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CHAPTER 3

WUMERICAL EXPERIMLNTS

This chapter gives the collected results of numerical experiments with the elementary
model, which is apparently the simplest but is at the same time adequate for the basic prob-
lem concerning the motion of a system of weakly coupled non-linear oscillators. In this
chapter we shall mainly study the basic criterion of stochasticity according to the over-
lapping of resonances, and also some details of the structure of the motion of a system with
divided phase space. In our opinion the experimental results cbtained below form a suffi-
ciently reliable basis for the theory of stochasticity developed in this paper. Further
experiments with more complicated models will be presented in the next chapter.

3.1 General remarks

In the last chapter by means of semi-qualitative physical considerations we established
the existence and estimated the position of the border of stochasticity for a one-dimensional
non-linear oscillator under the action of external pericdic perturbation. This is the main
result given in this paper. Unfortunately, attempts at rigorous mathematical analysis of
the problem have so far met with insurmountable difficulties, due mainly to the very coin-
plicated structure of the phase plane of the system (see Sections 2.8 and 3.3). Under these
conditions it is natural to tumn to experiments. In the present case, however, it is not
necessary to carry out “'real" experiments, i.e. to ocbserve the motion of some kinds of real
mechanical systems; furthermore, this is not so simple to do from a technical point of view,
since conservative systeus are what interest us most. Apparently the best approximation
would be the motion of protons in colliding beam storage 'r'in,gs‘"']+ However, no such rings
have yet been built”}. A rather less suitable experiment (because of radiation darping) is
the motion of electrons in a magnetic trap undey ultra-high vacuum. Such experiments have
been carried out®'~®?) with interesting results, which will be discussed in Section 4.4.

Of course, the chamm of "veal" experiments is that in investigating even the simplest ques-
tion one may encounter a new fundamental law of nature by chance. However, if we limit our-
selves a priori to so-called "'constructive" ph}fsicst} {see Introduction), i.e. solely to the
consequences of firmly established fundamental laws of nature, in the present case the laws
of mechanics, a much simpler and in a sense more powerful method of investigation is what
is known as mumerical experimentation, which in the present case is taken to mean numerical
% integration of the equations of motion by a digital computer. Of course, one can consider
the computer itself to be a specific mechanical system and calculating in it as a special
case of a 'real" experiment, exactly as, let us say, the motion of electrons in a magnetic
trap can, in its turn, be considered as an analogue (electronic!) computer. MNevertheless,
this "special™ case (the computer) is sharply distinguished by its unusual, or ocne could
say unlimited, flexibility, bearing in mind the principles of construction of the computer
and ignoring the merely technical limitations of the present day. Of course the latter
mist be carefully taken into account; as in any experiment, they determine its ultimate pos-
sibilities. For the computer the main limitations are:

*) This apparently not very felicitous temm is used to signify such wide areas of physics
as, for instance, statistical physics or chemistry (see below) as distinct from the
narrower and more specialized problems of technical and applied physics.

**) The author is happy to be wrong now on this point after the successful putting into
operation of the first proton Intersecting Storage Rings (ISR) at CERM.
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al computation speed (v 10° operations per second for typical present-day computers;
b)  operational memory size (v 107 bits);

c¢] mumber of (binary) digits of the mantissa, on which the computing accuracy depends,
and also the degree of continuity of the quantities in the computer presentation (= 50].

The best type of dynamical system for computer experiments is a cascade, i.e. a trans-
formation with discrete time. With the above-mentioned limitations one can confidently
work in times ~ 10% steps (iterations), rising in individual cases to 10! steps
(Section 3.3). On changing over from a cascade to a flux, i.e. to differential equations,
the situation deteriorates considerably, since in order to ensure reasonable accuracy one
is obliged to take an extremely small integration step and the actual duration of the pro-
cess under investigation is considerably reduced. The situation is extremely bad for the
integration of equations in partial derivatives, especially many-dimensional ones; here the
operational menery of the computer is utterly insufficient. In this comnection we wish to
draw attention to a computing system of a new type, "Illiac-4", now-being installed at the
University of Illinois (USA), which is a combination of 256 central processors of ordinary
computers®®) [see also Ref. 87)]. For a certain class of problem, including the integration
of equations in partial derivatives, the effective computation speed of this machine reaches
10* cperations per second. This would be indeed an enormous step forward in the technique

of numerical experimentation!

Thus we must turn to numerical experimentation. Of course, the laws obtained by this
method must also somehow be derived by simple deduction from the equations of motion. The
ergodic theory works in just this way. It is interesting to note that the difficulties oc-
curing here are connected not only (and probably not so much) with proving the corresponding
theorems, but also with formulating them. For, the more complicated the phenomenon the
greater the quantity of increasingly intricate conditions that have to be introduced in
order to ensure the "mathematical rigour'" of the theorem. Therefore, in a mmber of cases
the result can be cbtained much faster by inductive means (as in fundamental physics), i.e.
by means of peneralization, extrapolation, analogy, check experiments, etc., with the
specific aim of constructing an approximate theory and, what is more important, the whole
system of notions and medels connected with it, which enable us to approach the practical
problems of applied physics. It is therefore natural for the main value attaching to ex-
perimentation in this region to be heuristic, i.e. it should help us to guess a correct ap-
proximate theory or at least to understand correctly, even though qualitatively, the funda-
mental features of the phenomenon concerned. Therefore, it is not necessary for us to
integrate the very complex equations of motion of real mechanical systems, it is sufficient
to examine the most simple models that-are adequate for the main problem. It is evident
that the correct choice of a model is also one of the main difficulties of such experimenta-
tion.

The conception under discussion is generally well-known and widely applied in such
areas of "constructive" physics as oscillation theory, hydrodynamics, statistical mechanics
and even chEmistr}r-]. Here we should like only to point out again two important aspects:

*) See for example the very interesting Hobel lecture of Mulliken!2®) where he says in
particular: "... I should like once more to express my conviction that the age of compu-
tational chemistry has already begun, when hundreds (if not thousands) of chemists will
switch from laboratory work to computation for the study of newer and newer problems'.
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firstly, the need to combine experimentation ("real" or mumerical} with analytical theory,
even though semiqualitative, without which it is completely impessible to orientate onezclf in
the inexhaustible sea of phenomena of applied physics; secondly, any use of numerical ex-
perimentation is just a heuristic method and not simply a way of obtaining specific numerical
data ),

In this connection it should be noted that perhaps the main advantage of numerical ex-
perimentation, apart from its simplicity and convenience (when there is a good computer
available!) is the possibility of extremely "pure", i.e. fully controlled, organization of
the experiment and extremely flexible variation of the conditions, unattainable in a "real"
experiment. Furthermore, a computer offers wide scope for processing, including logical
processing, of computation results, even without output from the machine, and these possi-
bilities are beginning to be used also in "real" experiments, for instance by on-line com-
puters. The main drawback of mumerical experiment, better termed "apparatus" effect, which
needs careful watching, consists of so-called "computation errors", which boil down to
round-off "errors", i.e. connected with the finite mmber of mantissa digits in the computer.
The space of all quantities in computer experiments can be said to be "quantized". This
"apparatus'" effect will be thoroughly discussed in Section 3.3.

Below we describe mumerical experiments with the most simple models specially constructed
for investigating the fundamental characteristics of stochasticity. In the next chapter we
shall deal with some applications of the theory developed to more or less practical problems.
The mmerical experiments carried out in this comnection may also be considered as a continua-
tion of the experiments with the most simple models, although they are already considerably
more difficult to interpret on account of the much greater complexity of the corresponding
dynamical systems. This last remark applies also to the incomplete numerical experiments
with the most simple many-dimensional system, described in Section 3.6.

Quite a mumber of papers have appeared recently on the subject of mumerical experiments
similar to those described in this and the subsequent chapters. Perhaps the closest results
are those obtained by Hénon and Heiles®?) and Greene'’). References to other papers are
made in the course of our report.

In what follows, for the sake of brevity we shall replace the term "numerical experi-
ment' by the term “experiment'; this will not lead to misunderstandings, since everywhere
in this paper except in Section 4.4 we mention only numerical experiments.

The majority of the experiments described in this chapter (except for Section 3.6) were
carried out on the BESM-6 at the Computing Centre of  the Siberian Section of the USSR Academy
of Sciences, in co-operation with Israelev.

*) There is a very interesting discussion of the heuristic role of the computer in an even
wider class of so-called mathematical experiments, not nec&ﬁsarily connected with the
integration of differential equations, in a paper by Ulam®?). It is also extremely use-
ful permanently to associate computer experimentation with the experimenter's theoretical
conclusions. This continuous link between man and machine has even been given a special
name, the "synergetic approach" ®3,%%), It seems to us, however, that this is a typical
experimental situation and the "synergetic approach' can be considered simply as a
special case of "real" experiment.




3.2 Choice of model and processing
of computation results

The detailed analysis made in the previcus chapter showed that the phenomenon of sto-
chasticity can be reduced, ultimately, to an elementary model (Section 2.4), which for con-
venience we will re-write again in the form:

w'={¢+ k p(¢)] (3.2.1)
gt <P gl

where the brackets signify, as usual, the fractional part of the argument. The possibility
of simplifying the problem in this way is due, in particular, to the fact that the elementary
model describes the motion in the stochastic layer near the non-linear resocnance separatrix,
which is the "nucleus' of any stochasticity (Section 2.6). Therefore our basic experiments,
described in this chapter, were carried out with the elementary model (3.2.1). Only in the
last section shall we introduce the results of some experiments with a many-dimensional
system. The model for these experiments, close to the elementary model, will be described
there (Section 3.6).

The form of the fumction f(y) in (3.2.1) ("force") was determined mainly by reasecns
connected with choosing the case that would be the simplest for computing while being non-
trivial. Nun-triviali}y signifies the presence of "islets" of stability in the stochastic
component, or of quasi-resonances (Sections 2.8 and 3.5). An example of a trivial "force"
is the f1.:1’|u::ti::rn*]|

ke ()= ¢ - 1/a (3.2.2)
| £

for which stochasticity was rigorously proved recently by Oseledets and Sinai under the condi-
tion of local instability (Section Z.8).

The "saw'" type "force" used below is of the same type:

' _J¥-1ri psif
F#) My -y, ¢z

(3.2.%)

However, if we "smooth out" the peaks of the "saw" by the quadratic function:

e ) = {}‘* S A(g-1/0 )" | (3.2.4)

for ¢ = | and similarly for ¢ = 0; 1, this "smoothed-out saw" is already a non-trivial "force",
since these quadratic sections lead precisely to the formation of regions of stability
(Section 3.5).

*) Trivial only in the stochastic region but not in the region of Kolmogorov stability
(see Section 3.3).
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In the majority of the experiments use was made of the most simple non-trivial "force™:

£ly) = ‘f"a-'f“ + /¢ (3.2.5)

Here the minimum number of multiplications was chosen and the linear term (—y) improves the
smoothness (only the derivative is discontinuous); the coefficient 1/6 eliminates the con-
stant drift @ (< £ > = (), leaving only the diffusion.

For some control experiments an analytical "force! ) s used:

fie LT o)
Lly) = Jew 2z y (3.2.6)

25

Finally, for the study of stable regions use was made of the transformation:

B 3
;: 5 f;;ﬁ B

which is essentially equivalent to the elementary model (3.2.1) (with £ = -y}, but does not
contain the factor k ) and what is most important, makes it possible to avoid taking the
fractional parts (for stable trajectories). As a result a record Cﬂm'pj'.’ltatiﬂn speed was
achieved for the latter model -- 7 psec per step (3.2.7), while the computing speed for
model (3.2.1) with a "force" (3.2.5) was about 20 usec per step. In order to achieve maxi-
mm computation speed the program was written in computer language. In particular, it was
possible to fit all the main loop of the computing of transformation (3.2.1) proper in the
fast registers of the BESM-6, which obviated the need for relatively slow access to the
operational memory. Moreover, the normalization and roumd-off were suppressed, i.e. in fact
fixed-point was used; this further increased the computation speed.

The main output data was a histogram of the distribution fimction of the trajectory in
the phase plane, i.e. the number of times the trajectory entered each of the bins of the
phase square. It is not given, as a rule, on account of its extreme cumbersomeness even for
very rough subdivision of the phase plane (32 x 32 bins, 1024 nlmi}ers:]”*]+ On the basis of
the histogram a much more compact phase map can be constructed (see for example Figs. 3.3.1
and 3.3.2), which records only the fact of whether or not the trajectory enters each of the
bins.

The finest division of the phase plane in order to obtain the histogram was
128 » 128 = 16384 bins. For a phase map it is not necessary to occupy a whole word of the
machine memory for each bin, it is sufficient to use one binary nri:igit“']+ This makes it pos-
sible to increase the mmber of bins to 512 = 1024 = 524288. With this mmber of bins the

*)} The factor 2m in amplitude was introduced for easier comparisom with (3.2.5).
**) The introduction of this factor into (3.2.7) is equivalent to the transformation

¢+ vk b+ gV

***) See also Section 3.6 where individual sections of similar histograms are given.
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Fig. 3.3.1: Fhase map of system
(3.2.1) for "force" (3.2.5); di-
vided into 32 % 32 bins: k = 1;

Wo = 0; he =0.765; t=5x10°

steps; the stochastic region is
hatched; the bins completely free
from the trajectory are shown by
an unbroken line; between the un-
broken and dotted lines are bins
with considerably less density of
trajectory (only part of the bin
occupied by the stochastic com-
ponent); the small circles repre-
sent the stable trajectory with
initial conditions W, = 0;

g = 0.460; t =5 % 10°.

Fig. 3.3.2: The phase map for
"force' (3.2.5): 128 = 128 bins;
k=0.2; t=35=x10"; the
stochastic component is hatched.
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output of even a phase map becomes impossible, and one has to limit onself to computing the
empty and full bins and to the output of characteristic sections of the phase plane map

(see for example Fig. 3.5.2). Let us note that all array dimensions for the distribution
funmction and phase map were chosen equal to some power of two, which considerably simplifies
programing in computer language. Some special processing methods will be described below.

3.3 Kolmogorov stability

Let us begin with a description of experiments on Kolmogorov stability. It should be
recalled that this means the existence of non-resonant invariant tori®®), which for system
(3.2.1) have the form of curves crossing the whole of the phase square along the axis 1,
In particular, for an unperturbed system (k = 0) they are simply straight lines: ¢ = const.
According to the KAM theory (Section 2.2) this invariance does not, generally speaking,
extend to the resonant regions, situated for transformation (3.2.1) in the vicinity of ra-
tional values of the momentum:

s il :
$ = 7 (3.3.1)
T,q are integers. If the resonances of this system overlap, the non-resonant tori, and with
them also the Kolmogorov stability, vanish.

According to the estimates in Section 2.7 under the condition:
s o (3.3.2)

overlapping of the resonances of the higher harmonics (of the first order) takes place for
any k -+ 0.

For "force" (3.2.5) & = 0 (discontinuity of the first derivative) and therefore it can
be expected that there will be no Kolmogorov stability for any k. Figure 3.3.2 gives the
phase diagram for k = 0.2. It will be seen that the stochastic component crosses the whole
region along §, leaving only isolated islets of stability. This in fact signifies the
absence of Kolmogorov stability as determined above,

For smaller values of k, however, the region occupied by the trajectory is limited in
¥, at least during the computation time t, = 10%. Moreover, towards the end of the motion
(t = 0.7 % ty), no diffusion at all can be observed to within the size of the phase bin
(M = 1/128).

For the other “force" (3.2.3) with the same smoothness parameter £ = 0 the stochastic
component remained limited in { even for k = 1 during t = § x 10°.

At present it is not quite clear whether this means the existence of some region of
Kolmogorov stability, i.e. incomplete overlapping of resonances, or a very small diffusion
coefficient. It can be asserted only that the resonance regions occupy a considerable part
of the phase plane, since out of ten randomly chosen initial conditions [for “force" (3.2.5),
k = 0.01] it turned out that four lay inside resonances of high (q ~ 100) harmonics (motion
limited in ¢), six fell in narrow (4 ~ 107*) stochastic bands (probably destroyed separat-
rices) and there was not one case of Kolmogorov stability. A summary phase map is given in
Fig. 3.3.3. The resonance regions can be clearly seen inside the stochastic bands. However,
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Fig. 3.3.3: Summary phase map of the motion of system (3.2.1) with a
"force" (3.2.5) for different initial conditions k=~ 0.01; t = 107,

the size of the given section of the phase plane (a‘-,".jl,é.dr} is 3/512 = 1/128;
it is divided into 374 = 128 bins. The wide ergodic bands are hatched;
the narrow regions (one or two bins wide) represent stable trajectories
inside first order resonances.
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the most interesting feature of the motion in our opinion is the overlapping stechastic
bands with diffusion limited in. This shows especially clearly the extraordinarily com-
plicated structure of the phase plane of the system under consideration, if moreover it is
taken into account that the bin size (&,4¢9) in Fig. 3.3.3 is approximately
(3= 107%) = (6 = 107F).

A no less interesting case is illustrated in Fig. 3.3.4 ‘], which gives the phase
map of the motion for "force" (3.2.3) and k = -1.145. Here the grey circles show the region
of the phase space actually occupied by the trajectory of motion, and the black circles and
crosses represent the periodical extension of the "grey" region along the axis §. Eoth
regions overlap (the overlapping bins are represented by crosses), nevertheless the diffusion
is limited by the "grey" region, at least during the computation time (3 = 10* steps). This
shows that there are possibly very narrow gaps in the set of overlapping resonances of dif-
ferent harmonics. A similar hypothesis was discussed in Section 2.7.

It is possible to explain the stopping of the diffusion in a completely different way --
attributing it to so-called "cycling', i.e. the appearance of periu-;iical motion because of
the finite mumber of points of the computer phase space (see below). "Cycling" is facilitated
by the fact that in some segments along § the diffusion can be very slow (Section 2.7).

In order to verify the above assumptions, experiments were carried out with an artifici-
ally reduced number of mantissa digits. This was done by "cutting off' the lowest digits of
¢ and y after each step of the transformation. Some of the results of these experiments are
given in Table 3.3.1, which gives the mwber of bins of the phase square (out of 16384) fil-
led by the trajectory, depending on the mumber n of binary digits of the mantissa "cut off",
for two values of the parameter k.

If gaps are the reason why the diffusion stops, then an increase of n should facilitate
diffusion on account of '"jumping" over these gaps; if the ''cycling” is responsible, the op-
posite effect should be observed, since "cycling" appears more easily when there are less
digits. From Table 3.3.1 it can be seen that the dependence of the diffusion on n is of a
complicated and contradictory nmature, and it is possible that both factors are operative.

In any case this question requires further study.

Table 3.3.1

fr. 0 3] 11 14 15 1153 25
(é = 0,148 ﬁﬁlﬁ 4528 11273] 13807 GE8a | 14427
Kk = 0.03 1246 gos | 144

*) This drawing is borrowed from Ref. 76 where a similar problem was studied.
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Fig. 3.3.4: Phase map of model (3.2.1) with a "force" (3.2.3):

k

= -1.145; t =3 x 10°. The black circles and crosses represent the

periodical extensmn along the axis @ of the region occupied by the
trajectory and denoted by grey circles; bins common to both regions
are marked by crosses.
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Let us note that a similar effect of stopping the diffusion had also been observed
earlier in numerical experiments by Courant®’) and Hine®3). Thus the motion in this case is
in a sense even more stable than could be expected from the first approximation (Section 2.7].
Nevertheless cne has the impression that in the case studied (L = 0) there is in fact no
Kelmogorov stability outside the resonances, in accordance with the estimates of Section 2.7.
According to the results of Ref. 76 the same apparently takes place for the case & = 1,
whereas for £ = 2 the results of this paper are not incensistent with Kolmogorov stability,
again in accordance with the results of Section 2.7

Fig. 3.3.5: Fhase map for the analytical "force" (3.2.6): 128 x 128 bins;
k =0.62; t = 10". The hatched region represents the stochastic layer in
the vicinity of the separatrix of the main resonance.

For purposes of comparison Fig. 3.3.5 gives the phase diagram of system (3.2.1) with
an analytical force (3.2.6), for which the amplitude of the harmonics decreases expomentially.
It can be seen that there remains only a small unstable band along the resonance separatrix
(Section 2.8). Recent mmerical experiments!'®*) seem to point in the direction of the former
cause, i.e. the existence of extremely thin gaps of less than 107'?, since for double pre-
cision computation the diffusion drops considerably.

It is inconvenient to use force (3.6.2) for mumerical experiments, since it takes too
long to compute the sine. It was therefore used only for the check experiments (see below).

Let us now return to the isolated stable regions which can be well seen in Figs. 3.3.1
and 3.3.2. They lie inside the resonances of various harmonics. The largest region of
stability corresponds to the basic resonance g = 1, although in Fig. 3.3.2 one can distin-
guish stable regions of resonances of up to the fifth hammonic inclusive.

The reason for the increased stability of these regions is that the trajectories here
are limited in | (see for example Figs. 3.3.1 and 3.3.6) and do not generally speaking cross
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the singularity of the "force" f£(¥}. On the other hand, the ¥AM theory also applies, with
some modification’”»'7%:7%)  to the internal region of the resonances. It leads to the con-
clusion that under specific conditions there exists a sufficiently small stable region
around an elliptical point (around the pericdical solution, in the general case). The size
of the stable region is determined in the present case by the width of the stochastic layer
in the vicinity of the separatrix. It can be estimated by the formulae in Section 2.6, or
according to local instability (Section 2.4). In particular, the complete disappearance of
the stable region in Fig. 3.3.1 corresponds to the transformation of the elliptical point of
transformation (3.2.1} from a "force" (3.2.5) (¥s = § - 1/¥12 = 0.21} into a hyperbolic
point. This takes place under the condition k = k5 /(1 - 2Pg) = 7 which can be considered
as a form of stochasticity criterion (Ref. 47, Section 2.4). Since for the case in Fig. 3.3.1
k=1 << 7, the stable region must be of a considerable size, determined in practice by the

singularity £(}) at the point ¢ = 0. The same conclusion can be reached by considering the
parameter of destruction of the separatrix s, = m:fﬂm (Section 2.6), where the perturbation
frequency w, = 27 and the phase oscillation frequency is cbtained by linearizing transforma-
tion (3.2.1) at the point ¥ = ¥, which gives: 0o, = VZk. Assuming that s, ~ 1 we obtain:

ks‘ n 2n?,  The relation kéfkg “« 3 characterizes the accuracy of the estimate: s, ~ 1,

A fundamental question arises: is the approximate border thus determined the same
border of eternal stability whose existence follows from the KAM theory? In other words, is
not the border of stability in Fig. 3.3.1 substantially displaced if the time of the motion
is considerably incredsed?

Model (3.2.7) was chosen for carrying out this experiment. A similar experiment had
been carried out earlier by Laslett®!) with the transformation:

3
"?x: 7 * -{Fﬁ (3.3.3a)
Pl prgt (gt

The metion of this system is similar to the motion in the stable region in Fig. 3.3.1
["fﬂTCE" [3+2.5]]. The reason for choosing a more symmetrical transformation (3.2.7) was
connected in particular with round-off errors (see belew). Moreover, transformation (3.2.7)
has a "real" border of stochasticity, i.e. it has a region of strong stochasticity deter-
mined by the overlapping of the resonances, while the border of stability for transformation
(3.3.3a), as in Fig. 3.3.1, is determined by the destroyed separatrix, In the latter case
there is some indeterminacy in establishing the distance to the border of stochasticity,
since in any neighbourhood of the chosen initial conditions there are always destroyed
separatrices of resonances of sufficiently high harmonics. Unfortunately, in Ref. 91 the
position of the border of stochasticity was not determined at all, so that we can do no more
than make a rough estimate of it according to the criterion of local stability (Section 2.4},
which gives a value: q, 0.5. In this case the energy for the stable trajectory studied
in Ref. 51 is approximately 200 times less than at the border of stochasticity, i.e. this
trajectory lies far inside the region of Kolmogorov stability.

In order to find by experiment the approximate border of stochasticity in our case

(in a short time) an auxiliary system was used:




¢l = {el—8(t/-1)’
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the phase map of which is given in Fig. 3.3.6 for t = 5 » 10%, The fractional parts here
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Fig. 3.3.6: The phase plane of system (3.3.3); the notation is the same
as in Fig. 3.3.1; the ergodic trajectory corresponds to the initial con-
ditions @) = 0; ¢f = 0.830; the long computation trajectory ¢ = 0;

p§ = 0.735 is represented by small circles; the crosses Tepresent the
other stable trajectory near the second order resonance: Yo = 0;

P! = 0.803; for all three trajectories t = 5 = 10°,

are indispensable, since in the opposite case the trajectory in the stochastic region
rapidly Tuns to infinity: ¢-n W :;Jn " C{S ]; C > 1. By computation this leads to overflow.
The transformation coefficient 8 and the shift of ¢ by ] were chosen with a view to con-
venient arrangement of the stable region in a standard phase square 1 = 1.

