 _ 9

~ & < . exp ( £ .z.uj

If one assumes that for the Solar System e ~ 10”2, the last expression reaches a minimm
for Ng = N = 3, equal to: (twp) ~ 10%® (years)*). This is considerably greater than the
time of existence of the Solar System (v 10°° years).

In fact the diffusion time will be still considerably greater, since there are only
two large planets for which € v~ 1072, whereas for the above-mentioned estimate four planets
are required (N = 3).

In the case of two planets, as already noted above, it is necessary for Arnold diffusion
to take into account a slow frequency, which is too small to span the gap between the fast
resonances {see above). Nevertheless the diffusion may occur by rescnances of the first
harmonic in slow frequency: ny wy; + nz w, + p2 =0; (p =0, :1). There are thus three
resonances forming an intersection, exactly the minimm necessary for Arnold diffusion
(Section 2.12). The eccentricity and inclination of the orbits increase, the orbits come
together and as a result the interaction between planets considerably increases. If the
initial distance between the planets was not too great, intersection of the orbits is
even possible, and this will certainly lead to stochasticity. The latter is comnected with
the fact that arbitratily close encounters are possible, which means that the parameter
ne - = (4.5.3a) and the density of the resonances increases infinitely (see also Fig. 4.5.1).

The width of the resonances under consideration and the distance between them is of
the order [see (4.5.3) and (4.5.1)]:

=

2, ~ w- 5’°\/£e<’ . exlo(— 5—"‘-’)

A~ 0 (4.5.10)
n

*) The frequency wo ~ 0.53 year~! is taken for Jupiter.
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In the case when the masses of the two planets are substantially different, the motion of
the heavy planet can be considered to be given (restricted three-body problem). If, more-
over, the eccentricity of the heavy planet eo = 0, in the rotating frame of reference of
the heavy planet the total energy of the light planet is conserved -- the so-called Jacobi
integral, which can be written approximately in the form'*7):

4 2-Cos ¢
=+ I Ja(1-e*) = coust . (4.5.11)

Hence it is seen that if, as proposed above for the resonances chosen, a = const in the

Arnold diffusion process, e® + i? = const also (e,i << 1). This diffusion camnot substantially
change the orbit if initially e,i << 1. Therefore, it is necessary to take into account the
eccentricity of the heavy planet, i.e. to expand the perturbation m/r over both eccentricities.
Since for the heavy planet the eccentricity is usually small, we shall restrict ourselves to
the first power of it. Then estimate (4.5.3) takes the form:

-1
E_(:)—v £ (e.n) eq ¢ °r. exp (- -,';‘;) (4.5.12)

where n now relates to the heavy planet. Instead of (4.5.10) we obtain, respectively:

P 9-1
Q.‘—v z.)-;/‘/f(e,h_}e, c exp ~-‘i-) (4.5.13)

2“.
a4, .~ fw

The diffusion mechanism indicated above is operative for q 2 2, since for q = 1 there are
no lateral resonances with slow frequency, i.e. p = 0.

In order to estimate the rate of Arnold diffusion it is necessary to use the original
formula (2.12.22). Since the diffusion rate strongly depends on e, the diffusion time will
be determined in order of magnitude by the duplication of e from the initial value or the
quadrupling of the energy of the radial oscillations, which is AI/I ~ e? of the total energy
of the planet. Estimating the time necessary for this as 1 » (AI)’/DA, we obtain from
(2.12.22) for case (4.5.13):

-2
(?:w) ~<£ e.ne 7—4) z (.f.) ?’ex,;l/Q < e"”("/“v)/ (4.5.14)

e 91

Let us apply this estimate to the Solar System. Let us first consider a set of large
planets, the characteristics of which according to the data of Ref. 139 are given in
Table 4.5.1, including a hypothetical Olber’s planet (No.5) between Mars and Jupiter,
disintegrated into asteroids'*?). The quantity £ is equal to the ratio of the frequencies
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Table 4.5.1

No. ofN;lZ'l\eanet m) a @, ;zgj? ¥a= :; }:/}° ¢ ¢
1 |Mercury 0.036 | 0.39 | 4.18 | 0.3816 2/8 085 | 0.21 ! 0.12
2 |Vemus 0.82 | 0.72 | 1.83 | 0.8152 3/5 1.5 |0.007 | 0.059
8 [Earth 1.00 | 1.00 | 1.00 |{.0.5317 172 3.2 {0,017 -
4 |Mars o.11 | 1.52 | 0.53 | 0.4014 %6 0.14 |0.083 | 0.032
5 |Asteroids®*) |¢ 0.1 [(2.8) | 0.21 | 0.3848 2/5 0.52 - -
6 |Jupiter 310 | 52 | 0.084 | 0.4028 276 0.28 [0.048 ! 0.023
7 |saturn 84 | 8.5 |0.034 | 0.3504 178 1.7 {0.056 | 0.043
. 8 |Uranus 14 | 10 0.012 | 0.5088 172 1.0 {0.047 ! 0.013
8 | Neptune 17 | 80 |o.0081 { 0.6588 | 2/3 0.68 |0.008 | 0.031
10 | Pluto 0.64 | 40 }0.0040 - - - 0.25 l 0.3¢

*) Mass of the sun M= 3.3 x 105,
**) Hypothetical Olber's planet, decomposed into asteroids'*?),

of neighbouring planets, and £, indicates the 'closest' resonance. The choice of this
resonance is rather arbitrary and is determined by a corpromise between the q value and the
accuracy of the resonance (£ - Eo).

Let us begin with the last pair of the Solar System, Neptune-Pluto. In this case, as
noted above, it is not the resonance 2/3 (q = 1) that is operative but the resonance 4/6
(q = 2), which is identical to it. Putting € ~ 5§ x 10™° we obtain by means of estimate
(4.5.14): T ~ 5 x 10° years, which is comparable with the lifetime of the Solar System.
It is possible, therefore, in view of the roughness of the estimate, that the anomalously
large eccentricity and orbit inclination of Pluto is explained just by Arnold diffusion.
On the other hand, the reverse influence of Pluto over Meptume is considerably weaker on
account of the small mass of Pluto (1t ~ 4 x 10’2 years). A similar anomaly for Mercury
apparently cannot be explained by Arnold diffusion on account of the small mass of Venus
(T ~ 7 x 10*? years) *). Let us note, however, that if the order of commensurability of
the frequencies of Mercury and Venus were not q = 3 but q = 2, even for e = 0.1 we should
obtain T ~ 10'° years, i.e. Arnold diffusion would already be appreciable. It is possible,
therefore, that this diffusion played some part in the process of formation of the Solar
System, limiting the distance between the planets from below. This is commected with the
fact that over small distances there are many resonances of the form (n -~ 2)/n (q = 2;

nNpg = nz).

