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RESUME

Une méthode et les résultats d’expériences numériques avec une transformation
canonique simple sont décrits. La transformation simule le mouvement d’un oscillateur
non linéaire soumis a une perturbation périodique. L’existence d’une composante
stochastique est montrée et sa structure générale est étudiée. Quelques données
concernant la composante stable sont fournies a la fois dans la région stochastique et
dans la zone transitoire. L’ensemble de la surface de la composante stable décroit
exponentiellement avec le paramétre de stochasticité.

L’effet d’'une faible dissipation sur la composante stochastique a été étudié. Ii a
été trouvé que le mouvement stochastique est en général détruit par dégénérescence
en un mouvement périodique. En présence d’une dissipation suffisamment forte une
transformation des figures dans le plan de phase en lamelles a été observée, ce qui
retarde considérablement la destruction de la composante stochastique.

ABSTRACT

Method and results of numerical experiments with a simple canonical mapping
are described. The mapping simulates the motion of a nonlinear oscillator under periodic
perturbation. The existence of stochastic component is-shown and its general structure
is demonstrated. Some data is given concerning the stable component in both stochastic
region and transitional zone. Overall area of the stable component decreases exponentijal-
ly with the stochasticity parameter.

The impact of a weak dissipation on stochastic component has been studied. It
was found that stochastic motion is generally destroyed, degenerating into a periodical
one. Under sufficiently strong dissipation a foliation of the phase plane was observed
which delays considerably the destruction of the stochastic component.
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§ 1. INTRODUCTION

The study of mappings is most interesting, to our mind, in connection
with simulation, by them, various dynamical processes. Analitical investiga-
tion of a mapping is often considerably simpler than that of the correspond-
ing differential equations. It is still more true for the numerical simulation
by computer, especially if we are interested in long range processes. This
kind of simulation, or, as one uses to say, numerical experimentation
makes it possible to study some general regularities of dynamical system
behavior. A very interesting one is so-called stochastic component (see,
for instance, [1-3]). We will designate by this term irregular motion which
is practically indistinguishable from the “real” random process. To be
precise, we speak about the mixing motion with positive KS-entropy
(see § 3).

The following mapping is an elementary example :
¥ ={ky} (1.1)

where curly brackets designate the fractional part. This mapping has been
studied a good deal for the real numbers (see, forinstance, [4]), stochasticity
corresponding to the condition k> 1. A similar mapping for integers :

kr (mod 27) (1.2)

r
was proposed by Lehmer [5] as a so-called pseudo-random number generator
playing an important role in many kinds of computation. We believe this is

the best way for simulation of random sequence [5]. Yet the theory of
such a generator is still at its very outset.

As to the simulation of physical processes they are, according to the
Liouville’s theorem, measure preserving, or even canonical ones, the latter
meaning they are deseribed by the Hamilton equations.

The mapping (1.1) cannot serve for such a simulation since only the
reverse mapping preserves the measure. This kind of mapping is called the
endomorphism in the theory of dynamical systems. An appropriate model
for physical processes would be the automorphism, or, still better, the
canonical mapping.

Our experience of many years shows that a simple canonical mapping
(and its variants) is a very interesting model which potentialities are still
far from exhausted, namely :

={o + kF()} (3
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The mapping is determined in unit square, or, better to say, on unit torus,
and has generation function :
— ot _ .

H(g,y) =7+W tkFW) 5 F'(Y) = - f(¥) (1.4)
One the one hand, the simplicity of this mapping allows to follow over 10®
iterations by the present-day computers. On the other hand, the system
(1.3) proved out to be unexpectedly diverse to simulate a number of real
physical processes (see [6, 7]). We note only that a physicist can take Y
as an oscillator’s co-ordinate (the phase arngle), and ¢ as its momentum
(the action). In this interpretation model (1.3) describes the motion of a
nonlinear oscillator under periodical perturbation (kicks).