From Fig. 3.3.6 it follows that the border of stability lies somewhere in the interval
0.6 < ¥, < 0.93 (¢ = 0). The more accurate measurefents of Ref. 76 lead to the value
= 0.80 (for t = 10°).
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Let us note that the position of the border of stahility cannot depend on the singu-
larity of the "force" connected with taking the fractional part in (3.3.3) (discontinuity of
the function £{4)). Indeed, the border in this case is clearly separated from the location
of the singularities (b = 0; 1)}; therefore the latter can in no way influence the trajec-
tories of the system that are located between the border and the singularities.

The stable (for t = 5 x 10%) trajectory, represented in Fig. 3.3.6 by crosses, lies
precisely on the border. However, it is not continuous, i.e. it may be situated in "islets"
of stability inside the stochastic region (see Section 3.5). This is just heow it is in
reality, according to Ref. 76. In this connection, a more "normal"™ trajectory was chosen
for the long computation, marked in Fig. 3.3.6 by small circles, for which ¢ = -0.67 (y = 0].
This is 12% less than the critical value for the phase and 40% less for the energy.

This trajectory was computed in t = 10'° steps. After every 100 steps the position of
the system was marked on a phase map with a minimm bin size [1;512 {in ¢} by 1/1024 (in ) ].
The trajectory occupied 1876 bins, and this number did not change for t > t, = 10%,

The latter value is of the order of magnitude expected, which can be estimated as

2
sz ~ ,_Z_ (3.3.4)

where L is the length of the trajectory (number of bins) and v = 1/100 is the frequency of
output on to the phase plane. The estimate is based on the assumption that there is "random
intersection of the bin by the trajectory, so that out of L bins there may be one in which
the length of the trajectory will be ~ L times smaller than the average.

In order to reinforce the result obtained, the following additional processing proposed
by Arnold was carried out.' In the lower horizontal segment of the trajectory with minimm
curvature (Fig. 3.3.6) a square was chosen with sides 27'% = 4 = 107%. Exact values ¢, |
of all the points (about 100) entering this square during t = 10° were printed out at the
beginning and end of the long computation. The values cbtained were interpolated as a straight
line by the least squares method, separately for the beginning and end of the long computa-
tion. The differences 4§ between the co-ordinates of the points and of the interpolation
line (&) = 0}, proportional to the distance of the points from this line, were plotted de-
pending on time (Fig. 3.3.7) and on ¢ (Fig. 3.3.8). The quantity Ay ™ 107'? serves as the
udiit length along the axis & and is equal to the maximm round-off error.

In Fig. 3.3.8 no correlations are observed between AP, ¥, for example, due to the curva-
ture of the trajectory or entry into a high order rescnance. It can therefore be concluded
that the scattering of the points is due to some "diffusion”. The diffusion process can be
especially clearly seen in Fig. 3.3.7. It may be due either to round-off errors or to the
fact that we have not yet reached the region of eternal stability of the KAM theory. In
order to check this last assumption the experiment was repeated for a trajectory lying con-
siderably nearer to the fixed point (Y = ¢ = 0) than the long computation trajectory
(p 1.7 times smaller, energy 2.9 times lower), and also for a trajectory lying further away |
(f 11% larger, energy 23% higher). In both cases the diffusion coefficient turned out to
be the same as for the long computation, so that the diffusion must be related to the effect
of round-off errors. i




4 A
hf 4-%“'"-.
X s ¢,
- !“': J'-_ﬁl 0
] p "'- ‘rm
.
. e ™
rrrrrrrrrrrrrrrr il —_"""-"'_Ef‘ B
!
-0t

Fig. 3.3.7: Weak diffusion due to round-off for transformation (3.2.7):
& is the deviation of the experimental points from the interpolation
straight line in units of the maximum round-off error (space ''quantum')
A = 107'%; ¢, = -0.316 (long computation); the points on the left
relate to the beginning of the long computation and those on the right

to the end.
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Fig. 3.3.8: Search for the correlation &, ¥ : O = the beginning of
the long computation; = - the end of the long computation (see

Fig. 3.3.7).
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It thus appears very likely that the long computation trajectory lies in the region of
eternal stability of the KAM theory. In other words, the strict border of stability for
transformation (3.2.7) is somewhere in the interval:

Q.6F < e < 2.8 (3.3.4a)

As already repeatedly noted [see for instance Refs. 89 and 90] the border of stability in
the general case is not simply a line, but there is a whole transitiomal region of alterna-
ting stable and unstable layers of increasingly fine structure, corresponding to higher
harmmonic resonances. Some of the regions are characterized by a relatively long time of
development of instability. So, for instance, according to the data of Ref. 76, when the
computing time is increased from 3 = 10° to 10% the border shifts from ¢ = 0.88 to ¢ = 0.80,
i.e. by approximately 10%.

This transitional region for the transformaticn in question (3.2.7) was thorvoughly
studied recently in Ref. 184 using double precision computation. It was found that both
boundaries of the region are rather sharp: the upper one is at ¢ = 0.62 (¢ = 0) where the
trajectory's '"lifetime' (up to running away to infinity) drops from t, 100 steps down to
t, vl in i 2 x 107%; the lower boundary is at § = 0.52, as compared with ¢ < 0.56
according to (3.3.4a) ’Ej, where the lifetime increases steeply from t, » 3 x 10% up to

ty * 10° in AP~ 3 x 107%. The latter must lie very close to the border of KAM eternal

stability since a stable trajectory was found (certainly in the region of Kolmogorov stability

in &4y = & = 1077 only. This trajectory proved to be stable with an accuracy better than
1072" (in ) during the computation time t = 107.

Although the example we have studied of a trajectory stable for such a long time is
(of necessity!) unique, it gives grounds for hoping that the position of the strict border
of stability according to the KAM theory can in fact be estimated in order of magnitude by
means of the relatively simple stochasticity criteria obtained in the present paper
{Chapter 2). In any event this correspondence has been observed in all (about 100} cases
of computation for a time t ~ 107.

The accuracy of this assertion is determined by the residual diffusion in Fig. 3.3.7,
which can be explained by round-off errors (see below). Let us note that this diffusion
does. not contradict the K&M theory, since the round-off errors are equivalent to some rough
{with a great number of fine discontinuities) perturbation, which is inadmissible for the

theory.

The residual diffusion coefficient is (see below): D=4 x 107*7. In Ref. 91 this
estimate was considerably reduced on account of the use of double precision computation:
D=1.6 = 107%', However, in the experiments in Ref, 91 there was systematic accumilation
of round-off errors (drift): Vq = dg/dt = 1.3 x 107*'. This value should be compared to
vD & 6 = 107" in our case, so that the accuracy achieved in Ref. 91 is all the same con-
siderably greater. It is true that the trajectory chosen in Ref. 91 apparently lies sub-
stantially further from the border of stochasticity and was computed in a considerably
shorter time (t » 10”). In this connection let us note that the increase in accuracy does
not necessarily compensate for the reduction in the time of motion, since instability may
develop according to an exponential law (see Section 3.6).

TR TEA
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From Fig. 3.3.7 it can be seen that there is a conspicucus stopping of diffusion after
t ~ 10%. This is apparently explained, at least in part, by "cycling', i.e. the appearance
of periodicity of the motion. "Cycling' necessarily occurs sconer or later as a result of
the finite number of points (S) of the phase plane in the computer presentation. The maxi-
mum possible time until "cycling" begins is obviously: T. = 8, after which one of the pre-
vious points of the trajectory is necessarily reached and consequently an exact repetition
of the motion begins. In the case under consideration S is determined by the area of the
ring along the trajectory, the width of which (d) depends on the scattering of the points
in Fig. 3.3.7: S=L-d=2x 10'* x 1600= 3 = 10'%, where L = 2 = 10'? is the perimeter
of the trajectory in units of maximm round-off error 4, = 107'? which is the computer space
"quantum'.

In order to obtain a more realistic estimate of the guantity T. we shall assume that
the round-off is characterized by "random" diffusion with a coefficient Dy (see below).
Then the probability of the trajectory arriving in one of the previous points in a step is
equal to the relative density of occupation of the phase space by the trajectories:

w(t) = t/L - d(t), where d(t) = 2vZ Dyt. The begimning of the "eycling" is determined (on
the average) from the condition: [ © wdt =1; this gives

£
PN i

Putting here the experimental value cbtained helaw*] Dy, = 4 = 107%, we cbtain: Tc =6 107,
This does not contradict the data of Fig. 3.3.7, but it also does not prove that the limita-
tion of the diffusion is necessarily due to the "'cycling”. This question will be discussed
further a little later on.

Let us note that in the Stochastic case L - d &~ L2 ~ § = 10**, and T_~ vS '~ 10'%, so
that "cycling" is completely insignificant. The diffusion coefficient can be determined
from the mean displacement {ﬁ?}r between the points in Fig. 3.3.7, which are separated by
an interval of time T:

- (2e)
'2)‘”, - *“-é-%ﬁ (3.3.6)

-The results of the computation of Dexp’ for all three trajectories (see above) are
given in Table 3.3.2, which also gives the mean values of the diffusion coefficients for
all the trajectories. Moreover, it gives the experimental root-mean-square errors, which
satisfactorily agree with the expected values. The variance between different values of
De ;» including those for various 1, does not substantially exceed the statistical errors.
The least probable are three small values of DExp for v = 10° (probability ~ 6%). However,
if rejecting the end of the long computation, which is possible, corresponds to “cycling”
and is therefore insignificant, the probability of the two remaining cases is increased to
16%, which is no longer a substantial deviatien.

*) Here and in what follows all lengths are in units of Ap.
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Table 3.3.2
| l
Long computation I

= -0.316 .
b b ¥o = -0.187 | § = -0.350 <D > |
Beginning End Il
10% 3.2x10° 3.5 x 107° 5.5 » 107° 4.3 x 107°? (4.1 + 0.9) = 107} E
107 5.7 x 10°1 2.8 = 107? 7.4 % 1072 1.5 x 10°? (3.1 £ 1.6) x 10-2 E
Ll B g B B N T L B [ 1.0 = 107* (1.9 £1.9) x 107 |

The distribution of large values of (&) 1 Was also studied. At the beginning of the long
computation they agree well with the normal law, and at the end there are two jumps, the
probability of which is ~ 1072, The latter may also signify the "cycling" effect at the
end of the long computation. If this case is refused, one has the impression that the
accumilation of round-off "errors" indeed follows a diffusion law.

The same result is obtained from an additional series of experiments with artificial
reduction of the mmber of mantissa digits by 2, 4, 8, 12, 16 binary digits out of 40. The
mean diffusion coefficient of this series is < D > = (5.6 = 1.2) x 107?, which agrees well
with the results in Table 3.3.2.

When 20 digits were 'cut off" 'cycling'" was cbserved for t = 10°. If estimate (3.3.5)
is applied here, we obtain T_ = 6000, i.e. almost 200 times less than the value cbserved.
This result can be explained, for example, by the strong correlations of neighbouring values
¢, . If this really is the main cause, strong correlation of approximately 200 neighbour-
ing values can be expected. This hypothesis is partly confirmed below when the diffusion
coefficient is calculated. If it is applied to the long computation, "cycling" can be
expected only when t ~ 10'°?, i.e. only at the very end of the long computation. Then there
must be some other reasons for the limitation of the diffusion after t ~ 10%, which can be
clearly seen in Fig. 3.3.7. The question as a whole requires further study.

It should be pointed out that according to the results in Table 3.3.2 if there is any
change in the diffusion coefficient it decreases rather than grows with 1. Hence it follows,
in particular, that within the limits of statistical fluctuations there is no permanent
drift, i.e. no systematic accumulation of errors. Let us write the upper limit of possible
drift in the form: V, = d(&¢)/dt = ,r'ﬂ;}'?e: 6 = 107% (in units of A.).

¥

The absolute value of the diffusion coefficient D.g = 4 x 10™? (Table 3.3.2) does not
correspond at all to the expected value for random errors (4). The latter can be calculated
according to the formula: D = <A*>/2. The quantity <A®> depends on the round-off algorithm.
In our case the lowest digits of the product were simply rejected, which corresponds to a
random quantity of A, uniformly distributed in the interval (-é.r, ﬂr]. Since in one step of
the transformation (3.2.7) there are two mltiplicatiuns*]. Ik, ®CAS 15, i.e. it is
approximately 80 times greater than the experimental value. This discrepancy may signify

*] Since we used fixed-point arithmetic (Section 3.2) there was no round-off when doing
addition,

a
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strong correlation of neighbouring errors. Let us assume, for example, that the correlation
L rl

decreases according to an exponential law: p =e '™ yhere n is the number of steps.

Using expression (2.10.5b) for the diffusion coefficient taking into account the correlations,

we obtain: mn, = 80.

Let us now have a c¢loser look at the accumulation of random errors, limiting ourselves
to the most simple case of interest to us in fixed-point arithmetic. In this case the error
is determined simply by the lowest digits of the product. But this operation is similar to
one of the standard kinds of pseudo-random number generator (Ref. 95, 96, see also Sec-
tion 4.7}. Thus, the problem of round-off error accumulation is brought mainly to the study
of various pseudo-random number generators. The specific mechanism of such a generator de-
pends on the computation algorithm. In the present case the generator turns out to be rather
poor, judging by the value of the correlation cited above. Precisely such a generator has
not been studied, as far as we know, but similar ones containing the squaring operation in
fact give poor results?®). If our transformation contained the operation of multiplying by
4 constant, we should obtain a generator of the type of system (2.3.3), which is stochastic,
with an encrmous constant k ﬂ;‘. Various tests of this generator show that it gives ran-
dom mumbers (usually called pseudo-random) of very good quality (Section 4.7). Accordingly,
in this case the accumulation of errors must take place according to a random law, This
last result is confirmed, apparently, by the data of Ref. 91 on the investigation of trans-
formation (3.3.8a), which contains just such multiplication by a constant. The "error dif-
fusion' in this case agrees with the merely random diffusion®!).

A slightly more complicated guestion is that of constant drift, which was observed in
Ref. 91 (V, ~q - &, ~ 107%!), but is absent in our experiment. There are apparently two
most important differences between the two experiments:

i) We used fixed-point arithmetic while Laslett®!) used floating-point numbers;

ii) Our transformation (3.2.7) is symmetrical with respect to the sign of ¥, ¥, in contrast
to Laslett's transformation (3.3.3a}.

Asymmetrical round-off was used in both experiments: < 4 > = &sz # 0, but for fixed-
peint arithmetic this is equivalent to a constant "force" in the equation for the '‘momentum",
which only slightly displaces the trajectory of the system; in the case of floating-point
arithmetic this "force" is proportional to the "welocity", i.e. it becemes "dissipative".

To be more precise, the "force" is proportional to the velocity modulus if, as is the case

for the majority of present-day computers, a negative number is represented in a complementary
code. But in such a case, for symmetrical oscillations the mean "dissipation' vanishes and
for asymmetrical ones it remains.

The most radical means of preventing drift is to introduce symmetrical round-off, which
is provided for in the majority of computers but requires additional time. Another method
is to change over to fixed-point arithmetic, if the algorithm of the problem permits. This
considerably increases the computing speed also, particularly if double precision is used.
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3.4 Stochasticity

In this section we will discuss the experimental results relating to the behaviour of
the elementary medel (3.2.1) in the region of stochasticiry, i.e. when k >> 1.

Is the motion in this case really stochastic?

Let us begin with K-entropy (Sections 2.3 and 2.4). For the experimental determination

of K-entropy Sinai's equatinn‘?] was used:

/ Do 2. 12 )
o= & {,H(é.’/f (3.4.1)
£=a /
where £, %' is the length of the transverse vector (Section 2.4) before and after the trans-
formation respectively, and averaging is carried out along the trajectory of the main motion.
We chose & = 10”7, so that for the largest value of k = 10° the value &' ~ 107% << 1.
Mumerical calculation of transformation (3.2.1) was carried out for two trajectories, the
initial points of which were T apart, and after each step of the transformation the length
-+
of the transverse vector (%) was brought to the initial value of & = 10”7 without changing
its direction.
An analytical estimate of the K-entropy is given by expression (2.4.21), which can be

made more accurate for the elementary model, on the basis of Sinai's equation (2.4.19):

! j;j *

Lo = Eadas s (3.4.2)
where }.; i5 the projection of »" in the direction of the asymptote, which generally speaking
is not identical with the direction of the extension eipenvector {a*}, if the latter turns
{Section 2.4.8).

However, for large kf' the direction of the eigenvector hardly changes, as can be easily
verified by using expression (2.4.14) or (2.8.4):

@ BT~ 1 - "/,éif" (3.4.3)
A narrow phase region near the stable phase region (2.4.7) is an exception:

-4< & Le) <0 (3.4.4)

the probability of entering which is ~ 1/k. In the main region the variation of
+
e n 1/k.

Let us note also that the regions of the values (sectors) Ef', 8" do not overlap for any
kf’. Indeed, it follows from (2.8.4) that the full range of variation of 8 is:

0 < o ¥ R (3.4.5)

and the range of variation of @ is precisely complementary to (3.4.5). In the majority of
cases the contraction vector is directed almost along the axis §:

T o {
éé’-_ (=07 %~ kg’ (3.4.6)
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Hence it follows that the asymptote practically all the time makes an angle of ~ 1/k
with the direction of the extension vector, only occasicnally [with a probability of ~ 1/k)
deviating by an angle of » 1. In this case one can put approximately: A 0 A" with an
accuracy of v 1/k. In fact the accuracy of this equality is even better, since the ratio
lafl+ varies both ways and partially compensates for the deviations. Let us explain in
this connection that A, is an oblique projection-of A along the eigenvectors, which are

generally speaking non-orthogonal (Section 2.4).

Thus the K-entropy can be estimated according to the formula:

h 2 < Bic XF = (3.4.7)

where the averaging is carried out over ¢, and in the stable region (3.4.4) one should put
A" = 1. Let us note that it would be incorrect simply to exclude all the stable phase
region (3.4.4) from the mean (3.4.7), since according to the data of the next section the
stochastic trajectory occupies almost all this region except for a very small fraction of
"islets" of stability.

The K-entropy was calculated for a "force" of two forms: (3.2.5) and (3.2.6). In the
first case the integral (3.4.7) can be calculated to the end and gives:

h=[H(Evi)+H(5-1)]/k
H (<) = X.gh(f-!-m) S (v S

(3.4.8)

In the case of force (3.2.6) an explicit estimate can be obtained, if use is made of
the approximate expression (2.4.6):

A= K L e IS e g
r kp/ a2 2 —éﬂ

{3.4.9)

where the sign is identical with the sign of f'. Limiting ourselves to the first term only,
the accuracy of the K-entropy estimate again will be a little better than ~ 1/k, since the
contributions from the subsequent terms almost counterbalance each other. For force (3.2.6)
we obtain:

4 :
[ Sdc.[:/ bu|kCosZog] = fp._‘;i (3.4.10)

=]

A similar estimate for force (3.2.5) gives:

box(bul) - 1 (3.4.11)
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The results in Table 3.4.1 enable us to compare the experimental values of the K-entropy
As already noted above, the initial distance between the trajec-
tories was chosen as £ = 1077, Increasing it to 107° changes the experimental value h from

3.615 to 3.72 [k = 100.2; force (3.2.5)]. The usual mmber of steps when calculating the
Reducing this figure to 10? leads to a

K-entropy according to formula (3.4.1) was t = 10°.
change in the K-entropy from 4.234 to 4.242 [k = 142.0; force (3.2.6) ]

The results in the table show the very good agreement between the experimental values
of the K-entropy and the analytical estimates, even the most simple ones [ (3.4.10), (3.4.11)].
This also shows indirectly that when k >» 1 (in fact, when k > 10, see table) the stochastic

component occupies practically all the phase plane of system (3.2.1).

with the various estimates.

Table 3.4.1

[ "Force' (3.2.5) "Force" (3.2.6)
& l Exp. Estimates Exp. Estimates
value  |i3a4.8) [(a4.11)| Value | (s47) | (3.4.10)
8,21 0,058 0.B0B 0.828 1.157 1,133 1.133 F
11,0 1.654 1.655 1.828 1845 1.848 1.848
25.0 2,241 2,226 2,218 2.637 2.628 2,526
50.0 2.814 2,813 2.812 3.227 3.218 3.219
100.2 3.615 3.808 3.607 3.814 3.814 3.914
142 3,838 - 3.855 3,058 4,234 4,263 4,263
200 4,308 4,288 |4.268 4,500 4,605 4,605
1000 5.9z6 5.008 5.e08 6.2068 6.215 8.215

This result is confirmed by direct experimental verification of the ergodicity of trans-
formation (3.2.1). In itself ergodicity is a weak property, completely insufficient for
stochasticity. However, when there is the additional condition of local instability of
motion almost everywhere, as is the case for our model (3.2.1) from (3.4.4) when k >> 1, the
establishment of ergodicity is decisive evidence of stochasticity, according to the latest

results of Anosov®!) and Sinai?*»'7),

A rough check of the ergodicity was made by a phase map with the smallest bins (512 =
From the results in Tables 3.4.2 and 3.4.3 it follows that for suffi-

1024 = 524288 bins).
From the

ciently large k the trajectory in fact goes through all the phase plane bins*]-
analysis made in the next section it will be seen that the stochastic component may neverthe-
less not occupy all the phase plane, but the area of the stable regions (and their dimensions)

decreases, generally speaking exponentially with the growth of k, and for special values of

k proportionally to k™%,

*] With regard to the last three cases in Table 3.4.3, see next section.

e e
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Table 3.4.2

"Force" (3.2.5)

1 |
X 4 8 | 1s 2 |

Number of empty bins 40038 B0

Fraction of i
the area x 10°% 8000 | 114

| i

Total mumber of phase plane bins = 512 % 1024 = 524288

Table 3.4.3

"Force' (3.2.6)

y’ 3,67 478 | 588 [s.84 | 105 |23 | 377 | 50,3

bins 4BB58 | 10282 | 1681 24 0 [ 45 & 4

Mumber of empty ‘
|
]

Fraction of
the area = 10° 2300 1900 320

Total mumber of phase plane bins = 524288

A finer check of the ergodicity consists in investigating the uniformmity of the occupa-
tion of the phase space by the stochastic trajectory. For this the phase square was sub-
divided into My = 128 x 128 = 16384 bins and the number of times the trajectory entered each
of the bins (n;) was calculated. The criterion of uniformity used was the variance:

D= <[ni - M)? >, where M = < n; >= t/N: is the mean value of the number of entries, t is
the time of motion (mumber of steps) and averaging is carried out over all the bins. The
predicted valus of D is: D/M =1+ vI/N; = 1 £ 0.011; the last term gives the root-mean-
square deviation. The experimental value for force (3.2.5) when k = 16, t = 107, is

D/M = 1.017. The probability of such a deviation is about 12%.

1Fina11y the stochasticity was further checked by watching the process of cccupation of
the phase plane bins by the trajectory. For random motion for not too long a time there
mist remain a certain number of empty bins (N;), which can be calculated according to the
standard Poisson distribution: )

: - L
Ay = JJE'E i_ﬂ;: (3.4.12)

where N; = 512 = 1024 = 524288 is the total number of phase plane bins. The results of this
experiment are given in Table 3.4.4. It should be pointed out that in the present case
M = t/5N;, since output on to the phase plane was carried out every fifth step.
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Table 3.4.4

r S i 1

by SNeps 10" 210" ax 10’ 4x10' S0’

|

Number of empty bins, !
experiment 11531 258 8 1 o
|
Expected number of empt e
Sire i s P 11500 251 5.8 0.12 2851077
occupation + 107 = 16 Lo * U35 = 0.03

To sum up, it can be said that the motion of the elementary model (3.2.1) when k »> 1
really appears to be "random'. The question arises as to whether finally this is the result
of round-off errors or, in other words, special properties of the '-'quantiz.ed” space of the
computer. In our opinion this is not so, for the following reasons. To begin with, round-
off "errors" are in no event random and are determined by an exact and invariable algorithm
of the computer. The latter forms a kind of dynamical system, which in its turn is open to
the question of whether it is stochastic or not. This depends on the computation algorithm;
in the typical case, when there is multiplication in the algorithm, the round-off is ap-
parently stochastic. But even in this case its influence is negligible for a stable system
(Section 3.3). Even if round-off "errors" were not accumulated diffusely but systematically,
which is pessible in some cases®!), they would be considerable only in an interval of time
L .ﬂ.;l = 10'2, Therefore round-off can have an important effect only under the condition of
local instability, which in itself already signifies stochasticity. In other words, the
influence of round-off "errors” is not the cause of stochasticity but its effect. Let us
note, however, that these "errors" can substantially sharpen the transition to stochasticity
and, in particular, make it considerably less sensitive to the initial conditions. This is
due to the fact that at the moment when local instability appears, the original dynamical
system (3.2.1) immediately becomes much more complex, since it begins to be "sensitive to"
the round-off algorithm. As an excuse, we can only say that probably something like this
happens in Mature, too; this was thoroughly discussed in Section 2.13.