*) This anomaly is possibly explained by the small mass of Mercury itself!*1),
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Evidently, one must have a clear understanding of how controversial and unconvincing
such hypotheses may be, which, by the way, is necessarily rather typical of astronomy'“7).
Nevertheless, when a new phenomenon is discovered, such as Arnold diffusion in the present
case, it is useful to imagine, although this enters the world of fantasy, all its possible
manifestations.

Let us now turn to another resonant pair Jupiter-Saturn, for which: q = 3; e~ 10°%;
n/ng = (2/9) x (q*/n) = 2/5. In this case we have to use (4.5.10), since the masses of both
planets are of the same order. This, by the way, does not give a great disparity since the
values of eccentricity of their orbits are also close. From estimate (4.5.14) we obtain a
sufficiently long time 1 ~ 102 years on account of the small eccentricity. Again, for q =1
it would be T ~ 3 x 10° years and even for q = 2 it would still be 1 ~ 10° years. For the other
pairs of planets Arnold diffusion is negligibly small on account of the small masses of the
planets except for the Saturn-Uranus pair. In this case T ~ 3 x 10*° years, i.e, of the
same order as for the Neptune-Pluto pair. The difference between these pairs lies in the
fact that the first of them is considerably further from the resonance. It is also possible
that the estimate of 1 for the latter pair is considerably reduced, since the anomalously
small eccentricity of Neptune's orbit may have been substantially greater in the past.

Finally the resonance of Jupiter with the hypothetical Olbers' planet was also possible
(see table). Let us assume that this planet, having a small mass, had considerable eccen-
tricity, say the same as Mercury: e = 1/5 (v i). Then estimate (4.5.14) gives: 1 ~ 10°
years. This result, in our opinion, enables us to overcome the difficulties in explaining
the mechanism of the rupture of Olbers' planet and the formation in this way of a belt of
asteroids. As far as can be judged from the literature!*?) the hypothesis of the rupture
of the original planet is the most probable for explaining the origin of the asteroids.
From our point of view, the destruction of Olber's planet could have been the result of its
close encounter with Jupiter. The rupture (or several ruptures) proper of the planet could
also have occurred later, for example, under the influence of planet rotation!*’). With
.regard to the distribution of the asteroids, at present it may be considerably different
from the original distribution as a result of the evolution of the orbits.

In this commection let us note that the classical perturbation theory generally used to
analyse such evolution is not applicable near resonances'2®) for t 2 t., vhere t_ is the time
of development of instability in the stochastic layer, which can be estimated as (4.5.13):

’ - 3
Zs~ 82,77 ~ 0 years. (4.5.15)

The mmerical value is taken for resonance 2/5 with Jupiter. Therefore the 'unchanged' or
eigen parameters of the orbits of the asteroids introduced by Hirayama'“®»!*7) have sense
only far away from the main resonances. In particular, Arnold diffusion violates the Laplace-
Poisson theorem on the absence of secular perturbations in the semimajor axis of the orbit.

It is interesting to note that the five main families of asteroids with close values of
“unchanged" elements, discovered by Hirayama, lie just between the main resonances

(Fig. 4.5.1).



*SZ0°0 = BY TBAIIUT 3yl UT (7x) UOTINQTIISTP ay3 SIAT3 aury
vouuov. 94l :S0°0 = eV TBAISIUT 9yl UT SPTOIIISE JO Jaqunu ay3 ST N :(3AInNd) 3 A3TOTIU8II3
843 YITA SuorIeTaLl0d pue (Jur] Jefndue) Sprolalse T491 yo unxidads Lousnbaig TSy 14

Sif % % We g % ¢
i YA e ! L Il T
AR 186 ! Y2 I
L . A i 4 _ ' i )
L., A Y HH P ) €
AT RIN 0 T T
I ol [ ol % ! h_, N A
RN R — | i i i
] n v m- L] ¥ L] wN ) LS : § q‘N ﬂllllu
S
) 0
N\
on.o.ﬁoo.
BTIEY
91'N




-~ 208 -

Figure 4.5.1 gives a histogram of the distribution of the asteroids in the semi major
axis (a) of their orbit, or, in other words, the frequency spectrum of the asteroids. The
interval represented: 1.8 < a < 4.0, covers 1641 asteroids out of 1660, the parameters of
which are given in Ref. 149, The arrows denote resonances with Jupiter, which are divided
into seven groups according to the value of the order of commensurability q = 1-7 ‘).

For all resonances with q £ 5 in the distribution, there are so-called “gaps", i.e.
clear decreases in the mumber of asteroids. Slightly less definite ''gaps' are also ob-
served for resonances with q = 6, but they are completely absent for q = 7. Resonances
2/3 and 4/9 appear to be an exception; they correspond to the distribution maximm instead
of "gaps". However, a more detailed distribution (dotted line) shows that near these
resonances the number of asteroids decreases also (compare with rescnance 2/7). Sometimes
a "maximm'" is mentioned near resonance 3/4 (a = 4.2949) implying a single asteroid Tule
(a =4.2829; e = 0.032; i = 0.041) 7)), However, a single case cannot constitute a
serious objection to general regularity, and all the more since in the present case the
quantities e and i are anamalously small [<e> = 0.141; <i> = 0.166 **7)].

Finally, there is yet another exception -- this time an undoubted one -- the so-called
Trojan group (15 asteroids) 147) situated inside resonance 1/1 (a = 5.2028), the relative
width of which ~ /& = 3%. The reason why this resonance is an exception is because it is
inside the stochastic ring, since the distance between resonances with a given
q [w,/uz = (n - q)/n] vanishes when w;/w, + 1: AL S q/n?. However, these resonances,
the width of which ~ /eed [(4.5.13), no = (2/9)/(a/n)?, see above] cannot completely destroy
resonance 1/1, the width of which is substantially greater (v vE). Therefore, a stable
region forms inside resonance 1/1, in which the Trojan group is located. Similar stable
regions are also possible for the other resonances, since the neighbouring resonances with
slow frequency producing Armold diffusion are considerably weaker and camnnot destroy a
two-frequency resonance completely. This effect also apparently explains, at least in part,
the conservation of a certain mumber of asteroids in '"gaps''.