We have mostly used as the perturbation function f(y) a simple
nonlinear expression :

f) = y¢* — ¢ + 1/6 (1.5)
The “linear” perturbation(*)
f) =¥ - 12 (1.6)

i$ a trivial one in the sence that contemporary ergodic theory proves the
stochasticity in this case rigorously under the condition :

k<-4 ,or : k>0 (1.7)

This was shown by Sinai and Oseledets (see [17]) whose theory can be
also extended to a more general case of limited derivative : [F'(y)| = C > 0.
The latter condition inevitably leads to f(Y) discontinuity, due to its
periodicity. As to the continuous perturbation which is of interest for
applications the present-day ergodic theory is helpless.

In what follows we present some results of numerical experiments
concerning the stochastic component of the described mapping [11, 12, 6].

§ 2. TECHNIQUES OF NUMERICAL EXPERIMENTATION (**)

The computation of mapping (1.3) has been run on the BESM-6 at
the Computing Centre of the Siberian Division of the USSR Academy of

(*) To avoid misunderstanding we.emphasize that in the latter case mapping
remains nonlinear as well due to the fractional part taken. By precisely the same reason
the perturbation (1.5) is a singular one (derivative discontinuity).

(**) We will say just experimentation, or experiments for the sake of brevity.
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Sciences. We have used hand coded program to achieve the maximum
computing speed. The computation time was about 20 usec per iteration.

The main output data was in the form of distribution function of the
trajectory over the phase plane, i.e. the number of trajectory crossing each
of the cells of the phase square. The distribution function is to bulky to be
exposed here. Instead, we reduced it to a much more compact phase map
(Fig. 3) which records only the fact of crossing, or missing, each of the
cells by the trajectory.

The finest subdivision of the phase plane for distribution function
was 128 x 128 = 16 384 cells. For a phase map it is unnecessary to occupy
the whole word of computer’s memory for each cell, instead one binary
digit is sufficient (the logical variable). This makes it possible to increase
the number of cells up to 512 x 1024 = 524 288. With such a number of
cells the output of even a phase map becomes impossible, so one has to
restrict oneself to counting missed and crossed cells and to output of
peculiar sections of the phase plane miap (Fig. 3). Let us note that all array
dimensions for distribution function and phase map have been taken
equal to some power of 2. This considerably simplifies the programming
as well as increases computing speed.

The recent experiments has been done in the regime of man-machine
interaction by means of display *““The Screen” on-line with computer,
The display’s hardware as well as software, intended for a man-machine
interaction, were designed and realized in the Institute of Automation and
Electrometry of the Siberian Division of the USSR Academy of Sciences (*)
The display was put into operation with BESM-6 at the Computing Centre
here [14]. The man-machine interaction has been performed by means of
light pen and light buttons while the picture of motion has been followed
on the screen of display (Fig. 6). Each still on the screen contained 400
successive phase points. The photographic camera could accumate several
successive stills on film which gives the possibility to see very many iterations
at once (Fig. 1). Our computer code provided also “‘enlargement” of some
sections of the phase plane.

For aesthetic reasons we shifted all the picture on phase plane by
1/2 along the ¢ — axis, so the mapping had a form :

f= {tp+/if(\1/)} 2.1
y={+9-1/2}

(*) We seize the opportunity to express our sincere gratitude to Mrs. E.G. Babat
and Mr. B.S. Dolgovesov of this Institute for their great assistance in taming the display
at the earliest stage of its operation.



Fig. 1a

Fig. 1. — A picture of motion on the phase plane of mapping (2.1) with singular
perturbation (1.5); k = 12.9282032; 2 X 10% iterations: a - the whole phase square;

b - a section with magnification x 4.(display).

§ 3. KSSENTROPY

The most strong property of stochastic motion is positive (non-zcro)
KS-entropy (Krylov — Kolmogorov - Sinai entropy [8-10])(*).1t character-
1zes the average rate of local instability, the latter developping exponentially
(see, for instance, [7]). Exponential local instability is the ultimate cause of
mixing as well as the other statistical properties of dynamical system.

