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INTRODUCTION

The proposed monograph is devoted mainly to many-dimensional non-linear oscillaticons
of a conservative mechanical system studied in a complete way, i.e. in an unlimited pericd
of time and for arbitrary initial conditions, This problem, of which the famous three-body
problem in astronomy is a particular example, is probably the most complex and at the same
time the most beautiful in classical mechanics. The point is that in the case of finite
moticn (which is equivalent to oscillations in the broad sense of the term) in the absence
of damping, repeated interactions occur in the system, so that very subtle cumlative ef-
fects become important (Section 2.12). The complete soluticn of this problem is still a
long way off, Nevertheless, at the present time, particularly as a result of the numerous
papers of the last 10~15 years, the general picture of the moticn of such a system is al-
ready beginning to emerge more and more clearly through the thick fog of inmumerable details
and the particularity of specific problems.

There are two important reasons for constructing a gemeral theory of non-linear oscil-
lations. On the cne hand, in specially interesting cases it is not always possible to re-
nain in the linear oscillation region, i.e. to keep within sufficiently small amplitudes,

On the other, the linear region is too narrow and therefore relatively poor in phencmena,
Of course, it is difficult to guarantee that qualitatively new processes will not be dis-
covered in this region, particularly if it is remembered that quite recently such interest-
ing and important phenomena as the Kapitsa pendulum'’?) or the stromg focusing of particles
in an accelerator'’?) were discovered in this region. Nevertheless, it seems safe to assert
that the linear oscillation region has been exhausted to a large extent and for subsequent
significant progress, both in understanding and applying oscillatory processes, we shall
have to switch to the non-linear region. An attempt to limit investigations to linear
oscillations is often very artificial, wnduly reduces the possibilities of practical appli-
cation and resembles the notorious attempt to restrict the search to the area directly in
the spotlight. This latter method is certainly a good idea, since the beautifully worked
out comprehensive theory of linear oscillations is in sharp contrast to the disconnected
descriptions of separate non-linear processes. However, it is becoming increasingly dif-
ficult to find anything new "in the spotlight" and the development of a theory of non-linear
oscillations can be considered as an attenpt to light, albeit a little, the general mass of
streets of a large town in addition to the brightly-1it main avenue.

At present, there are two main approaches to the problem. The first is connected with
the search for stable periodic or almost periodic motion, This is related to the classical
theory of non-linear oscillations (Poincaré, Lyapunov, Mandelstam and others), the basic
disadvantage of which -- that the cases of motion considered are too special -- was over-
come recently in the famous works of Kolmogorov, Arnold and Moser (KAM theory, Sectiom 2.2},
Another approach, the ergodic theory, deals on the contrary with the case of extremely m-
stable wotion, leading up to a statistical description (Birkhoff, Hopf, Anosov, Sinai and
others, Sections 2.1, 2.3 and 2.4). Both approaches, in particular recently, have given a
series of brilliant results which form a reliable basis for further research in this field.
However, on account of the extraordinary mathematical complexity of the problem, they
nevertheless remain only special or, rather, limiting cases of motion. It is not even known
under what conditions the transition from one approach to the other, i.e. from stable to
unstable motion, takes place.



In these circumstances it appears advisable to reject the purely deductive method come
pulsory in mathematics and adopt the semi-empirical methed more usual in physics, which in
the present instance means a system of models, analytical estimates and experiments, mumeri-
cal or "real" (Section 3.1). To a certain extent the Mandelstam school carried out such
research with the aim of combining theory and experiment as applied to the special problems
of non-linear oscillations. A similar approach to the general problem cutlined above was
started by Krylov®?), nany of whose ideas are used and developed in this paper. The main
difference in our approach is that we are interested not so much in the macroscopic molecu-
lar systems of statistical physics, the nature of whose motion has in any event been cor-
rectly established, as in systems with a few degrees of freedom, where this problem is far
from trivial and is not of merely theoretical interest, Bearing in mind the given approach,
we shall speak of constructive physics, since the main task here is to construct an approxi-
mate system of notions and laws in a region where, in principle (but not in practice!}, the
exact laws are known., It should be noted that, at present, constructive physics, besides
being related to cscillation thecry, is connected with such large branches of science as,
for instance, statistical physics and chemistry, and in the not too distant future probably
also biclogy. It should be stressed that the centre of gravity of constructive oscillation
theory (and this also applies to a certain extent to other regions of constructive physics)
does not lie in formulating any new laws of nature, but in applying well-knewn and firmly
established laws of mechanics to the explanation (analysis) and comstructien (synthesis)
of new mechanical systems and processes with the desired characteristics (Section 3.1).

The basis of our analysis of non-linear oscillatiens is the notion of non-linear
resonance {Chapter 1), which first arose apparently in celestial mechanics in connection
with the librational motion of the planets (Lagrange) and in a clearer form in accelerator
theory in connection with the phase stability mechanism (Veksler, McMillan). The most
significant and, as far as we know, new process proves to be the interaction of several

resonances, always taking place in a non-linear system.

A large part of the paper (Chapters 2 and 3) is devoted to the study of this interac-
tion.

A system of models was constructed (see diagram on next page) beginning with a cne-
dimensional non-linear oscillator, The downward-pointing arrows show the simplification of
the model down to the elementary one, which is studied in detail analytically (Chapter 2)
and by means of mumerical experiments (Chapter 3). The results ohtained are applied to a
series of increasingly complicated models, finishing with a many-dimensional non-linear
oscillator (upward-pointing arrows). For the analytical investigation wide use is made of
the Krylov-Bogolyubov-Mitropol'sky asymptotic averaging method [KE'J theory®)] on the basis
of Hamiltonian formalism., We were naturally obliged to limit ocurselves to the case of small
(or slow} perturbation (parameter ¢ << 1), assuming that the motion of the unperturbed sys-
tem is known in one form or another. Since, however, the basic results of the work are
estimates in order of magnitude, their range of application can be extended to g ~ 1.

Let us note here two of the results cbtained, in our opinion the most interesting,
Firstly, a study was made of stochastic instability, which from a practical point of view
is the most dangerous instability of non-linear oscillations (Section 2.5) (and at the same
time a peculiar method of particle acceleration, Section 4.1), but from a theoretical point
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of view gives a model of statistical laws applied, as distinct from the model of COTL T empo-
Tary statistical mechanics, to a system with a few degrees of freedom N 2 2 (Section 2.13)")
secondly, a study was made of Arnold diffusion, which proved to be a peculiar wmiversal
instability of non-linear oscillations in cases where there was no stochastic instabilicy

(Section 2.12),

Furthermore, the studies made seem to us to give a rather detailed general picture of
many-dimensional non-linear oscillations, and particularly the rather complicated structure
of their phase space. With the above-mentioned limitation on the perturbation strength,
the transition from the Kolmogorov region of maximum stability to the region of maxdimm in-
stability of the ergodic theory can be traced, and it can thus be shown that in the general
case both regions interpenetrate deeply in a rather complicated way, forming a system with
divided phase space. The latter fact is also an important cbstacle to the construction of
a rigorous mathematical theory.

In spite of some indistinctness in this picture and some doubt about certain of the
details, giving rise to natural dissatisfaction, it can nevertheless serve as a guide line
for future research and current applications in this unexplored region. The work can,
therefore, be looked upon as a kind of reconnaissance in depth (although perhaps including
some superficial observations), intended to facilitate subsequent more accurate investiga-

tions.
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small perturbation parameter (Section 1.1)

non-linearity parameter (Section 1.3].

parameter of the overlapping of resonances;

{im}}i: non-linear width of resonance;

& : distance between resonances (Section 2.13.

parameter of destruction of non-linear resonance separatrix
(Section 2.6);

&, ¢ frequency of phase oscillations (Section 1.4);

wy i perturbation frequency (Section 2.6).

stochasticity parameter (s,5;) for re-normalized rescnance
(Section 2.6].

exponentially small parameter of destruction of non-linear resonance
separatrix;

c v 1l: constant (Section 2.6).

fraction of stochastic component in the region of Kolmogorov sta—
bility (Section 2.6).

mumber of degrees of freedom (Section 2.12).

multiplicity of interaction (Section 2.12).

sign of equivalence in order of magnitude (with correct dimension-
ality).

sign of proportionality (dimensionality not maintained).

The above symbols are valid throughout the text, with the exception
of special cases in which changes in the symbols are specifically
mentioned.

[ypist's Note: In the handwritten formulae the sign e has been used.




CHAPTER 1

NOW-LINEAR RESCMANCE

This short chapter is an introduction. It sets out the basic ideas connected with a
single resonance of non-linear oscillations, or, let us say, non-linear rescnance. Although,
as we shall see later, the difference between resonant and non-resonant motion is not as

great for a non-linear system as for a linear one, the main features of the motion are
nevertheless determined by the non-linear resonance, which is an "elementary" non-linear
oscillation process.