Let us estimate the Armnold diffusion rate for asteroids, putting for the sake of sim-
plicity in (4.5.14): emn~renin1/5; n~ne. Then for q = 2 we obtain: 1 ~ 4 x 10°
years. The limitation of the operating resonances can be found if one takes as the maximum
observable T n 10'° years. We obtain Qray = 4(Tu v 3 % 10° years). Agreement with the
experimental results in Fig. 4.5.1 may be regarded as satisfactory, taking into account
the roughness of the estimates.

Figure 4.5.1 also shows the dependence of the mean eccentricity of the orbits of the
asteroids on their semi~major axis [according to Putilin"")],which is clearly correlated
with the resonances in accordance with estimate (4.5.14). The exception is resonance 1/2,
the distinguishing feature of which is the equality of the rotation frequency of the
asteroid and that of the radial oscillations of Jupiter in the frame of reference spinning
with the latter. The oscillations may be so phased that the distance between two planets
would be maximal.

*) Sometimes one denotes also a ''gap'' connected with Mars (resonance 2/1), also shown in
Fig. 4.5.1. However, the fall in the distribution function in this place certainly
does not go beyond the limits of statistical error.
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The width of the majority of the "gaps" is ~ 1% (Fig. 4.5.1) and weakly depends on the
orderzof t}s\e.resonance. Its lower 1limit is determined by the width of the resonance and is
n 100 =100 (q = 2-5). The upper limit depends on the additional diffusion, for example
due to the interaction of the asteroids between themselves or with interplanetary matter.
Besides the diffusion, systematic variation of the orbit also plays a part. In this connec-
tion let us point out that some of the "gaps" (2/7; 3/8; 4/9; 2/3, see drawing) are
displaced in relation to the resonance to the side of greater energies (a), which corresponds
to an increase of the size of the orbit with time. In any event, it can be expected that if
the distance between the working resonances becomes smaller than the width of the ''gap", the
majority of the asteroids will be destroyed. Apparently just this is observed in the section
a > 3.2 (Fig. 4.5.1). There are only 16 asteroids with a > 4.0 and with special parameter
values; the rest, if they existed initially, must have come too close to Jupiter, entered
the stochastic ring and been captured by Jupiter. It is possible that the explanation of
the almost complete absence of asteroids near Mars (there are in all three asteroids with
a < 1.8) is similar.

As far as we know, the only campeting hypothesis is the Brouwer hypothesis'!), which
explains the appearance of the ''gaps" simply by phase oscillations in the resonances, on
the assumption of uniform or, at least, sufficiently smooth distribution of asteroids in
the integrals of motion. This effect undoubtedly exists, but the above-mentioned in-
dependence of the width of the ''gap” from q is unclear, as well as the limitation of the
operating resonances by the condition q < 6 (Fig. 4.5.1). In order to clarify this question,
more accurate estimates of Arnold diffusion in the Solar System are necessary.

4.6 Non-linear waves; turbulence

In this section, we shall endeavour to apply to the motion of a continuous medium the
notion of stochasticity that has been developed. In exactly this case we have a well-known
and extremely clear picture of stochastic motion -- turbulence. Moreover, turbulent motion
is a typical example of a system with divided phase space (Section 2.5) (laminar and
turbulent zones), a fact which seems so surprising for a discrete dynamical system. There
also exist critical values of the parameters, for example the flux velocity giving the
border of turbulence (stochasticity). For analytical calculation of this border, the
criterion of local instability is used'$*) | which in discrete systems is equivalent to
stochasticity (Section 2.4). There is thus a close analogy between the motion of a discrete
and a continuous dynamical system. This analogy can be fully understood if it is recalled
that under ordinary conditions, for instance when the dimensions of the medium are res-
tricted, its motion may be decomposed into some discrete modes ("'quasi-particles’),’
weakly interacting with each other, at least for some values of the parameters of the
problem. Moreover, in a series of ‘cases the spectrum of such modes is limited, for
instance, by dispersion, so that only a finite number of modes effectively interact. In
this case there is complete analogy with a discrete system.

The distinctive feature of the methods of investigating stochasticity developed in
the present paper lies in the use of the properties of non-linear resonance. Therefore,
at the present time, it is not clear how these methods can be applied (and if they can
be applied at all) for investigating classical turbulence in hydrodynamics. However,
there are also the specific oscillatory problems of the motion of a continuous medium.
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These are non-linear waves interacting with each other. Similar problems have teen studied
from different angles by many authors. It is not possible for us to analyse all these
papers thoroughly here, so we shall mention only two effects, in our opinion the most
beautiful. The first, the stability on non-linear modes, discovered by Fermi, Pasta and
Ulam’®*®) is similar to Kolmogorov stability for a continuous system. Going further in this
direction Kruskal and Zabusky discovered specific non-linear formations -- solitons --
possessing remarkable stability, or in other words so-called reversible shock waves!®¢),
The second effect ~- collisionless (and, as usual, irreversible) shock waves -- was
predicted in theory by Sagdeev'’s),

Below we shall restrict ourselves to the study of the Fermi-Pasta-Ulam problem’®®)

and as a model of the system we will not take a continuous medium but, as in Ref. 165, a
chain of coupled non-linear oscillators approximately representing it, or for the sake
brevity, a non-linear chain, the motion of which is described by a set of ordinary dif-
ferential equations:

“ 3 3
Xp= (Kgy = 2Xp 1 X -4)*;’3[("(.7”:)‘ CX("‘,.,)] (4.6.1)

£2=1,2, ..., N-1; a=1; L=N. Here ais the unperturbed distance between neighbouring
masses (m = 1), coupled by a non-linear spring; L is the total length of the chain.

This model is very convenient in the first place for numerical experiments, since it
does not call for the integration of partial differential equations. Moreover, such a
relatively simple model makes it possible to trace the transition from a discrete system
to a continuous medium.

Set (4.6.1) is related to the second order wave equation"s):

2% _ %x ( 3a/2X V%), 22 4.6.2
S57= 5z (1 34(52) )+ 554 (462

where 2 = fa is the coordinate along the chain. The last term was introduced by Zabusky‘”)
and characterizes the dispersion due to the discreteness of the chain:

2 a? 1 /74 2
= & = 1 /4 4.6.
b/ 12 42 <A’) *.6.3)

In the absence of dispersion the solution of the non-linear wave equation, after a short
time becomes singular and then multivalued.

For a wave of one direction one can also write a first order equation‘") :

: 2 2
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where u = 3x/3z; 6% = 2y?/38; 1 = (3/2) B (t - z) and the index denotes the differentiation
with respect to the corresponding argument. In this form the equation is valid only when
g + 0 (see below).

As follows from Eqs. (4.6.1), (4.6.2) and (4.6.4), we will restrict ourselves here to
the (simpler) case.of cubic non-linearity (in force). Quadratic non-linearity (u? + u)
has been studied in detail by Israelev'®®).