(*) Don’t confuse it with the thermodynamical entropy, see |6, 7]. We will call

the former just entropy for the sake of brevity.
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To investigate the local stability we take an arbitrary-phase trajectory :
¢ (n), ¥ (n) where n stands for the serial number of iteration and consider
the motion of two initially close phase points :

E=o—v, ; =y -9y, (3.
Linearizing mapping (1.3) around the chosen trajectory we obtain

E=t+kf(,) . n

_ ' (3.2)
n=E+[1+kf (YDl . n
The eigenvalues of the latter system are equal to :
kf ) kf'
=1+—=z + —
A= /kf (1 y ) (3.3)
and its eigenvectors make angle 6 with the Y — axis :
kf' (Yo)
tg 0 =—— 3.4
g0 =—— (3.4)

In the ¥ interval where :
—4<kf’(d/0)<0 (3.5)

IA] = 1, i.e. the transversal vector ?(E n) turns : [(¢,n) = [(¢,n). We shall
call this interval (or intervals) the turning interval. The complementary set
of Y, we are going to term the extension interval since one of eigenvalues

here A\* > 1 (At A =1),
According to [10] the entropy can be expressed by :

h =<lim In (/))> (3.6)

-0
where the averaging extends over all the stochastic component. For a large % :
I/l ~ \* (3.7)

almost everywhere. Indeed, the direction of extension eigenvector is almost
fixed :

1
k()

excluding a narrow phase region near the turning interval. The situation
is similar for the contraction eigenvector :

e (-7)~ kf’(w) G2

(3.8)

tg 7 ~ 1-
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Thus approximate value of the entropy can be avaluated from :
h~<InA* (Vo) > (3.10)

where one should put A* = 1 in the turning interval, We assume, further,
the hypothesis that stochastic component occupies practically all the phase
square, Then one can average in (3.10) approximately over the phase y 0"

For the perturbation (1.5) the integral (3.10) can be calculated
exactly to give : '

kh=H(§+ 1)+H(—’2i— 1) ~ k[tn k) — 1]

(3.11)
H&)=xIn (x +4/x2 = 1) —/x7 - 1
The last expression is an approximation for k >> 1.
In some experiments we have used an analitical perturbation :
sin 27
fW)=—7"—"— (3.12)
27

Approximation k >> 1 gives in this case for A" =~ |kf|+ 2 + 1/kf'|
and for the entropy :

1 k
h~f0 4y, Inlk Cos2my,l=In= (3.13)

For the experimental determination of the entropy Sinai’s formula
has been used [10] :

h=In (/D) (3.14)

where the upper bar indicates averaging along the trajectory (in ‘““‘time”).
Expressions (3. 6, 14) are equivalent, due to the ergodicity of motion.
We chose / = 10-7, so the maximum value of [ ~ 104 for the largest
k = 103 has been still very small. The computation of mapping (1.3)
has been donc_:_) for two trajectories which initial points were by the trans-
versal vector [ apart, After each iteration the length of this vector was
brought to the initial value without changing its direction.

A summary of theoretical and experimental data concerning the
entropy is given in Table 1. As already noted above the initial distance
between trajectories was chosen as / = 10-7. Its increase up to 10-3
changes the experimental value from 3.615 to 3.72 (k =1002 ;1~0.1:
singular perturbation). Standart number of iterations in measuring the
entropy has been 104, A decrease of this figure to 103 leads to entropy
change from 4.234 to 4242 (k = 142.0 ; analytical perturbation). This
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Table 1
KS-entropy
Singular perturbation Analytical
(1.5) perturbation (3.12)
ko Simplified Simplified
Exper. Tgelolry theory : Exper. theory :
GID |y~ k-1 h~ In k/2
6.2 0.958 0.909 0.826 1.157 1.133
14.0 1.654 1.655 1.639 1.949 1.946
25.0 2.241 2,225 2.219 2.537 2.526
50.0 2.914 2.913 2.912 3.227 3.219
100.2 3.615 3.608 3.607 3.914 3914
142 3.938 3.955 3.956 4,234 4.263
200 4.308 4,298 4,298 4.603 4,605
1 000 5.926 5.908 5.908 6.206 6.215

gives an idea of experimental accuracy for the entropy. The agreement with
theory is unexpectedly good, especially for small k. This result proves, in
our opinion, that we have got, indeed, the stochastic mapping, in accordance
with the above hypothesis the stochastic component occupying practically
all the phase square.