1.1 Formulation of the problem |

Let us begin our investigation with a one-dimensional non-linear oscillator, subject
to various perturbations. Let us assume that the Hamiltonian of the system is:

W=, (p0.)) +sH, (p9., N, D, ¢)

% L. e b
ANNGE); A= AT Pty fioe); 42w 2 ()

Here T = €t is the "slow" time, and the parameters define: ) as the adiabatic processes, d
as the resonant processes, including those with variable frequency, A as the perturbation,
depending on the dynamical variables p, q and their derivatives; Hy is the unperturbed
Hamiltonian; eM; is the small perturbation (e << 1).

Let us explain the idea of introducing the parameter A by the following example.
Supposing we want to consider the frictional force -- kfj. The direct introduction into the
Hamiltonian of the term kqp/m "“spoils" the second equation: § # (3H/3p) = (p/m) + (ka/m).
But if we do the same thing through the parameter: gi(p) where A(p) = kp/m the equaticns
remain canonical, since differentiation with respect to p, q is carried out with a constant
A. The dependence of A on p should be understood in this case as an explicit dependence
on time, so that the Hamiltonian is not conserved. This simple method of taking into ac-
count unusual perturbations in the frame of Hamiltonian formalism is equivalent, essentially,
to using the generalized Hamilton principle for obtaining Lagrange equatiuns*] *}. A
similar problem was studied by Volosov?). '

In spite of the apparent limitation of the problem, the Hamiltonian of the form of
(1.1.1) covers a fairly wide range of non-linear oscillatory processes, mainly on account of
the diversity of the perturbations. In a sense system (1.1.1) may be called an "elementary"
non=linear oscillator, which enables us to introduce, investigate and "sound" the basic
ideas and regularities of this region. In particular, some many-dimensional problems (see
Section 4.5) can be reduced to the form of (1.1.1}.

*) However, it should be borne in mind that the said method should be used with cautiom.
Thus, for instance, frictional forces change the phase space volume of the system
{violation of Liouville's theorem), while in the case of "real" explicit dependence of
the Hamiltonian on time the phase space volume is conserved.
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Let us suppose, for instance, that there is a many-dimensional system, which in a
approximaticn- (e = 0) splits into independent one-dimensional oscillators. The perturbed
Hamiltonian of such a system depends, generally speaking, on varisbles of all decrses of
freedom. However, by calculating these variables in a zero approximation as explicit time
finctions and substituting them into the perturbation, the system can again be divided [in
a first approximation) into separate oscillators of the form of (1.1.1), whose dependence
on variables of other degrees of freedom is replaced by an explicit dependence on time. It
should nevertheless be stressed that the one-dimensionality of the original medel (1.1.1)

may sometimes lead to qualitative anomalies (see Section 2.12).

We consider the parameter € as fairly small, i.e. the perturbation is weak (or slow).
This assumption tums out to be correct in a series of cases and is due to the practical
need to use 3 kind of perturbation theory for analytical investigation. Under the conditien
of small perturbation, resonance, i.e. cumulative perturbatien, is the most significant
process for the oscillatory system. Thus our problem can be defined as the study of non-
linear resonance in a one-dimensional system of the form of (1.1.17.

1.2 Transformation to slow variables

Since the perturbation is small, it is advisable to choose dynamical variables in which
the smallness will be expressed explicitly. In other words, it is useful to exclude the
"fast" wnperturbed motion from the equations. Let the solution of the unperturbed equations
take the form:

G=a2(1,8,7); b= [wl,1)dt+ ¢
- 4
q= “’?f/aé; .f-g_jgﬁa'? (1.2.1)

where 2m/w is the period of the motion and I is the action canonically conjugated to the
angular variable @. Although the frequency of the wnperturbed motion is constant, it is
placed under the integral in order to preserve the fimctional form of the solution also for
the perturbed motion. In this case the constants of the umperturbed motion (I,4) will vary
with time, but slowly. We shall choose them as new variables.

In the wvariables 1,0 the Hamiltonian {1.1.1) takes the form:
P T
W= K, r AW (3,8,0)+eH (16,48, ¢)

where i { is an additional temm to the unperturbed Hamiltonian because of its explicit de-
pendence on time. In order to find H we will write the total derivative of I:

.

s (p,q,0) /202 _ 912 )
2, Sa— t{9q 9p p g/
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and thus is equal to 3/36. But from (1.2.2) ia= ‘dH,.',,..., equating with (1.2 ,:.] we find:

jm( ) /JJ(A ) -

The latter expression is obtained if a similar procedure is carried out with the function
]. When calculating the integral it is necessary to express p,q through I,8 in

B(p,q,i}
accordance with (1.2.1).
In slow variables (I,) the equations take the fomm
.I. = ): _*_é{_ € a_&
?“é; 2 1.2.5
23, Lnfa?)

Since the differentiation with respect to both @,§ is equivalent, system (1.2.5) is cano-

nical.

Let us transform 3H/36 = (3 L-'El}p using the relation:

?.EM._._L " I A) L.M (1.2.6)
2w w 7 2 M - o

where W = ty(p,q,A), and the bar signifies averaging over the unperturbed motion with con-

stant A. We have:

i
aj{r,A)+ 22U (%)) W@ped) o
W 2 A '

2K Ay W
25,
= (a1

Whence "
iz i IS : )... < 29y (1.2.8)

L= =L %k

This equation clearly shows the adiabatic invariance of the action and is very convenient
A similar but approximate equation was

for constructing various approximate expressions

*} (1.2.4) gives the interesting identity:
) LA

(% ("a'lf- Pi9 ;g;l (’Jﬂ(
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obtained by Volesovi). It should be polnted out in this connection that all the equations
in this paragraph are exact.

let us mention without proof another form of equation for § °/:

: - o rﬂu r';_}ﬂ' 2 &
o = =X (fgéfi-‘ 'g‘i -+ E;g%'/) E;i% (1.2.9)

At first glance the disagreeable feature of this expression is that the velocity in the
denominator may vanish. In practice, however, this fact can be used to check the correct-
ness of the expression for \.il, since the mmerator, of course, may also vanish aleng with
the denominator.

For solving specific problems one can use any pair of the equa]ly valid equaticns
(1.2.5), (1.2.8) and (1.2.9].

Sometimes it is convenient to use the energy of the unperturbed system W instead of the
action. Calculating the total derivative in the same way as in (1.2.3) and using (1.2.1),
we find:

L 2HMelpigA) _ . 2T,

W= A 20

(1.2.10)

It should be borne in mind, however, that this eguation is not canonically conjugated to
the equation for §. '

1.3 Single resonance

When the perturbation is small, the most important process for the oscillator is reso-
nance. Resonance generally takes place for a mmber of values of the oscillator frequency
w = w,;. In this chapter we shall consider that the w; are rather far apart, so that near
one resonance the influence of the others can be completely neglected. Such single reso-
nance is a kind of "elementary" process for a non-autonomous oscillator. The interaction

of several resonances will be thoroughly examined in the next chapter.

The time dependence of the unperturbed Hamiltonian is assumed to be slow (but not neces-
sarily small): i ~ e (1.1.1}.

Let us re-specify:

ij:}r':‘ E.-,:':j’f; — Eﬁ)ﬂf

and use the parameter A to describe the losses in the system (for instance, frictional forces).
The equations of motion take the form:



_l|:|..

famg 202 g (1,6)

(f; = ¢ °%f (7,8, :2) (1.3.1)
cri

=t

In accordance with (1.1.1) and (1.2.1) H, is a pericdic function of 9,J of peried Im:

(a6 +nl)
M{f;gr‘;r): ‘;Zi %mq(f)te (1.3.2)

The resonance condition takes the form:

prgs qu WAL B e

Here m,n are any positive integers (we assume that w, @ > 0); in contrast to this, in (1.3.2)
m,n may be both positive or negative.

M1 the harmonics that are muitiples of the basic ones contribute to the rescnance:

Mk, HE; N=1,2,; %/¢ x S

Neglecting the non-resonant harmonics in accordance with the averaging method, we cbtain
from (1.3.1), (1.3.2) the so-called first approximation averaged Hamiltonian!®):

TRl 1 = .:_‘.-V’(
& [ 2 ;?’{; M ~we " € s AT = (1.3.4)

L UG, ) Ny s p=ko-09; A= A58

where U is a periodic function of y, of period Zm.

The physical meaning of neglecting the non-resonant harmonics is fully understood; a
detailed mathematical proof of the validity of such an approximation and alse its accuracy, the
limits of its applicability and the construction of the subsequent approximations, form the
subject of the Krylov-Bogolyubov-Mitropol'sky theory (KEM theary]’}. The most important
effect of non-resonant hammonics is that new frequencies arise in the system and cause new
resonances. For the study of a single resonance this has no significance by definition; as
regards the role of higher harmonic resonances for the case of the interaction of several
resonances, this question will be discussed in Section 2.7.