Finally, it should be mentioned that motion in "quantized'" space may possibly have
exclusive properties, since the measure of such space in relation to continuous space is
zero, and all the theorems of the ergodic theory are valid except for zero measure. It
seems to us, however, perfectly improbable that two sets of zero measure and of a completely
different nature could be identical.

In spite of all the above optimistic remarks in connection with the purity of mumerical
experiments, further study (both experimental and analytical) of the characteristics of the
"quantized" space of the computer is certainly desirable.

3.5 Intermediate zone of the system
with divided phase space

In the previous section it was established that for sufficiently large k the motion of
the elementary model really satisfies all the tests for stochasticity. Let us now study the
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intermediate zone (k ~ 1) which also gives us a better understanding of the mechanics of
stochasticity.

The main feature of the intermediate zone are the "islets" of stability, or gquasi-
resonances, penetrating a long way into the stochastic region and apparently existing for
any k + = (Section 2.8). Furthermore, the intermediate zone extends deep into the region of
Kolmogorev stability. This is revealed, first of all, by the fact that the observed border
of stochasticity depends on the time of motion, and near the border there is a region of very
slow diffusion. The corresponding results are given in Section 3.3 and we shall not return
to this question. Moreover, the whole region of Kolmogorov stability is pemetrated hy
stochastic layers of resonances, which is of considerable importance for the many-dimensional
system (Section 2.12). Some experiments with the simplest many-dimensional system will be
described in the next section.

In this section we shall restrict ourselves to investigating the gquasi-resonances in
the intermediate zone. As was shown in Section 2.8, the largest quasi-resonance corresponds
to special values of k, lying in the intervals (2.8.8) and (2.8.9) and to the pericd T = 1,

An example of such a quasi-rescnance is given in Fig. 3.5.1 for k= 60; t = 10%. The
size of the stable trajectory (& = &) = 1/32) lying, to judge from its improper form, rather
near to the boundary of the stable region, agrees well with estimate (2.8.10):

&9 v & ~ 2/k = 1/30 [£° = 2 for "force” (3.2.5)]. The relative area of the stable region
is in this case (4/kf')® ~ 10™* (2.8.10).

[
kb ¥

2"
-
11,

Fig. 3.5.1: An "islet" of stability for a special value of k = 60.1993377;
Po = 0.01; g =~ 0.483; t =10°; size of bin (1/512) = (1/1024); the
picture does not contradict the ideally thin curve corresponding to an
absolutely stable trajectory.
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For values of k outside the intervals of (2.8.8) the aresa of the stable regions decreases
considerably faster, as seen from Table 3.4.2 (see previous section). The table gives the
number of phase plane bins not occupied by the stochastic component, depending on k.

The phase map for one such case is given in Fig. 3.5.2 ["force" (3.2.5); k = 8;
t = 10°]. Two "islets" of stability can be clearly seen. More detailed analysis shows
(see below) that there is also a third "islet", denoted in Fig. 3.5.2 by a dotted line. It
is narrower than a phase plane bin and therefore remained unnoticed. The period of motion
in this case is T = 3, and the figures on the phase diagram show the sequence of motion.
Two "islets" (1,2) lie in the stable phase region (3.4.4) and one of them (1) strongly
spreads out in the direction of the extension (see Section 3.4). The third islet (3) lies
in an unstable region in § and strongly spreads out in the direction of the contraction.

i Ty
I

¥

s0 il

10 e
2
s = V1 3
_I:.'g‘
¥

_14_ . %4 : Vo 3,

r, ik W2 e

Fig. 3.5.2: "Islets" of stability in the stochastic region ["furte”
(3.2.5)]: k=8; t=10% T=3. The figures show the sequence of
motion. "Islets" (1,2) lie in the stable phase region, and islet (1)
spreads strongly in the direction of the extension (in the unstable
region). "Islet" (3) is situated in the unstable region and spreads
strongly in the direction of the contracticon.

| VPR R
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Fig. 3.5.3: The stable trajectories inside the second order resonance,
situated in a narrow region (3) (Fig. 3.5.2): k=8: t =2 x 107; for
the middle trajectory the dots correspend to the end of the computation,
the crosses to the beginning; the scale along the axes differs by a

factor of 10 and the figures give the last decimal digit of the numbers
in the centre of the diagram.
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Figure 3.5.3 shows three trajectories inside one of the "islets" (3}, which were in
fact used to establish the existence of three stable regions for the case presented in
Fig. 3.5.2. The dots in Fig. 3.5.3 denote the values cbtained after computation lasting
t =2 % 107 steps (for the middle trajectory}. A striking feature is their regularity, which
becomes still more remarkable if it is noted that they agree with a high degree of accuracy
{better than 107*) with the values obtained right at the beginning of the computation,
denoted in Fig. 3.5.3 by crosses. They coincide in both coordinates, which may indicate
that they fall in the vicinity of a second order resonance of a very high hamonic (q = 108).
The dimensions of the "islets" agree in order of magnitude with the estimates of Spction 2.8
[(z.8.16), (2.8.14)]. Thus for “islet" (3) Fig. 3.5.2 gives: &§ = 0.04; &p = 0,003, and
the formulae of Section 2.8 give the estimates: Ay~ 0.1; 4y ~ 0.01 (T = 2), if expression
(3.4.11) is used for the K-entropy of the "force" (3.2.5).

The case considered partly confirms Sinai's hypothesis (see Section 2.5) that the stahble
phase region may "damage" the stochasticity also outside this region. However, it is the
dimensions and over-all area of the stahle regions that are important. From the results in
Table 3.4.2 it can be seen that the last quantity rapidly vanishes with the growth of k
within the limits of accuracy of the experiment, when the minimm distinguishable size on
the phase plane is « 1077,

A negligible fraction of the stable regions may be due to the specific form of the
"force" (3.2.5). Indeed, for this force there is only one stable phase region (3.4.4) near
¥ = 1. It is not possible for there to be a periodical solution (T > 1) lying entirely in
region (3.4.4), which may lead to a considerable decrease in the mmber of stable regions.
In order to test this assumption the experiment was repeated with 'force" (3.2.6). In this
case there are two stable phase regions ¢ = 4; ¥, so that the above-mentioned limitation

drops.

The results of this experiment are given in Table 3.4.3 and Fig. 3.5.4. With the ex-
ception of the last three values of k, lying just on the left-hand border of the stahle
interval (Z.8.8) for all the remaining (unspecialized) k values the area of the stahle
regions very rapidly decreases with the growth of k. The law of decrease agrees in order of
magnitude with estimate {2.8.20), which for "force" (3.2.6) can be written more specifically
in the form:

S (oo b) e AOEIVE 1)) oo

Here we used expression (3.4.10) for the K-entropy of the "force" (3.2.6). Estimate (3.5.1)
1s shown in Fig. 3.5.4 by a continuous line. It is very sensitive to the quantity w, (k).
Therefore for the other "forces" the k values of the experimental points in Fig. 3.5.4 are
converted according to wy: k,eo = 4/muy [see (2.8.12)].

According to the results of Section 2.8, a fraction of the stable regions is sensitive
to the value of the parameter v = w, - Eh- When v > 1, the number of quasi-resonances of
the first type and their over-all area formally diverge (Section 2.8), i.e. the fraction
of stable regions can be expected to be considerable. For "force" (3.2.8) v = 2/e < 1, as
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Vet

Fig. 3.5.4: The dependence of the mumber of stable bins of the phase
plane (M;) cn the parameter kaorf for various cases: © - force (3.2.6);
y = 0.63; = - force (3.2.5); vy =0.74; ©- force (3.2.3) and (3.2.4);
the values of v are indicated near the dots; the continuous line is

an analytical estimate according to formula (3.5.1).

also for force (3.2.6): y = 2/7m. Precisely for this reason a special "force" of the
"smoothed out saw” type (3.2.3), (3.2.4) was constructed, for which any values of v depend-
ing on the parameters &, A, and k are possible:

L3,k -(\/e )Tt 2 of

£ A ?.;1
lL 'EJ:) ) k ,;.-..f-_./),.,é{ (3.5.2)

= L F
E-{H 2:&, l.f}i.z-ﬂ ':i-- : e: '?l;r"f'lti

The results of the experiments with "force" (3.2.3), (3.2.4) are also given in Fig. 3.5.4,

the value of the parameter vy being indicated next to the experimental points. Contrary to

expectations, the stable area in the case of y » 1 proves to be even smaller than estimate

(3.5.1). A possible explanation of this interesting result in terms of the mutual destruc-
tion of quasi-resonances under overlapping is given in Section 2.8.

il

Apparently this can also explain the fact that the experimental results are of the same
order of magnitude as estimate {3.5.1), at least for "force" (3.2.6), which takes into account
quasi-resonances for the second type enly. However, if quasi-resonances of the first type
are significant only when vy > 1, the total number and area of quasi-resonances of the third
type are already divergent for any vy (Section 2.8). It is evident that they, like the quasi-
resonances of the first type for y > 1, mutually destroy each other when they overlap.
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In spite of the fast reduction of the area of the quasi-resonances with the growth of k,
it is not out of the question that their total rumber is unlimited, and they form an everv-
where dense set of stable trajectories (Sinai's hypothesis, Section 2.5). The estimates of
Section 2.8 give precisely this result; however, they are not sufficiently accurate, so
this question still remains open.

In spite of all the experimental results given above, there is still some doubt as to
whether the whole system of stable regions is so fine that it escapes observation (like one
of the stable regions in Fig. 3.5.3)}. It seems to us that the answer to this question is
given by the following gross experiment. We have in all about 100 cases of computation with
k »>> 1. A stable region was not entered in any of them, in spite of the quite different
initial conditions.

3.6 An example of weak instability of

a many-dimensional system

In this section we shall give a brief description of the first attempt to observe
Arnold diffusion for a two-dimensional non-autonomous oscillator, given by the transforma-
tion:

I* - ‘10434- !“"t'f’:

= I ]

1 2 - - P
n o u
Fq

'3
|

_{5

LY
-

=z

q—E

-y

’ (3.6.1)

It is easy to see that this model is an extension of the elementary model to the two-dimen-
sional case. The choice of £(4) = 4° is due to the desire to have more resonances with
conservation of the analyticity of the force (see below).

Numerical experiments on Arnold diffusion were carried out together with Keil ) and
Sessler ) on the CDC-6600 computer at CERN, in Geneva"}+ Model (3.6.1) was chosen after
many preliminary experiments.

Before going over to the experiments themselves let us obtain some simple analytical
relations for model (3.6.1) which will be useful later on.

If |¢;| << 1 and |ueg$j| << 1, transformation (3.6.1) can be approximately replaced by
the differential equations:

- "
I, 8s T e g
JF;-":: 'I':

& l'}

(3.6.2)

with the conserved Hamiltonian

*)} E. Keil, CEBN, Geneva, Switzerland.

**) A. Sessler, Lawrence Radiation Laboratory, University of California, Berkeley,
California, USA.

We thus ignore the external perturbation, whose effect in fact turns out to be very
weak (see below).

-p*]
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0
H=4(15+ 1) + 5 (a+0")-po0 2 (3.6.5)

In view of the sharp dependence of the potential emergy on the co-ordinate ¢, it can be con-
sidered approximately that the unperturbed motion (ue = 0) takes place in a rectangular
potential well; it is characterized by the frequency:

M ¥
L= 2(E Lﬁ (3.6.4)
and spectrum:
L _f_‘;-." . 2 f)”?‘ (3.6.5)
?92" e = 2R ¥, o+ .6.5)

The last expression is valid for harmonics that are not too high: n £ 10, while an approxi-
mation to a rectangular potential well is valid.

In approximation (3.6.3) there are only coupling rescnances: mw; = nwy, the effect of
which can lead only to an energy exchange between oscillators, while the total energy H
(3.6.3) is conserved. Since the latter depends also on the coupling energy Hi = -usfi¥:,
the maximm value of the amplitude of one of the oscillators, say $i., is reached under the

PR )
condition wePra = §ze oOT!

10K, = H (3.6.6)

1
where Hy = -ngfllil', H=H +Hs + Hj.
Variation of the total energy of the system H is possible on account of the external
TESONANCes:
N, +hw, = 27 (3.6.7
where we took into consideration only the first harmonic of the external perturbation with
a frequency of Zr, since under the condition $® << 1 assumed above, w ~ §* << 27 (3.6.4).
From the shape of the spectrum (3.6.5) it follows that maximm amplitude corresponds to one-
dimensional resonance n = 0 (or m = 0), and w; = 0, whence the minimal oscillation harmenic
necessary for an external resonance is equal to: m= 2v/w; where wy is the maximum value of
the frequency for given initial conditions.

Let us now turn to a description of the numerical experiments.

The largest part of the computing programme, including the rather laborious data
processing, was written in FORTRAN. However, the main loop for computing transformation
(3.6.1) proper is written in the symbélic operating code of the COC 6600 (ASCENT) in order
to obtain the maximm computation spe&d*}. We managed to place the whole of this loop in
the instruction stack of the CDC 6600's central processor, thus eliminating the relatively
slow reference to the operative memory. Moreover, advantage was taken of the possibility of
two parallel multiplications in the CDC 6600. As a result it proved possible to reduce the

*) The possibility of combining these two languages was in our epinion a considerable
advantage of the compiler of the CERN computer.
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time for the computation of one step of transformation (3.6.1) to & usec in spite of the
large number of multiplications. The processed computation data was put out periodically
after a specific mmber of steps and included, in particular, a map of the two-dimensional
projection of the four-dimensional phase space of the system onto the plane (1,9 (see,
for example, Fig. 3.6.4), and also part of a histogram near the edge of the distribution
function of the trajectory f(¥1,$:) (see, for example, Fig. 3.6.5}. The purpose of this pro-
cessing was to find out whether the edge of the distribution was sharp or smooth. It is
easy to see that the latter indicates that there are no invariant tori, i.e. that there is
some instability of motion. Indesd in the one-dimensional case the phase trajectury1is an
ellipse and its projection onto the axis ¥ leads to the singularity f(§) = l¢ - ﬁui'i near
the edge of the distribution. For a two-dimensional system with u, = 0 the distribution
function occupies a rectangle in the plane (§:,§:) with a similar singularity around the
edge (Fig. 3.6.7). If uy # 0, but there are invariant tori, the singularity is conserved,
but now with a more complicated outline, reflecting the configuration of an invariant torus
{Fig. 3.6.9). Finally, if the edge of the distribution becomes smooth, this points to the
destruction of the invariant tori and their transformation into a layer of some thickness
(in four-dimensional space, Fig. 3.6.5).

First of all it is necessary to determine the region of one-dimensional stability
{3.6.1) when u, = 0. This can be done as in Section 3.3, by one trajectory, the initial
point of which certainly lies in the region of stochasticity. In order to prevent the tra-
jectory from drifting into "infinity", i.e. the computer's overflow, it is necessary to
limit the phase plane of the system by taking the fractional part (Section 3.2), which is
equivalent to periodical boundary conditions. In the present case a square was used:
-1=1I,¢<1. The phase map of the system for t = 10% is given in Fig. 3.6.1, where the
circles mark the bins occupied by the trajectory. For I = 0 the initial phase ¥, should
lie in the interval (-0.78, +0.78). The accuracy of this value of the interval is determined
by the bin size of the phase map and is about +2.5%,

Let us compare this result with the theoretical estimate, which it is easiest to obtain
from an analysis of the local stability (Section 2.4): K, = -9@3 < -4, whence: Y < 0.9,
which is very close to the numerical result given above.

As noted in Section 3.3, at the border of stochasticity in the intemmediate zone the
instability develops very slowly and therefore the border of stochasticity observed depends
on the time of motion. The value given above for the stable interval relates to t = 10°.
When t = 2 = 10% the border of stochasticity shifts outwards by approximately 4% (along PqJ.
It is not out of the question that when t » 10° it shifts inwards again a little, although

according to the KAM theory there is certainly a border of eternal stability (see Secticn 3.3
and below).

Probably the most interesting experiment with model (3.6.1) is the unique case of very
weak instability which was observed when: g = 0.00115; ILig = Izg = 0; Yo = 0.375;
2o = 0.721. Figure 3.6.2 shows the time dependence of the increase (45) of the area (5) of
the above-mentioned two-dimensional projection (i ,$:) of the trajectory of motion in a
linear and logarithmic scale.
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Fig. 3.6.1: The region of one-dimensional stability for model (3.5.1);
pe = 0; t = 10%,

Phase maps of the projection of the motion on to the plane (§;,§:] are given in
Figs. 3.6.3 and 3.6.4; the first of them relates to the beginning of the motion (t = 107
steps), and the second to the very end (t = 3.648 = 10%), when the trajectory emerges into
the region of one-dimensional instability. A histogram of the distribution in the latter
case is given in Fig. 3.6.5, where it is clearly seen that its border is smooth and con-

sequently some instability takes place.
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Fig. 3.6.2: An example of the weak instability of a two-dimensional non-
autonomous oscillator (3.6.1): u, = 0.00115; Pio = 0.375; ¥as = 0.722;
Iio = Iz = 0; S is the area of projection of the motion on to the plane
[?;,?iq; 45 is the increase of S in the process of motion; T is the
rise-time.

The law of the development of the instability in time is surprising. First of all it
is striking that the increase of the area (AS) takes place in portions. This, however, may
be due to the finite size of the phase plane bin; so, for example, the first "step" in
Fig. 3.6.2 corresponds to 19 bins only, and the whole area S comprises about 5,000 bins.

An analysis of the phase maps, which were put out periodically in At = 107, shows that the
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Fig. 3.6.5: Part of the histogram of the distribution of the projection
of the trajectory on to the plane (§1,P:) for the case in Fig. 3.6.2:
t = 3.648 = 10°%,

increase in the area occurs smoothly along the whole perimeter, which shows the rapid energy
exchange between the two degrees of freedom. Measurement of the local instability shows
that this exchange takes place already in t ~ 10® (see Table 3.6.1).

The most surprising thing in Fig. 3.6.2 is the unexpected steep rise of the curve AS(t)
at the.end of the computation. The data of the phase maps show that almost immediately after
the beginning of the rise, the energy exchange between the oscillators ceases and the increase
in S is on account of only one of them.

On the whole the function AS(t) is exponential rather than linear or proportional to
vT. If the last sharp rise is excluded, the dependence 45(t) agrees best with a linear func-
tion, although one certainly camnot exclude the possibility (because of large experimental
errors) of a dependence like A4S = &y = ¥t, corresponding to ordinary diffusion (&fs << $o).
In the latter case the mean diffusion coefficient is: D¢ = d(apo)2/dt v 2 x 10713,

If it is assumed that there is a linear law 5(t), the mean rate of development of in-
stability is: V, = d(#,)/dt ~ 4 = 107", However, this case appears unlikely. As far as
we know, the only mechanism leading to a linear law is connected with the so-called microtron
resonance (Section 2.4). However, this contradicts the local instability of motion dis-
covered experimentally (see below).
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The weak instability discovered cannot be explained by the computer round-off errors. In-
deed, the relative error of single round-off in the CDC-65600 does not exceed g, = 27*7 = 107'",
Even if it is considered that all the errors accumulate one way, then the error of ome step
(for §) is: e1 =4eq < ¥® > + 2uy €0 < §* > + g0 = gg, and for the whole computation:
gy < €0 % 10 = 107%, which is considerably less than the size of a phase bin &9 = 2 x 1077,
As a check the trajectory of system (3.6.1) with the interaction "switched off" (u, = 0] was
computed during t = 10°. Figures 3.6.6 and 3.6.7 give the phase map and distribution histo-
gram respectively, The stability of motion in this case is evident. Similar results are
also obtained with the interaction "switched on" (even though ps = 0.00915) for special
initial conditions, for example for §is = 0.375; {20 = 0.522 (Figs. 3.6.8 and 3.6.9;
t=5x%10").

The mechanism of weak instability is most probably connected with Arnold diffusion
along one of the strong resonances. In this case the motion must be locally unstable, In
order to check this assumption two trajectories very close together at the beginning (AI = 0;
4 ~ 107'*) were computed simultaneously and the distance between them was calculated depend-
ing on time (divergence of the trajectories). Figure 3.6.10 shows the divergence in phase;
it does not contradict the exponential law with a rise-time 7, = h™! = 10°, where h is the
K-entropy of the system. Approximately the same result is obtained for the momentum diver-
gence of the trajectories.

Nevertheless the guestion is in fact more complex than it may appear at first glance.
In Fig. 3.6.11 the data of Fig. 3.6.10 are plotted in a log-log scale and do not contradict
(especially Ay:) the linear divergence of the trajectories. The latter can be explained as
a simple frequency shift of the non-linear oscillations.

It is evident that the chosen interval t = 3000 is too short for any fimm conclusion
for the given value of the perturbation p; = 0.00115. An example of local instability when
there is greater perturbation is given in Fig. 3.6.12. There is no doubt here as to the ex-
ponential nature of the divergence of the trajectories (on the average]. Let us point out
that the law of variation is identical for all four quantities (Alyz2; &yhz). The exponen-
tial divergence continues up to Al & I = 3.4 = 107*, The subsequent insignificant increase
of Al is explained, probably, by phase oscillations in the coupling resonances.

For weak instability (u, = 0.00115) additional measurements of the local stability were
made for different initial conditions in the interval: 0.5 < §,5 < 0.75 (I;; = 0) and 1
t = 10°, In 11 cases out of 26 ciearly expressed local instability was cbserved. An example
of instability is given in Fig. 3.6.13, where & = AI. The difference Al increases by more
than 10 orders and reaches & " 107? (initial trajectory shift AL ~ &¢ ~ 107'*). The K-
entropy in this case is h = 2.5 = 107" - i.e, four times less than in Fig. 3.6.10. Figure
3.6.14 gives an example of a trajectory which was interpreted as stable. In spite of the
great dispersion of the points the non-exponential character of the dependence AI(t) can be
fairly well seen. Moreover, in contrast to Fig. 3.6.13, here the motion is explicitly
regular (strong periodic excursions of the points upwards), which is incompatible with
stochasticity. But there is an especially sharp discrimination between stable and unstable
cases by the maximm value of AI at the end of computation. For example, in Fig. 3.6.14
the final value of Al =3 = 10°'!, i.e. it differs by more than seven orders from the un-
stable case in Fig. 3.6.13. Such a clear discrimination can always be achieved, provided
the computing time substantially exceeds the characteristic time for the development of
instability: ht >> 1.
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A summary of the results on local instability is given in Table 3.6.1. The mmbers in
the first colum show the computation sequence for a random choice of Yia, Yzo. All the un-
stable cases are grouped at the end of the table in order of decreasing K-entropy (the mean
values of the K-entropy for two momenta and two phases are given). The values of the K-en-
tropy are clearly divided into fiwve groups, as shown in the table. The last column gives
the mean values of the K-entropy per group. The different groups correspond, apparently,
to resonances of different harmonics., The difference of the resonances according to their
magnitude shows that the overlapping is slight. This result is also confirmed by the value
of the relative fraction of unstable initial conditions, which according to the data of the
table is: & = 11/26 = 434%.

Table 3.6.1 illustrates once more the clear discrimination between stable and unstable
cases according to the values Aoy and thus the applicability of the method of investigating
local instability.

Unfortunately the available experimental data does not make it possible unequivocally
to link the discovered weak instability with Arneld diffusion, nor does it contradict such
a hypothesis. Let us demonstrate this, using estimate (2.12.22). The main expression
(2.12.29) is inapplicable in the present case because of a big difference in frequencies
for an external resonance (see below). Let us choose coupling resonances as guiding reso-
nances, and external resonances as perturbing resonances. The harmonic number of the latter
is determined from (3.6.7) and (3.6.4) and is equal to (2.12.23):

m’  2n'_ 85
TS T k358)

Further, & v ug/N\® (3.6.1); @~ 1; ¥, = 0.7, In view of the marked uncertainty of the

estimate of the Arnold diffusion coefficient, let us use its experimental value, given above:
w2 % 107'? and estimate the unknown parameter ng instead. As a result we obtain

ne = 3.5 which does not contradict the expected value ne ~ 10 (see beginning of section).

Nevertheless, one cannot completely exclude the possibility that the observed weak
instability is some complex one-dimensional effect. In particular, stability of motion
when uy, = 0 (Figs. 3.6.6 and 3.6.7) does not exclude this possibility either, since negative
coupling energy may lead to an increase in the amplitude of the oscillations when u, # 0
(3.6.3).

It is obvious that this phenomencn calls for much more detailed experimental investi-
gation. It seems to us that even a single case of weak instability which has in fact been
observed shows that the problem as a whole is sufficiently interesting and important.
Another case of possible Arnold diffusion will be discussed in Section 4.4. {
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Table 3.
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CHAPTER 4

SOME APPLICATIONS

This last chapter of the present paper is devoted to some applicaticns taken from the
most varied regions of mechanics. Their choice is rather arbitrary and merely reflects
current success in the application of the developing theory of stochasticity to specific
problems. Some of them have been completely solved right up to the stage of practical ap-
plication (Sections 4.1, 4.2, 4.7), and others have only been formulated (Section 4.3). In
some cases mumerical experiments were used, which may also be regarded as further proof of
the general theory (Sections 4.1, 4.2, 4.6). In our opinion the questions of special inter-
est are those connected with Armold diffusion in the Solar System (Section 4.5); however,
here there is still a great deal that is unknown.