An additional check of ergodicity consisted of investigating the
uniformity of stochastic trajectory distribution over the phase plane.
For this the phase square was subdivided into N, = 128 x 128 = 16384
cells, and the number of trajectory crossing each of the cells (ni) was
counted. A criterion of uniformity used was the variance :

D =<(n. — M)?> where M = <n> = n/N
1 ) 1

is the mean number of crossing ; n stands for the number of iterations
and averaging was carried out over all the cells, The expected value of
Dis: DM=1 i\/27N1 =1 £ 0.011, the last term giving root-mean-
square deviation. Experimental value for the singular perturbation (1.5)
atk = 16and n = 107 is : D/M = 1.017, The probability of such a deviation
is about 12 %,

Finally the stochasticity was further checked by spying the process
of crossing the phase plane cells by the trajectory. At the beginning of
random motion there is a number of missed cells (N,) to remain which
can be avaluated according to standart Poisson distribution :

N, =N, e™ + /N (3.15)
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where N, = 512.x 1024 = 524288 is the total number of phase plane
cells. Results of this experiment are presented in Table 2.

Table 2
Filling up the phase plane by stochastic trajectory
n 107 2x 107 | 3x107 | 4x 107 | 5x 107
N, . experiment 11531 258 6 1 0
N, , Poisson 11500 251 5.8 0.12 3x10-3
distribution’'(3.15) +107 16 2.4 +0.35 + 0.05

Trajectory processing was done in 5 iterations ; k = 16.

§ 4. ISLETS OF STABILITY

Now we are going to discuss the question : does the stochastic compo-
nent occupy the whole phase square ? Apparently no, at least, not always.

First of all, however large the parameter kX may be there are always
such special k values for which stable regions, or, as we use to say, “islets”
of stability, exist [11]. The largest “islets” correspond to fixed points, i.e.
to the periodical motion with period T = 1.

Let us consider the latter case in more detail [11]. For a fixed point
(P, > ¥,) of the mapping (1.3) we have :

Yo =0 5 kf(Y)=r (4.1)
where r is any integer. The fixed point is stable if (3.5) :
— 4<kf’(¢/0)<0 4.2)

The special (stable) values of k are determined by the compatibility (4.1)
and (4.2). The latter takes place within the interval :

i~ 8
kfw), ')

around the k value corresponding to the centre of the turning interval
(4.2) and being equal to :

; f'(W)=0 (4.3)

¥ 2

k = S (4.4)
W) rfy)

27
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One can easily see that for a large k Y, = ¢, and the size of stable region :
Ap ~ Ay ~ 4k [’ (4.5)

A more general case of stability was investigated also by Sinai and
Dunskaya (see Supplement in [13]).

In Figure 1 a picture of motion for a special k = 12.928203 is shown.
One can clearly see the stable region which the stochastic component
cannot penetrate into,

There are possible, however, more intricate stable regions leaving the
turning interval. An example of such a region is given in Figure 2. One
can clearly see two islets of stability (1.3) on the phase map of the whole
phase square (Fig. 2,a). An additional investigation has shown that there
is one more islet denoted in Figure 2,a by dashed-line (2). It is narrower than
a phase plane cell (1/32 x 1/32) and therefore remains unseen. The period
of motion in this case is T = 3, and the figures on the phase map show the

1 |
2 ’
q 30 i
= ng'
]
| 2
35 Wi 3 c
Y
DDD
0
g { DD A “
DD 0
Ny
o o

LY T, e %2 y g,

Fig. 2. — Phase map of the mapping in Fig. 1 with k = 8: a - the whole
phase square (32 X 32 subdivision); b, ¢ - some sections of the phase
plane (512 X 1024 subdivision).
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sequence of motion. Two islets lie in the turning interval (1.2), one of
them (1) being strongly prolate along the extension eigenvector (Fig. 2,b).
Another islet (3) lies in the extension interval and is strongly prolate along
the contraction eigenvector (Fig. 2,c).