From (1.3.4) we obtain the first approximation equations (v £) of the averaging method
in the form:
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f'=~ﬁ.2—g _ s A(1)

, DU (1.3.5
L= ko(l)-f2+¢ =

s
Ly

n

Let us recall that the dependence A(I) is regarded as an explicit dependence on time and
therefore is not differentiated when obtaining the equation for 4. The parameter A is con-
nected with a more usual quantity -- the loss rate (eP) -- by the relation:

A P (1.3.6)

The system of equations (1.3.5) is canonical with the resonant Hamiltonian:

M:=Jdim~fﬂ)df+ iff(fﬂf’)f—.iﬂyz (1.3.7)

For a constant A (dA/dI = 0) H_ is the integral of motion and if it can be calculated
in explicit form it enables us fully to investigate the behaviour of the oscillator near
the rescnance. This method is widely used (see for instance Refs. 4 and 5) and is specially
suitable (and necessary) when the non-linearity is small (o << 1). Usually just the case
of small non-linearity is studied, often in the hope of simplifying the equations. However,
things turn out to be just the apposite‘]. In the case of strong (but not very strong,
moderate as we shall call it in what follows) non-linearity

¢ < ok 4« /¢ (1.5.8)

the Hamiltonian (1.3.7) is substantially simplified, since the variation of I in this case
proves to be always small. Therefore one can neglect the dependence of U on I, having put

H(I, *ﬁ/:-. tf{(l‘,,,y)—a- Ule) (1.3.9)

and. take into account the dependence w(I) only in first approximation:

! p L P %‘ﬂ('rt’l)
kw-£51 = mk'(f-fp)_, “-‘H‘L Y (1.3.10)

kiq(IF):: 52

where mﬂ{lp] is the constant characterizing the non-linearity of the oscillator.

In the approximation considered, the conditions of application of which will be dis-
cussed in the next paragraph, the resonant Hamiitonian (1.3.7) takes the form:

i@:mi-%ﬂiaf. gf,{(g.;j (1.3.11)



=12 =
and the equations of motion:

i

7
s

[l
i
i

Generally speaking, one could also take the losses into account in this same approximation
by adding the term Eh[In}w to the Hamiltonian (1.3.11); however, it is more convenient to
do this later (Sections 1.5, 1.6).

System (1.3.12) can be reduced to a so-called phase equation®) after eliminating I:

0 L = (1.3.13)
%’+ ¢mk E? e}

The Hamiltenian (1.3.11) describes the oscillations of a certain "particle" with a mass
lfwi in a periodic ﬁutential field eU(y). Thus for moderate non-linearity (1.3.8) the
behaviour of the oscillator near the resonance proves in the first approximation to be
universal (except for the shape of the "potential well" and consequently the shape of the
oscillations). It should be remembered that with weak non-linearity (a £ =), the behavieur
of the system varies qualitatively according to the type of resonance (external, parametric,
etc.)¥sl4s5),

Since the shape of the oscillations, generally speaking, is not important when study-
ing the general laws of non-linear resonance, it will be specified from time to time in
order not to complicate the writing of the formulae unnecessarily. Let us put:

Kz, ¢}= U (f/'ﬂ""f}" (1.3.14)

Then the original system (1.3.5) takes the form:

=—-5 &-55{-‘ g
9;: km*—f.’-‘?. "‘f-lf-fafl‘f‘;-tj“’

(1,3.15)

and the universal Hamiltonian becomes:

A
M e “_Ea (7-7,) = £l F w (1.3.16)

We studied the periodic dependence of the perturbation on the phase #. Extension to
the case of quasi-periodic perturbation presents no difficulty, but neither does it lead to
any new effects. A periodic transient (acting in a finite interval of time) perturbation,
is not of much interest from the point of view of resomant processes. There is also steady
apericdic (with a continuous spectrum) perturbation, which leads to a completely different
pattern of motion. This case will be discussed later (Section 2.11).
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1.4 Phase oscillations

The analogy mentioned in the previous sectlon with the motion of a "particle" in a
5 P

periodic potential enables us to have a visual picture of non-linear rescnance for moderats
non-linearity. Let us limit ourselves to the case of the harmonic potential (1.3.14].

System (1.3.12) has two equilibrium states, I =1, ¢ = z7/Z, one of which is wnstable
[depending on the sign U, m}‘; see (1.3.13)]. The pattern of the phase plane is periedic

in ¢ and has a characteristic "bucket" appearance (Fig. 1.4.1). 'The phase trajectories are

h"‘h\ P, r “'\\‘
I @ @& i)_,,;
2 il s f“““*c;:/“’“\“:_:/

- ¥

Fig. 1.4.1: Fhase trajectories in the vicinity of resonances for moderate

non-linearity: © - stable, or elliptic, points; = - unstable, or hyperbolic
points.  The dotted lines show the first approximation separatrices; in the
subsequent approximations they are destroyed and stochastic layers are

formed in their place (Section Z.6).

determined from the condition H_ = const. When |H_| < |=Us| (inside the "potential well")
the phase trajectories are closed, i.e. the phase Eﬁnd energy ]] of the oscillator varies
within restricted limits. These oscillations are generally called phase oscillations.

This name is fully justified, since the behaviour of the oscillator near the rescnance is
determined by its phase conditions, namely phase shift law. The frequency of small phase

oscillations is equal to (1.3.13):

*)  From time to time we shall speak of the energy of the oscillator, which depends on the
action variable momotonically dW/dI = w > 0. This is shorter and more usual.
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_Q,;,: Efﬂl'.,'--ﬂf_e-, (1.4.1)

When |H}r| > |eUy| (outside the "potential well") the phase shifts to an unlimited extent
and the energy oscillations decrease in proportion to their distance from the resonance (to
the increase of |H_|). The equation for the separatrix (the upper edge of the "potential
well'") takes the fom: |H},| = |eKq| or:

CI-TF}?-: E‘:-’-iﬂ (...fu.‘i}-' =+ f} (1.4.2)

where the sign in brackets coincides with the sign U"L‘*fc‘

The physical meaning of phase oscillations is that the non-linear oscillator deviates
from the exact resonance (kw = £) as a result of the variation of its frequency w(I).
Alternatively it can be said that the non-linearity stabilizes the resonance, since the un-
limited increase of the energy in the case of a linear resonance is replaced by the re-
stricted oscillations. Thus moderate non-linearity always stabilizes the resonance.

The region inside the separatrix is generally called the capture or phase stability
region. This means that although the oscillator deviates from the exact resonance as a
result of non-linearity, it does not deviate much. Moreover, if, say, the frequency of the
external force varies slowly, the energy of the oscillator also varies so that the approxi-
mate equality kw = 20 is fulfilled all the time.

The size of the capture region is characterized by the width of the separatrix in the
direction of I (Fig. 1.4.1):

(aI),= 4{/} ’ Lmu) 4,/}55{ ©i|=42, a3

*+ These relations determine the non-linear width of the resonance.

From the above-menticned analysis of the resonance it can be seen that the essential
characteristic of a non-linear oscillator is the derivative w', i.e. the dependence of the
frequency on I (or the energy). In what follows, therefore, the term 'non-linear oscillator"
will be equivalent to the term "oscillator whose frequency depends on the energy" or "non-
isochronous oscillator". The oscillations may be of any shape and generally speaking their
shape has nothing to do with the non-linearity. Thus the rotation of a relativistic par-
ticle in a magnetic field is an example of a non-linear but harmonic oscillator, and an
ultra-relativistic particle in a square potential well represents an anharmonic oscillator
with constant frequency.

The conditions of applicability of the umiversal Hamiltonian are connected with the
requirement for small variation of its parameters U, (I), mi'{(l] and depend on the specific
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form of these functions. In order to obtain a general estimate we shall assume that in the
typical case: U§ ~ Uy/I and o ~ aw'/I. It is then sufficient to require small variation of

the quantities I,w:

£ U, / (1.4.4)
—— =~ << ,L Eol --JL L= i
(I f';, A kol /n 4 I

Hence the conditions of (1.3.8) are cobtained, if the parameter ¢ is chosen so that
%)
Ug v wl .

Let us point out that for moderate non-linearity the real expansion parameter is not
£ but v£. The universal equations (1.3.12) prove in this case to be of the first order in
¥t and the original equations (1.3.5) of the second. This also explains the possibility of
simplifying the original equations.