4.1 Fermi stochastic acceleration

The stochastic method of acceleration is generally comnected with the name of Fermi, who
proposed one of the variants of such acceleration as an explanation of the origin of cosmic
rays?®), A little earlier (in 1948) a similar proposal for ordinary (terrestrial) accel-
erators was made by Burstein, Veksler and Kolomensky'®"). However, this paper was not
published and remained little lmown until 1955199, At the present time there are a large
mmber of papers devoted to the various aspects of statistical acceleration in plasma [see
for example the review by Tsytnvich1°1}]. However, there is a question that has not been
clarified in any of these papers and in fact has not even been posed: under what conditions
is the motion of particles in plasma, accelerators, etc., stochastic? Is Fermi acceleration
always possible? Clarification of the latter question by means of mmerical experimentation
in the simplest one-dimensional model was undertaken by Ulam'??) with a negative result.
From the point of view of the present paper this result is perfectly natural, since for
stochasticity of the motion, special conditions have to be fulfilled which are more strict
the simpler the system. For the above-mentioned one-dimensicnal Fermi acceleration model
the question was clarified in co-operation with Zaslavsky in a paper'®?) of which we will
also give an account. To complete the picture let us recall that the condition of stochastic
acceleration in plasma were explained a little later by Zaslavsky, Sagdeev and
Filonenko!?“»1%5),

As already mentioned, in Ref. 102 the simplest case of Fermi acceleration was inves-
tigated: the motion of a light particle between two parallel infinitely heavy and
ahsolutely elastic plane walls, one of which is motionless and the other oscillating
according to a given law., Mumerical computation of the motion of such a particlel°2] gave
a negative result: acceleration was practically not observed. The velocity of the particle
sometimes Teached three to four times the velecity of the wall and in the majority of cases
was of the order of velocity of the wall, whereas according to the Fermi mechanism the mean
velocity of the particle should grow infinitely in proportion to the time?®) .

Let the wall oscillate according to a “saw-shaped" law, so that its velocity varies
linearly with the time during each half-period. Further, let the minimm distance between
the walls be & and the amplitude of the oscillations of one of them a. Then the motion
of the particle is described by the following exact set of difference equations:
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'U':H_‘ =il W Lr(g__," - ‘/&)

(4.1.1)
4 Vst i Zthesi .
Prea = *z-"'-?;—_-'-rl/-”- ha 1V
"t Y 2 vV ,} Ty P (4.1.2)
F
e & ‘f"...‘f{-’
(Vare> L)
-—-. — ;J: L h!
‘71/“*- -y, +4 -—;{}—T' Y (V,',H < ‘/*_.. (4.1.3)

—ik )+ £ /5
)pa = g e = %i’r:r / T W—} (4.1.4)

Here . 55 is the velocity of the particle after the n™h collision; V/4 is the amplitude of
the velocity of the wall; .ﬂlﬂ iz the phase of the oscillations of the wall at the moment
of collision varying from 0 to ! when the wall moves in one direction and from i to 1 when
the reverse motion occurs. The brackets { ... } denote, as usual, the fractional part of
the argument. The plus sign in (4.1.1) corresponds to formula (4.1.2) in the previous
step, and the minus sign to formula (4.1.3).

As will be seen from what follows, an interesting case is:

L »ra; vi > V (4.1.5)

Then the set (4.1.1) - (4.1.4) takes the form:

? U'H+1 = UT'" E3 '1‘; (CPL‘ e )

e P = A (
i %1‘1 i (}0‘" ™ { %1‘ i _}‘

e
?(g"i L'rn--i- 1

(4.1.6)

This transformation is of the same type as the basic model (2.1.11). According to the results
of Section 2.4 the stochasticity parameter can be determined as: K = (di o ,-"dtpn} -1 (2.4.07
and is equal to:

{
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£ /2
x — — (= 4.1.7
= 164q (U' ¢ )
whence the border of stochasticity (2.4.7):

5— ~— g (4.1.8)

4
v gy e

The stochastic region thus covers the interval 0-vi. In order to obtain considerable
acceleration (v >» V) it is necessary to fulfil the rather unexpected condition:

a << Z . (4.1.9)

Under the condition &v/v ~ V/v << 1 the kinetic equation takes the form of an FPK equation
(Section 2.10):

2 (vt ) £,
;&_ e % (5(1;-') _%T;LZ) (4.1.10)

2€

where the diffusion coefficient in velocity is (2.10.12):

_ ! LAv) L-’,,,.__L Z"FVZ (4.1.11)
ﬂﬁ’) L 44 78 p

o

As a boundary condition it was proposed in Ref. 103 to use the condition of the absence
of flux at the border of stochasticity:

o0 ELE.’_/ i o (4.1.12)
oV v 1;;

This condition, of course, is not exact, since there is a transitional zone, but it makes
it possible to obtain an approximate solution of Eq. (4.1.10). In particular, the steady-
state distribution (3f/3t = 0) proves to be simply uniform: £(v,t) = ;™%

In order to check the degree of approximation of such a solution, the exact set of
difference equations [ (4.1.1) - (4.1.4)] was computed during n = 10® collisions with the
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following parameter values: a =1; V=4, vy =0, In order to reduce the effects of the
finite mumber of digits the mantissae of the quantities 1 and V were chosen in the form of
a set of random mmbers. The result of the numerical experiment was a distribution function
F(v,t) proportional to the particle sojourn time in a given interval of velocity. The
relation between f and F is given by the expression:

. { ' Zf_
O

Figure 4.1.1a gives a typical steady-state distribution function for t »» t.» where
the relaxation time is T vi/2D ~ 24wy &/V? v 10 (for the case in Fig. 4.1.1a:
Lia = 10%; w; = 50); along the x-coordinate the particle wvelocity is plotted in units of
the maximun wall velocity. The arrow demnotes the maximum velocity reached by the particle
during 10° collisions. The distribution function is cut off rather sharply near the border
of stochasticity v, = 50 (4.1.8), illustrating the accuracy of the boundary condition
(4.1.12}. The fluctuations in the distribution function in the stochastic region are de-
termined by the mmber of independent particle transitions through the whole acceleration
region: N~ tftr. For the fluctuations we obtain the estimate:

AF " y'%"ﬂ,

e

(4.1.14)

When %/a = 10* (Fig. 4.1.la) AF/F ~ 1/10

Figure 4,1.1b illustrates the validity of the stochasticity criterion |K|'i 0.5
(4.1.8) for various %/a. Let us note that the particle penetrates quite far (particularly
*

)

when there are small &) into the transitional zeone -.

A further interesting experiment was carried out by Israelev. He investigated the
local stability of transformation (4.1.1) to (4.1.4) by the method of returning to the
initial point. In other words, for various initial conditions n = 10* forward collisions
weTe computed, and then by means of an inverse transformation the same number of backward
collisions. A stable trajectory should then almost return to the initial point. Table 4.1.1
gives some results of this experiment for the case when %/a = 2500 (v = 25).

The first number in each box (v,;) gives the initial walue of the velocity, the third
[vn} the final value after n = 10* collisions in one direction, and the second (van) after
the reversal. Four regions are represented in the table. The first (I) is the wide stable
region with high velocities (v > v,); the fourth (IV) is the wide stochastic region (v < vi).
The most interesting are the two narrow regions (II,III) at the border of stochasticity, one

i T P O PSP A R AP i e i, 8 P

*] Considerable penetration of the trajectory behind the border of stochasticity is ex-
plained by the fact that the transformation under consideration is not smooth so that
the region of stability does not actually exist (compare Section 3.3).
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Fig. 4.1.1. Distribution function for Fermi one-dimensional stochastic

dcceleration: a) particle velocity v in units of maximm wall velocity

v=24);

Lfa = 10%; b) particle velocity expressed through stochasticity

parameter K : 1 - &/a = 400; 2 - &fa = 10%; 3 - ifa = 4 = 10%,

of which (III) is stable and the other (II) unstable. This again proves the comnection
between local instability and stochasticity, and also the complex structure of the transi-
tional zone (Sectien 3.3).

For stable trajectories the values v, and vep agree with a relative accuracy of
“ 107%, The divergence is determined first of all by round-off errors, to which for
transformation (4.1.1) to (4.1.4) are alsoc added the errors of the square root computations,
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Table 4.1.1
| | 1
I IIL ) ! I11 IV 1
Stability Instability | Stability | Instability
II
" |
Vy 100, 155814 28,0140073 27.0832487 25.4038022
Van 100,135814 78.8256083 27.0R:12485 78.1138416
¥ ¥ 101,653879 £2.2647118 27.9428880 | 25,3236604
i B
Vo 50,1386132 £8.0130073 j 260311874 16.8876432
Vin B0, 1388420 £3.8608307 26,031 1874 41,5012538 |
|
i 48,2778544 32,82505]8 £7.0211406 18.£240320 |
—
Vi 20,0538478 28,0039673 25.45013R87 10, 1560183 |
Van 20.0538476 34.1160260 254501454 18.8857883 r
! v 30.0826340 | 43.6767423 | 26.123368€ 18.7365838 |
k
&

If it is considered that the latter are of the same order as the round-off and are also
symmetrical, the relative accuracy of the reversal can be estimated as (see Section 3.3):
28 - vIN/3 ~ 107%, where N ~ 10 is the mmber of operations in one step of transformation
(4.1.1) to (4.1.4); & = 27%% and the factor 2 takes into account the mean value of the
mantissa (floating point arithmetic).
the reversal except in the last case in region III, which probably indicates weak in-
stability near the border of stochasticity.

This estimate agrees with the observed accuracy of

To sum up it can be said that in the one-dimensional case the Fermi acceleration
process essentially depends on the fulfilment of the stochasticity conditions.

If we now turn to the case of two or more dimensions the situation changes substantially.
In particular, Sinai showed®) that for elastic collisions of disks or balls stochasticity
alﬁa}rs occurs. This result follows directly from the simple fact that, as can be easily
shown, in this case strong local instability of motion always arises (Section 2.13). Of
course rigorous proof of stochasticity is considerably more cmplicated“"]. It applies
also to the general case of the collision of bodies with a convex surface®?), This latter
At the same time the
presence of concave sections of the surface may lead to the appearance of regions of
stability. A modification of the case of the motion of a particle between walls, considered
above, can serve as a simple example, if one of the walls is made concave and the many-
dimensional problem studied. It is clear that the transverse motion in this case will be
stable*}, and consequently the border of stochasticity will remain the same as for the plane

condition is exactly that which ensures local instability of motion.

*] If the curvature radius is larger than the distance between walls.
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walls. In the case of a convex wall the transverse motion is always unstable and the
border of stochasticity disappears.

As already noted above, a stochastic accelerator (stochatron) was proposed in Ref. 100,
However, in this paper it was assumed that the phase of the accelerating voltage should be
random, but this is not so simple to realize in practice. We see now that this requirement
is actually superfluous. In this respect the Fermi mechanism®?®) is much closer to the ideas
of the present paper than the processes studied in Refs. 100 and 101.

Stochastic acceleration at a fixed frequency was first applied, apparently, by
Volosov et al. for pre-heating plasma in the stellarator'®7:108) The stochasticity cri-
terien for this case was obtained in Ref. 107.

Below we give the derivation of a similar criterion for the ordinary accelerator, to
which the original proposal referred!®®), but working at a fixed frequency wy. In a short
kick approximation the equation of motion of the particle in such an accelerator can be
written in the form:

Weey = W, + eV, Gy,
Fues = e + T 1139

where T,W are the period of revolution and total energy of the particle, and V, is the
amplitude of the accelerating voltage. According to the general theory (Section 2.4) the
criterion of stochasticity is determined by the relation:

?‘C_, = [ﬂi’; s % [ = (4.1.16)

Developing the expression for dT/dW in the usual way®), we obtain an estimate of the
maximen energy of the stochatron in the form:

Wu."q.g ~ m" J ,"‘__ME L,
| Ry

Here w is the rotation frequency of the particle in the accelerator, v is the relativistic
factor, o = Q-* is the momentum compaction factor, and  the mumber of betatron oscillations
per turn. From this last expression it can be seen, in particular, that stochasticity is
always absent near the critical energy: v = u‘% % }. However, as a result of the
"infiltration' of the particle into the transitional zone (see for example Fig. 4.1.1)

more or less slow crossing of this region is possible.

To complete the picture, let us note that the ordinary microtron’) works just at the
border of stochasticity (4.1.17) so that, for instance, raising the accelerating voltage
inevitably makes it go over to stochastic conditions.
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Going back to the stochastic heating of plasma'®”s 1331 l=t us note that its effec-

tiveness can be even greater than follows from the simple theory!?2,!97),

In particular,
instead of uniform distribution in velocity, in the real system maximum density can be ex-
pected to appear near the border of stochasticity, i.e. near the maximm energy, due to
the capture of the particles in the stable regions owing to the presence of dissipation,

This effect has apparently been actually observed in the experiments by Volosov's group.

In conclusion let us make some remarks concerning high-frequency heating and the con-
finement of plasma in magnetic traps. This method has become increasingly popular recently;
In particular, a separate section was devoted to it at the Third Conference on Plasma
Fhysics and Controlled Fusion (Movosibirsk, 1968; see also Ref, 109). Since this concerns
rather dense plasma, the alternating field is equivalent to the oscillating wall, so that
it is necessary to take into account effects comnected with the border of stochasticity. On
the one hand these effects can lead to the limitation of the maximun temperature of the
heating. On the other hand, for instance for high frequency confinement in magnetic traps,
they may in fact considerably impair the confinement on account of the increase in the longi-
tudinal velocity of the particles,

4.2 Dynamics of the lines of force of the
magnetic field in the stellarator

The objective of this section is to make some calculations, or rather estimates, of
the conditions of stability of the motion of a single particle in a magnetic field of the
stellarator or levitron type.

In general it can be considered that the magnetic moment of a particle is conserved
with a sufficient degree of accuracy (see Section 4.4), so that the important thing is the
stability of the drift trajectories of the particle. Further, limiting oneself to a region
sufficiently far away from the separatrix, for the overwhelming majority of untrapped particles
the deviation of the drift trajectories from the lines of force of the magnetic field can
be neglected’1°]. Thus it is necessary to investigate, as is usual, the stability of the
lines of force, which can be regarded as trajectories of a dynamical system, namely an
oscillator, since the main feature of a stellarator field is the finite velocity of the
rotation (w) of the lines of force in a plane perpendicular to the magnetic field.

This oscillator is subject to various perturbations (inaccuracies of manufacture,
race-tracks, toroidality, etc.) with a period equal to the perimeter of the stellarator,
The main danger comes from the resonances, They can be controlled in two WAYS.

Firstly, one can choose the "frequency” w far away from all the resonant values, as is
generally done in charged particle accelerators, For this it is necessary, however, for
the oscillator to be almost linear, i.e, for the "frequency" w to depend weakly on the
rotation radius (r) and for all the stellarator region of interest to us to he outside the
resonances. Such stellarator fields are possible (for instance, a double helical field
with a large pitch) but apparently undesirable, if only because the size of the separatrix
then decreases cnnsiderably*}.

*) Let us note, however, that a double helical field with a small pitch makes it possible
to elxmlnate the most dangerous central resonance by the proper choice of the value of
w(0) 111) (see note on p. 178).
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Another known means of controlling resonances is to make the oscillator non-linear,
i.e. to make its "frequency" depend on the rotation radius (on the amplitude): w = w(r).

The mumerous papers on research into resonant perturbations in the stellarator (see
for instance Refs, 110, 112, and 113) may give the impression that an increase in non-
linearity (dw/dr) always leads to increased stability., Similar hopes also existed in the
initial design stage of strong focusing accelerators. In reality, however, the situation
is different. Although non-linearity does stabilize resonances (Section 1.6) it leads also
to the appearance of new instabilities. The most dangerous of them is apparently stochastic
instability (Chapter 2). As far as we know, stochastic processes of this kind as applied
to a stellarator were first studied by Sagdeev and Zaslavsky“s}. Balow we will make a more
thorough examination of the destruction of the internal region of the magnetic field of the
stellarator, according to Ref. 89.

As an unperturbed system let us choose a straight n-helical magnetic field created by
2n conductors with a current J in each, wound with a pitch of 2n/a on the surface of a
cylinder with a radius a. Let us relate the torcidality of the real stellarator to the
perturbations. Let us assume that the equations of "motion" of the lines of force have
the form!!®): -

M

L z
5.;- il o S 51«&5; B=ip-o¥; 5=(?£)f
4y Moo 4T (4.2.1)
ﬁ-EHE : C"{""‘E} EQ“C'QH}

where Hz is the strength of the longitudinal field and r, , z the cylindrical co-ordinates.
For (4.2.1) to be correct it is necessary, generally speaking, for both quantities ea,

s << 1, However, the estimates by order of magnitude will also be correct in a wider region,
in fact everywhere except in the immediate vicinity of the separatrix. The same remark

also applies to the other strong inequalities. The quantity s = (r/a)?, canonically con-
jugated to the angle \§ was chosen as a variable. In accordance with Ref. 115 let us intro-
duce the dimensionless "frequency' w by the formula § = awz, where \§ is the mean angle of
rotation,

©  The mean rotation of the lines of force, which is also the main factor for the stability
of the stellarator field, is rather similar to the betatron oscillations in an alternating
gradient accelerator or to the stability of the Kapitsa pendulum'’*s'7%),

Let us assume that the perturbations (constant in time) are described by the same
equations as the main field (4.2.1}, but with their own parameters e;, ni, ., Let us
further assume that the perturbation is a set of short uncorrelated "kicks", i.e. the
parameters £;, np, oy are constant over a length & (correlation length) satisfying the
inequality:

_
a << ¥ << (”«“’*.} (4.2.2)



There is a similar formulation of the problem, for instance, in the stability calculaticns
for a strong-focusing accelerator®), As a result of the closure of the stellarator, any
perturbation will be periodic with a period L (perimeter of the stellarator).

Let us first consider a single "kick" at the point z = 0. FErom Egqs. (4.2.1) under
condition (4.2.2) we find:

=l o M Sz.{? éftuw,,tfc'

_ (4.2.3)
ap= £, ST b® Cos 14 £

The first equation determines the displacement of the magnetic surface, depending on the
angle Y in the region of the perturbation. The latter changes under the action of the per-
turbation [the second equation in (4.2.3)] and also as a result of the rotation with a
"frequency’ w, by a quantity olw (per period). As a result, the action of the perturbation
under consideration can be described by means of the following set of difference equations,
similar to the basic model (Section 2.1):

25 .
'Sﬂ-r'l' = &‘: LL' ?’:".u)
{Tb.uu-i & lJL'-u T "{‘{' iy @ (‘5:4-!-#{) -+ };, Gty ylﬁ, (4.2.4)

L2
' = F3 T
Gominttys §,=lecnts*

Under specific conditions (see Section 2.2) the difference equations (4,2.4) can be
replaced by the differential equations:

7 ?S -Quifn
o= XLy (w-9,)+ §Cos @ (4.2.5)

¢ Here Ly = ny L; w = 2m/aLl; (m = 0, 1, ...) !'*) is the resonant value of the "frequency”
w *}* the dot denotes differentiation with respect to the "time" M. Everywhere in what
follows, s demotes the parameter of the magnetic surface, i.e. we shall ignore its small
deviations from the cylinder!'!®), The phase frequency of the oscillations (4.2.5) is:

: ; ,  dw(s)
j:z;i = PV s ? 3 6>’ = =

(4.2.6)

Let us note that the frequency @, is here measured in units of {al)"t.

*) The resonances of the higher approximations: [p} (2mfa L + pn)/(n; * nynji
3 iy K have an additional small factor u::f the fon'n [E,-’u} . ]p
and can be mportant only near the separatrix.
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Let us first estimate the stabilization of the resonances by non-linearity, as was done
in Section 1,6, In the linear case {w' = ﬂ¢ = 01, svstem (4.2.5) determines the resonant
(unstable) bands of the width:

X, oty = 2% (4.2.7
At the same time the non-linear width of the resonance (size of the separatrix) is:

a Ly {ﬁij 5 « According to Section 1.6 the stabilization condition can be written in
the form: {uuﬂH z (fw), or (squared) i

p(,z.'.suf he 2 W oo
g‘: ———— = S exldw = Rt 4.2.8)

where @L = olw is the total rotation angle of the line of force around the stellarator, and

. n-z 11s
we used the relation: W, = s )

The stochasticity parameter for system (4.2.5) is:

=Rl sews’§ Cosp = 5?_; Cos g2 (4.2.9)

Let us determine the border of stochasticity from the condition: K, = ﬂ¢2 = 4, This choice
of border is confirmed, in particular, by the results of the mmerical computation given in
the previous section (Fig. 4.1.1). The condition of stability of the motion thus takes the
form:
2 i 2
s - = 4.2.10)
T L Sw n-2) g, (4.2.

The last expression is exactly the opposite of (4.2.8). This means that the permissible
perturbation reaches a maximm in the region:

ﬁ = - ~ i /r E.n.:gx; ~ "f [:4-2-11:]

The formulae given above are directly applicable only when n > 2. For a douhle helical
field one should assume that!!'®): (n - 2) ﬁi B ﬁ@i; the latter is the difference between
the rotation angles at the axis of the stellarator and at the radius r under consideration. 1

If the condition of non-linear stabilization of the resonance (4.2.8) is violated, the
line of force withdraws into the wall in a time (number of turns):

*) The stabilization condition of the rescnance in the centre of the stellarator (wy = 0)
has a different form: £ £ o Ly w=n; § . This resonance is espe 13115 dangerﬂus
since it leads to the destruction of a r&glun of the size r = g,/ (30-3 Su_en ng = 1)
while for peripheric resonances the size of the region destroyed is Ar = vEq,

s
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r % 4.2.12)

In the stochastic region, when condition (4.2.10) is wviolated, the diffusion coefficient
D [Es/mp)? and the "lifetime” of the line of force is:

My~ &~ () HE

2 (4.2.13)

The estimates cbtained cease to be correct in the immediate vicinity of the separatrix
where, in particular, the higher harmonics (lw) play a part. This problem was studied by
Zaslavsky, Sapdeev and Filonenko®®), However, the solution they obtained was not final,
namely the dependence of dw/dI on w was not disclosed. In Section 2.6 it was seen that for
very general conditions the behaviour of the system near the separatrix is umiversal and is
described by expressions (2.6.7) and (2.6.8). It follows from (2.6.8) that the spatial
width of the stochastic layer in the stellarator being proportiocnal to the energy width is
always small and is completely negligible in the sense of a limitation of the stable region.
It is interesting to note that the width of this stochastic layer is not exponentially small,
as in the case of the non-linear resonance (Section 2.6), but simply proportional to the
small perturbation parameter. This characteristic was already discovered by Mel'nikov®™)
The explanation is that in the case of the stellarator the perturbation frequency, for
example on account of toroidality, v w, whereas the destruction of the separatrix of a reso-
nance some way from the border of stochasticity is usually due to the action of high frequency
perturbation,

The frequency width of the stochastic layer (2.6.7) is always great and therefore it is
impracticable to rely on the use of a large rotation angle in the immediate vicinity of the
separatrix of the stellarator. Figure 4.2.1 gives the results of mmerical computation from
a paper by Gibson!!®) (toroidal perturbation). In the case concerned 1. = Yo =y, where
Yol(= ﬂ¢] is the rotation angle at the separatrix and ¥ the rotation angle at the border
of stochasticity, The interpolation line equation is given in Fig. 4.2.1 and the expected
dependence takes the form (2.6.7):

N Q. t ., s, =24
rir ﬂﬁ.e“.{ + 55 b 2 (4.2.14)

From the results in Fig, 4.2,1 we obtain: ﬂtfﬂm = 1.28, whence the last term = 0.06, which
cannot be regarded as a serious deviation from the interpclation line.