The statistical properties of a non-linear chain (4.6.1) are explained more or less
thoroughly in Ref. 168. The main thing here is the border of stochasticity, which provided
an explanation of the result of Fermi, Pasta and Ulam which was paradoxical in its time --
the absence of equipartition of energy among the modes of a non-linear chain.

Let us first find the position of the border of stochasticity. As an unperturbed
system let us take a linear chain (B = 0), the motion of which can be represented in the
form of a superposition of normal oscillations Q(t)'):

wmy .
— 2 S Ry 24
Xp = &/_' Z, G Sin v (4.6.5)

-1
~ k=1

with frequencies:

o, Tk
K 2. Sia Z.v (4.6.6)

n

As the small perturbation parameter let us take the quantity:

€ = 3/3u"= 3B w- (4.6.7)

where w is the density of the energy of the oscillations per unit of chain length. Let us
restrict ourselves to the case of k << N, which gives the possibility of transition to a
continuous medium (N + »). Then the distance between resonances in first approximation is:

T
8= Lpg~@e ® = (4.6.8)

This expression is valid if the number of perturbed modes (N;) is small. In the opposite
case it is necessary to use estimate (2.12.15), which in the present case [four-phonon
interaction (4.6.2)] leads to the expression:

*) Here we are studying the oscillations of a chain with fixed ends: x, = Xy = 0, i.e.
standing waves; for travelling waves, see below.
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A~ N, (4.6.9)

The preceding formula is thus applicable under the following condition:
1
Noe £ N /3 (4.6.10)

The non-linearity coefficient of the chain @ A g, since the unperturbed system is
linear and cubic non-linearity shifts the frequency already in first approximations).
This is why the problem is simpler for cubic non-linearity than for quadratic, for which
frequency shift appears only in second approximation. Finally, the phase oscillation
frequency is of the order:

. E£xk
Rp~ o, = —= (4.6.11)
Whence the border of stochasticity is determined by the estimate“‘) :
A A 4.6.12
Es ~ e T 2— (4.6.12)

where A is the wave length of the oscillations. It can be seen that when the lower modes
are excited the stochasticity threshold is raised; this explains the result of Fermi,
Pasta and Ulam'®®).

In fact in estimate (4.6.10) it is necessary to put the maximum value of k reached
in the process of evolution of the non-linear wave. The evolution amounts, mainly, to
the disintegration of the initial wave into so-called solitons'®¢). The quantity k, is
determined by the width of the soliton and can easily be estimated from (4.6.4)1¢¢):

S«
kg~ A(T ~ Ve N (4.6.13)

This estimate is valid if the initial ko < lﬂn; in the opposite case the disintegration
into solitons does not take place”").- For (4.6.13) the border of stochasticity (4.6.12)
takes the form:

€. ~ N (4.6.14)
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In the following approximation in k/N the frequency we = nk/N - (n%/24)+(k/N)?, so that
a denser system of resonances is possible, with a minimum distance of:

Ll

a, ~ —3 (4.6.15)
This gives a border of stochasticity of the form:
) k
£, 7~ 2 (4.6.16)

The total width of this system of resonances is: Aw ~ (k/N)*, which corresponds to an
energy exchange:

[ 8
2b 20 K
E. E,- w; £EN? (4.6.17)

Comparing with (4.6.16) we find that in the interval:

L3 < £ < K2 (4.6.18)
N2 -~ Red .”3

developed stochasticity must occur.

Finally, stochasticity is also possible owing to the non-linear spread of the
frequencies W which is of the order of:

A, ~ AE“_~U2 ~ so,‘.ﬂfx ~ 24 iE.._# (4.6.19)
« [ 3

since for sufficiently large N, each resonance of the unperturbed frequencies, generally
speaking, has a few corresponding combinations of modes. Non-linear perturbation removes
this degeneracy and leads to strong destruction of resonances when AEk ~ Ek

Let us now consider the case of a travelling wave, which is described by a first order
equation (4.6.4) in the frame of reference moving with the velocity of an unperturbed
(linear) wave. The outstanding feature of equation (4.6.4) is its indepedence of the
perturbation parameter B, which simply changes the time scale. From this it follows
directly that in this case a stochasticity criterion of the (4.6.12) type is impossible.
This in its turn means that the behaviour of standing and travelling non-linear waves may
differ considerably. The other alternative is pointed out below.
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The sole parameter of Eq. (4.6.4) is the relation:

R = %)z~ P (_-;(_"__)z (4.6.20)

which also determines the condition for the disintegration of the wave into solitons

(R 2 1)***). The question as to whether the latter inequality is also a condition of
instability still remains open, although some mumerical experiments’®¢) encourage the
idea that this is not so. -

It was noted above that the first order equation (4.6.4) is valid only in first
approximation for 8 + 0. The following approximations were obtained by H. Krushkal; for
instance with an accuracy » g the equation takes the form:

g 2
Uy + Uy (1- s fut )t Uzae=0 (4.6.21)

It is not possible by any scale transformation to get rid of B here, which means that this
parameter must also enter into the criterion of stochasticity.

Let us now describe a few numerical experiments with a non-linear chain, which were

carried out in cooperation with Israelev and Khisamutdinov!®?).

As noted above, a set of ordinary differential equations (4.6.1) with boundary
conditions xp = XN = 0 was integrated. The initial conditions were given through normal
coordinates Q(0) [Q(0) = 0] (4.6.5). Computation errors were checked by conservation of
the total energy of the chain; their values are given in the captions to the diagrams.
The time of motion and step of integration (h) are given in natural units (4.6.6).

The main problem when processing the computation results was the choice of a clear
and convenient criterion to show that the motion was actually stochastic. The following
methods were used in different cases.

1. Visual estimate from the curves of the energy dependence of a few modes on time, and
also from the spectrum at different moments in time [Ek(t)]. This method gives a sufficiently
clear result, if only one mode is initially excited, as happened in the majority of cases
in Ref. 165. An example of such a case for our computations is given in Fig. 4.6.1. The
lower curve (b) shows clear almost-periodical energy oscillations of the first mode.
Unfortunately, such initial conditions'are possible only for the very lowest modes. The
point is that the mode k << N can directly exchange energy only with the modes 3k, S5k,
7k, etc. In the case of excitation of a single sufficiently high mode its energy remains
practically unchanged. Figure 4.6.2 gives an example of the excitation of a single mode
ko = 15. Small energy oscillations are due to interaction through higher modes. The
reasons for the intensive energy exchange after t = 5000 will be discussed below.