Let us note that the behaviour of a non-linear system near to a resonance has been re-
investigated many times since the days of Poincaré®®). A simple picture of phase oscilla-
tions and phase stability was set out in the classical papers by Veksler’) and McMillan®)
which had such a great influence on contemporary accelerator technique. Nevertheless it
seems to us that so far due attention has not been paid to the umiversality of the phase
oscillation process and the decisive part it plays for the understanding of non-linear
phenomena.

1.5 Crossing the resonance

Let us assume that the value Ip explicitly depends on time, and so the difference
I-1, and thus also kw - 2, change sign. This may occur both as a result of the action
of perturbation with variable frequency #i(1) and as a result of the variation of the fre-
quency of the oscillator w, if the unperturbed Hamiltonian depends on the paramester A
(1.1.1). Unlike other more usual adiabatic processes, in which one can use the conserva-
tion of the adiabatic invariant J = (1/2r)#Idy, the crossing of the rescnance is a more
complex process, since here, generally speaking, J changes considerably independently of
the rate of crossing (see Section 1.6).

It is convenient to study the crossing of the resonance graphically, by analogy with
the motion of the "particle" in a periodic potential, mentioned at the end of Section 1.3 €,
Let us first find the variation of the total energy of the "particle" (1.3.11):

"_f_ér-_;{:i = ?_i;—{} = ._..(...‘.li_ (I'IF)"Z:P = y::_z; (1.5.1)

d- 2

When the perturbation is small, the width of the resonance is relatively small ['u vE,
[1.4.3}]; therefore ip can be treated as a constant, and we obtain:

*} In other words, all the dimensionless parameters of the problem except €, « are of the
order of unity.
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By inserting this expression in (1.3.16) we find '

L %
Y. = V(t;«-%'),,- Joy, - Ly (1.5.3)
J93
where the coefficient V characterizes the rate of crossing the rescnance:
: 2o _ p 22
Y = L4 . k & . & (1.5.4)

2¢ o2

and the phase s is taken at the moment of exact resonance (kw.= ).

If we now represent graphically the quantity proportional to the potential energy of
the "particle": sin ¢, then analysis of the motion is made in the usual way according to its
intersection with the line of the total energy, namely with a horizontal line in the steady
case (i = 0, Section 1.4), with a slanting line V({ - §y) + sin 4, when ip is constant, and
with a curve f£(}) obtained from (1.5.1) in the general case (Fig. 1.5.1).

Fig. 1.5.1: Graphical investigation of the crossing of a resonance:
a - fast crossing; b - slow crossing; c - phase stability; this region is
hatched and limited by a separatrix (thin line).

In the Fig. 1.5.1 it can be seen that there are two qualitatively different regimes as
for crossing through the resonance. The first is characterized by the existence of two
points of intersection (“particle" stops), by restricted phase oscillations and consequently
by repeated crossing of the resonance (line c). This regime has been well studied for a
special case (charged particle accelerators) and is generally called capture or phase sta-
bility?+®). Capture is possible only when |V| < 1 and for specific initial conditions shown
in the Fig. 1.5.1 by hatching. When |V| « 1, capture takes place for almost any initial
phase of the oscillations (when detuning is sufficiently small). Under capture conditions
the energy of the oscillator automatically varies in such a way that kw = 1. The accuracy
of this equality is determined by the depth of the "potential well" and is of the order of
a2, (1.4.3).

*) Limiting ourselves to the special case of (1.3.14).
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Anocther regime (lines a, b in Fig. 1.5.1) is characterized by 2 single crossing of the
resonance. When |V| » 1 crossing is possible for any phase 4y, but for |V| < 1 only for
some Pg. It is the last regime that is a real crossing of the rescnance, since when

values.

Let us consider two limiting cases in which the solution (1.5.3) in the last regime can
be represented a.nalyt.ically“}. We will suppose that the values (i, _.1; and Uy are positive.
If f!l < 0, it is necessary to change the sign of the time in the solution (the resonance is
crossed in the opposite direction) and also to make a phase shift (Yy - 7 - ¢3) on account
of the changing of the sign of V, as is easy to see from Fig. 1.5.1. If U, _,,; <0, It is
necessary to shift the phase by m ($a + o + ) (1.5.3). Finally, if both the values {;

Uq mf( < 0, it is necessary to perform both transformations successively, which is equivalent
to changing the sign of the time and to the transformation @y + -yq.

i) Fast, or linear, crossing of
the rescnance (V >* 1)

In this case non-linearity can be neglected in the first approximation and then the
phase equation (1.5.3) or (1.3.12) is at once integrated:

. f r
5,0 = U o T, - (1.5.5)
and the equation for I (1.3.12) comes to the Fresnel integral [see for example Ref. 9)]:

a2

slks) == ) F 2 Cos (B4 %)

yi slf, G O ?"/) Rree)
ol = - Vog =2 5+
v, -

Let us give the next term of the expansion in powers of the small parameter V-', char-
acterizing the weak effect of non-linearity for the fast resonance cmssing‘:}:

e -1
A(&u}' ==, %5*5?*' [rf'if-f’* EE“ [1 +{E'f)(£‘zf + ﬁ'ﬁ?‘l’,)];

_ 24/ o) |2
bt s 4ol ), g gye

(1.5.7)

The upper sign corresponds to the motion after the resonance, and the lower to that before
the resonance. Since the expression in square brackets > 0, the sign of the non-linear con-
tribution to A(kw) is the opposite of the sign ;. In other words, the non-linear frequency
change for the fast resonance crossing is directed to the opposite side with respect to the
external change of frequency, as in the capture; it is as if the non-linearity somewhat
slowed down the crossing of the resonance.
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The variation of the frequency and energy upon crossing the resonance increases with
the reduction of the rate of transit, but in contrast to the purely linear case it is limited
by the condition V >> 1 and does not exceed: |a(kw)! % M, << w; [AI] S 0, o/ B ’Tﬁ: << I
(1.4.4). '

ii) Slow, or reversible, crossing of
the resonance (V << I

It can be seen from Fig. 1.5.1 (line b) that in this case the phase at the moment of
exact resonance is enclosed in a narrow interval around n/Z:

‘ﬁ.=%‘f“§} -V < ¢ < JY4iV (1.5.8)

The rest of the phases correspond to capture.

An approximate integration of equation (1.5.3) gives®):

Alkw) = 2VRy Cu(Ves)(1:V-£%) +

” (1.5.9)
3_(,'14. kf’f-"zl?"i"—- ?/-f

The first term is important only in an exponentially small region on the edges of the inter-
val (1.5.8), where it leads to unlimited variation of w (and I). The physical meaning of
this variation is connected with the very slow motion (almost a halt) of the phase near the
value (n/2) - V (1.3.12). The sign of 4(kw) is the opposite of the sign of f, as in capture,
i.e. the crossing of the resonance is slowed down. This result is fully understoed, since
the edges of the interval (1.5.8) are directly adjacent to the separatrix.

The main term in (1.5.9) is the second. In the limit V + 0 it depends neither on the
phase yy (and consequently also on the initial conditions), nor on the rate of crossing the

resonance &

als < i-!"t. (1.5.10)

Thus under these conditions there is no continuous transition to the steady case (&, = 0):
this transition takes place only in the capture region.

The sign of A(kw) for slow crossing agrees with the sign of ﬁl, i.e. non-linearity speeds

‘up the crossing of the resonance. Because (1.5.10) is independent of the phase the slow

crossing process is reversible. In particular, when there is periodic crossing of the reso-
nance in both directions, the energy of the oscillator is subjected only to the limited
[and small (1.4.4)] oscillations in approximation (1.5.10). A more accurate expression
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(1.5.9) already depends on ¢, and therefore may lead to certain cumulative effscts. This

-~

question will be dealt with in more detail in Section 2.9.

Let us note that the wniform change (1.5.10) agrees in order of magnitude with the maxi-
mm possible fast crossing of the rescnance.

Comparatively little is lmown about the process of slow crossing of a resonance.
Apparently it was first mentioned in a paper by Symon and Sessler!!), where it was called
the phase displacement mechanism*) and was proposed as a method of acceleration in addition
to the usual phase stability. A qualitative study of slow crossing of a rescnance was made
by Sturrock®), but the criterion of slowness in his paper is incorrect:

.
(_f_—_'__-‘}_:' e (1.5.11)
24

In this form it has no sense at all, since it depends on arbitrary detuning (w - ). However,
as far as can be understocd from the text of Ref. 9 the author takes as the width of the
resonance the linear expression: w - 0 eUj [see (1.6.17)], whereas in order to obtain the
correct criterion one should take the non-linear ome: w - 4~ f, (1.5.4).