The stochastic instability of the lines of force can be used to create a so-called
Skornyakov trap!'?). The distinguishing feature of this trap is the region of "turbulent
motion" of the lines of force, in which the lines, at first close together, rapidly diverge
considerably. Stochastic instability also has this same property. The reason for using_
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l

] Fig. 4.2.1. Decrease of the rotation
angle of a magnetic line of force in
dependence on the ratio of the stella-
i . rator radii € = r/R (toroidal pertur-
1 R R bation): s is the maximum rotation
angle at the separatrix; is the
rotation angle at the b ry of the
stochastic layer.
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such a "turbulent" region is the hope that inside it the development of plaﬁa instabilities
will be hampered. Indeed, the spatial non-umiformities (fluctuations) occurring in the
plasma, moving along the rapidly diverging lines of force, will spread out and mix, which

is equivalent to some damping. The difficulty of creating a Skornyakov trap lies in the
fact that the turbulent region must be completely surrounded by a reliable "laminar" layer
of regular magnetic surfaces to ensure heat insulation. In particular, the stochastic in-
stability considered in the previous section is completely unsuitable for this purpose,
since the turbulent region extends as far as the separatrix,

One of the possible methods of creating a "turbulent" layer in a stellarator by means
of an additional short "resonant" winding is described in Ref. 83%. Two other methods will
be mentioned here,

The first was proposed by Mel'nikov and does not require any additional equipment at
all. .It is based on the fact that the separatrix of the central resonance w = 0 (which is
always the case for n > 2, see note on p. 178) is destroyed by toroidal perturbation, which
automatically leads to the formation of a stochastic layer. The width of the layer depends
on the ratio of the perturbation frequency [w; = 1 for toroidal perturbation'!®)] to that
of the phas'e oscillations ﬂ¢ (4.2.6). For the central rescnance the frequency 0 s Can also
be estimated from the relation: ﬂ¢ W 5fs A~ 2E/ny v E, since 4s v s and ¢ ~ 1. This estimate
is of the same order of magnitude as (4.2.6) on the edge of the resonance: al,w ~ £ (see
above). The transition to dimensionless "frequency" is effected by means of the transfor-
mation: n¢ + ﬂlpfuL. Whence:

Ly o oo )
_ e — A W (4.2.15)
51, 3
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In this last estimate we used the above-mentioned condition £ v 2 Ly w for the size of the
central resomance (my; *~ 1). Since it is desirable for £ << 1, a large width of the
stochastic layer, corresponding te the condition w; 2 0., is possible only for a very small
a, which leads, in particular, to "discontinuity'' of the field when it rotates in the stella=-
rator. For continuity of the field it is necessary for ol z 2r/n ~ 1.

The second method of creating a "turbulent" zone is based on the destruction of the
central resonance by a special winding, the pitch angle of which (w,) is identical to that
of the line of force at the edge of the resonance: o, = ow. The total rotation angle of
the additional winding is then equal to: oL = awl ~ £ << 1, so that there are again dif-
ficulties with the field contimuity, but only for the additiomal winding.

The entropy in the "turbulent"” region characterizing the rate of decrease of the in-
stability®®) will be of the order (per z unit, representing time):

b ~ Kw ~ 3 - (4.2.16)

Ly

This value is smaller (when £ < 1) than in the method deseribed in Ref, 89, where
h=(1n ﬂé]fL n L=', if the error in formula (15) of this paper is corrected.

At present the possibility of stabilizing plasma instabilities in a Skornyakev trap
remains highly problematical. The main difficulty here is due, apparently, to the border
between the "turbulent" and "laminar'' regions, where large gradients of plasma density may
occur, facilitating the occurrence of plasma instabilities. Nevertheless, in view of the
simplicity of the additional equipment required for creating a "turbulent" layer, it appears
expedient to carry out the corresponding experiment.

4.3 Arnold diffusion in the interaction of
colliding beams

Below only the simplest case will be considered -- that known as weak-strong inter-
action, when the influence of the weak beam on the strong one can be neglected., This is
usually the case for colliding electron-positron beams and will be even more so for proton-
antiproton beams"). Weak-strong interaction amownts in fact to an interaction between a
single particle and a colliding bunch. A convenient model of such an interaction, which is
fully acceptable for our estimates, is proposed in Ref. 13,

For proton, and especially antiproton, storage devices even very weak diffusion can be
important, since under natural conditions there is abselutely no damping of the oscillations
and the necessary lifetime is a few hours'?®), Recently, Budker proposed artificial cooling
of protons by means of an accompanying electron beamlzs], in which case everything would
depend on the damping time in fact realized.

It is convenient to characterize the intensity of the interaction by the frequency
shift of the small (linear) betatron oscillations (4v); as the small dimensionless parameter

*) For a description of colliding beam technique see Ref. 80.
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let us choose & = Aw/v, When the amplitude of the cscillations is of the order of the

transverse size of the bunch the non-linearity reaches a peak, equal to: o~ e 13l

The resonance condition takes the form:

n,Vet RAg Ve + F‘uﬂ' =0d (4.3.1)

where all the frequencies are given in units of the revolution frequency ws; ni, ny, p are
integers; wg is the frequency of the external perturbation, which we assume to be &-shaped
{any p). Taking into account that in the present case m = 2, the amplitude of the pertur-

bation harmonic can be written in the form [see (2.12.23)]:

- H-_/Ihn

Byl vl (4.3.2)

The parameter ng depends on the shape of the beam and the amplituwde of the oscillations a.
In particular, for a cylindrical beam shape ng ~ a/fry, where ry is the transverse dimension
of the beam'?), Let us also introduce a dimensionless parameter of the coupling between the
betatron oscillations £?, which in some cases can be very smalll2®),

The resonance density can be estimated in the same way as in Section 2.12, taking
N = 3, since the external perturbation, as we assumed, has many harmonics. Moreover, the
resonance density must be inversely proportional to the constant frequency of the external
perturbation wvy. As a result we obtain from (2.12.27):

Y,

Ay ':;—57 (4.3.3)
An example of a set of resonances up to and including the fourth order is shown in

Fig. 4.3.1. It can be seen that the density of the resonances is very non-uniform. This
effect can be included in the parameter v, (4.3.3].

Fig. 4.3.1. Set of resonances mw, +
+ngvy + pug = 0 for vy = 1; |ng| +

4 |n2T < 4; p is any integer; 40
different resonances in all.
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Let us first of all estimate the border of stochasticity, which is determined by the

¥

overlapping of the main resonances (n £ ny). Using expression {2,12,29a) in which we put:
€ + eA? (the majority of the resomances are coupling resonances), we obtain:

<
&

£y = Bnr (4.3.4)

Turning to the estimate of the rate of Armold diffusion, let us note that in the present
case we are interested in the expression for the diffusion coefficient as a function of the
mmber of the resonance harmonic (2.12,29). The point is that the main deleterious result
of the interaction of the colliding beams is the "blow-up" of the weak beam, leading to a
decrease in the so-called luminosity of the colliding beams®?), The frequency of the heta-
tron escillations changes, roughly speaking, by a value Av = ev of the total frequency
shift under the action of the oncoming bunch. It is therefore clear that the action of the
resonances will be substantial for the majority of the particles, if this frequency change
exceeds the mean distance between guiding resonances o (4.3.3),

When e << g, expression (2.12. 29) can be simplified, neglecting the term n/2ng in M
and putting [En CfN - 1},!']'42:1'],11"“‘I = 1, Further, if one considers the diffusion along
coupling resonances under the action of other coupling resonances, Dy is in addition multi-
plied by a factor 8 (Section 2.11). This case is typical. Taking into account, finally,
that a ~ £ and N = 3, we obtain from (2.12.29) the following estimate for the Arnold
diffusion coefficient:

&

.
'E;'JA(M) Iu $P8 er;:(::’i(f‘ PR Hﬂj (4.3.5)

Since Arnold diffusion occurs inside the stochastic layers, the volume of which can be
ignored when g << € (Section 2.6), 1in practice it can become substantial only in the
presence of additional (“external) diffusion, for instance on account of gas scattering or
some other kind of fluctuations in the storage rings. "External" diffusion ensures the
entrance of the particle into the nearest stochastic layer and subsequent Arnold diffusion.
If the latter is sufficiently great the "blow-up" time of the beam will be determined by
the "external" diffusion up to the nearest resonance surface, i.e. by a distance n ﬁn’
instead of (ev) in the absence of Arnold diffusion. Since the diffusion time is proportional
to the square of the distance, the beam "blow-up' time will then be reduced by

/e (f_?_ %
. T8 (4.3.6)

times (see Section 2.12).

By means of (4.3.3) and (4.3.6) we find:
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Substituting this in (4.3.5), we obtain:
L%
5 3 R s 4.3.8
'Z:AM'TUaEpﬁ'EKFK'EWJ’) F e f/ (4.3.8)

The value of D, is determined by the required lifetime ("blow up" time) of the beam

o Dy v I%/t. Putting: B = 8 (eviug) s and k = 1, we arrive at the equation for the lower
limit ¥,, determining the region of influence of the Armold diffusion:

1 Cu[pr) " 28] = 1

This expression shows in particular that the threshold of vy, depends weakly-on the coupling
coefficient 8?, provided the latter is not too small: #* >> (In B)™® = A"%., The equation
for ¥y, can be written in the form:

.ZJ—;%- lu (/4;:3'3‘-;) = 7 (4.3.9a)

Putting y: = /4 in first approximation we find:

5 3
Yox [ 8n (—’gfjj (4.3.10)

It is evident that the latter expression is valid only for A8 »> B; if this is not so it
is necessary to solve equation (4.3.9) more accurately.

From expression (4.3.10) it can be seen that the critical value of the frequency
shift (iv); depends substantially only on the frequency of the external perturbation v,
and the field smoothness parameter Pf the oncoming beam ny; dependence on the other para-
meters is weak, including that on the coupling parameter of the oscillations g2 and on
time T.

When (Aiv) increases above the threshold itlca.n be considered that n/ns = const (4.3.5),
and D, increases on account of the factor [ﬂﬂr]'f“ (4.3.8). Then from (4.3.7) it follows
that: :
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Let us also write down the expression for the harmmonic rumber of the resonances deter-
mining the Arnold diffusion. From (4.3.5) we have:

My = 6 n, bu [@Br) s b :’3_/ (4.3.12)

The estimates obtained were based on formula (2.12.2%), which is valid when n' » n (Section
2.12). Let us find the condition under which it is possible for n' = n, and the diffusion
coefficient is given by the estimate (2.12.26). Using expressions (2.12.25) and (4.3.7)

we obtain:
£ < *.Ij'
5 -2 (Ej =2 o, f (4.3.13)
Estimate {2.12.268) in our case takes the form:
F 1 3 "-?H/“ o
2, ~ _}f'uusu/j e (4.3.14)

Let us consider the influence of synchro-betatron resonances on Armold diffusion. The
simplest effect is a considerable increase in the density of the resomances. For this it
is necessary only for the spectrum of the synchro-betatron resonances to span the distance
between resonances (4.3.3). The width of the spectrum depends on the mechanism of synchro-
betatron interaction. For colliding beams the main effect is apparently the modulation of
the frequency of the betatron oscillations, which takes place for two reasons. Firstly, on
account of the modulation of the non-linear frequency shift, when the width of the spectrum
may here reach & e YA ﬂwr, where n is the harmonic mumber of the betatron resonances, and
fv_ the total non-linear frequency shift of the radial escillations; secondly, on account
of the modulation of the revolution frequency, the width is b, ~omw r;,-"q [:q is the high
frequency hamonic mmber®) ].

The overlapping condition can be found from the following considerations. In the
equation of the resonance Ei“ivi = [, the term B A should be of the order of the
variation of the residual sum between neighbouring resonances, which in its turn
; vonA wp/n® (4.3.3). Hence the overlapping condition: A2 wp/n® % n + (Av),, where n
i is determined by the time of the Arnold diffusion and (Av),; = {ﬂ.uzh is the Arnold diffusion
threshold, without taking into account the synchro-betatron resonances. Then the last

expression for the width 4. leads to the synchrotron frequency limitation:

i o T T L [ e
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V. Z i o (4.3.15)

The Arnold diffusion threshold will now be determined by the distance between the synchro-
betatron resonances, which is < ucfnl’ij, i.e. it decreases by nd /v_ times, which at the
boundary (4.3.15) is ~ (wn/q). In fact, the decrease will be even greater, since the rate
of the Arnold diffusion also increases on account of the increase in the density of the
resonances ) and therefore resonances of much higher harmonics begin to work. The first
expression for ac unoe {ﬂur] leads to the condition &ur * (&v)1, i.e. it does not lower
the threshold.

The modulation of the magnetic field of the storage ring acts in a similar way. Again
there is frequency modulation with a spectrum width By v ME, where £ = 4 H/H is the ampli-
tude of the modulation. From the overlapping condition b, 2 nﬁn, we chtain the limit of
dangerous modulation:

Vo
T (4.3.16)

In this case the decrease in the Arnold diffusion threshold (by we/n®uv  times) will be con-
siderably greater on account of the small modulation frequency v and also on account of
the increased Arnold diffusion [see above and (4.4.15)].

The action of radio-frequency modulation is considerably more complex. On the one hand
it leads to frequency modulation with a threshold (4.3.16) for a quantity qf = qdw/w. It
is true that the amplitude of this perturbation may already be considerably smaller than that
from the oncoming beam. On the other hand, the perturbation modulation spectrum may span
the gap between neighbouring synchro-betatron resonances, which under condition (4.3.15)
leads to an even greater lowering of the threshold of Arncold diffusion. The above-mentioned
gap is ~ v_/n in betatron frequency'??) or & v/vn in revolution frequency. Hence the
boundary of dangerous modulation of the radio-frequency is:

' Ve V.,

ba = Yugq quin® (4.3.17)

This last estimate is given in the limit (4.3.15). The amplitude of such perturbation may
also be small (see above).
Finally, the effect of medulation of the synchrotron frequency itself is also possible

under the action of various factors. However, spanning the gap between the synchro-betatron
resonances in this case already calls for rather considerable modulation ﬁucfuc i

*) See similar estimate in next Section (4.4.15).
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As we saw, the action of (frequency) modulation amownts to splitting up each resonance
plane and forming a distinctive multiplet of the parallel planes. Vthen the distance between
these resonances is sufficiently small they begin to destroy each other with the formation of
a solid stochastic "corridor'. It is significant, however, that this phenomenon does not
change the Arnold diffusion, since the vectors (n) of all the resonances of the multiplet are
parallel (see Section 2.12). '

Returning to the synchro-betatron resonances, let us note that they may also lead to a
more important effect than a simple increase in the density of the resonances, namely to
streamer diffusion (Section 2.12). The high frequency accelerating voltage is here the
external pertirbation destroying the conservativeness of the system. In other words, this
perturbation shifts the system out of a constant energy surface and thus ensures streamer
diffusion.

For diffusion to take place over a considerable distance, neighbouring streamers must
intersect. This is possible if the dynamic frequency variation

AV 2 By ~ = (4.3.18)

Here we are considering four frequencies -- two betatron frequencies, the revolution frequency
and the frequency of the external perturbation. The last must have a sufficient mumber of
harmonics (v n). In the opposite case the necessary (&v) considerably increases (see below).
This requirement is usually not satisfied in storage rings. Firstly, the accelerating
voltage, as a rule, has only one harmonic, and secondly, under synchrotron operating condi-
tions the revolution frequency on the average remains constant. Streamer diffusion in this
situation is possible only outside the limits of the synchrotron separatrix, which may be of
importance for very low energy protons or electrons (see Section 4.4).

Under ordinary conditions it is necessary to bear in mind the synchrotron oscillations,
the frequency of which will also be a third dynamical frequency in addition to the two
betatron ones.

For considerable streamer diffusion it is necessary, as noted above, for neighbouring
streamers to intersect. This is possible precisely on account of the variation of the syn-
chrotron frequency itself ﬁ“c‘ If one puts fv ™o, the condition for intersection of the
streamers proves to be the same as that obtained above for crossing the gap 4 vg/m?
by the synchro-betatron resonances. From the width of the spectrum of the latter, due to
the non-linear frequency shift: Ao mm e (&v) (p. 185), we obtain the streamer diffusion
threshold in the form =

v

[
Cava ), = === (4.3.19)

Modulation of the revolution frequency gives a threshold identical to expression (4.3.15).
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The harmonic mumber of the resonances n is determined by the time of the streamer
diffusion for which, taking into account "“external" diffusion, estimate (2.12.39) should be
taken. Let us re-write it for the problem under consideration, taking into account that
N=3 e+¢-8% grueg; m=2; w=uwy; we obtain:

S
2o

o z avy3 ¥ =
D ° o T el 3
A § "1)(»'.1 /3 kv g (4.3.20)

Let us specify this estimate in the simplest case B* ~ 1; f&v_ ™ Av. Using estimate
(4.3.15) and again introducing the beam "blow-up" time T " I*,.-’Er;, we obtain the equation
for the critical value of the synchrotron frequency:

(Ve) x :;- }’fh[u u(‘w) (_G?i)zjjjj (4.3.21)

This depends weakly on the strong beam current J = Av, provided (wptv) -+ (4v/v)?® - 8% > 1
(4.3.20). Combining in a similar way (4.3.19) and (4.3.20) we find the streamer diffusion
threshold in current from the equation:

(a3), f:‘;" . {f?n[(v:,‘-u_/} (4 “’_} ﬁ‘ (:J, ) _JJ (4.3.22)

Effects (4.3.21) and (4.3.22) work independently. The "blow-up" time decreases in approxi-
mately inverse proportion to the square of the amount by which the corresponding quantity
exceeds the threshold [see (2.12.41) and (4.3.11)].

Modulation of the magnetic field or the high frequency may lead to an increase in
streamer diffusion, but it cannot bring this about by itself (without synchrotron oscillations)

since the modulation frequency is not a dynamical variable.

As an example let us choose the following parameters for a proton storage ring:
T = 10° sec; v =10; =1; wp =10 sec™’; 8% ~1; (&), ™ 1/20. The last value
is taken from mumerical experuns:nts” »127) and from experments on electron storage
rings'27+172) | In all cases the quantity (&v)g lay in the interval 1/10 - 1/40. Hence the
parameter ne v 2 (4.3.4) can also be estimated.

Solution of Eg. (4.3.9) by the successive approximation method gives: y, = 1/50 whence
(Auw)y v 10'3, with resonances working up to n = 8. The streamer diffusion thresheld (4.3.22) is
(&w)z v 2 x 107* (n = 8), i.e. roughly the same as for ordinary Arnold diffusion. Finally,
the synchrotron frequency threshold (4.3.21) is: () fqn 5= 10=* (n = 6) when &v = 10°°.

In fact the synchrotron frequency should be even smaller: w.rch £ 2 x 107", which follows
from estimate (4.3.15) with n = 8. In the opposite case the ordinary Arnold diffusion
threshold decreases in addition by ~ wn/q = 80/q times. The tolerance is of the same order
for both the magnetic field modulation and the frequency modulation (qiw/w) (4.3.16).
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The case of the cylindrical beam which we are considering is probably the worst. An
effective way of preventing Arnold diffusion appears to be to decrease the coupling between
the betatron oscillations, i.e. the coefficient 82, and also the anharmonicity parameter ng.
Moreover, the working point of the storage ring (vi,v:) should be located in the region of
minimm density of resonances. The most radical means would be to cut off the high frequency
completely, but this might reduce the luminosity of the colliding beams!2®). Increasing
the high frequency harmonic mumber to g = nv also helps (p. 186).

When the intensity of both colliding beams is comparable the large-size beam plays the
role of the weak one, since the parameter ny is very small for a narrow beam'?). When the
dimensions of the beams are comparable, their mutual 'blow-up' is possible, in which event
(4v) decreases to the threshold value. In this case the process can be considerably compli-
cated by the coherent oscillations of the beams'??), but these are comparatively easy to
suppress, for example by means of a feedback!?7)

The estimates obtained above are of course very rough. They can be refined in specific
cases by means of a mumerical experiment. According to Ref. 76, for this it is sufficient
to investipate the local stability of motion in a comparatively short computation,

It would be still better to carry out model experiments on electron storage rings.
Although in this case the time of the Armold diffusion is considerably limited by radiation
damping, it can be made long enough to observe this process (up to 1 sec in the rings de-
scribed in Ref. 133)*).

4.4 Magnetic mirror traps: conservation of the adiabatic invariant

The confinement of a charged particle in an open magnetic system of the type of a

magnetic mirror trap is effected, as is known, at the expense of the conservation of the

orbital magnetic moment of the particle (u), which is the adiabatic invariant of Lammor
rotation'!?). An adiabatic invariant is not an exact invariant and until recently its con-
servation conditions were still unclear. In particular, in a paper as early as 1928,
Andronov, Leontovich and Mandelstam''®) showed in a simple example of the Mathieu equation
that an adiabatic invariant can be destroyed when there is arbitrarily slow but resonant
periodic variation of the parameter. For periodic perturbation, Firsov introduced corrections
to the adiabatic invariant which made it possible to remove the substantial deviation of the
invariant up to increasingly high orders of asymptotic expansion''®). This direction was
pursued by Kruskal in a paper”} showing that the improved adiabatic invariant is conserved
in all orders of the asymptotic expansion. Of course this does not mean rigorous invariance,
but it is equivalent to an assertion that the variation of the adiabatic invariant is in any
event "exponentially" small (see below and Section 2.2). Only relatively recently Arnold
was able to demonstrate the etermal censervation of the adiabatic invariant for a one-
dimensional non-linear oscillator and, correspondingly, the eternal stability of motion of

a charged particle in an axially-symmetric magnetic trap'?®). The requirement for axial
symmetry is essential here and is comnected with the topological features of the KAM theory,
which were mentioned in Sections 2.2 and 2.12.

As we already know, the KAM theory does not give the critical value of the perturbation.
This can be estimated from the mumerical experiments in Ref. 123 and from Rodionov's experi-
ments with electrons'?'), In both cases it turned out that the border of instability is

*] There is a wnique possibility of experimentation on Arnold diffusion using the proton
colliding beams (ISR) now in operation at CERN.
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determined approximately by the simple criterion of the overlapping of the resonances!?’
However, it remained unclear whether the stability cbserved was eternal, in conformity with
the KAM theory, or whether the time for the development of instahility simply increased. A
series of experinents’12-91"311“} were devoted to this problem. All these papers report
the discovery of very weak instability developing during up to 10 reflections of the electron
by the magnetic mirrors. A particularly thorough investigation of this weak non-adiabaticity
was made in Refs., 82 and 83. An example of the dependence of the mean lifetime of an electron
in a trap on the strength of the magnetic field is shown in Fig. 4.4.1, taken from Ref, 83,
The curves correspond to different pressures of residual gas in the trap and different methods
of measuring the lifetime, The non-adiabaticity manifests itself in a more or less sudden
reduction of the latter. The formation of a lower "plateay", i.e. independence of the life-
time on the low magnetic field, was completely unexpected.
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Fig. 4.4.1. Dependence of the lifetime of electrons in a magnetic
mirror trap on the strength of the magnetic field H.

The nature of this weak instability has mot been clarified experimentally. At present
only two hypotheses can be put forward.
According to the first, the instability discovered is due to the fact that the real

magnetic field of the trap was not axially-symmetric, in spite of all the measures taken.
In this case the system becomes three-dimensional and the KAM theory can no longer guarantee
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stable motion, in spite of the invariant tori. Furthermcre, Arnold discovered a specific
mechanism of instability in this cﬂsezl}, which in Section 2.12 was called Armold diffusion.
This second hypothesis will be examined thoroughly below.

Let us first of all discuss the second hypothesis, according to which very weak in-
stability is also possible in an axially-symmetric trap on account of the indetemminacy of
the border of stochasticity and the penetration of the stochastic sections deep into the
region of Kolmogorov stability (Section 2.5).

The motion of the particle in the trap can be described by means of a transformation,
if the variation of the magnetic moment during a half-peried of the oscillation between
the mirrors is integrated (for a trap which is symmetric in relation to the median plane).
The result of this integration is presented in the most convenient form in a recent paper
by Hastie, Hobbs and Taylor!2*), Their calculations are based on the observation, already
made in Ref. 123, that the main variation of p occurs in the median plane of the magnetic
field. This can be explained as follows. If the lines of force diverge without curving,
then the magnetic field H is locally axially symmetric. Hence, in this case the magnetic
moment is exactly conserved, since it is proportional to the generalized momentum, If the
lines of force curve, the axial symmetry is destroyed even locally, the generalized angular
momentum is not conserved and only adiabatic invariance of p is possible. Since the curving
of the lines of force is proportional, roughly speaking, to H" (the prime signifies the
differentiation along the lines of force), we arrive at the following expression for the
local parameter of the adiabaticity'?*J):

i
SN L. . (-~ (4.4.1)
< 2 Wy, ooy W,

Here wy = el/mc is the Larmor frequency; £ is the frequency of the longitudinal oscillations;
v, is the particle velocity coponent along the line of force, and the mumerical coefficient
is introduced for the sake of comvenience. Let us note that the latter expression loses its
sense near the axis of symmetry of the trap, over a length of the order of a Larmor radius,
because of the conservation of the generalized angular momentum. Above it was mentioned that
the variation of p very strongly depends on e, and consequently it is in practice lucal*]

and takes place at the maximm of £,+ In the simplest case, but of course not always, this

maximm coincides with the median plane,

According to Ref. 124, the variation of the magnetic moment after transition through
the median plane is given in first approximation by the expression*):

*) For a sufficiently smooth (non-resonant) magnetid field configuration. In the opposite
case the region where p is changing and Ap itself increases considerably, and all ex-
pressions of this section become invalid.