2. Autocorrelations (Section 2.3) were computed for the displacement of a definite
oscillator x. and for the energy of a definite mode of oscillations F‘k according to the

following formula:
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b)

|

Fig. 4.6.1 Weak stochasticity:
E (0) = 0.0788; E2(0) = 5.3 x
x 107'%; g =8; €= 0.06;
AE/E = 0.15%; a) the increase
of E2(t); b) the dependence
E; (t).

Fig. 4.6.2 Excitation of
single (15th) mode: E;s = 14.1;
= 0.0314; € = 0.04;

= 9000; h = 1/6-
AETE = 1.5%. ’
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xj {{j' X,-(f-T}

P&,T) = —
x_'. ()
— 2
Ec(t) E.(¢-T) = Eu (¢) (4.6.22)

P (E."T) =

Eice) — E (DL

Here the bar signifies averaging over t in equal intervals At; T is the time shift.
In all cases for p(x.,T) j = 16, which with N chosen as 32 corresponds to the middle
oscillator of the chain.

3. Correlations between modes were computed aécording to the formula:

f.‘ Ec - E:’ Fz.
[(EX- EX)(EE- £°)) "

where the values E‘k and E, are taken at the same moment of time in At, and\the bar, as in
(4.6.22) represents averaging over t. As a result of the law of conservation of the

total energy of the system, the correlation coefficient (4.6.23) is different from zero even
for stochastic motion. It is easy to show that in the latter case it is:

(4.6.23)

f’(ék; £p) =

7
P (F«, Ee/ == O-7 (4.6.24)

Thus knowledge of this coefficient makes it possible to determine the effective (mean)
nunber of interacting modes v.

4. Local instability of the oscillations, which means that almost any of the trajectories
that are close together at first diverge exponentially fast in the process of motion. In
order to investigate local instability we used the spatial symmetry property of our system,
according to which the even modes cannot appear in the process of motion, if they were not
initially excited'®®). Therefore there is an exact solution Ey (t) = 0 and it is sufficient
for us to follow the growth of the even modes, if at the beginning they are given very low
energy. We discovered this peculiar instability of the even modes by chance. When the
excitation of a sihgle mode was investigated, it was found, in the process of computation,
that the energy of the even ("forbidden") modes increases from computer zero (v 107!%) to

a considerable quantity and even becames comparable with the energy of the umeven modes.
This means that from the very beginning there was asymmetry in xl(t) with respect to the
middle of the chain. The "culprit” tumned out to be the computing of the sine entering into
the transformation formula (4.6.5). It was discovered that there was an error in computing
the sine, depending on the mmber of the mode k, as a result of which weak asymmetry also
occurred, corresponding to slight excitation of the even modes. Subsequently, when it was
necessary, special symmetrization of x,(t) was carried out immediately after the transition

from Qk(t) to xl(t).
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This very effect was used as the basis of the method of local instability.

Figure 4.6.2 shows just such a case, when as a result of fast developing instability
the energy, previously concentrated in one mode (ko = 15), after some time strongly goes
over to the neighbouring modes. This method enabled us to discover weak instability also
for the case when ko = 1. The parameters are taken from Ref, 165, whose authors considered
the motion in this case to be quasi-periodical. Indeed Fig. 4.6.1b gives no reason to
doubt this. Nevertheless Fig. 4.6.1a shows that, although weak, instability does exist,
and can influence the general behaviour (for example, of the first mode) after a sufficiently
long time. Figure 4.6.3 again shows the growth of the even modes (ko = 15, 17) and it is

.t

3%

’ -

Fig. 4.6.3 Exponential increase of even modes for initial excitation of
uneven modes (ko = 15; 17): the figures indicate the number of the mode;
zero on the graph is the computer zero, corresponding to Ex ~ 1072°%;
E=x20; B8 =0.0314; € = 0.06; tpax = 3000; h =1/6; AE/E = 3.5%.

clear that the distant (k = 2, 30) modes ''grow' later than the closer ones (k = 14, 18),
‘although the rate of growth of all the modes is approximately identical. Let us also
note that the energy transition to the higher modes (k = 30) occurs faster than that to
the lower ones (k = 2). This effect was also mentioned in Ref. 168.

Using this same method and giving the initial perturbation of the even modes (v 10~!"E)
at a certain moment in time, the border of stochasticity was investigated. The excitation
was in three odd modes and the growth rate of the energy of the adjacent even modes was
determined.

The method described is extremely convenient, firstly om account of its clearness, and
secondly because it does not require long computation times. Moreover, one computation
promptly gives the distance between two neighbouring trajectories.
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A sumary of the results is given in Fig. 4.6.4 in the form of vertical segments
giving the experimental interval of the values of the growth rate 1/1. The groups of
results I, II, III and IV, were obtained from the growth of even modes with initial ex-
citation of three neighbouring umeven modes in different parts of the spectrum. Groups V

%

0.0%01

— - -

0.025 4

000 ¢

0.00

Focemamwad

0.00s

Fig. 4.6.4 Dependence of the rate of development of local instability on
the parameter 8. Initial conditions: ko = 27, 29, 31 (I), E = 30;

ko = 15, 17, 19 (II), E= 17; ko = 1, 3, 5 (III and IV), E = 0.95;

ko = 27, 29, 31 with symmetrization (V)}, E * 30; ko = 28, 29, 30 (VI),
E = 35,
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and VI were obtained from the divergence of nearby trajectories, and in the first case (V)
the same modes were excited as for (I), but with symmetrization, i.e. complete elimination
of the even modes; in the second case (VI) both even and uneven modes were excited

(ko = 28, 29 and 30).

A semi-logarithmic scale is used in Fig. 4.6.4, corresponding to the expected dependence
*
(2.11.8)°):

g _ 4
= ;,—"‘p“"é“, (4.6.25)

where 8 er lies on the border of stochasticity and 4 is the order of magnitude of the dis~
tance between resonances. In fact for large B the experimental results lie in straight
lines within the limits of error. However, for small 8 there are considerable deviations
and in order to explain them we put forward the hypothesis that these deviations, always
to larger 1/t, are connected with other denser systems of resonances. This leads simul- '
taneously both to a decrease of scr’ which is determined by the intersection of the inter-
polation line in Fig. 4.6.4 with the horizontal coordinate axis, and to a lessening of the
slope of the line.

Qualitatively this is just what is observed. The effect is especially clearly seen |
when the lower modes are excited, where besides the *main" line (III) a second line (IV)
can be drawn with equal confidence.