Let us now consider the effect of losses. In the first approximation to vE it is neces-
sary to add to the universal Hamiltonian (1.3.11) the term eiy, where A = ﬂ[lp] = COnst.
like the other coefficients. The result can be regarded either as a change of the "potential
well" U(y) (its "slope"), or as some effective change of the speed of crossing through the
previous resonance by the value (1.5.1):

ASi, =g Ny (1.5.12)

In the latter case the parameter of the rate of “crossing" the resonance takes the form
(1.3.6):

V= -‘if"iﬂ"’j& o S ' (1.5.13)
o L1 w o

In particular, with constant frequencies (i, = 0) capture is possible only under the condi-
tion P < wlly. In the capture region the energy of the oscillator on the average does not
change, since the losses are compensated for by the action of the perturbation. Outside the
separatrix the energy of the oscillator decreases, and it goes away from the resonance.

If o = Ehmi, an interesting "steady" case (V = 0) occurs with variable frequencies.
Unlike the true steady case [ﬁl = A = 0), the amplitude of the phase oscillations may vary
(Section 1.6).

*) Displacement in phase space.
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1.6 Second approximation effects

The effects of the second approximation (namelv ~ =, Section 1.4) in the non-linear
resonance are related to the effects due to the variation of the coefficients of the

al Hamiltonian (Section 1.3): Uu{l}mi[lj, A(I), which in the first approximarion to s
taken to be constant. These effects can be divided into two categories: oscillating (at the

frequency of the phase oscillations) and cumulative. According to the estimate of Section 1.4

the oscillating effects in the region of moderate non-linearity are always small (% /%),

and we shall not write out the corresponding corrections in explicit form. On the cther hand,

the cumulative effects can be regarded as slow; the simplest way of studying them is to use
the adiabatic invariant of the phase oscillations:

(1.6.1)

J=d Srap =L b (az)ay

The latter expression is valid for limited phase oscillations, when § dw = 0. Far away from
the resonance J + I, i.e. the adiabatic invariant of the phase oscillations changes over to
the adiabatic invariant of the oscillator itself.

In order to calculate the variation of J let us return to the resonance Hamiltonian
(1.3.7) and use the general formula (1.2.8). The variable parameters here are the frequen-
cies ;(t) and the loss parameter A(t). We have:

F)

2u \ L € / =N

i__; N PS 'Djrg B %i"‘: f]_f_ E/‘nf(‘f-’-@_}'l" (1.6.2)

where T, is the period of the phase oscillations and the explicit dependence on time is due
to the frequency variation (&;).
When there is sufficiently slow and smooth frequency variation the first term, as is

known (Section 4.4), makes an exponentially small contribution to AJ, i.e. J scarcely
Varies*} so that it is sufficient to examine only the second term, connected with losses.

r

For the integration of (1.6.2) let us limit ourselves to small phase oscillations:

le(=|¥-—¢F] <@, <1 (1.6.3)

where ¥, is the amplitude of the phase oscillations. In this case one can put

g & s - F4
. : Ny
RS NI A A A - S

*} Provided the trajectory does not cross the separatrix of the steady-state phase oscil-
lations, for which Ty =y and the adiabatic invariant always changes independently of
the rate of transit, as is in fact calculated in Section 1.5.
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It is easy to verify that the relative accuracy of these expressions ~ 2. In order
to obtain J with the same accuracy it is sufficient to use the universal Hamiltonian
2
2 & (1.6.5)

1% =

By inserting the expressions (1.6.4) and (1.6.5) in (1.6.2) and averaging over the period
of the phase oscillations, we find:

i ’
= g4 (1.6.6)

or

. .
- it N7
Fe= Fug '{{ ) (1.6.7)

In the general case the parameter ﬁ’{lp} may depend on time because of the variation of Ip'
The direction of the variation of J and consequently also of the amplitude of the phase
oscillations (damping or increase) depends on the sign of the derivative A" = (P/w) ’ (1.3.6).

The application of the averaging method to equation (1.6.2) in order to cbtain (1.6.06)
is permissible under the condition that:

s A’ < 32 (1.6.8)

In the steady-state case (i, = 0) the only important effect of the second approximation
is the damping (or growth) of the amplitude of the phase oscillations with a constant decre-
ment -EA’{IPJ (1.6.7); other effects lead only to small oscillating corrections ™ /e,

With sufficiently slow crossing of the resonance under capture conditions, the ampli-
tude of the phase oscillations varies adiabatically according te (1.6.5) and (1.6.7). The
expression for the adiabatic invariant of the phase oscillations is universal in the same
sense as the Hamiltonian (1.3.11), i.e. it does not depend on the type of resonance (except
for the shape of the oscillations).

This result, mentioned for the special case of synchrotron escillations in an accelerator
by Kolomensky and Lﬂbedev5}, is completely natural, since the expression for J can be obtained
with an accuracy of ~ v& from the universal Hamiltonian. In the case of small phase oscil-
lations expression (1.6.5) is entirely umiversal.

The independence of the adiabatic processes of phase oscillation on the type of pertur-
bation can be considered from another point of view. If the phase of the perturbation & de-
pends only on time (1.1.1), the phase plane of the resonance (I,)) differs from the original
phase plane of the oscillator (I,8) only by a twmning of the co-ordinate axes and by the
constant transformation of the scale [y = k& - 28(t)]. In this case the integral (1.6.1) is
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proportional to the phase area of the unperturbed oscillator, spanned by the trajectory of

the phase oscillations. According to Liouville's theorem this area (defined by the metion

of the ensemble of ail the points inside the phase trajectory) is always strictly conserved
(also when there is perturbation). This corresponds to the approximate conservation of the
area spamned by the steady-state trajectory of the phase oscillations, in those cases in

which its intersection with the actual trajectories of neighbouring particles can be neglected.
The resonance itself determines only the shape of the region, for example, for small phase

o~

oscillations: G, * B0~ w' + AL (1.3.12).

In the special case of a harmonic potential (1.3.14), under the condition that
V << 1 (1.5.13) and in the absence of losses we obtain:

(1.6.9)

which agrees with the result of the theory of synchrotron oscillations in accelerators®).
From the last expression it can be seen that damping of the phase oscillations can be ensured
both when the energy of the oscillator increases and when it decreases, owing both to the
special non-linear characteristic of the oscillator and to the variation of the parameters

of the resonance in time. This gives the possibility of using the non-linear resonance for
regulating the amplitude of the oscillations, within the limits compatible with Licuville's
theoremn.

Let us consider the influence of second approximation effects on slow crossing of the
resonance™ . The most important influence is comnected with the possihility of changing
over from one regime of crossing to another, i.e. with capture (transition to limited phase
oscillations) or, on the contrary, with moving out of the resonance. It is evident that
moving out of the resonance will necessarily take place sooner or later, if the amplitude of
the phase oscillations increases. In the case of damping of the phase oscillations capture
is possible (but does not necessarily take place). The point is that with slow crossing of
the rescnance there is only one phase oscillation intersecting the steady-state separatrix
(see Fig. 1.5.1, line b), and therefore the damping may not have time to change the para-
meters of the phase oscillations so much that capture takes place. However, when V + 0
capture necessarily occurs, because the aforementioned phase oscillation in this case ap-
proaches the separatrix and an arbitrarily small change is sufficient for capture. Moreover,
as will be shown in Section 2.6, near the separatrix there is always a more or less wide
stochastic layer which facilitates the capture process.

Let us estimate the critical value of the rate of crossing. Let us return to the com-
plete equation for v (1.3.15), which we will write in the form:

z

* - - #- *
gzl (I-1,) + (Ii,__.fﬂ)m;-— el Fuy (1.6.10)

*) For fast crossing this influence is always small (v vE).
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The first term is the main one, the second always being small for moderate non-linearity;
capture may take place owing to the last term, if i vanishes after crossing the rescnance
near sin ¢ = 1, where ; has a minimun value according to the first approximation (Fig. 1.3.1).
For capture it is also necessary that | # 0 before the crossing of the rescnance; in the op-
posite case all investigation is transferred to the next phase region (one ¢ period to the
right, Fig. 1.5.1). This happens to be possible, since the first tem (1.6.10) changes sign
after the crossing of the resonance, and the last one dees not change.

The minimm value of { in a first approximation is of the order of (1.5.3):

F:m-..‘ = -Q;P /4.??7' (1.6.11)

Capture is possible under the condition of @, 47 V < |eUf]:

I

7 U, @i

Z

a2 &
V< & o :E(_* F Rl 5.0 (1.6.12)

The last inequality is the condition for the signs of the terms of (1.6.10).

For stable capture it is necessary for the amplitude of the phase oscillations to de-
crease after capture; in the opposite case only short-term capture is possible. In the
absence of an explicit dependence on time and the condition U, > 0 the oscillations die down,
. *)

T 5

AL .
( Mﬂ)'_f?f > q (1.6.13)

This is compatible with the capture condition (1.6.12) when

&
ri '{"‘}f
&, & = . (1.6.14)
s

In the opposite case stable capture, as a rule, is not possible except for an exponentially
small region of resonant phases on the edges of the interval (1.5.8), for which inequality
(1.6.12) changes sign (Section 1.5).

