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NUMERICAL EXPERIMENTS ON THE STATISTICAL BEHAVIOUR OF DYNAMICAL
SYSTEMS WITH A FEW DEGREES OF FREEDOM *

B.V. CHIRIKOV,F M. IZRAILEV and V.A. TAYURSKY
Institute of Nuclear Physics, Siberian Department of the USSR Academy of Sciences
Novosibirsk 90, USSR

Numerical experiments concerning the arising statistical laws in a system of nonlinear interacting waves are
described. A chain of particles coupled by nonlinear springs has been used as a model. Various statistical proper-
ties of the chain have been investigated numerically. A comparison with the theory of the Korteweg—de Vries

equation is given.

One of the most interesting problems which has
occupied the minds of scientists over a century is the
problem of the arising statistical laws in a dynamical
system. Now it is firmly established that one does
not need for this a large, much less an infinite
number degrees of freedom as had been assumed till
recently. On the contrary, even the simplest dynam-
ical systems are governed, under certain conditions,
by statistical laws. To be more nearly correct, the
motion of such systems possesses ergodicity, mixing
and positive KS entropy (Krylov—Kolmogorov—
Sinai dynamical entropy [1—3]). The latter charac-
terises exponential relaxation of a system to some
statistical equilibruim (section 3). We will call this
type of motion the stochastic one. Sinai proved rig-
orously [4] the stochasticity of plane motion of a
disk bouncing from an everywhere convex (more pre-
cisely, nonconcave) closed curve. This autonomous
system has two degrees of freedom only. For the non-
autonomous system even one degree of freedom
is sufficient. The vibrations of a one-dimensional non-
linear oscillator suffering periodic perturbation can
be taken as an example. Contemporary ergodic the-
ory fails to solve this at a first glance simple problem.
So, for its investigation one has to fall back upon
numerical experiment guided by semiqualitative the-
ory [7]. To the best of our knowledge the first such
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experiments were carried out by Goward and Hine
[5]. Later on this problem has been studied in detail
numerically with a model nonlinear transformation
P, w"@w [6_8]

= {o+ MW = {y+y}. (1.1)

Here y, ¢ stand for canonically conjugated variables
simulating the oscillator’s momentum and coordinate,
respectively; the brackets signify fractional part; A

is a parameter. Even this at a first glance elementary
transformation turns out to be beyond the power

of today ergodic theory if f({/) has a continuous
derivative £'({/). Stochasticity conditions or, as we
shall say, the border of stochasticity for (1.1) has

the form: .

()| R 4. (1.2)

Numerical and analytical studies of stochasticity
in simple dynamical systems were done at about the
same time by a number of groups in various coun-
tries. For reviews of those works and references see,
for instance, refs. [7, 9—12].

Below we will describe some numerical experi-
ments with a more interesting model used earlier by
Fermi et al. [13].

2. Fermi—Pasta—Ulam (FPU) model

This model was applied in ref. [13] just to clar-
ify the question of statistical relaxation in a non-lin-
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ear system. The model is a chain of identical particles
coupled by identical nonlinear springs. The equations
of motion are:

mx = f(xpey — 2%, +x,_4)
+B[(xn+l —xn)3 -(xn _‘xn_l)3]y

n=0,1,.,N—1, (2.1)

where x,, stands for the deviation from equilibrium
of the nth particle; m the particle mass; f the elastic-
ity factor; and f is the nonlinearity parameter. We
shall assume henceforth: m =f= 1.

The set of equations was integrated numerically
for two kinds of boundary conditions: (1) zero
boundary conditions (ZBC): xy = x, = 0;

(2) periodic boundary conditions (PBC): x( = x .
Obtained data were processed, mainly, in terms
of the normal modes of a linear chain (8 = 0). Initial
conditions usually had the form of a superposition of

several modes.

For numerical experiments to be efficient the
choice of a model is perhaps the most important fac-
tor. On one hand, it has to be rather simple since the
possibilities of todays computers are still very restric-
ted; on the other hand, the model should be interest-
ing enough (nontrivial) for physics. In this respect
the FPU model proved to be very successful since it
allows one to trace the transition from more or less
known discrete nonlinear systems to the nonlinear
waves which study is just at the outset.

In particular, for sufficiently large NV the set (2.1)
corresponds approximately to the nonlinear wave
equation [14]:

a2x _9%x ox 2] 2%

or2 " 8z2 [l +3ﬁ(az) +y 324 (22)
where z = na is the coordinate along the chain (with
step a); ¥2 =a2/12 = L2/12N2. The accuracy of this
approximation is characterized by two small param-
eters:

k 2
az(%); e~ 30u? ~ 3w, (2.3)

where u = 9x/0z; w = E/L stands for the density of
the oscillation energy; k is the serial number of the
mode.