**) By using the estimate £_ ~ Q/w, (4.4.1) we arrive at the typical expression, &y ™ a'mﬂfﬂ,
for the variation of th adiabdtic invariant when there is analytical variation of the
parameter, which we repeatedly used in this work (see also Ref. 555.
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Here ¢ is the Larmor phase at the maximm of €, and A is a certain complicated expression:

_FF TP g 0 R . i/’,.,_c (4.4.3)
HE 351 .l"lu[g('fflr_‘.:j W U‘_"- :)O(E) Z."ﬂt

where p is the Larmor radius; R the radius of curvature of the line of force; r the distance
from the axis of the trap; &% = H/H". Expression (4.4.2) is valid when r << ¢ 124,

The phase shift between two successive transitions through the median plane in first

approximation is:

A x j"-‘*"n (e )dt = O “'J;fi ~ &7 (4,4.4)

If in the same approximation €q and A are considered to be constants, we obtain a trans-
formation of the basic model type:

/u’-._-/u + £ Cos b ; E:ﬁe-g‘

w’'= ¢+ ()

(4.4,5)

1/e

The stochasticity criterion takes the form (r/g)e” ‘“a~ 1 or e, v 1.

Taking into account the results of the numerical experiments described in the previous
section, one can hardly hope for any kind of residues of stochasticity when the value of
the dimensionless small parameter ed8/dy < 10™* ®%,%%) (e, £ 0.1: v~ p). It is true that
the exact equations of motion are more complex than transformation (4.4.5) and it may be
thought that it is just these small corrections that lead to slow diffusion. However,
according to the KAM theory small perturbation does not destroy the invariant tori. Never-
theless, since the limit of applicability of the KAM theory has been established experimentally
only for a very special system (Section 3.3), the question still remains open.

Let us return to the first hypothesis. The resonance condition now has the form:

Pﬂﬂhr?ﬂ""!;’:ﬁ (4.4.6)

l&h‘.&-‘:&"'ﬁ-':-.&-.- &L
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Here 0 << {1 << w are the frequencies of the drift and the longitudinal oscillations, and
the mean frequency of the Lammor rotation, respectively. As in the previous section, we
can again use the Arnold diffusion theory developed in Section 2.12Z.

The mean features of the problem are as follows:

1. An electron in an asymmetrical trap represents a three-dimensional autonomous oscillator
with threefold interaction (m = 3). Estimate (4.3.3) for the density of the resonances
remains valid:

(4.4.6a)

and the parameter wy * w alsoc takes into account the deviation of the density of the
resonances at a given point of the frequency space {ng, 0, w) from the mean (<we> = T).

2. The working point {ﬂg, Q, w) is given by the parameter of adiabaticity

j—l-j' ~ § ~ £ (4.4.7)
2 L2 :

The exponent for € (2.12.23) is now written in the form: |pf!2ng + |ql/2n, + |2|/2n,.

In {4.4.7] let us put £ = 0;1 so that the term £/2n  can be neglected. Further p ~ q (4.4.7)

but probably n_ >> n,. The latter is due to the fact that the azimuthal non-unifommity is

usually also limited along the trap, i.e. it is operative for a time < 9~'. Hence

nE > ﬁfﬂg >> 1. Ebnsequent}y, only one of the three terms of the exponent remains. Now

taking into account the relations (4.4.2) and (4.4.3) we arrive at the estimate:

8 V-
E, [N [#r‘i’sg]

The mumerical coefficient in the exponent was chosen here according to (4.4.2). The
frequency of the phase oscillations of the triple resonance [p, q, 2 # 0 (4.4.6)] is given
by -the estimate (o~ 1]:

Here the factor i /0 (instead of the exponent) takes into account the fact that the azimuthal
perturbation, although it is also operative for a short time, is almost repeated through a
half-period of the longitudinal oscillations. The stochasticity parameter for an asymmetrical

trap can be written in the form:

£25
a4,

"‘(:c:'}_i) iq,ﬁ g hy o~ ;G nf(—}?) ~ 3/3 (4.4.10)
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The numerical value of the parameters is based on the experimental rasults of Ref. 82, which
show the strong effect of azimuthal non-uniformity when 2% ~ {ﬂ[fH}$ = 10%. In the Arnold
diffusion region the dependence H.. (B) is very weak (see below).

3.  According to (4.4.1) Bl v, fH = Esin @)/H, and the change of the angle of slope of the
trajectory to the median plane 48 = Tpl, where Tp iz the time of diffusion due to gas
scattering. There is still an angular interval (sin © = 0], where the Arnold diffusion is
not considerable and everything is determined by gas scattering. This region is at least
partly respensible, apparently, for the formation of the lower plateau in Fig. 4.4.1.
Putting 42 v @ we can obtain the shape of this plateau from the condition (sin 8)/H =

= (sin @c}ch:

0

r\
it
l

“z. Greslia zﬁH/HCr )E S 5:] (4.4.11)

A

where H.. is the critical value of the magnetic field above which Arnold diffusion stops
playing a part (for a given pressure of residual gas}; 71y is the lifetime of the electron

in the upper plateau and GC is the angle of the loss cone, Law (4.4.11) works only for
particles in the region & = 0, the mumber of which depends on the method of injection. The
lifetime of the remaining particles is determined by the diffusion up to the nearest resonance
as in the problem in the previous section. In this case, as we know, two plateaux are also
formed (Sections 2,12 and 4,3). Let us estimate the step between them. For this let us
compare the distance in frequency to the nearest resonance & and to the exit from the trap
A v 8, Using (2.12.36) and (4.4.6a) we find:

= —
k~ %) A EQY (4.4.11a)

where we put wy ~ & nn aa'l. The shape of the curves in Fig, 4.4.1 is determined
by a complex combination of both processes (4.4.11) and (4.4,11a).

*  Additional information about the structure of Arnold diffusion in a magnetic trap from
the point of view of the hypothesis under consideration can be obtained from the very
interesting results of Ref. 83 shown in Fig, 4.4.2,

This is a diagram showing an example of trapped electron distribution (spectrum) in u
in units of the maximal L The point “f”max = 1 corresponds to the motion in the median
plane (© = 0). The point on the extreme right of the spectnm (/i = 0.4)  lies on the
loss cone. The upper spectrum (a) was plotted immediately after injection (107% sec after)
and represents some kind of fast processes in the trap. The picture of Arnold diffusion
is comparable to the lower spectrum (b), plotted 3.4 sec after injection. The most
interesting feature of this spectrum is the minimm, which is identical to one of the main
resonances nl = w (n = 7), whose position is marked by an arrow, The presence of a minimm
In the spectrum testifies to particle losses, probably due to the diffusion along the sto-
chastic layer of resonances. Similar losses occur also in the resonances n = 6;8 (Fig. 4.4.2h).
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Fig. 4.4.2. Electron dis-
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A slight disagreement with the calculated position of the resonances can easily be explained
by experimental errors, since the spectrum in Fig. 4.4.2 was obtained by differentiation of
the directly measured integral spectrum,

According to the results in Fig. 4.4.2 one can determine the reduction in the lifetime
of the electrons as compared to the upper plateau:

k ( ap Sz ) 0#6) ol

(fu is the distance between resonances), which agrees in order of magnitude with the value
k = 16 from the results in Fig. 4.4.1. However, it is substantially different from estimate
(4.4,11a), which in this case gives: k ~ 10, The reason for the difference is obvious

-- in the case in Fig. 4.4.2 the lifetime is determined by the diffusion up to the nearest
main resonance ni! = w, and not the three-frequency resonance nfl + &g = & as assumed in
(4.4.11a).

A possible explanation of the peculiarity noted is connected with the structure of the
transitional region in the ©(u). As already noted above, for sufficiently high p + Moygee
Arnold diffusion is absent {Ea + 0). Therefore in the transitional region only the strongest
Tesonances can manifest themselves, At the same time in this region there are generally
quite a rumber of particles, since it corresponds to a large solid angle (small 2). There-
fore the measured lifetime of the electrons in the trap depends essentially on the processes
in this region. Three-frequency rescnances operate effectively, apparently, only in the
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region ”f“max £ 0.6 (Fig. 4.4.2), where the lifetime therefore sharply decreases, which
leads in practice to the absence of particles in this region (Fig. 4.4.2Z)}. The formation
of a stochastic layer near the loss cone coinciding with the separatrix of the particle
oscillations in the trap might be a competing process here. However, the width of this
layer according to the estimates of Section 2.6 is negligibly small: Ap_ e~/ 2 1/400
(4.4.2). '

It remains for us to estimate the rate of Arnold diffusion, For this it is necessary
once mere to obtain an estimate of QA (Section 2,12) taking into account the remarks made
above. The exponential factor takes the form (2.12.29):

i
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It is difficult to find the exact value of the numerical factor in the first exponent
(B 3); it is obtained below from experimental results, Let us find the diffusion co-
efficient in a similar way to that used in Section 4.3: ’

(4.4.13)

ﬁe f/“l)
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The results of Ref. 83 lead to the following wvalues of the parameters for & = GE = 50°
(on the loss cone): £, = 0.18; w=3,5%10% 1 =100 sec. The most indefinite quantity
is the azimuthal non-uniformity. As already noted above, in the majority of experiments no
special non-uniformity was introduced and according to measurements with an accuracy of
0.5% the field was uniform. On the other hand, in special experiments increasing the non-
unifority up to 10§ did not change H_ within the limits of experimental errors of :20% °2).
Cn the basis of these results one can apparently put: [&}UTH¢ = 8% ~ 10~2, Fortunately
the value B, which we want to determine, depends weakly on the non-uniformity: B = {aHijif“. i

Before calculating B, let us find the relation between T and T,. Since D, very
sharply depends on €,» i.e. on u, the diffusion time will be considerably less than the
quantity uzfpa. As a rough estimate one can assume that T ~ [ﬁujzﬂh, yhere fu is determined
from the condition that the exponent in (4.4.13) I = B{Bea}'lf’ « el/%€a is reduced by a i
unity. Putting: n;afsa Ay and 6e, = 1, we obtain: pftg v T~ in {uzﬁcaﬂ’fDAJ = in[eamTB3}.
Assembling all the relations, we find: B = 2,0, The difference from the expected value
B ~ 3 cannot be considered serious in view of the roughness of the estimates. If one attempts
to take into account the factor neglected in the exponent: (Cuwg/4imn,2)/* = 0.62, putting
wp ww; Cngvl, then B = 1,9, Although this already agrees better with the experimental
results, one should not attach much importance to this in view of the arbitrary choice of some
parameters. It can only be asserted, apparently, that our hypothesis does not contradict
the experimental results.

R SR PRy

The Arnold diffusion coefficient depends very strongly on the parameter of adiabaticity
(4,4.,13). This leads to a rather sharp fall in the lifetime for H = Hcr (Fig. 4.4.1).
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Even in a semi-logarithmic scale the dependence of in T en =, is exponential and may give the
impression that there is a limit of absolute stability®?),

Estimate (4.4.13) shows how difficult it is in such experiments to escape from the
influence of azimuthal non-uniformity. Thus, for instance, decreasing the non-uniformity
100 times, from 10% to 0.1%, leads to reducing Hcr by only 46%.

0f course, for serious confirmation of the above-mentioned hypothesis on the nature of
the weak instability of particles in a magnetic trap, additional special experiments are
necessary,

In conclusion let us consider what effects the variation of the magnetic field of the
trap in time may lead to. With continueus growth of the magnetic field the transverse
energy of the particle increases = H(u * const.), and the longitudinal energy only as.ﬂT,
since the square of the frequency of the longitudinal oscillations is proportional to the
effective "potential" energy of the trap uH. As a result the pitch angle of the velocity
of the particle to the line of force increases, i.,e, the particle is dragged deep into the
"potential' well, The stability of motion paturally increases,

The most interesting case is the periodic variation of the magnetic field, which can
take place, for example, on account of the residual pulsations of the rectified current
feeding the magnet coils, Thus in experiments described in Refs. 82 and 83 the field
pulsations reached a magnitude of 0.1% in the centre of the trap and about 0.03% in the
magnetic mirrors. The pulsation frequency was 300 cps. Since wunder the conditions of
these experiments the pulsation pericd is much smaller than the lifetime of the particles
in the trap, new resonances appear. On account of the spatial non-uniformity of the
pulsations, frequency modulation can be assumed to ocour at all degrees of freedom. As is
known?®), the spectrum of ‘the frequency-modulated oscillations is equidistant, the distance
between the lines being equal to &y (modulation frequency) and the total width of the
basic part of the spectrim ~ A -- the total interval of frequency wvariation. For
fw >» (g == & condition that is generally satisfied -- each resonant plane splits into a
multiplet of N ~ twffly parallel planes ~v y/n apart, where n~' ~ G/ ~ e, (4.4.6). The
origin of this small factor is easy to imagine from geometrical considerations (see also
Section 4.3).

If now Aw/n 2 L («4.46a), the mean density of the resonances sharply increases and
at the same time also the Armold diffusion. Putting n ~ lfaa, we find the tolerance on
the field modulation:

' 2
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The rumerical estimate is obtained from the condition e, v 1, determining the boundary of
the region in which Arnold diffusion may in practice be important (4.4.13). For £ 2z Er
the increase of the diffusion can be estimated as follows. First there is an increase in
the density of rescnances: wy/w v (A0/%,)"! ~ (£0/Q)"' (4.4.12). Furthermore, the width
of each resonance decreases by (ﬁﬁfﬂaji times owing Po the reduction of the amplitude of
the perturbation of the resonant harmonic by (Aw/fe)? times as a result of the splitting of
the resonance, The diffusion coefficient consequently becomes:
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where we used the value B = 2, obtained above (4.4.13). The main new factor in the exponent
(/8E)* is in the typical case ~ 10,

If the magnetic field modulation is in resonance with particle oscillation in a trap,
streamer diffusion may occur. The process is exactly similar to the case in the previous
section, where in fact we studied the same problem of particle motion in a magnetic trap of
special configuration, Streamer diffusion will not be thoroughly studied here. Let us only
note that for this the frequency of the external perturbation (modulation) should be suffi-
ciently high, at least of the order of the drift frequency ﬂg.-

4.5 Stability of the Solar System

The problem of the stability of motion of the planets, although not a pressing one from
a practical viewpoint, has long attracted the attention of astronomers, mathematicians and
students of mechanics by its beauty and difficulty (see for instance Ref. 129). From the
very beginning it was clear that very fine effects of the mechanical motion of a conservative
system are important here. Even the simplest non-trivial case of two planets leads to the
well-known and still completely unsolved three-body problem. Stability means here the
absence of any significant and, what is more important, cumulative energy exchange between
planets. As is known, in another similar system -- an excited multi-electron atom -- this
energy exchange occurs in the relatively short time of ~ 10" turns and leads to so-called
auto-ionization'*). It is clear that these two systems differ essentially by the perturba-
tion strength (= » 107! for planets and £ ~ 1 for the atom, see below)}. However, the question
arises as to whether the apparent stability of the Solar System during ~ 10'° turns is
rigorous stability or only very slowly developing instability. Like other similar questicns
{see for example Section 4.4) this problem was solved to some extent only by the KAM thecryznj.
The peculiarity of the problem under consideration, unlike, for instance, the motion of a
particle in a magnetic trap (Section 4.4) lies in the fact that even in the simplest case of
two planets with nearly circular coplanar orbits (known as the plane three-body problem) the
system is many-dimensional in the sense of the KAM theory (Section 2.2}, i.e. the four-
dimensional tori do not divide a six-dimensional surface of constant energy and angular
momentium in phase space. This means that in sﬁite of the invariant tori, Arnold diffusion
and slow instability are possib]e'along the everywhere dense system of stochastic layers
of resonances (Section 2.12). Only in the case of two planets of substantially different
'mass, when one can neglect the reaction of the light planet on the heavy one, under the
additional condition of the co-planarity of both orbits and the circular orbit of the heavy
planet (so-called restricted circular three-body problem), does the KAM theory lead to the
result of the eternal stability of such motion. Below we give some preliminary estimates of
the rate of Arnold diffusion for planetary and similar systems.
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Let us once more recall in order to avoid misunderstandings that the actual lifetime
of a planetary system may be considerably longer depending on the initial conditions and
the additional "external" diffusion (Section 2.12). To take into account the effect of
these latter factors would be outside the scope of this paper. In this section we will
thus give a lower estimate of the lifetime of the solar system. However, taking into
account the fact that in the process of evolution of the system the planetary orbits could
vary considerably (see, for example, Ref, 141), this estimate will probably not be too far
from reality,

The main peculiarity of the system under consideration is so-called Coulomb degeneracy,
meaning that the unperturbed motion of a planet has only one ("fast") frequency instead of
three (in non-relativistic approximation). This degeneracy is removed by interaction with
other planets, and therefore the other two frequencies are always small ("slow"). Having
used the result of Ref. 144, let us re-write the non-resonant averaged equations for the
variation of the parameters of the unperturbed orbit, mainly for the variation of its fre-
quencies, We shall restrict ourselves to the case of small eccentricities and inclinations
(e, i << 1), which is the second characteristic feature of the Solar System; this is valid
even for the majority of astercids, not to mention the large planets, We have:

d—-—f. = — 2. E_.;._i 7 P g
| L co. it i 2o
,{"J},‘,{_ . T er T (4.5.1)

do’-Qsew (-2 + 5 (2 £2) IPe)

At ey ul
e=fm(s)

' Here 7', w' are the longitude of the ascending node and the angular position of the perihelion
! measured from this node, respectivel}'”ﬂ; m, ag are the mass of the perturbing planet and

Ii the semimajor axis of its orbit; w, a are the frequency and semimajor axis for the perturbed
: planet (ap »> a); & is the small parameter of the problem. From the equations written it

E. can be seen that one slow frequency is connected with the precession of the eccentricity

I [t:i'] and angular momentim (') vectors; it has an order I ~ ew. The second slow frequency
depends on the difference w’ + 20’ and is % ewe® v ewi? (e v i).

g N e S

For the Solar System the latter frequency can be neglected, in view of its smallness
(v 10°° w). Therefore streamer diffusion (Section 2.12) is possible only for Ny = 3 planets,
taking into account one slow frequency Q, or for Ny = 4 in the fast frequencies. Ordinary
Arneld diffusion can occur for Ny = 2 (taking into account 0) and for Ny = 3 in the fast
frequencies.

Let us estimate the amplitude of the various resonances. The Hamiltonian of the inter-

action of two planets is m/r, where
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r, ¢ are the coordinates of the planet in the plane of its unperturbed orbit with a para-
meter Ty 143)  After expansion of 1/r in powers of cos (§: - i) the harmonics of the
difference frequency nfw; - w,) appear, the higher the nearer the planet orbits. The power
expansion coefficients for n >> 1 take the form

e3 L e
P —_— — = wda
By @, "3 w7/

where we used the relation wy = ri’fz. All these harmonics give one and the same resonance:
Wiy = ws. In order to ohtain the other resonances njw; = ngwy (M # n:), it is necessary

to expand T1, Tz in (4.5.2) in powers of eccentricity, or take into account the frequency
modulation §(t) for motion in an elliptical orbit. Both effects turn out to be of the same
order and give a small factor eq, where q = |n; - n;| is the so-called order of commensu-
rability (of the frequencies)!®®) "), The total number of two-frequency resonances = nq.

Resonances with slow frequency & appear as a result of eccentricity modulation in
(4.5.2). The amplitude of this modulation ~ i* (4.5.1) and the harmonic mmber (p) of the
frequency o does not exceed the order of commensurability: p < q. An additional small
factor ~ i?P appears. If e, i << 1, the "slow" resonances (including the frequercy @)
cannot fill the distance between the "fast' resonances, since this would require too high
harmonics p. Therefore Arnold diffusion over considerable distances is impossible under
these conditions. However, such diffusion may begin after a considerable increase of
e,i as a result of Arnold diffusion along rescnances with a small p ~ 1. We shall
estimate it later.

According to the above estimates the amplitude of the resonant harmonics for two planets
turns out to be of the order of:

() : g .2 . M
£, ~ ce < oexp (‘T‘,) (4.5.3)

*) In this section the letter e always signifies eccentricity, whereas the symbol exp will
be used for the exponential.
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where the parameter n, can be estimated from the power expansion coefficients of the per-
turbation m/r (4.5.2a):

il 2. 2 n.)

e oy (4.5.3a)

With regard to the harmonic number in (4.5.3), n = n;, if the expansion is taken in e; and
inversely.

Let us now consider three planets. Their combined resonances are possible only-in
second approximation in the small parameter e, since direct gravitational interaction is
two-particle. In order to estimate the amplitude of the resonances let us note that in the
case of three planets the quantities vy, r2 in (4.5.2) in first approximation contain small
perturbations due to the interaction with the third planet. In second approximation this
leads to three-planet resonances. When the perturbation m/r is expanded two independent
frequency differences appear (for example w, - w; and wy - wy). Their harmonics are simply
multiplied, which leads to a set of resonances with two independent harmonic mumbers. This
gives v n? resonances even for circular orbits. When ellipticity is taken into account
additional resonances appear as in the previous case. As it is easy to verify, the order
of commensurability is mow: q = |n, + ny + ns| (N, wy + N2 wp + Ny wy = 0); the total
mmber of resonances ™ n® (q + 1). The corresponding small factor in the amplitude of the
resonance remains as previously el, like the factor i?P for the pth harmonic of the slow
frequency. The resulting estimate of the amplitude will contain an extra factor e and
exp (-n/ny) owing to the appearance of a second frequency difference. The exponent in
estimate (4.5.3) takes the form (n; + nz)/nms = Zn/ng = n/ny, where n is now the maximm value
of the harmonic number [compare (2.12.23)]. The final estimate for the three planets gives:
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In a similar way one can obtain an estimate of the amplitude of the resonance for an
arbitrary number of planets:

() =1 2 Mo\
= ~ £ e Ve Venp (- B2
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q=| &~ |

Here it is assumed that the masses of all the planets and the parameters of their orbits are
of the same order.

The total mumber of resonances is now ~ nm"-l:ll % (g + 1) and the mean distance between
them:
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Let us first consider the case of Ny z 3 planets, when Arnold diffusion may occur in
fast resonances. Moreover, we can put q = (0, since e << 1 [f4.5.5} and (4.5.6)]. Let us
first find the border of stochasticity, for which (2.12.29a) can be used. Putting: o~ 1;
m=Ng; N=DN -1; siN“} n el e obtain:

Tl
A aly— A
ES MC.T;IE) ¢ (4.5.7
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The minimum is reached for the smallest Ny = 3: B Mg .

This estimate was obtained taking into account only N, frequency resonances. They
are in fact the majority, but they are very weak on account of the reduction of the effective
interaction parameter (4.5.5). For No »>> 3, it is therefore reasonable to consider the
opposite limiting case of pair resonances, the number of which is cbviously equal to
Ng -1 = Ny. Then the stochasticity criterion (2.12.2%a) becomes:

£ ~ N.,'"z (4.5.8)

Hence it follows that for a sufficiently large Ny the system necessary becomes stochastic.
This applies, for example, to star clusters'?), If one considers that the masses of the
stars in a cluster are of the same order, then £ ~ 1/Ny, since each star moves in the field
of all the others. From estimate (4.5.8) it then follows that the border of stochasticity
corresponds to Ny + 3. A double star, of course, is absolutely stable in the absence of
external perturbations. A multiple star with Ny > 2 may also be stable if the masses of
its components or the distance between them are substantially different, which further
reduces the interaction parameter £ (4.5.1). Our Solar System is like this.

A many-electron excited atom behaves in a similar way, which leads in particular to
auto-ionization, which was mentioned at the beginning of this section. Also in this case
the stochasticity may be violated if the interacting electrons are at a considerable
distance (in different shells).

Actually the picture is the same for the nucleus, since in estimate (4.5.8) the
specific nature of Coulomb interaction was not used. Furthermore, the Bohr statistical
model, assuming stochasticity of motion, can be invalid, particularly when a small number
of nucleons are excited. This effect has been observed experimentally'*®).

Let us Teturn to the Solar System and estimate Arnold diffusion, first in fast
resonances. Let us divide the resonances into puiding and perturbing (see Section 2.12).
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For the former, the effective perturbation parameter can be written in the form:

Ey v ghvo-1 [(4.5.5), p = q = 0], and one should have: N, z 3; for the second, let us
express the perturbation parameter through the mumber to independent frequencies N = N§ - 1
(4.5.6): €3 " EN: the quantities Ny, N§ can be different. In the estimate for the dif-
fusion coefficient (2.12.29) let us put exp(mn/dngN) ~ 1, since we want to estimate the
maximm diffusion rate in the lower resonances n "~ 1. Moreover, let us assume that the
factor [2/ne(N - 1)] (...)YN ~ 1 (2.12.29). Introducing the diffusion time T over AI ~ I,
we obtain the estimate:

=
(T )~ JSZ, E;m- exp (.E., z")u

i 2 exfj(i‘%i’)

(4.5.9)

e E_ .

If one assumes that for the Solar System £ ~ 107?, the last expression reaches a minimm
for Ng = N = 3, equal to: (twe) ™ 10'® (years) ). This is considerably greater than the
time of existence of the Solar System (v 10'° years).

In fact the diffusion time will be still considerably greater, since there are only
two large planets for which & ~ 107*, whereas for the above-mentioned estimate four planets
are required (N = 3).