A quantitative comparison can be made by measuring the slope of the interpolation lines.
The mean value of this slope for all the groups except (IV) is : <A> = 8.2 x 10~2, which
agrees well with the expected quantity: A = /N = 0.1 (4.6.8). For line IV: A = 3 x 1077,
This can be compared with the dense system of resonances (4.6.15), predicted by theory:
A ~ k3/N? ~ 107%. In this case B.p (=8) should decrease by the same amount. This is in
fact confirmed in order of magnitude:

A(IIDA/(IV) = 25; B_ (IIT)/B_ (IV) = 37 .

The question arises as to what is the difference in this case between both borders of
stochasticity from the point of view of the behaviour of the system as a whole. The
answer is that a denser system of resonances may be insufficiently wide (see above). There-
fore the overlapping of the resonances of such a system does not lead, generally speaking,
to complete stochasticity; instead of this a more or less narrow band of stochasticity is
formed with limited variation of the energy of the interacting modes (4.6.17).

*) The function 1(B8) depends, as we know, on the phase relations between the resonances,
and law (4.6.25) is in a sense "atypical" (Section 2.11). The justification for the
choice of such a law is finally a comparison with the experiment (see below). Let us
only note that in the case under consideration there may actually be special phase
relations due to the special initial conditions: Qk (0) = 0 (see above).
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Apparently this is the effect that explains the behaviour of the system, which at first
glance appears strange, for the case shown in Fig. 4.6.1. The upper curve in this diagram
clearly indicates local instability of motion. However, this instability does not develop,
apparently, to any appreciable level, since it does not appear at all in the lower curve.

In particular, the successive maxima on this curve differ from each other by a few per cent
but this difference does not grow exponentially as on the upper curve.

An even more important question arises as to whether such a stochastic layer can lead
to a considerable redistribution of energy between modes after a sufficiently long time.
Although we now have no experimental results on this subject, we know that generally
speaking this is possible, owing to Amold diffusion (Section 2.12). However, this in-
stability develops extremely slowly and therefore it is reasonable to consider it apart
from strong instability, due to the overlapping of a wide (and less dense) system of
resonances.

The results given in Fig. 4.6.4 satisfactorily agree with the estimates of the position
of the border of stochasticity [(4.6.12), (4.6.14)]. Thus for case II the experimental value
€y © 0.03, and estimate (4.6.12) gives: £ v 0.06; for case 11I: €or © 0.17; Eé ~ 0.1
[in this case it is necessary to take into account the formation of solitons (4.6.13)].

Our estimates do not extend to the remaining cases because ko = N (see Ref. 168).

Let us note that the position of the border of stochasticity depends substantially on
the "details" of the initial state. This effect is demonstrated by lines V and VI in
Fig. 4.6.4. Thus for line V, 8_ is approximately twice as large as for line I, and the
only difference between them is the complete absence of even modes for case V. An even
more important difference occurs in the case of excitation of modes of mixed parity (VI),
where Bcr exceeds the value for the comparable case (I) by almost an order. It is difficult
to say now what this is due to; perhaps, for example, to a reduction of the number of modes
of identical parity. In any case this again demonstrates the very complex structure of the
transitional zone.

It is known that local instability does not necessarily signify strong stochasticity
(although apparently it necessarily leads to real instability). Therefore it is desirable
to use other methods to convince oneself that for sufficiently large B, E our system
(4.6.1) actually is stochastic. Three check runs were carried out for the utmost possible
time under our conditions t .~ 10*.

In the first case three uneven modes were excited (ko = 15, 17, 19), as for case II"
in Fig. 4.6.4, but with symmetrization. The value B = 0.0314 was chosen approximately
twice as great as Bcr' The autocorrelations of the 15th mode and the shift of the central
oscillator were measured, and also the correlations between modes 15 and 17. The results
are given in Fig. 4.6.5. It can be seen that the correlations are of an almost periodical
nature and the number of interacting modes practically does not change: v =4 + 1 (4.6.23).

This result does not necessarily contradict the results on the position of the border
of stochasticity in Fig. 4.6.4. The point is that the conditions for the appearance of
stochasticity are determined in reality by the energy of the interacting modes!®®) and not
only the total energy, as assumed for the sake of simplicity above (4.6.12). Therefore,
firstly, the energy cannot extend to a large number of modes and, secondly, the energy of
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Fig. 4.6.5 Correlations for case II in Fig. 4.6.4 with symmetrization:
E=17; B = 0.0314; € = 0.05; tpax = 18300; AT =100; At =1;
h =~ 1/3; AE/E = 3%; p(E;s, Ey7) = - (0.30  0.07).
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each mode cannot decrease considerably near the border of stochasticity, since the stochas-
ticity conditions are also destroyed. This means that only a partial energy exchange between
modes is possible, which in its turn leads to the residual correlations.

1f, however, one takes B >> Bcr we should already obtain "'true" stochasticity. The
second control computation exactly corresponds to B/ B.r = 28 (Fig. 4.6.6). Here the energy
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Fig. 4.6.6 Energy spectrum for initial excitation of three modes

(ko = 15, 17, 19) with symmetrization (curve I); curve 11 corresponds
to the mean energies of the modes for the results given in Fig. 4.6.5;
curve 111 for the results given in Fig. 4.6.7.

in fact spreads between almost all the modes, excepting only the lowest, for which it is
difficult to satisfy the stochasticity criterion. This result is also confirmed by the
value p(E,s, E;;) (Fig. 4.6.7). On account of the large experimental error, only the
lower limit can be estimated for the number of interacting modes: v > 8. From the results
in Fig. 4.6.7 it can also be seen that within the limits of statistical error (#0.1) the
correlations of the 15th mode are absent. With regard to the x correlatious, they are
comected mainly with the fact that stochasticity does not reach the first mode. It is
interesting to note that the correlations slowly fade. It is not out of the question that
this is in same way due to the influence of computation errors (see below) but in that
case why is there no fading in Fig. 4.6.57 Another possible explanation is that the motion
of the first mode, responsible for the x correlations, is nevertheless stochastic but for
a considerably longer time, since this mode lies in the transitional zone.