A purely progressive wave is described approximate-
ly (to accuracy = €) by the first order equation [15]:

qu, Hdu 0%u_ 9 29%
or 1 1855370 87 =547
T=36(t - 2). (2.4)

This is generalized Korteweg—de Vries equation
(KdV) the solutions of which are notable for their re-
markable stability (see section 4).

3. Stochastic motion of a dynamical system

The first experiments with a nonlinear chain [13]
revealed no statistical relaxation (N = 32). Instead
of the expected irreversible equipartition of energy
among all the modes, quasiperiodical oscillations of
the first few modes were observed. In this connection
the authors of ref. [13] have put forward a hypoth-
esis on the existence of some stable nonlinear modes
of oscillation. About the same time Kolmogorov
proved his famous theorem on the retaining stabili-
ty of nonlinear oscillations under small perturbation
[16]. On the other hand, the nonlinear system with
many degrees of freedom must at last relax, under
some conditions, to the statistical equilibrium as is
required by statistical mechanics.

To resolve this paradox the hypothesis was put
forward in ref. [17] that there is a border of
stochasticity for the nonlinear chain which divides
the system’s phase space, roughly speaking, in two
parts: stochastic and stable ones. Using the criteri-
on of stochasticity by overlapping nonlinear reso-
nances [18, 7] an analytical estimate was obtained
in [17] for the border of stochasticity of a chain

(k €N):
s ~2m1 2k, (3.1)

where m stands for the number of excited modes,
and k is their mean serial number. The surprising
results of the work in ref. [13] do not contradict
with the criterion (3.1) since lower modes (k = 1)
were usually excited in ref. [13].

The statistical properties of a nonlinear chain were
studied in detail in refs. [19, 20] by means of numer-
ical experiments. Below, a brief summary of the main
results is given.

The position of the stochasticity border was deter-
mined by means of local instability of motion. The
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Fig. 1. An example of the local instability of motion in the stochastic region: 8= 0.5 (1); 1.75 (2); 2.0 (3); 2.25 (4); 2.5 (5);

Bg= 0.5 + 0.1; A is a distance between two close trajectories.

latter means that initially close trajectories diverge, on
the average, exponentially with time (see fig. 1):
A= Agexp(— ht), where A is some distance between
trajectories. The averaged value of A is just the KS
entropy. According to modern ergodic theory [9] this
exponential instability leads to mixing and other sta-
tistical properties of motion.

The simpliest theory for the nonlinear chain
[21, 7] gives (for E = const):

h = (Q2/m)In(B/B) ~ (1/N)In(B/B,), (3.2)

where §; relates to the border of stochasticity, and
€2 is the lowest frequency of the chain. The experi-
mental dependence #(f) is shown in fig. 2.
Comparison of experimental data with the anal-
ytical estimate (3.1) for ZBC is presented in table 1.
Here kg stands for the serial numbers of the initially
excited modes. In the analytical treatment the decay
of the initial state into solitons (section 4) has been
taken into account; this has led to an increase of the
mean serial number of the modes: ky > &k ~ ell2N.
Satisfactory agreement is generally observed be-
tween the analytical estimates of (3.1) and (3.2) and
experiment. The three cases marked with asterisks in
table 1 are exceptions. Cases 2 and 3 can be explained
qualitatively due to the inapplicability of criterion
(3.1) to higher modes. Yet, in case 9 just the opposite
effect is observed. The cause of the latter is unknown
so far.

In the stochasticity region (e > ¢) the following
statistical properties of the chain were observed.

(i) Energy equipartition among the oscillation
modes (fig. 3). The decline of the spectrum for lower
modes (curve 3) can be explained by the fact that
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Fig. 2. Experimental dependence of KS entropy & (in sec™1)
on g for the data of fig. 1.
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Table 1
N Ko Eg € Qfm
exp. theor. exp. theor.

1 32 1,35 0.95 0.16 0.26 2.9%x 1072 3.1x 1072
2% 32 15,17, 19 17 0.025 0.18 22%x 1072 3.1x 1072
3* 32 20 39 0.012 0.10 5x 1073 3.1x 1072
4 200 2 0.5 0.09 0.21 5% 1073 sx 1073
5 200 5 3 0.06 0.12 4x 1073 5% 1073
6 200 10 12 0.09 0.07 7x 1073 5x 103
7 300 1 0.18 0.22 0.20 6x 1073 3.3x 1073
8 500 10 1.9 0.14 0.06 6x 1073 2x 103
9 500 202 700 0.13 0.01 1072 2x 1073

this region is found, after the energy equipartition, at
about the border of stochasticity (3.1) whereas the
value e/eg = 30 in fig. 3 corresponds to the initial
spectrum (¢ = 0, curve 1). The decline disappears by
increasing €.