In the case of two planets, as already noted above, it is necessary for Arnold diffusion
to take into account a slow frequency, which is too small to span the gap between the fast
resonances (see above). Nevertheless the diffusion may occur by resonances of the first
harmonic in slow frequency: my wy + Nz we + pd = 0; (p = 0, :1). There are thus three
resonances forming an intersection, exactly the minimum necessary for Armold diffusion
(Section 2.12). The eccentricity and inclination of the orbits increase, the orbits come
together and as a result the interaction between planets considerably increases. If the
initial distance between the planets was not too great, intersection of the orbits is
even possible, and this will certainly lead to stochasticity. The latter is connected with
the fact that arbitratily close encounters are possible, which means that the parameter
ng + <= (4.5.3a) and the density of the resonances increases infinitely (see also Fig. 4.5.1).

The width of the resonances under consideration and the distance between them is of
the order [see (4.5.3) and (4.5.1)]:

— P
S2, ~ m-i-"’./;_gﬁ cexp (- _._:—;')

A, ~ £ (4.5.10)

*) The frequency w, ® 0.53 year~! is taken for Jupiter.
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In the case when the masses of the two planets are substantially different, the motion of
the heavy planet can be considered to be given (restricted three-body problem). If, more-
over, the eccentricity of the heavy planet e¢ = 0, in the rotating frame of reference of
the heavy planet the total energy of the light planet is conserved -- the so-called Jacohi
integral, which can be written approximately in the form!*7):

o4 L-Lles e Log
-E: -+ 3;11 /& ('f E'l.} = Cﬂu—i-ft ; (4.5.11)

Hence it is seen that if, as proposed above for the resonances chosen, a = const in the

Arnold diffusion process, e® + i* = const also (e,i << 1), This diffusion cannot substantially
change the orbit if initially e,i << 1. Therefore, it is necessary to take into account the
eccentricity of the heavy planet, i.e. to expand the perturbation m/r over both eccentricities.
Since for the heavy planet the eccentricity is usually small, we shall restrict ourselves to
the first power of it. Then estimate (4.5.3) takes the form:

iz) : iy i
B, - fEe.n)e r, :’. exp (:- — (4.5.12)

where n now relates to the heavy planet. Instead of (4.5.10) we obtain, respectively:

L] "'fr
Q. ~ u-;f"/fré'.a)e,q - exp (- = (4.5.13)

qua
a4, ~ £w

The diffusion mechanism indicated above is operative for q z 2, since for q = 1 there are
no lateral resonances with slow frequency, i.e. p = 0.

In order to estimate the rate of Arnold diffusion it is necessary to use the original
formula (2.12.22). Since the diffusion rate strongly depends on e, the diffusion time will

. be determined in order of magnitude by the duplication of e from the initial value or the

quadrupling of the energy of the radial oscillations, which is AI/I n e® of the total energy
of the planet. Estimating the time necessary for this as T ~ [ﬂIszpA, we obtain from
(2.12.22) for case (4.5.13):

- S
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Let us apply this estimate to the Solar System. Let us first consider a set of large
Planets, the characteristics of which according to the data of Ref. 139 are given in
Table 4.5.1, including a hypothetical Olber's planet (Mo.5) between Mars and Jupiter,
disintegrated into asteroids'®’). The quantity £ is equal to the ratio of the frequencies
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Table 4.5.1
No. Namo m' ' A nel Y= 3 | .
of Planet a. & . %*T;:I Lr :""| o, “] =1 <
1 |Mercury 0.038 | 0.38 4.16 0.3916 2/5 0.B5 0.21 1 0.2
2 [Venus 0.82 0.72 1.83 0.6152 355 * 1.5 0,007 ] 0053
3 |Earth 1.00 I.Dﬂll 1.00 0.5317 1/2 3.2 0.017 - |
4 |Mars 0.11 | 1,2 | 0,53 | 0.4014 | 5 | 0.4 |0.083 | 0,032 |
5 |Asteroids™™) |¢ 0.1 [(2.8) | 0,21 | 0.3848 2/ 0.52 - - :I
6 |Jupiter 310 | 5.2 | 0.084 f 0.4028 2/5 i 0.28 |0.048 }u.uza
7 | Saturn 84 | 0.6 |0.034 | 0.3504 s | 17 | 0,056 : 0.043
- 8 |Uranus 14 19 ! 0.012 0.5088 1/2 i 1.0 !D,D—l‘f E:ﬂ.ﬂ]i
& | Neptune 17 | 30 jo.00s1 | 06588 | 2/3 |r 0.68 !u.ona i 0.031
i 10 | Pluto 0.84 | 40  |0.0040 f - - 1 - Eo.ga iD..}:G
i .

*) Mass of the sun M= 3.3 x 10°,
**}  Hypothetical Olber's planet, decomposed into asteroids'*7).

of neighbouring planets, and £, indicates the 'closest' resonance. The choice of this
resonance is rather arbitrary and is determined by a compromise between the q value and the
accuracy of the resonance (£ - E4).

Let us begin with the last pair of the Solar System, Neptume-Pluto. In this case, as
noted above, it is not the resonance 2/3 (g = 1) that is operative but the resonance 4/6
{q = 2), which is identical to it. Putting € ~ 5 % 10”° we obtain by means of estimate
(4.5.14): T~ 5 x 10'® years, which is comparable with the lifetime of the Solar System.
It is possible, therefore, in view of the roughness of the estimate, that the anomalously
large eccentricity and orbit inclination of Pluto is explained just by Arnold diffusion.
On the other hand, the reverse influence of Pluto over Meptune is considerably weaker on
account of the small mass of Pluto (T ~ 4 x 10'? years). A similar anomaly for Mercury
apparently cannot be explained by Arnold diffusion on account of the small mass of Venus
[t~ 7 % 10" years) *). Let us note, however, that if the order of commensurability of
the frequencies of Mercury and Venus were not q=3but q =2, even for e = 0.1 we should
obtain t ~ 10'® years, i.e. Arnold diffusion would already be appreciable. It is possible,
therefore, that this diffusion played some part in the process of formation of the Solar
System, limiting the distance between the planets from below. This is connected with the
fact that over small distances there are many resonances of the form (n - 2)/n (q = 2;

ng = n?).

*) This anomaly is possibly explained by the small mass of Mercu itself!*!),
Y po ¥ Ty
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Evidently, one must have a clear understanding of how controversial and unconvincing
such hypotheses may be, which, by the way, is necessarily rather typical of astronomy'®7),
Nevertheless, when a new phenomenon is discovered, such as Arnold diffusion in the present
case, it is useful to imagine, although this enters the world of fantasy, all its possible

manifestations.

Let us now turn to another resonant pair Jupiter-Saturn, for which: g = 3; € TR
n/ng = (2/9) = [g*/n) = 2/5. In this case we have to use (4.5.10), since the masses of hoth
planets are of the same order. This, by the way, does not give a great disparity since the
values of eccentricity of their orbits are also close. From estimate (4.5.14) we obtain a
sufficiently long time t ~ 10'? vears on account of the small eccentricity. Again, for q =1
it would be T ~ 3 % 10® years and even for q = 2 it would still be T ~ 10° years. For the other
pairs of planets Arnold diffusion is negligibly small on account of the small masses of the
planets except for the Saturn-Uranus pair. In this case T ~ 3 = 10'" years, i.e. of the
same order as for the Neptune-Pluto pair. The difference between these pairs lies in the
fact that the first of them is considerably further from the rescnance. It is also possible
that the estimate of t for the latter pair is considerably reduced, since the anomalously
small eccentricity of Neptune's orbit may have been substantially greater in the past.

Finally the resonance of Jupiter with the hypothetical Olbers' planet was also possible
(see table). Let us assume that this planet, having a small mass, had considerable eccen-
tricity, say the same as Mercury: e = 1/5 (v i). Then estimate (4.5.14) gives: 1 ~ 10°
vears. This result, in our opinion, enables us to overcome the difficulties in explaining
the mechanism of the rupture of Olbers' planet and the formation in this way of a belt of
asteroids. As far as can be judged from the literature!*”) the hypothesis of the Tupture
of the original planet is the most probable for explaining the origin of the asteroids.
From our point of view, the destruction of Olber's planet could have been the result of its
close encounter with Jupiter. The rupture (or several ruptures) proper of the planet could
also have occurred later, for example, under the influence of planet rotation!*?). With
regard to the distribution of the asteroids, at present it may be considerably different
from the original distribution as a result of the evolution of the orbits.

In this commection let us note that the classical perturbation theory generally used to
analyse such evelution is not applicable near resonances"“] for t 2 t_, where t is the time
of-development of instability in the stochastic layer, which can be estimated as (4.5.13):

' = ki
Aigan 2T i oAg years, (4.5.15)

The mmerical value is taken for resonance 2/5 with Jupiter. Therefore the "umchanged" or
eigen parameters of the orbits of the asteroids introduced by Hirayama'*®:'*?) have sense
only far away from the main resonances. In particular, Arnold diffusion violates the Laplace-
Poisson theorem on the absence of secular perturbations in the semimajor axis of the orbit.

It is interesting to note that the five main families of asteroids with close values of
"unchanged" elements, discovered by Hirayama, lie just between the main resonances

(Fig. 4.5.1).
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Fig. 4.5.1 Frequency spectrum of 1641 asteroids {angular line) and correlations with the
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Figure 4.5.1 gives a histogram of the distribution of the asteroids in the semi major
axis (a) of their orbit, or, in other words, the frequency spectrum of the astercids. The
interval represented: 1,8 < a < 4.0, covers 1641 asteroids out of 1660, the parameters of
which are given in Ref, 149, The arrows denote resonances with Jupiter, which are divided
into seven groups according to the value of the order of commensurability q = 1-7 *].

For all rescnances with q < 5 in the distribution, there are so-called "gaps'", i.e.
clear decreases in the number of asteroids. Slightly less definite “gaps' are also ob-
served for resonances with q = 6, but they are completely absent for q = 7. Resonances
2/3 and 4/9 appear to be an exception; they correspond to the distribution maximm instead
of "gaps'". However, a more detailed distribution (dotted line) shows that near these
resonances the mumber of asteroids decreases also (compare with resonance 2/7). Sometimes
a "maximm'' is mentioned near resonance 3/4 (a = 4.2949) implying a single asteroid Tule
(a=4.2829; e = 0.032; i=0.041) '*7). However, a single case cannot constitute a
serious objection to general regularity, and all the more since in the present case the
quantities e and i are anomalously small [<e> = 0.141; <i> = 0.166 '*7)].

Finally, there is yet another exception == this time an undoubted one —- the so-called
Trojan group (15 asteroids) 197) situated inside resonance 1/1 (a = 5.2028), the reluéive
width of which v V& = 3%. The reason why this resonance is an exception is because it is
inside the stochastic ring, since the distance between resonances with a given
q [wi/wz = (n - q)/n] vanishes when wi/w, + 1: B8 q/n?. However, these resonances,
the width of which ~ /EeH [(4.5.13), na = (2/9)/(a/n)?, see above] cannot completely destroy
rescnance 1/1, the width of which is substantially greater (v vg). Therefore, a stable
region forms inside resonance 1/1, in which the Trojan group is located. Similar stable
regions are also possible for the other resonances, since the neighbouring resonances with
slow frequency preducing Arncld diffusion are considerably weaker and cannot destroy a
two-frequency resonance completely. This effect also apparently explains, at least in part,
the conservation of a certain mumber of asteroids in "gaps".

Let us estimate the Arnold diffusion rate for asteroids, putting for the sake of sim-
plicity in (4.5.14): emnve i~ 1/5; nwng. Then for q = 2 we obtain: Tt ~ 4 x 10%
years. The limitation of the operating resonances can be found if one takes as the maximum
observable T ~ 10'? years. We obtain Gpay = $(Ts v 3 % 10* vears). Agreement with the
experimental results in Fig. 4.5.1 may be regarded as satisfactory, taking into account
the roughness of the estimates.

Figure 4.5.1 also shows the dependence of the mean eccentricity of the orbits of the
asteroids on their semi-major axis [according to Putilin'*"J],which is clearly correlated
with the resonances in accordance with estimate (4.5.14). The exception is resomance 1/2,
the distinguishing feature of which is the equality of the rotation frequency of the
asteroid and that of the radial oscillations of Jupiter in the frame of reference spinning
with the latter. The oscillations may be so phased that the distance between two planets
would be maximal.

*) Sometimes one denotes also a "'gap" connected with Mars (resonance 2/1), alse shown in
Fig. 4.5.1. However, the fall in the distribution function in this place certainly
does not go beyond the limits of statistical error.



1 mar g ATy

_.___'__‘_...I.__._L.._‘.‘_._. mrapre

ks g R TR i R

T

- 209 -

The width of the majority of the "gaps" is ~ 1% (Fig. 4.5.1) and weakly depends on the
crderzof t?a resonance. Its lower limit is determined by the width of the resonance and is
~ 100 =100 (q = 2-5). The upper limit depends on the additional diffusion, for example
due to the interaction of the asteroids between themselves or with interplanetary matter.
Besides the diffusion, systematic variation of the orbit alsc plays a part. In this connec-
tion let us point out that some of the "gaps™ (2/7; 3/8; 4/9; 2/3, see drawing) are
displaced in relation to the resonance to the side of greater energies (a), which corresponds
to an increase of the size of the orbit with time. In any event, it can be expected that if
the distance between the working resonances becomes smaller than the width of the "gap', the
majority of the asteroids will be destroyed. Apparently just this is observed in the section
a > 3.2 (Fig. 4.5.1). There are only 16 asteroids with a » 4.0 and with special parameter
values; the rest, if they existed initially, must have come too close to Jupiter, entered
the stochastic ring and been captured by Jupiter. It is possible that the explanation of
the almost complete absence of asteroids near Mars (there are in all three asteroids with
a<1.8) is similar.

As far as we know, the only competing hypothesis is the Brouwer hypothesis’E‘], which
explains the appearance of the "gaps" simply by phase oscillations in the resonances, on
the assumption of uniform or, at least, sufficiently smooth distribution of asteroids in
the integrals of motion. This effect undoubtedly exists, but the above-mentioned in-
dependence of the width of the "gap"” from q is unclear, as well as the limitation of the
operating resonances by the condition q £ 6 (Fig. 4.5.1). In order to clarify this question,
more accurate estimates of Arnold diffusion in the Solar System are necessary-

4.6 Non-linear waves; turbulence

In this section, we shall-endeavour to apply to the motion of a continuous medium the
notion of stochasticity that has been developed. In exactly this case we have a well-known
and extremely clear picture of stochastic motion -- turbulence. Moreover, turbulent motion
is a typical example of a system with divided phase space (Section 2.5) (laminar and
turbulent zones), a fact which seems so surprising for a discrete dynamical system. There
also exist critical values of the parameters, for example the flux velocity giving the
border of turbulence (stochasticity). For analytical calculation of this border, the
criterion of local instability is usadlﬁ"], which in discrete systems is equivalent to
stochasticity (Section 2.4). There is thus a close analogy between the motion of a discrete
and a continuous dynamical system. This analogy can be fully understood if it is recalled
that under ordinary conditions, for instance when the dimensions of the medium are res-
tricted, its motion may be decomposed into some discrete modes (“quasi-particles™),’
weakly interacting with each other, at least for some values of the parameters of the
problem. Moreover, in a series of cases the spectrum of such modes is limited, for
instance, by dispersion, so that only a finite mumber of modes effectively interact. In
this case there is complete analogy with a discrete system.

The distinctive feature of the methods of investigating stochasticity developed in
the present paper lies in the use of the properties of non-linear resonance. Therefore,
at the present time, it is not clear how these methods can be applied (and if they can
be applied at all) for investigating classical turbulence in hydrodynamics. However,
there are also the specific oscillatory problems of the motion of a continuous medium.
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These are non-linear waves interacting with each other. Similar problems have been studied
from different angles by many authors. It is not possible for us to analyse all these
papers thoroughly here, so we shall mention only two effects, in our opinion the most
beautiful. The first, the stability on non-linear modes, discovered by Fermi, Pasta and
Ulam'®%) is similar to Kolmogorov stability for a continuous system. Going further in this
direction Kruskal and Zabusky discovered specific non-linear formations -- solitons --
possessing remarkable stability, or in other words so-called reversible shock waves!'®®),
The second effect -- collisionless (and, as usual, irreversible) shock waves -- was
predicted in theory by Sagdeev'’®).

Below we shall restrict ourselves to the study of the Fermi-Pasta-Ulam problem
and as a model of the system we will not take a continuous medium but, as in Ref. 165, a
chain of coupled non-linear oscillators approximately representing it, or for the sake
brevity, a non-linear chain, the motion of which is described by a set of ordinary dif-

|5‘$:|

ferential equations:

3 3
Xp = (Xegps= %X t Apa ) "'P[(XFH" Xc) . O’f;"’ *'p_,)_] (4.6.1)

L=1,2, ..., N-1; a=1; L=N. Here a is the unperturbed distance between neighbouring

masses (m = 1), coupled by a non-linear spring; L is the total length of the chain.

This model is very convenient in the first place for mumerical experiments, since it
does not call for the integration of partial differential equations. Moreover, such a
relatively simple model makes it possible to trace the transition from a discrete system

to a continuous medium.,

Set (4.6.1) is related to the second order wave equatiOn'ﬁﬁ}:
i R (ﬂ;_ﬁ ,x"?-*r) ) +yt (4.6.2)
b § e 2 BE* ‘\‘?’Z 'ar;-’_'f

where z = %a is the coordinate along the chain. The last term was introduced by zabusky’ﬁ?}
and characterizes the dispersion due to the discreteness of the chain:

2 a2 o £d yv&
T — = — = 4.6.3
4 12 = 42 (:&KJ/) ( )

In the absence of dispersion the solution of the non-linear wave equation, after a short
time becomes singular and then multivalued.

For a wave of one direction one can also write a first order equatinn"’}:

' 2 i - (4.6.4)
He + U Uy + '{'(zzz"":‘} -6,

A T WL P e T
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where u = 3x/39z; &% = 2y%/38; 1t = (3/2) B (t - z) and the index denotes the differentiation
with respect to the corresponding argument. In this form the equation is valid only when
g+ 0 (see below).

As follows from Eqs. (4.6.1), (4.6.2) and (4.6.4), we will restrict ourselves here to
the (simpler) case of cubic non-linearity (in force). Quadratic non-linearity (u? + u)
has been studied in detail by Israelev'®®),

The statistical properties of a non-linear chain (4.6.1) are explained more or less
thoroughly in Ref. 168. The main thing here is the border of stochasticity, which provided
an explanation of the result of Fermi, Pasta and Ulam which was paradoxical in its time --
the absence of equipartition of energy among the modes of a non-linear chain.

Let us first find the position of the border of stochasticity. As an wnperturbed
system let us take a linear chain (B = 0), the motion of which can be represented in the
form of a superposition of normal oscillations Q[t}tj:

- it :
i 2 > g Tkl
Xg = L/_N,_,f é—; Q;( Sin e (4.6.5)

with fregquencies:

. Ik
“?.' ..rs L ™ E—-; [4.ﬁ.6]

i
il

As the small perturbation parameter let us take the quantity:

E:EPu":Eﬂu}-— (4.6.7)

where w is the density of the energy of the oscillations per unit of chain length. Let us
restrict ourselves to the case of k << N, which gives the possibility of transition to a
continuous medium (N + =}. Then the distance between resonances in first approximation is:

4= Dp 1~ @e 2 — (4.6.8)

This expression is valid if the number of perturbed modes (N,) is small. In the opposite
case it is necessary to use estimate (2.12.15), which in the present case [four-phonon
interaction (4.6.2)] leads to the expression:

*) Here we are studying the oscillations of a chain with fixed ends: x = x, =0, i.e.
standing waves; for travelling waves, see below.
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A~ N, = (4.6.9)

The preceding formula is thus applicable under the following condition:
N £ N 3 (4.6.10)

The non-linearity coefficient of the chain o~ ¢, since the unperturbed system is
linear and cubic non-linearity shifts the frequency already in first approxhnatiun’].
This is why the problem is simpler for cubic non-linearity than for quadratic, for which
frequency shift appears only in second approximation. Finally, the phase oscillation
frequency is of the order:

ek

'Q‘P W Ry & oA (4.6.11)

Whence the border of stochasticity is determined by the estimate!®®)

1 A
T S . (4.6.12)
s & B
where % is the wave length of the oscillations. It can be seen that when the lower modes
are excited the stochasticity threshold is raised; this explains the result of Fermi,

Pasta and Ulam'®%).

In fact in estimate (4.6.10) it is necessary to put the maximum value of k reached
in the process of evolution of the non-linear wave. The evolution amounts, mainly, to
the disintegration of the initial wave into so-called solitons!®®), The quantity k, is
determined by the width of the soliten and can easily be estimated from (4.6.4)188);

K. ~ Z-{F“-) ~ Ve N (4.6.13)

This estimate is valid if the initial ke % k; in the opposite case the disintegration
into solitons does not take place““J. For (4.6.13) the border of stochasticity (4.6.12)
takes the form:

% -2/3
B e ol (4.6.14)
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In the following approximation in k/N the frequency i = kN - (r¥/24)«(k/N)?, sa that
a denser system of resonances is possible, with a minimum distance of:

.“_"'11 ol e (4.6.15)
This gives a border of stochasticity of the form:
1) Fe
£ ol e (4.6.16)
-] w

The total width of this system of resonances is: Aw v (k/N)?, which corresponds to an
energy exchange:

aE, 4w k*

—a PN

- Ey- el £ 0T (4.6.17)

Comparing with (4.6.16) we find that in the interval:

Lk _ e k2 (4.6.18)

arz e w2
developed stochasticity must occur.

Finally, stochasticity is also possible owing to the non-linear spread of the
frequencies s which is of the order of:

Kidy » BE it EQE-EE_EA: A ‘.‘_.EE_'* (4.6.19)
« L

since for sufficiently large Ny each resonance of the unperturbed frequencies, generally
speaking, has a few corresponding combinations of modes. Non-linear perturbation removes
this degeneracy and leads to strong destruction of resonances when ﬂEk " Ek'

Let us now consider the case of a travelling wave, which is described by a first order
equation (4.6.4) in the frame of reference moving with the velocity of an unperturbed
(linear) wave. The outstanding feature of equation (4.6.4) is its indepedence of the
perturbation parameter £, which simply changes the time scale. From this it follows
directly that in this case a stochasticity criterion of the (4.6.12) type is impossible.
This in its turn means that the behaviour of standing and travelling non-linear waves may
differ considerably. The other alternative is pointed out below.
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The sole parametsr of Eq. (4.6.4) is the relatien:
Fl =
R = (el e B (;‘f.) (4.6.20)
K k

which alsoc determines the condition for the disintegration of the wave into solitons

(R 2 1)'%%), The question as to whether the latter inequality is also a condition of
instability still remains open, although some mumerical Experiments’ﬁa] encourage the
idea that this is not so.

It was noted above that the first order equation (4.6.4) is walid only in first
approximation for g + 0. The following approximations were obtained by H. Krushkal; for
instance with an accuracy ~ B* the equation takes the form:

g z
Uy + U, u‘(?’-— ;E/’iuljf*rf Ugze =0 (4.6.21)

It is not possible by any scale transformation to get rid of § here, which means that this
parameter must also enter into the criterion of stochasticity.

Let us now describe a few mmerical experiments with a non-linear chain, which were
carried out in cooperation with Israelev and Khisamutdinev!®7),

As noted above, a set of ordinary differential equaticns (4.6.1) with boundary
conditions x; = x; = 0 was integrated. The initial conditions were given through normal
coordinates Q(0) [{(0) = 0] (4.6.5). Computation errors were checked by conservation of
the total energy of the chain; their values are given in the captions to the diagrams,
The time of motion and step of integration (h) are given in natural units (4.6.6].

The main problem when processing the computation results was the choice of a clear
and convenient criterion to show that the motion was actually stochastic. The following
methods were used in different cases.

1. Visual estimate from the curves of the energy dependence of a few modes on time, and

also from the spectrum at different moments in time [Ek{t}]. This method gives a sufficiently
clear result, if only one mode is initially excited, as happened in the majority of cases

in Ref. 165. An example of such a case for our computations is given in Fig. 4.6.1. The
lower curve (h) shows clear almost-periodical energy oscillations of the first mode.

Unfortunately, such initial conditienms are possible only for the wvery lowest modes. The
point is that the mode k << N can directly exchange energy only with the modes 3k, 5k,
7k, etc. In the case of excitation of a single sufficiently high mode its energy remains
practically unchanged. Fipure 4.6.2 gives an example of the excitation of a single mode
ke = 15. Small energy oscillations are due to interaction through higher medes. The
reasons for the intensive energy exchange after t = 5000 will be discussed below.