Capture is also possible owing to the non-uniform rate of crossing of the resonance
(fy # 0), if this leads to the reduction of V by the value AV A V (1.5.3), namely under the
condition:

*) In approximation (1.6.9), which we use as an example.
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T m—— (1.6.15)
Xy 'Qf

However, for this capture to be stable the damping of the phase oscillations must be suf-

ficiently fast. In fact, under condition (1.6.15) V passes through zero in a time of the

order of one phase oscillation and begins to grow again in absolute value, which may lead

to motion out of the resonance.

All the estimates of the second approximation effects in this paragraph were made for
moderate non-linearity (1.3.8). When there is large non-linearity sa 2z 1 it is necessary to
take into account the subsequent expansion terms of the quantity (kw - 10) in the equation for
¥ (1.6.10). In particular, the relation of the second term to the first is of the order of
VEG * Yo Hence it can be seen that for sufficiently small oscillations

@, << (Eac)‘f‘/‘" (1.6.16)

all remains as usual. However, the shape of the large oscillations ($q ~ 1), and also the
position of the separatrix, may change substantially depending on the specific form of U(I,y).

When non-linearity decreases [u]‘; =+ 0} we finally arrive at a linear rescnance. In this
case the difference (kw - £2) in the system of equations (1.3.15) is simply constant detuning.
The resonance corresponds to the condition :p = 0, whence the linear width of the resonance

(width of unstable region) is:

,é—*.@m}d = L& fq”; (1.6.17)

The linear approximation is valid as long as the non-linear frequency variation {us]’c « Al) is
much smaller than the linear width of the resomance (1.6.17). In particular, for Al v I we
obtain:

4
Ewﬂ ~ £
Jmi, =

Pt -f (1.6.18)

In the intermediate case of £ » o the motion of the oscillator may be very complex and
depends on the type of resonance. The most important feature of this region is the forma-
tion under certain conditions of a capture region, or, in other words, stabilization of the
resonance by non-linearity. The conditions of such stabilization are usually obtained from
the resonance Hamiltonian (1.3.7). An estimate of the order of magnitude can, however, be
obtained much more simply from the following considerations. Stabilization occurs in the
case when the non-linear frequency variation exceeds the linear width of the resonance and
the oscillator thus begins to move out of resonance. On the other hand, the non-linear de-
tuning can be estimated according to the phase oscillation formula (Section 1.4):
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Gdc..:- gf’.Q_)H il T e (f: U, i g (1.6.18)
Hence we obtain the stabilization condition in the form:
z
’
m‘; S 3 QE_) (1.6.20)

= Uo

As an example, let us consider the resonance for small slightly anharmonic oscillations
described by a Hamiltonian®):

= h-PAIE e =
%(Pﬂfff}= A;Z'Ji (F;f}'zz_,& (m Q). 21{4“"-1 2 sl
sz_ga. o ow [k [

where Hy, is the linear part and the smallness of the perturbation is ensured by the condi-
tion: I £ 1. The non-linearity is determined here by the first non-vanishing term Uppm:
with my > 2 (usually Ugos):

{2

pib

r...ii = -’%— ff,mﬂ*- n‘:_,(;-:_,-,z). ] (1.6.22)

and the value of the perturbation for the resonance of the ko harmenic (k > 0) is (ses

1.3.4):
. ke
[Uo | v 2k e, I™* (1.6.23)
The stabilization condition (1.6.2) takes the form:

&, - & g
—— i

Azl * . Az —— | Lees (1.6.24)

f By “‘1_2_,] ; Ucoiy

For 1 + 0 this inequality is always fulfilled when k > m; (stabilization at small amplitudes)
and not fulfilled when k < m;. In the latter case stabilization is possible only for A £ 1.
and the stabilization boundary is given by the estimate:

2,
i /\ sk (1.6.25)

The stable region corresponds to a sufficiently large amplitude: I > I,. Let us note that
when A 2 1 this region (I 2 I,) becomes unstable for k > m;. When k = m;, the stabilization
condition does not depend on I: 4 51,

For the special case of m), = 4 the estimates obtained agree with the results of the de-
tailed caleulations on a similar problem carried ocut by Schoch!+) (see also Ref. 5) and
Mel'nikov®7?),

g
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CHAPTER 2

STOCHASTICITY

This is the main chapter of the paper, in which the interaction of several rescnances,
due to the non-linearity of the system, will he investigated. The interaction of the reso-
nances is a source of instability of the oscillations, which in turmn leads to one or
another form of stochasticity, i.e. to the appearance of statistical laws in the dynamical
system. At this point, classical oscillation thecry merges with statistical mechanics and
what interests us mainly is the border zone between the two sciences. In contrast to the
more elementary investigations of the previocus chapter, we are obliged in what follows to
turn to a system of simple models and to make greater use of analytical estimates by order
of magnitude. Matural dissatisfaction with such a "non-rigorous" approach may be compen-
sated for to a certain extent by the numerical experiments which will be described in the

next chapter.

2.1 The basic model

The central problem of this paper is that of the interaction of several resonances.
According to the results of the previcus chapter, the size of the region of influence of

each resonance (in frequency) is of the order of (Section 1.4}*}:

(aw), ~ 24 (2.1.1)

around the resonance value w = w_. If there are several resonance values of the frequency
{mi] (several resonances, as we shall say for the sake of brevity), then it is obvious that
the character of the motion will essentially depend, generally speaking, on the ratio:

g = @)y | e (2.1.2)
a A

where A = ]mi+l - mii is the frequency distance between neighbouring resonances. The case

of single rescnance, thoroughly studied in the previous chapter, corresponds to the condi-

tion”

S<< 1 (2.1.3)
The asymptotic validity of this condition is fully evident**], A more accurate criterion
of the applicability of the single resonance approximation will be discussed later
(Sections 2.2 and 2.7).

*] For the case of moderate non-linearity (1.3.8), which will always be understood if no
special reservation is made.

++]) See Section 2.7 though.




In the opposite case
S of (2.1.4)

it is necessary to take into account the interaction of the rescnances, namely the simul-
taneous effect on a non-linear oscillator of several perturbations with different fre-
quencies.

It is not difficult to extend the universal Hamiltonian (1.3.11) to the case of
several resonances. Let us choose one of them as the basic resonance (basis of reference)
and designate the values relating to it by a zero index. Let us insert the phases
$=0- o ¥ = o - ¥, (see Section 1.3, k = 2 = 1), The universal Hamiltonian can now

be written in the form:

;ﬂiﬁ — %51: (if'“.?;*) TEF £ z;f; i;f; JGL, (’%ﬁij 5;::ﬁ} (2.1.5)

whence the equations of motion in a first approximation are

_f = = ,Ei: fQ’; Cos (ﬁﬁb'f’ﬁj'fJ)

. (2.1.6)
'f:' = w,) (I-4o)] ; ¥ = L2,- %2,

One can express the following qualitative considerations about the behaviour of this
system under conditions of interaction of the resonances (2.1.4). Each term defines its
own "centre of attraction" around which the phase oscillations of our "particle" (see
Section 1.3] can take place. In other words, in the oscillator phase plane (1,8) instead
of one "potential well" {or rather one 'bucket", Fig. 1.4.1) there are a number of
"potential wells" around I,. Under condition (2.1.4) these "wells" everlap, which makes
it possible for the "particle" to cross over from one well to another. The transition
conditions depend on the phase relation ¢ + ¥;, and generally speaking, vary continuously,
since the "wells" shift with respect to each other along © on account of the difference

of the frequencies ;.

The law governing the migration of the "particle” from one "well" to another depends
on the specific form of the perturbation and in particular on the phase relations. Later
we shall give examples of the various types of migration (Section 2.4). However, it can
be considered that in the limiting case of very large overlapping of the resomant zones

"§5> 1 2.1.7)

the law of migration will be almost random. The reason is the very intricate variation of
I in this case (2.1.6), especially if one takes into account that the phases ¢ + Y3 deter-
mining this variation themselves depend on I by virtue of the non-linearity of the

s W
oscillator }.

*) This conclusion is not trivial, see Section 2.8.
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It would seem that the motion cannot be "completely' random since it satisfies the
dynamic equation. However, the imitation of all the known properties of a random process
is possible and is sometimes so good that the question arises as to whether a "real"
random process is only a clever "imitation". Discussion of this question will be postponed
wntil Section 2.13.