To sum up, it can be said that the totality of the experimental results confirm the
hypothesis put forward in Ref. 168 concerning the presence of a border of stochasticity

for system (4.6.1) and, moreover, confimm the order of magnitude of estimate (4.6.12)

for the position of this border. The weakest point is the substantial computation errors,
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Fig. 4.6.7 Correlations for case II in Fig. 4.6.4 with symmetrization:
E=24; B~ 0.314; € = 0.75; tpax = 16050; AT = 100; At =1;
h=1/6; AE/E = 2%; p(E:s, E17) = -(0-0.13).

which were checked by variation of the total energy of the system (see captions to figures).
This particularly concerns the above-mentioned check experiments, where AE/E reaches 3%.
Can these errors by themselves produce stochasticity? We think not. This is confirmed by
the considerable residual correlations (Fig. 4.6.5) and the absence of energy exchange

(Fig. 4.6.6) for small 8. Another check on the influence of the errors was carried out for
the experiment with local instability. When the integration step was reduced by a factor
of two AE/E decreased from 3% to 0.03%, and the curves of the exponential growth of the
even modes changed slightly, but the value of the parameter of interest to us 1/t remained
as before within the limits of experimental error.
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Nevertheless it seems to us useful to continue numerical experimentation with a non-
linear chain, with a higher accuracy, and with a larger number of oscillators.

Recently Hirooka and Saito carried out similar experiments with a two-dimensional
lattice with cubic mon-linearity, and also obtained a border of stochasticity‘"). In fact,
they also used the local instability method, measuring the duration (T} of the "induction
period" in the development of instability. An example of this phenomenon is given in
Fig. 4.6.2 and its mechanism is explained in the text. The quantity 1/T is proportional
to the X-entropy h. It turned out that the dependence h(B) is nearlv 1mear « (8 - B )
It can probably be compared to the "typical" estimate (2.11.3): h = B (B > 8 ) Let us
note that the computing accuracy in Ref. 170 was very high (AE/E = 0.01%).

A more thorough analytical investigation of the stochasticity of non-linear waves
is reported in papers by Zaslavsky, Sagdeev and Filonenko!®*»195,150),

4.7 Pseudo-random number generators

The problem in this final section is essentially different from the other applications
of the theory developed that are described above. Here we shall try not so muxh to investi-
gate the statistical properties of any practical dynamical system as to construct the'si.mplest
system simulating a "“random" process. The need for such similation arises in many cases, but
perhaps most of all when using the so-called Monte Carlo method (statistical test method)
proposed by Metropolis and Ulam (see Ref. 95)*). The idea of this method is to abandon, in
research into the kinetics of molecular processes, the equations in partial derivatives,
approximating this kinetics which are very inconvenient to solve in a computer, and to go back
to dynamical molecular processes. Of course, a complete return to the solution of exact
dynamical equations for all molecules is absolutely impossible, but one can choose an inter-
mediate, coarse dynamical model with a relatively small number of particles, which never~
theless reproduces the properties of the original system relatively well. In particular,
the "random" element itself of the motion of a molecular system is not obtained automatically
by the dynamical equations and is introduced artificially from outside by means of so-called
random mumber generators. These generators can also be of a physical nature, for example
radiocactive decay or electrical noise. In this case the term random number can be used .
without inverted commas, if we believe that "true" randamess exists in nature’*).

From the practical point of view, however, a generator using a certain computing
algorithm in the computer itself is considerably more convenient. In this case one is
already obliged to put the word "random" (number) in inverted commas or substitute the
word pseudo-random. The point is that the axiomatic (empirical) definition of a random
sequence carries a requirement for so-called '"irregularity", i.e. the absence of the

*) Of the other problems let us mention the computation of many-dimensional mtegrals”)
and stochastic cybernetic machines®3®®),

**) To avoid misunderstanding it should be recalled that we are speaking only of statistical
physics. In particular, quantum randomness may be of a completely different nature and
does not have any direct bearing here (see Section 2.13).
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algorithms for obtaining a sequence. It is evident that this rsquirement €zn’be vwifid

only in a negative sense, i.e. it is in a certain sense unob:zro:his. - lp i3 sviies
in the present case of algorithmic pseudo-random generators it s not satisfiz2 by odidk
However, according to all the other criteria the pseudo-randc- ~uii-rs z7r: . ©oar R

ferent from "true" random mumbers (see Ref. 95 and below). ..: -lirg to ¢ - . .us JofE
in this paper, this is the result not so much of the fact that 55 faf noeffedtdve miUE
verifying "randommess’ has been found, as the fact that in naturs:there is Haw iy i
(Section 2,13). Moreover, if one chooses as an algorithm, fcr:‘exaxple;éa‘ aratsfor s e
cribing a stochastic dynamical system, one can assert that sug ‘1 an algorithn will rwwe
be the best random number generator. The point is that very ﬁ‘“ 3N R PRTITE ek
which properties of random numbers are important in one or anotl::r spzrific nrobh* e
these conditions it appears wisest to follow nature, i.e. to obt@.n Tantun w“‘\ers e
of the stochastic dynamical process. From the point of view of tii2 Monte Oa arlo nels £ i
will be one more step in the same direction of a return to moleaxfhr dynanics.

For such simulation there is apparently no need to use a Hamiltonian system, s
sufficient to take the simplest ergodic transformation with mixinz and Srontscpy,
example (see Section 2.3):

oo = §kxa} 533

This is in fact probably the simplest transformation of this "ype. " corvespoaiywee
formation in integers is written in the form:

r

Re 4

‘(r._ (.‘-‘°d 2”} E (e

i

Among others, such a random number generator was devised by L:luer a5 long ago -kssl %
two years after the appearance of the Monte Carlo method. Howzw.ex this’ g:mrmm
"so far distinguishable from a series of others, it was only bez:uz2 of - o drowbad iz

involves due to the multiplication operation, which consumes a r:'atively lsrge weunf

computer time,

Although the transformation for real numbers (4.7.1) has .o J.lL Luowestlgatd
analytically (Section 2.3) the transition to integers in the céuzuter (3.7.2)wev i
the appearance of anomalies, since the theorems of the ergodic th=0r; are.)
set of zero measure. A well-known example of such anomalies is. the '.?Qti‘f;v‘tr'f\gf:;!.‘)‘fﬁ._# 5?5& .
of pseudo-random sequence. However, finer violations of statistical propertin: a2 s

possible. Therefore it is necessary to verify the generator 7* ~.70 7% oos¥irohy
already been reported in a series of papers”). Below we give -or-=  :oudts of 2 S
test in which the unique facilities of the BESM-6 were used. “h2 = ~i-g;s caroig

in co-operation with Israelev and Antipov'®®),

According to Ref. 135 the maximm period (Zp'z) of sequenc. 7.2) i3z r2ached fip

k=3; 5 (mod 8); 113
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ro is uneven), and the pair correlation coefficient of neighbouring pseudo-random mumbers is!®®):

1
~ 4.7.4
© I ( )

Since integral multiplication modulo P by k and (k - 2P) is equivalent, for k 2 2P} the
correlations will increase as compared to (4.7.4). According to Ref. 136 an increase of the
correlations is possible even for k > Zp/ 2 depending on the specific value of k.