2.  Autocorrelations (Section 2.3) were computed for the displacement of a definite
oscillator x. and for the energy of a definite mode of oscillations E according to the

following formula;
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Fig. 4.6.1 Weak stochasticity:
E (0) = 0.0788; E;(D) = 5.3 =
B=8; e=0,06;

¥
tnax = 15300; I = 1/2;
AEFE = 0.15%; a) the increase
of Ez(t); b) the dependence
Ei(t)

Fig. 4.6.2 Excitation of
single (15th) mode: E;s = 14.1;
B = 0.0314; = = 0.04;

tmax = 9000; h = 1/6;

AETE = 1.5%. ’

1]
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Xp (€] X, (#-7/

-PCK-JT) =
’ X ; ()
E. 55 Co g o~ (4.6.22)
P(E T) = __E.JHE.G T) e ()

E:H—J — E¢(F) =

Here the bar signifies averaging over t in equal intervals At; T is the time shift.
In all cases for p(x.,T) j = 16, which with N chosen as 32 corresponds to the middle
oscillator of the chain.

3. Correlations between modes were computed according to the formula:

£ Ea - g’_: - .Ea
[CE2- BN (EF- &)™

where the values E and E, are taken at the same moment of time in At, and the bar, as in
(4.6.22) represents averaging aver t. As a result of the law of conservation of the

total energy of the system, the correlation coefficient (4.6.23) is different from zero even
for stochastic motion. It is easy to show that in the latter case it is:

(4.6.23)

= (Ex.a £p) =

7
p b, o) =~ V] (4.6.24)

Thus knowledge of this coefficient makes it possible to determine the effective (mean)
number of interacting modes v.

4. Local instability of the oscillations, which means that almost any of the trajectories
that are close together at first diverge exponentially fast in the process of motion. In
order to investigate local instability we used the spatial symmetry property of our system,
According to which the even modes cannot appear in the process of motion, if they were not
initially excited'®®). Therefore there is an exact solution Es (t) = 0 and it is sufficient
for us to follow the growth of the even modes, if at the beginning they are given very low
energy. We discovered this peculiar instability of the even modes by chance. When the
excitation of a single mode was investigated, .it was found, in the process of computation,
that the energy of the even ("'forbidden'") modes increases from computer zero (v 107'%) to

a considerable quantity and even becomes comparable with the energy of the uneven modes.
This means that from the very beginning there was asymmetry in xLItJ with respect to the
middle of the chain. The “culprit" turned cut to be the computing of the sine entering into
the transformation’ formula (4.6.5). It was discovered that there was an error in computing
the sine, depending on the number of the mode k, as a result of which weak asymetry also
cccurred, corresponding to slight excitation of the even modes. Subsequently, when it was
necessary, special symmetrization of x, (t) was carried out immediately after the transition

from Qk{tj to xl(t].
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This very effect was used as the basis of the method of local instability.

Figure 4.6.2 shows just such a case, when as a result of fast developing instability
the energy, previously concentrated in one mode (k, = 151, after some time strongly goes
aver to the neighbouring medes. This method enabled us to discover weak instability also
for the case when k; = 1. The parameters are taken from Ref. 165, whose authors considered
the motion in this case to be guasi-periodical. Indeed Fig. 4.6.1h gives no reason to
doubt this. Nevertheless Fig. 4.6.1a shows that, although weak, instability does exist,
and can influence the general behaviour (for example, of the first mode) after a sufficiently
long time. Figure 4.6.3 again shows the growth of the even modes (kg = 15, 17) and it is

1

=33

-

-3

g

Fig. 4.6.3 Exponential increase of even modes for initial excitation of
uneven modes (kg = 15; 17): the figures indicate the mumber of the mode;
zero on the graph is the computer zero, corresponding to Ej ~ 1072°;
E=20; B=0.0314; €= 0.06; tpge = 3000; h = 1/6; AE/E = 3.5%.

clear that the distant (k = 2, 30) modes "grow" later than the closer ones (k = 14, 18],
although the rate of growth of all the modes is approximately identical. Let us also
note that the energy transition to the higher modes (k = 30) cccurs faster than that to
the lower ones (k = 2). This effect was also mentioned in Ref. 168,

Using this same method and giving the initial perturbation of the even modes (v 107'*E)
at a certain moment in time, the border of stochasticity was investigated. The excitation
was in three odd modes and the growth rate of the energy of the adjacent even modes was
determined.

The method described is extremely convenient, firstly on account of its clearness, and

secondly because it does not require long computation times. Moreover, one computation
Promptly gives the distance between two neighbouring trajectories.
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A summary of the results is given in Fig. 4.6.4 in the form of vertical segments
giving the experimental interval of the values of the growth rate 1/v. The groups of

results I, II, III and IV, were obtained from the growth of even modes with initial ex-
citation of three neighbouring uneven modes in different parts of the spectrum. Groups V

%
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Fig. 4.6.4 Dependence of the rate of development of local instability on
the parameter 8. Initial conditions: %k, = 27, 29, 31 (I), E = 30;

ke = 15, 17, 19 (II), E=17; ke =1, 3, 5 (III and IV), E = 0.95;

ky = 27, 29, 31 with symmetrization (V), E = 30; k, = 28, 29, 30 (VI),

E = 35.
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and VI were obtained from the divergence of nearby trajectories, and in the first case (V)
the same modes were excited as for (I), but with symmetrization, i.e, complete elimination
of the even modes; in the second case (VI) both even and uneven modes were excited

(k, = 28, 29 and 30).

A semi-logarithmic scale is used in Fig. 4.6.4, corresponding to the expected dependence
(2.11.4)"):

L-gonp

W (4.6.25)

where B.p 1ies on the border of stochasticity and 4 is the order of magnitude of the dis-
tance between resonances. In fact for large g the experimental results lie in straight
lines within the limits of error. However, for small § there are considerable deviations
and in order to explain them we put forward the hypothesis that these deviations, always
to larger 1/1, are connected with other denser systems of resonances. This leads simul-
taneocusly both to a decrease of Bcr' which is determined by the intersection of the inter-
polation line in Fig. 4.6.4 with the horizontal coordinate axis, and to a lessening of the
slope of the line.

Qualitatively this is just what is observed. The effect is especially clearly seen
when the lower modes are excited, where besides the "main" line (III) a second line (IV)
can be drawn with equal confidence.

A quantitative comparison can be made by measuring the slope of the interpolation lines.
The mean value of this slope for all the groups except (IV) is : <A> = 8.2 x 1072, which
agrees well with the expected quantity: A = n/N = 0.1 (4.6.8). For line IV: A = 3 = 1077,
This can be compared with the dense system of rescnances (4.6.15), predicted by theory:
4y o kBN 4 107%,  In this case By (%4) should decrease by the same amount. This is in
fact confirmed in order of magnitude:

ACTIT)S/ (V) = 25; B_ (II1)/B_.(IV) ¥ 37

The gquestion arises as to what is the difference in this case between both borders of
stochasticity from the point of view of the behaviour of the system as a whole, The
answer is that a denser system of resonances may be insufficiently wide (see above). There-
fore the overlapping of the resonances of such a system does not lead, generally speaking,
to complete stochasticity; instead of this a moré or less narrow band of stochasticity is
formed with limited variation of the energy of the interacting modes (4.6.17).

*)} The function t1(f) depends, as we know, on the phase relations between the rescnances,
and law (4.6.25) is in a sense "atypical" (Section 2.11). The justification for the
choice of such a law is finally a comparison with the experiment (see below). Let us
only note that in the case under consideration there may actually be special phase
relations due to the special initial conditions: " (0} = 0 (see above).
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Apparently this is the effect that explains the behaviour of the system, which at first
glance appears strange, for the case shown in Fig. 4.6.1. The upper curve in this diagram
clearly indicates local instability of motion. However, this instability does not develop,
apparently, to any appreciable level, since it does not appear at all in the lower curve,

In particular, the successive maxima on this curve differ from each other by a few per cent
but this difference does not grow exponentially as on the upper curve.

An even more important question arises as to whether such a stochastic layer can lead
to a considerable redistribution of energy between modes after a sufficiently long time.
Although we now have no experimental results on this subject, we kmow that generally
speaking this is possible, owing to Arnold diffusion (Section 2Z.12). However, this in-
stability develops extremely slowly and therefore it is reasonable to consider it apart
from strong instability, due to the overlapping of a wide (and less dense) system of

Tésonances.

The results given in Fig. 4.6.4 satisfactorily agree with the estimates of the position
of the border of stochasticity [(4.6.12), (4.6.14)]. Thus for case II the experimental value
ECT = 0,03, and estimate (4.6.12) gives: e nw 0.06; for case III: acr = 17 Eé W 0.1
[in this case it is necessary to take into account the formation of selitons (4.6.13)].

Cur estimates do not extend to the remaining cases because ks ¥ N (see Ref. 168).

Let us note that the position of the border of stochasticity depends substantially on
the "details" of the initial state. This effect is demonstrated by lines V and VI in
Fig. 4.6.4. Thus for line V, Ecr is approximately twice as large as for line I, and the
only difference between them is the complete absence of even modes for case V. An even
more important difference occurs in the case of excitation of modes of mixed parity (VI),
where B v exceeds the value for the comparable case (I) by almost an order. It is difficult
to say now what this is due to; perhaps, for example, to a reduction of the mmber of modes
of identical parity. In any case this again demonstrates the very complex structure of the
transitional zone.

It is known that local instability does not necessarily signify strong stochasticity
{although apparently it necessarily leads to real instability). Therefore it is desirable
to use other methods to convince oneself that for sufficiently large B, E our system
{4.6.1) actually is stochastic. Three check rns were carried out for the utmost possible
" time under our conditions O 10

In the first case three uneven modes were excited (ko = 15, 17, 19), as for case II-
in Fig. 4.6.4, but with symmetrization. The value B = 0.0314 was chosen approximately
twice as great as'ﬂcr. The autocorrelations of the 15th mode and the shift of the central
oscillator were measured, and alSo the correlations between modes 15 and 17. The results
are given in Fig. 4.6.5. It can be seen that the correlations are of an almost periodical
nature and the number of interacting modes practically does not change: v =4 =1 (4.6.23).

This result does not necessarily contradict the results on the position of the border
of stochasticity in Fig. 4.6.4. The point is that the conditions for the appearance of
stochasticity are determined in reality by the energy of the interacting modes?®®) and not
only the total energy, as assumed for the sake of simplicity above (4.6.12). Therefore,
firstly, the energy cannot extend to a large number of modes and, secondly, the energy of
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Fig. 4.6.5 Correlations for case II in Fig. 4.6.4 with symmetrization:
E=17; £ = 0.0314; e = 0.05; tpax = 18300; AT = 100; 4t = 1;
h = 1/3; AE/E = 3%; p(E;s, Ey7) = - (0.30 + 0.07).
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each mode cannot decrease considerably near the border of stochasticity, since the stochas-

ticity conditions are also destroyed.

mades is possible, which in its turn leads to the residual correlations.

This means that only a partial energy exchange between

we should already obtain "true" stochasticity. The

1f, however, cne takes B => SCT
second control computation exactly corresponds to Ef&cr = 28 (Fig. 4.6.6). Here the energy
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Fig. 4.6.6 Energy spectrum for initial excitation of three modes
(ke = 15, 17, 18) with symmetrization ([curve I); curve II corresponds
to the mean energies of the modes for the results given in Fig. 4.6.5;

curve III for the results given in Fig. 4.6.7.

in fact spreads between almost all the modes, excepting only the lowest, for which it is
difficult to satisfy the stochasticity criterion. This result is alsc confirmed by the
value p{Eys, Ei7) (Fig. 4.6.7). On account of the large experimental error, only the
Jower limit can be estimated for the mmber of interacting modes: v = 8. From the results

in Fig. 4.6.7 it can alsc be seen that within the limits of statistical error (+0.1) the
With regard to the x correlatiocus, they are

correlations of the 15th mode are absent.
It is

cornected mainly with the fact that stochasticity does not reach the first mode,
interesting to note that the correlations slowly fade. It is not out of the question that
this is in seme way due to the influence of computation errors (see below) but in that

case why is there no fading in Fig. 4.6.57 Another possible explanation is that the motion
of the first mode, responsible for the x correlations, is nevertheless stochastic but for

a considerably longer time, since this mode lies in the transitional zone,

To sum up, it can be said that the totality of the experimental results confirm the

hypothesis put forward in Ref. 168 concerning the presence of a border of stochasticity

for system (4.6.1) and, moreover, confirm the order of magnitude of estimate (4.6.12)

for the position-of this border. The weakest point is the substantial computation errors,
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Fig. 4.6.7 Correlations for case II in Fig. 4.6.4 with symetrization:
E=24; B=~0.314; €= 0.75; tpax = 16050; AT = 100; &t = 1;
h = 1/6; &AE/E = 2%; p(Eis, Eys) = =(0-0.13).

which were checked by variation of the total energy of the system (see captions to figures).
This particularly concerns the above-mentioned check experiments, where AE/E reaches 31.
Can these errors by themselves produce stochasticity? We think not. This is confirmed by
the considerable residual correlations (Fig. 4.6.5) and the absence of energy exchange

(Fig. 4.6.6) for small 8. Another check on the influence of the errors was carried out for
the experiment with local instability. When the integration step was reduced by a factor
of two AE/E decreased from 3% to 0.03%, and the curves of the exponential growth of the
even modes changed slightly, but the value of the parameter of interest to us 1/1 remained
as before within the limits of experimental error.
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Nevertheless it seems to us useful to continue mmerical experimentation with a non-
linear chain, with a higher accuracy, and with a larger mumber of oscillators.

Recently Hirooka and Saito carried out similar experiments with a two-dimensional
lattice with cubic non-linearity, and also obtained a border of stochasticity'”®). In fact,
they also used the local instability methed, measuring the duration (T) of the "induction
period" in the development of instability. An example of this phenomenon is given in
Fig. 4.6.2 and its mechanism is explained in the text. The quantity 1/T is proportional
to the K-entropy h. It turned out that the dependence h{2) is nearlv linear: h = {8 - Ecrj .
It can probably be compared to the "typical" estimate (2.11.3): h =8 (8 >>B8_). Let us
note that the computing accuracy in Ref. 170 was very high (AE/E = 0.01%}).

A more thorough analytical investigation of the stochasticity of non-linear waves
is reported in papers by Zaslavsky, Sagdeev and Filomenko!?*,195,159),

4.7 Pseudo-random mumber generators

The problem in this final section is essentially different from the other applications
of the theory developed that are described above. Here we shall try not so much to investi-
gate the statistical properties of any practical dynamical system as to construct the-Si.mplest
system simulating a "random" process. The need for such simulation arises in many cases, but
perhaps most of all when using the so-called Monte Carlo method (statistical test method)
proposed by Metropolis and Ulam (see Ref. 95)"). The idea of this method is to abandon, in
research into the kinetics of molecular processes, the equations in partial derivatives,
approximating this kinetics which are very inconvenient to solve in a computer, and to go back
to dynamical molecular processes. Of course, a complete return to the solution of exact
dynamical equations for all molecules is absolutely impossible, but one can choose an inter-
mediate, coarse dynamical model with a relatively small mumber of particles, which never-
theless reproduces the properties of the original system relatively well. In particular,
the "random" element itself of the motion of a molecular system is not obtained automatically
by the dynamical equations and is introduced artificially from outside by means of so-called
random number generators. These generators can also be of a physical nature, for example
radicactive decay or electrical noise. In this case the term random number can be used
without inverted commas, if we believe that "true" randomness exists in nature ).

From the practical point of view, however, a generator using a certain computing
algorithm in the computer itself is considerably more convenient. In this case one is
already obliged to put the word "random" (number) in inverted commas or substitute the
word pseudo-random. The point is that the axiomatic (empirical) definition of a random
sequence carries a requirement for so-called “irregularity", i.e. the absence of the

*) Of the other problems let us mention the computation of many-dimensional integrals®®),
and stochastic cybernetic machines!3?%),

**] To avoid misunderstanding it should be recalled that we are speaking only of statistical
physics. In particular, quantum randomness may be of a completely different nature and
does not have any direct bearing here (see Section 2.13).
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algorithms for obtaining a sequence. It is evident that this requirement can be verified
only in a negative sense, i.e. it is in a certain sense unobservable. So it is evident that
in the present case of algorithmic pseudo-random generators it is not satisfied by definition,
However, according to all the other criteria the pseudo-randeom mumbers are in no way dif-
ferent from "true" random mumbers (see Ref. 95 and below). According to the ideas developed
in this paper, this is the result not so much of the fact that so far no effective method of
verifying "randomness' has been found, as the fact that in nature there is no "irregularity"
{Section 2.13). Moreover, if one chooses as an algorithm, for example, a transformation des-
cribing a stochastic dynamical system, one can assert that such an algorithm will in a sense
be the best random mumber generator. The point is that very often we do not know exactly
which properties of random numbers are important in one or another specific problem. Under
these conditions it appears wisest to follow nature, i.e. to obtain randem numbers by means
of the stochastic dynamical process. From the point of view of the Monte Carlo method this
will be one more step in the same direction of a return to molecular dynamics.

For such simulation there is apparently no need to use a Hamiltonian system, it is
sufficient to take the simplest ergodic transformation with mixing and K-entropy, for
example (see Section 2.3):

Koo = of Bly'h (4.7.1)

This is in fact probably the simplest transformation of this type. The corresponding trans-
formation in integers is written in the form:

rh*-q = krn— Cﬂﬂd’ 2.“) (4.7.2)

Among others, such a random number generator was devised by Lehmer as long ago as 1951'%2),
two years after the appearance of the Monte Carlo method. However, if this generator was
so far distinguishable from a series of others, it was only because of the drawback it
involves due to the multiplicatien operation, which consumes a relatively large amount of
computer. time.

Although the transformation for real mumbers (4.7.1) has been fully investigated
analytically (Section 2.3) the transition to integers in the computer (4.7.2) may lead to
the appearance of anomalies, since the theorems of the ergodic theory are valid, except the
set of zero measure. A well-known example of ‘such anomalies is the existence of a period
of pseudo-random sequence. However, finer violations of statistical properties are also
possible, Therefore it is necessary to verify the pgenerator (4.7.2). Such checking has
already been reported in a series of pﬂpers’s}. Below we give some results of a further
test in which the unique facilities of the BESM-6 were used. The checking was carried out
in co-operation with Israelev and Antipov!®®),

According to Ref. 135 the maximm period {ZPHI] of sequence (4.7.2) is reached for:

k=3 5 (mod 8); (4.7.3)
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ro is uneven), and the pair correlation coefficient of neighbouring pseudo-random mumbers s34}
1
x L [41'7'4:'
¥

Since integral multiplication modulo 2P by k and (k - 2™y is equivalent, for k 2 P the
correlations will increase as compared to (4.7.4). According to Ref. 136 an increase of the
correlations is possible even for k > 2P/% depending on the specific value of k.

In order to test the quality of the pseudo-random sequence the following generator
parameters were chosen (in octal representation of a BESM-6 word):

<ks :4013054256500425 ; k 14
j*}, x ;;; (4.7.5)
< s 1 4013543860414035 ; 2

Accurate parameter values are unimportant when the conditions in (4.7.3) are satisfied.
Even a very "round" constant <k>: 4000000000200003 does not impair the statistical
properties of the generator. Let us note that this is apparently not always s0137),
Therefore it is better to choose "non-round" parameters (4.7.5).

Three tests were used: uniformity (16384 bins); pair correlations r_ ., 1
(128 » 128 bins) and l4-fold correlations of neighbouring mumbers by one binary digit

(2% 2 ... = 2'% hins).
The main results are given in Table 4.7.1. The randomness criterion for all three

methods was the deviation from uniform distribution in the whole array of 2'* = 16384 bins.

The deviation characteristic is the ratic of the dispersion (D) to the mean value [M)
of the amount of pseudo-random numbers in one bin. The expected value of the ratio for a

random sequence is (with a confidence of 95%):

% = 1.0 *+ 0,022 (4.7.6)

Table 4.7.1 also gives the values vD/M of the statistical accuracy of the test.

As an additional test of the statistical properties a count was made of the number of
empty bins of the array of 512 = 1024 for pair correlations. The array is logical and each
element occupies one binary digit (compare Section 3.2). The results are given in Table
4.7.2, where m and m are the actual and the expected mumber of empty bins in the
array.

theor
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Table 4.7.1

N 10° 10t 100° | 10% 10" 10
: i s
hffﬁ,ﬁwﬁ S, | 408 | 128 0 18 | 40 L3 |
Uniformity L/ pA 1.003 | 1003 | 1.003 | 1.008 | 1,000 | 0.977
| |
| T ;
¥ 15415 | o | 27 o o [o |
VB /%] a1 128 10 3 | 40 | L3
Pair i : ' = s |
sl SOy e m/ﬂd 1.o13 | LmDLﬂﬁmJ &%thfllm:mi
= 1420 | 8005 [ 8 | o [ o 0
Table 4.7.2
o P oo T os Far lar Tz |
10 10 | 10 100 | 107 |
: w 522288 | 514376 433175 | 77852 | O
Pair j i
correlations | _ £22700 | Bl4200 | 433606 | 78000 | O
MWoeop| +700 | =700 | + 650 | + 280
Table 4.7.3
N 10° 10 10° 10° 10’ 10®
vﬁﬁ}{&ﬂ o | 412 127 41 13 4.0 1.3
Ist digit | 2/ M 1.037 | 0.2 | 1,008 | c.887 | 0.674 1.002
h 15431 BR48 a1 0 ] 0
V2 /M 9| 414 128 4l 13 4.0 1.3
14th digit | 2,/ M 1.045 1,006 | 1.013 | 0.884 | 0.888 1.008
[ 15431 gEgL 33 0 0 1]

Table 4.7.3 pgives the results of the test of the statistical properties for the

14-fold correlations of the first and 14th binary digits. In order to increase the period

in the latter case perturbation of the constant k was applied (4.7.7).

Finally, for the pair correlations a secondary distribution of the deviations from
the mean value was plotted, which is a finer method of checking statistical properties.
The random quantity here is the deviation of the number of entries into a bin of the
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two-dimensional array from the mean value, normalized by the square root of dispersion,

The distribution was plotted in the interval (-4, 4) divided into 128 bins. A graph of the
distribution cbtained and a comparison with the Gaussian curve are given in Fig. 4.7.1.

The dispersion of the points is due to two reasons: the statistical dispersion of 5%,
which agrees well with the majority of points in the diagram, and the dispersion due to

the integral mature of the random quantity, The minimm value of the random quantity

is approximately 1/5 of the size of a distribution bin, which may cause an oscillation of
+204%.

Te sum up, it can be said that in none of the tests both ours and those of other
writers, was any deviation of the properties of the sequence (4.7.2) form the random ob-
served. With regard to the length of the period, there are several ways of increasing it.
One was proposed by Sobol!'?®) and uses perturbation of the constant k in (4.7.2) during
L steps:

where C = § is the minimmn constant, for which kE = I(mod 8) for all &, According to
Ref, 138 the period is then increased by T times .

Fig. 4.7.1

Another method uses more complex generators, for example of the type of the elementary
model (2.4.16) with a linear function of £(§) = % - 1. In this case in order to start
Tepetition of the pseudo-random sequence it is necessary to have exact coincidence of the two
mmbers @, with one of the previous pairs (¢,y).

Another problem is connected with the choice of the initial value of ry (4.7.2),
especially for multiple calls of the generator. Here again it is important to exclude exact
coincidence of the initial conditions for two calls, Apparently the best method is to give
ry from another more complex generator with a practically infinite period, and this latter
should operate continuously, never returning to its initial conditions.
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Another approach to solving the problem of the arithmetical simulation of random
processes was developed by Postnikov?":?%), He also rejects the requirement for irregularity
of the sequence, replacing it with a requirement for completely uniform distribution, i.e.
the absence of correlations of any multiplicity (see Section 2.3). From our point of view
this requirement is not sufficient for good simulation of the random process, since it does
not guarantee the positive K-entropy of the process (Section 2,3), and if the K-entropy is
equal to zero, the mixing may run very slowly and non-uniformly, which in a practical respect
is not permissible.

A specific problem of the study of pseudo-random number generators is the accumilation
of round-off errors in computation. This problem can be split into two. The first part
(the over-all error accumulation) is connected with the dynamical computing algorithm,
mainly with its stability. For example, when computing the trajectory of a stochastic
system the errors grow exponentially with time. The second part of the problem -- local
(in time) accumulation of errors -- is determined by the round-off process. As already
noted in Section 3.3 this process is equivalent to the work of a pseudo-random mumber
generator, the algorithm of which is determined by the computation algorithm. The distinc-
tive feature of the error accumulation process lies in the fact that the mean error (drift)
is generally speaking not equal to zero. Therefore the main problem is to find this drift.
If it is equal to zero, for example from the symmetry condition of the computation algo-
rithm, then we have exactly the pseudo-random mumber generator. In particular, if the
computation algorithm contains multiplication by a constant, then the generator is "good",
as shown above, and the round-off errors accumulate according to a random law. Examples
of random and nom-random accumulation of errors are given in Section 3.3.

It can be hoped that the detailed study of such "round-off" generators will finally enable
us to obtain the reliable estimates of computation errors which are so desirable for work

with a computer.
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