Motion of such a quasi-random type will henceforth be called stochastic, on the under-
standing that this covers all the features of a random process at present known (Section
2.3). The study of the stochastic motion of a mechanical system, begun mainly in con-
nection with the problem of the foundation of statistical mechanics [Section 2.13; see,
for instance Ref. 16], has now become a whole new branch of mathematics -- the metric
theory of dynamical systems -- which we shall refer to in the rest of the paper by a shorter
though less felicitous term, the ergodic theory*}‘ Unfortunately this theory, as a rule,
is too abstract and is not easy to apply to specific physical problems. It should be
stated at once that the most recent and most important results of the theory!’:!?»2%»*1)
are better in this sense and will be widely used in this paper.

Our basic task is to validate inequality (2.1.4) as a criterion of stochasticity,
namely as the border separating the stable and stochastic regions, for the special case
of a mechanical system of the form (1.1.1), and also to calculate the specific parameters
of stochastic motion.

The study of the general case of the interaction of resonances (2.1.6) encounters con-
siderable difficulties, the meaning of which will be clear in what follows. Therefore we
shall first simplify the model (1.2.5) chosen in the previcus chapter, assuming that the
perturbation acts on the oscillator periodically (peried T = 2n/Q), each time for a very
short interval of time t + 0 (approximation of short kicks). Equation (1.2.5) in this case
takes the form:

_f:-ELLH(I,E')
{F.;: El'l-rI (ngzi

(2.1.8)

The phase ¢ dependence of the perturbation (§ = 1) reveals itself by the fact that the
Hamiltonian h(I,®) is different from zero only at intervals of t; the indices 6, denote

partial differentiation with respect to the corresponding argument:

By integrating the system over the interval T we obtain as a first approximaticn :
al= -(ET)hy (1,,0.) + O (% (Ew)v)
ap= () hp(L,8,)+ O (<% @o)™)

(2.1.9)

«] The present state of the theory is presented rather completely in a paper by Sinail?}.

See also Refs. 41 and 42.
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where I,,%; are the initial wvalues. In the interval betwsen kicks I = const., and the
phase varies by the value 48 = (T - 1) * w(Iy), where I, iz the value after the kick. The
total phase shift during the period is:

80= (T-2) o (I )+ jiaé +E2) 4 (1., 8, )=
= T w(Z,)+ET) h, (5,8,) +Ofc® @u)™)

We can now describe the motion of the model by means of a system of difference

(2.1.10)

equations:

|

T g By B (e, Bi)
Brure = Out Tollr)+sh (1, 0,)

(Z.1.11)

where T = 1, and the index '"n" denctes the mumber of the kick (step), the new discrete
time of our dynamical system. Let us recall that the Hamiltonian h{I,®) is a periedic
function of @ with a period of 2Zm.

Equations (2.1.11) are written to first approximation in € and can be put down more
accurately if necessary, using (2.1.8). In particular, let us write the expression for
Al with an accuracy ~ &?, which we shall need later on:

- .
415 _@?)'45' N %‘il Aaf '49 - 4”' 4y 7~

. (2.1.12)
-
_ €7 3 - 3
e aa*o(i;(ﬁf-:')j
Since the original system (2.1.8) is canonical, the Jacobian of the transformation
(2.1.11) is equal to unity with the corresponding accuracy:

M

=1+ 0 (<2 £2i1.1%)
>(1,, 6.) J

which is easy to verify also by direct calculation.

Equations (2.1.11) determine the basic model.of the interaction of the resonances.
It will sometimes be convenient to simplify it even further. As in the case of a single
resonance, the behaviour of the system to a certain degree does not depend on the specific
form of the function h[I,B]* , and therefore we shall choose the two most simple cases
[(2.1.14) and (2.1.15)]. Further, one can neglect in the first v& approximation (see Section
1.4) the last term in the second equation (2.1.11), which represents a linear correctiom
to the frequency [Section 1.6 [1.6.1?}]+ Finally, instead of the action variable I, one
can directly use the frequency of the oscillator w. As a result we shall obtain the

*) See Section 2.7.
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following most simple model equations describing the phenomenon of the interaction of the

TEesOonances:

Opea = W, + £ (')"’L,“‘/z)

'*/’n-hr = {f‘f, + T @Wupe §

(2.1.14)

or

"‘Ju-r-l = A g Cos 27""?”'-1.
= : (2.1.15)
Frrs II% T }1;}- mhf-ij

Here the curly brackets represent the fractional part of the argument -- a convenient way
of specifying the periodic dependence. The coefficients of the model equations (2.1.14)
and (2.1.15) are selected so that the Jacobian |'&{wn+1, u:n+1]fa(%, ¢-n]|- 1 exactly. The
reasons for the choice of two forms of dependence on { will be clear from what follows
(see Section 2.4).

We chose for our basic model (2.1.11) a perturbation in the form of short kicks,

essentially in the form of a &-function. This choice is not very special or exceptional;

on the contrary, it is typical, since the sum in the right-hand part (2.1.6), when there

are a large number of terms, actually represents either a short kick (or series of kicks)

or frequency-modulated perturbation. In the latter case periodic crossing of the resonance
takes place, which according to the results of Section 1.5 is also equivalent to some kick
[[1.5.?] and [1+5.9}]. Thus it can be expected that the properties of model (2.1.11) will
be in a sense typical for the problem of the interaction of the resonances and stochasticity.

The transition to the difference equation (2.1.11) or, as they say, to the transform-
ation, means essentially the integration of the original system of differential equations
over the period of the perturbation, integration which becomes trivial for the special
case considered. We thus obtain some information about the behaviour of the system in a
finite, and characteristic, interval of time. This is really a reason for simplifying the
original system.

The true significance of the basic model is explained in Section 2.6, where it will be
shown that it describes the motion near the non-linear resonance separatrix and in particu-
lar the stochastic layer. The latter turns out to be the origin of any instability of non-
linear oscillations. Thus it appears possible to study the general case of the interaction
of resonances, using the basic model only.

2.2 Kolmogorov stability

Let us return to Eq. (2.1.11). If the perturbation is sufficiently small (¢ + 0) and
Tw = 2rk (k is an integer), i.e. if the system is near to the resonance, the difference
equations can again be replaced by the differential ones:



1=._ h, (1,6)
8= (wf?}"‘"ﬂ) + ‘-;é-‘ iy (7,6)

where mb is the resonance value of the oscillator frequency w.

Let us study the nature of the moticn in this case. First of all let us note that
the Egs. (2.2.1), of course, are not identical to the original ones (2.1.8), in spite of
some resemblance. The derivatives (2.1.8) relate to the interval of time << 1 (time of
action of the perturbation), whereas the characteristic time for the derivatives (2.2.1)
should be »» T (period of action of the perturbation). This means that both the differen-
tial equations (2.2.1) and the difference equations (2.1.11) contain some information about
the solution of the original system (2.1.8) during the perturbation period, as noted above.

Let us further point out that Egs. (2.2.1) agree exactly with the equations (1.3.53) in
Section 1.3, describing single rescnance. Consequently, in the approximation under con-
sideration there is no interaction of resonances and the motion has the character of limited
phase oscillations (Section 1.4).

Let us consider these phase oscillations more thoroughly for model (2.1.15). The dif-
ferential equations in this case take the form:

;,:} = —g—_- Con -?J.r"rrb
o L (2.2.2)
v oz T T

where k is an integer. The universal Hamiltonian (see Section 1.3} is equal to:

H, u;% (‘-‘4-*'* 2?&) . R 27 @ (2.2.3)

J

]

The most important characteristic of a non-linear rescnance is the width of the sepa-
ratrix determining the region of influence of the resopance. In the present case it is

(Section 1.4):
sl '/_i_
@"’)H = T (2.2.4)

The approximate replacement of the difference equations by the differential ones
(2.2.1) is thus equivalent to taking into account a single rescnance. Let us show this
directly. For this let us return to the original equations (2.1.8) which for model
(2.1.15) take the form:

o = £ ‘;Ef, Cr{if-lt Tf;?: Cas 250

Fergl (2.2.5)

& =it
25

&
s
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Now by expanding the periodic é-function inte a Fourier series, singling cut, as usual,
the resonant harmonic, for which Tw = 2rk and inserting ¢ = 8 - kt/T, we obtain exactly
system (2.2.2).