In order to test the quality of the pseudo-random sequence the following generator
parameters were chosen (in octal representation of a BESM-6 word):

<ky :4013064256500425 ; k 4
—_— (4.7.5)

<> :4013543860414035 ;  2° 16

Accurate parameter values are unimportant when the conditions in (4.7.3) are satisfied.
Even a very "round" constant <k>: 4000000000200003 does not impair the statistical
properties of the generator. Let us note that this is apparently not always so!®?).
Therefore it is better to choose "non-round" parameters (4.7.5).

Three tests were used: uniformity (16384 bins); pair correlations Toerr Tn
(128 x 128 bins) and 14-fold correlations of neighbouring mumbers by one binary digit
(2x2...=2' bins). '

The main results are given in Table 4.7.1. The randomness criterion for all three
methods was the deviation from uniform distribution in the whole array of 2!* = 16384 bins.

The deviation characteristic is the ratio of the dispersion (D) to the mean value (M)
of the amount of pseudo-random mmbers in one bin. The expected value of the ratio for a

random sequence is (with a confidence of 95%):_

3o

= 1.0 + 0,022 (4.7.6)

Table 4.7.1 also gives the values /D/M of the statistical acamracy of the test.

As an additional test of the statistical properties a count was made of the number of
empty bins of the array of 512 x 1024 for pair correlations. The array is logical and each
element occupies one binary digit (compare Section 3.2). The results are given in Table

4.7.2, where m and M heor 2T€ the actual and the expected number of empty bins in the

€0
array.
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Table 4.7.1

N 10° 10t 10° 108 10' 108
VE/M “o| 405 | 128 0 | 18 4.0 1.3
Uniformity Z /M 1.003 1.003 1.003 | 1.008 ! 1.000 0.977
m 15415 | sen 27 0 ) 0
V3 /m Y| 407 128 | 40 13 4.0 1.3
Palr tations | 2/ M 1.013 | 1.000 | 0388 | 0.883 | 0.887 ! '1.001
= 16420 | 8605 | 38 0 0 o
Table 4.7.2
N 10° 107 i6® | 10° 10°
Pair L] §23288 | 514376 | 433175 | 71852 | ©
correlations | _ 522700 | 514200 | 433500 | 78000 | ©
Moeop| +1700 | +700 [ + €50 | + 280
Table 4.7.3
N 10% 104 10° 108 10 108
Vo /M Y| 412 127 al 13 4.0 1.8
Ist digit | /M 1037 | 0.8z | 1.008 | 0.887 [ 0.e74 | 1.002
' " 15431 | 8848 | 31 0 ) 0.
VZ /M S| e14 128 41 13 4.0 1.3
14th digit | D/M 1.045 1.006 | 1.013 | 0.884 | 0.888 1.008
" 15431 8s8¢ 33 0 0 0

Table 4.7.3 gives the results of the test of the statistical properties for the
14-fold correlations of the first and 14th binary digits. In order to increase the period
in the latter case perturbation of the constant k was applied 4.7.7).

Finally, for the pair correlations a secondary distribution of the deviations from
the mean value was plotted, which is a finer method of checking statistical properties.
The random quantity here is the deviation of the number of entries into a bin of the
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two-dimensional array from the mean value, normalized by the square root of dispersion,

The distribution was plotted in the interval (-4, 4) divided into 128 bins. A graph of the
distribution obtained and a comparison with the Gaussian curve are given in Fig. 4.7.1.

The dispersion of the points is due to two reasons: the statistical dispersion of 25%,
which agrees well with the majority of points in the diagram, and the dispersion due to
the integral nature of the random quantity. The minimm value of the random quantity

is approximately 1/5 of the size of a distribution bin, which may cause an oscillation of
2208,

To sum up, it can be said that in none of the tests both ours and those of other
writers, was any deviation of the properties of the sequence (4.7.2) form the random ob-
served. With regard to the length of the period, there are several ways of increasing it.
One was proposed by Sobol!®*) and uses perturbation of the constant k in (4.7.2) during
L steps:

kg = kp + € (ed 27) 4.7.7) .

where C = 8 is the minimm constant, for which kz £ 3(mod 8) for all 2. According to
Ref. 138 the period is then increased by /L times .

Fig. 4.7.1

Another method uses more complex generators, for example of the type of the elementary
model (2.4.16) with a linear function of f(¥) = ¢ -~ 1. In this case in order to start
repetition of the pseudo-random sequence it is necessary to have exact coincidence of the two
mumbers ¥, with one of the previous pairs (¢,¢).

Another problem is conmnected with the choice of the initial value of r, (4.7.2),
especially for multiple calls of the generator. Here again it is important to exclude exact
coincidence of the initial conditions for two calls. Apparently the best method is to give
Ty from another more complex generator with a practically infinite period, and this latter
should operate contimwously, never returning to its initial conditions.
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Another approach to solving the problem of the arithmetical simulation of random
processes was developed by Postnikov?*s?3), He also rejects the requirement for irregularity
of the sequence, replacing it with a requirement for completely imiform distribution, i.e.
the absence of correlations of any multiplicity (see Section 2.3). From our point of view
this requirement is not sufficient for good simulation of the random process, since it does
not guarantee the positive K-entropy of the process (Section 2.3), and if the K-entropy is
equal to zero, the mixing may nun very slowly and non-uniformly, which in a practical respect
is not pemmissible.

A specific problem of the study of pseudo-random number generators is the accumulation
of round-off errors in computation. This problem can be split into two. The first part
(the over-all error accumlation) is connected with the dynamical computing algorithm,
mainly with its stability. For example, when computing the trajectory of a stochastic
system the errors grow exponentially with time. The second part of the problem -- local
(in time) accumulation of errors -- is determined by the round-off process. As already
noted in Section 3.3 this process is equivalent to the work of a pseudo-random number
generator, the algorithm of which is determined by the computation algorithm. The distinc-
tive feature of the error accumlation process lies in the fact that the mean error (drift)
is generally speaking not equal to zero. Therefore the main problem is to find this drift.
If it is equal to zero, for example from the symmetry condition of the computation algo-
rithm, then we have exactly the pseudo-random number generator. In particular, if the
computation algorithm contains multiplication by a constant, then the generator is ''good",
as shown above, and the round-off errors accumilate according to a random law. Examples
of random and non-random accumlation of errors are given in Section 3.3.

It can be hoped that the detailed study of such "round-off" generators will finally enable
us to obtain the reliable estimates of computation errors which are so desirable for work

with a computer.
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