(ii) The dying out of the autocorrelations (fig. 4)
which is a direct indication of statistical relaxation.

(iif) The velocity distribution for chain particles
(fig. 5) fits with good accuracy the one-dimensional
maxwellian distribution: dV/dv = exp(— v%/2T),
where T is a “temperature” of the chain. This corre-
spondence can be traced till the kinetic energy of the
particle is almost five times the temperature. The
“heat capacity” of the chain turns out to be (per
degree of freedom): Gy = Ey/(N — 1)T = 0.96. The
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energy distribution for the oscillation modes obeys
similarly the Gibbs law: dV/dE}, «exp(— E,/T).

4. Stochasticity and solitons

Performed experiments would seem to resolve the
FPU problem. The existence of the stochasticity bor-
der for a nonlinear chain as well as the statistical prop-
erties of the latter have also been confirmed indepen-
dently by the numerical experiments of Japanese
scientists [22]. Yet more careful analysis shows that
we are still far from understanding the problem. One
could even say that a new problem arises.

Indeed, as early as 1965 Kruskal and Zabusky ex-
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Fig. 3. Averaged spectrum of the energy of the mode for case 2 (see table 1): 1, initial excitation, ¢ = 0; 2, e/es ~ 2 (initially),

t=18300; 3 — e/eg = 30,7 =16 050.
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Fig. 4. Dying out of the autocorrelations of the 10th mode
for case 6 (see table 1): e/es ~ 12.

plained [15] the FPU result with the help of the re-
markable stability, which they discovered, of the
KdV equation. They showed by numerical exper-
iments that the initial excitation decays into peculiar
entities: solitons which reveal no interaction in spite
of nonlinearity. So the problem arises concerning the
correspondence of the KdV equation to the proper-
ties of a nonlinear chain which is alledgedly simulated
by the former.

The main peculiarity of the KdV equation is that
it describes the progressive wave only. Meanwhile all
experiments with a nonlinear chain have dealt only
with standing waves (ZBC). Therefore we have under-
taken a number of experiments with periodic boudary
conditions (PBC). It is true that we have failed to con-
struct the initial excitation as a purely progressive
wave, yet we managed to lower the share of the re-
verse wave down to a few per cent. In the latter case
one could expect some increase in €. But in reality
€, even decreases a bit for PBC as compared with
ZBC.

A typical picture of the motion in the stochastic
region for PBC is given in fig. 6. A distinctive feature
of the stochasticity development in this case is an
abrupt rising of the reverse wave. Hence, the motion
of the the nonlinear chain differs, in the end, qual-
itatively from that of KdV where the reverse wave
is entirely impossible.
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Fig. 5. Velocity distribution for particles of a nonlinear chain
for case 6 (see table 1): e/es x 8; Eg = 14.76;

Ekin/EO =~ 0.52; ¢ = 3000; the straight line is a maxwellian
distribution with the “temperature” T~ 0.077.

The question arises whether the reverse wave is
the cause of stochasticity or its consequence. We
think that the ultimate cause of stochasticity is re-
lated to the local instability which apparently gives
rise to the reverse wave.
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Fig. 6. An example of stochasticity development in a closed
chain (PBC) for the initial excitation of the type of an almost
progressive wave: (a) variation of the energy of the existed
mode; (b) time dependence of the standing wave share;
N=32elegx 1.
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For further investigation on this problem Toda’s
nonlinear chain with special interaction of neighbour
particles is particularly suitable since the analytic ex-
pression for the purely progressive wave is known for
this case [23].

5. Concluding remarks

As we have seen above, numerical experiments
with the FPU model allow the study of a wide range
of interesting mechanical problems. The possibility
to trace the transition from discrete dynamical sys-
tems to continuous wave processes seems to us espe-
cially important. In particular, one can guess that the
discovered statistical properties of the nonlinear chain
take place, under certain conditions, for nonlinear
waves as well. On the other hand, there are examples
of integrable nonlinear wave equations (KdV and
others, see for instance ref. [24]) for which the
stochasticity is not possible. Exceptional as such cases
apparently are, it would be natural to use them as the
starting approximation for studying real wave proces-
ses. But the results of numerical experiments give no
indication of any suppression of stochasticity by ap-
proaching such exceptional systems. For example, one
would think that the properties of the chain should
approach those of KdV, at least for progressive waves.
Yet, this has not been observed in our numerical ex-
periments. One could guess that case 9 in table 1 just
shows such an anomaly (e, increases), but there are
examples with a still smaller € indicating no anoma-
lies (for instance, cases 5 and 6; not to mention the
cases 2 and 3). We think that clarifying this question
is one of interesting lines of investigation in the field.
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