Let us consider more accurate conditions under which the difference equations (2.1.11)
can be replaced by the differential equations (2.2.1). For this it is evident that the
following inequalities must be satisfied:

J;

LER)

-I, =al<«<1; Ay << 1 (2.2.6)

In order to satisfy these inequalities it is necessary first of all for the parameter
€ << 1. This is not, however, an additional limitation, since we always consider the per-
turbation to be small. Further, the value Tw must be near to a multiple of Im:

['l’“m-i.rrkj << 1 | (2.2,

(8]
(5 ]
|
p—

This condition in its turn can be broken down into two: firstly, the initial de-
mming must be small:

| To. - 27k | << 1 (2.2.7")
and secondly, the variation of w in the process of motion must also be sufficiently small:

'T-(_dm)H << 1 (2.2.8)

Let us show in example (2.1.15) that condition (2.2.7') is wmimportant. Since it is
not connected with non-linearity, let us assume that the system is linear, i.e. that
w = wy = const. In this case the second equation (2.1.15) gives R ndy/in:

By = Tuwy, whence:
o

= i

O, = W, + £ &,4(.?3-% + KB, ) (2.2.9)
k=4 '

. The latter sum permits a simple estimate:

J et'fh-f)&, (2.2.10)

= i

R apty, + kb,
2. e X3 -5
k =4 i- e “
Its value is always small except for the resonance regions, where condition (2.2.7") is
fulfilled.

Ju,‘~m“|=21&

In the general case thig force f(y) in a transformation of type (2.1.15) has all the
harmonics: £(y) = quq »32'1'”":11Ill and then the sum (2.2.10) diverges for any rational @./2w.
But this simply means that, besides the main rescnances wT/2rm = k (integer) in (2.2.2)
generally speaking the resonances of the higher harmonics wT/2w = r/q (rational) should
also be taken into accoumt. This question will be discussed in Section 2.7. Going on
ahead, let us note that for a sufficiently rapid decrease in the amplitude of the harmonics
£ 4 with the growth of q, the resonances of the higher hammonics can be neglected.
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There thus remains one important condition for the validity of the approximation hy
a single resonance, and precisely condition (2.2.8) which agrees in order of magnitude
with inequality (2.1.3), since in the present case the distance between the resonances
b= 2n/T.

So far we have restricted ourselves to the first approximation only, taking into
account some rough effects of the second approximation. Naturally the gquestion arises as
to whether some fine effects of the higher approximations qualitatively change the solution
after a sufficiently long time; in other words, are there not seme kind of cumilative cor-
rections of the higher approximations?

The ¥BM theory enables us to construct a solution in the form of an asymptotic
series in powers of the small parameter e, the residual term of which is of the order of
Ry v gl o !]. Such series, as is known, diverge and therefore there is no guarantee
against exponentially small error, say ~ t -« E-AHE. It is true that if the system has
finite damping the asymptotic solution remains valid for any t when there is a sufficiently
small fixed e ’]. However, for conservative systems the question remains open*}+

The practical construction of asymptotic series is a highly laborious task. Apparently
the best technique for such construction was devised by Kruska1®).

8
], a new

Only relatively recently, in papers by Kulnngurvvlg}, Arnoldnu} and Moser
technique for constructing convergent series was developed, which makes it possible in some
cases to solve the problem of the stability of the motion of a conservative system in an
infinite interval of time“'}. This progress was possible because the problem was formulated
in a different way. The perturbed trajectory is generally calculated for given initial con-
ditions. In the averaging mgthodsj the calculation of the variation of the frequencies of
the motion in each successive approximation plays an important part; this makes it possible
to avoid trivial secular terms®). Instead of this in the KAM theory the perturbed trajec-
tory, or rather the invariant surface (torus), is calculated for given frequencies and the
torus shifts a little and becomes deformed in the phase space in each successive approxi-
matien. In other words, in the KAM theory a different principle of splitting up the phase
space into trajectories is applied. It turns out that in order to conserve such tori in
the presence of perturbation it is necessary, firstly, for the system to be non-linear and,
secondly, so that the frequencies of the motion on the torus shall have some special arith-
metical properties, roughly speaking, it is necessary for their quotients not to be too
close to rational numbers (see Section 2.1.2). The change in the formulation of the prob-
lem and the success in solving it are connected with precisely this latter condition. How-
ever, this condition is of a rather specific nature, it is not physical. Although the in-
variant surface of the unperturbed system has "good" frequencies with a probability of
unity, arbitrarily near to it are surfaces with "bad" frequencies which are destroved by
the perturbation. In a real system it is not possible to distinguish between these two
kinds of invariant tori. Thus real conclusions on the stability of the motion can be drawn
only for a two-dimensional autonomous or a one-dimensional non-autonomous system. In this

*) In the case of small damping some effects may also be missed. See Section 2.10.

**) From now on we will refer to these papers as the KAM theory.
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case the invariant tori are inserted one inside the other and thus the "bad" tori are con-
fined between the '"good"' ones, which ensures general stability of the motion independently
of the mythical arithmetical properties of the freqUEﬂﬂiES.]- For the many-dimensicnal
case the question remains open for the present; there is only an example of instability
constructed by Arnoldzz}. This question will be more thoroughly discussed in Section 2.12.

Thus, in the limiting case of s + 0 (2.1.3) the motion of a system of the form (1.1.1)
actually has the character of limited stable phase oscillations. However, in its present
state the KM theory does not make it possible effectively to estimate the critical value
Eerp The existing Estimﬂteszu} are clearly too low by many orders of magnitude. The
numerical experiments (Chapter III) show that E.p 15 of the same order of magnitude as the
border of stochasticity s ~ 1.

2.3 An elementary example of stochasticity

Let us go over to the sclution of the system of difference equations (2.1.11) in the
case when condition (2.2.8), or inequality (2.1.3) which is eguivalent to it, is violated.

Let us begin with an elementary example. Let us consider model (2.1.14), rewriting
the equations in the form:

Dppg = @t L (g -12)

(2.3.1)
‘;P._*-., = 2] t.-'!‘)Im. + T“-}u+ ETC‘""’-«" {-}‘1-)}
Condition (2.2.8) in the present case may be written in the form [see (2.2.4)]:
eT » 1 (2:3:2)

The second of the equations takes on essentially the character of phase extension with a
coefficient eT. Thus it can be replaced in its turn by a model transformation of the form:

tlbuf-«f = J"{"' b o } (2:3:3]

It is difficult to imagine 2 simpler (and rougher) model of a dynamical system.
Mevertheless, it emables us to trace the most important features of the phenomenon of
stochasticity. Moveover this is the only model whose properties are completely known and
furthermore in the form of rigorous mathematical theorems with all the necessary conditions i
and res.arvations“:'. It can therefore serve as a safe point of departure, from which we
will endeavour to progress further by means of less rigorous methods of qualitative esti-
mates, physical (model} considerations and mumerical experiments.

*) We shall call this case one-dimensicnal.

#*] The main results are in the papers by Rokhlin”] and Pbstnikmf“].
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When k > 1 the motion of the system (2.3.3) has all the attributes of a randem pro-
cess so far known -- ergodicity, mixing and pesitive K-entrcpyzz’ (see below). As men-
tioned above, we shall call such systems stnchastic*j.

The ergodicity of system (2.3.3) means the uniform distribution of the sequence y_ in
the segment (0,1). The mixing is closely connected with the correlations in the system.
Let us consider several different trajectories with initial conditions: wuflj. wu{7]. — ,H[T].
Let us conbine them in one trajectory of an r-dimensional point (3,0, ..., y ). e win1
speak of the absence of r-fold correlations in the original system (2.3.3), if the combined
r-dimensional system possesses ergodicity, i.e. if the trajectory of the point [wntl}, o ;nfrj}
uniformly fills the r-dimensional hypercube when n + =,

What is known as weak mixing means the absence of pair (twofold) currelaticrns"]+
The term “weak' shows that this property is not sufficient for obtaining stochasticity.
It turns out®®) that with weak mixing only, the continuous distribution function (of the
ensemble of the systems) in the phase space even in the steady state undergoes strong,
although also infrequent, variations; this is umsatisfactory from the point of view of
statistical mechanics. Let us recall for purposes of comparisen that when only ergodicity
is present there is no steady state at all, but the distribution fumction varies almost

periodicallyzsj.

Infrequent but strong oscillations of the distribution function when there is weak
mixing are apparently due to the higher correlations (r > 2). If the distribution function
relaxes to a steady-state function (constant), i.e. if the oscillations of the distribution
fuinction decrease infinitely when t + =, one talks of strong mixing or simply mixing. It
is natural to assume that (strong) mixing is equivalent to the absence of correlations of
any multiplicity*}. In order to give a full picture let us mention, going on a little
further ahead, that in the special but very important case when the relaxation process goes
according to an exponential law, one speaks of the positive K-entropy of the system.

By virtue of the ergodicity, the correlations of several trajectories are equivalent
to the correlations of several points taken successively in the same trajectory:
{wh[‘], s Wn[r}] + (bnvkys +++» Ynvk,_ ). However, in this case all shifts in time
between the points [|ki - kj|} must increase infinitely with the growth of n. Correlations
with constant shifts are called autocorrelations. These always exist in a mechanical
system, since its motion is unambiguously determined by reversible dynamical equations.
Thus mixing means asymptotic (i.e. with Iki - kjl + =] dying down of the 