In Tables 3,4 the data on the total area of stable component is given,
The area’s sharp dying out with k corresponds, roughly, to the estimate [11]:

S (k) ~ (m%)—2 exp [- 3 (ln g) (\/—”2? - )] (4.6)

Table 3

Stable component (missed cells) for singular perturbation (1.5)

k 4 8 16
Number of missed cells 42 038 60 0
Area 0.08 1.1 x 10~% 0

Total number of phase plane cells : 512 x 1024 = 524 288.

Table 4
Stable component for analytical perturbation (3.12)
k 3.67 4.78 5.98 8.64 10.5
Number of 48958 | 10292 | 1681 24 0
missed cells
Area 0.093 0.02 0.0032 | 4.6 x 10-5 0

Total number of phase plane cells : 512 x 1024 = 524 288.

The latter is based on Sinai’s evaluation [15] for the number of periodical
trajectories of a stochastic system :

v (T) ~ eMT-D (4.7)

Most of them are unstable, of course. However, some of the trajectories
happen to cross the turning interval and may become stable (Fig. 2).

All the periodical trajectories generally form an everywhere dense set.
It is not excluded that the set of stable regions is also everywhere dense
(Sinai’s hypothesis). Nevertheless, their total measure might be small
(for kK >> 1). To clarify the question additional experiments are needed.
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We still have some doubt as to whether the stable component may not be
so “fine” to escape observation (like one of islets in Figure 2). The question
may be put another way : would the visible area of the stable component
grow with decreasing the size of the phase plane cell ? We think that in
any event the stable component cannot occupy considerable area at &k >> 1.
This is indicated by the following gross experiment, We have got in all
about 100 runs with £ >> 1, in no one of them entering a stable region.

§ 5. THE BORDER OF STOCHASTICITY

We use this term for both a curve separating stable and stochastic
regions on the phase plane, and the critical values of system parameters
at which the motion becomes stochastic. The latter can be obtained by
investigating the local stability of motion (see, for example, [8, 10, 6, 7]).
For mapping (1.3) and f'(y) ~ 1 we find from (3.5) :

k, ~ 4 (5.1)

in resonable agreement with experimental data [6, 7].

Attempts to follow the border of stochasticity on the phase plane
showed immediately that a very complicated transitional zone does exist
[11, 12]. This is of little surprise since the border-line of stochastic region
is to be itself a stochastic curve. The complexity of transitional zone struc-
ture is demonstrated in Figure 3 where a number of trajectories with
different initial conditions is shown. Some of them are stable while other
fill up broad stochastic layers. The most peculiar feature of the motion
is, to our mind, overlapping stochastic layers (cross-shaded areas) related
to different trajectories. Let us note that the size of a phase plane cell in
Figure 3 is about 3.10-5 x 6.10-5,

For a detailed study of transitional zone the use was made of the
canonical mapping :
g=9-y°
vV=y+g
which simulates an islet of stability around the origin, the size of the
islet being :

(5.2)

o, ~ Y, ~ 1 (5.3)

These estimates are readily derived like (5.1) from the condition of local
stability.

In computation of (5.2) we managed to squeeze the main code loop
into the fast buffer memory of BESM-6 processor. Besides, the fixed-point
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Fig. 3. — Transitional zone phase map of the mapping in

Fig. 1 for various initial conditions; 107 iterations. The size of
section shown is 3/512 X 1/128, it is subdivided into 374 X 128
cells.

arithmetic was used. As a result the computation time was cut down to
7 usec per iteration.

The main objective in study of transitional zone was to locate the
so-called border of eternal stability which had been predicted by the
KAM-theory (the theory by Kolmogorov — Arnold — Moser [16]). Our
experimental results show that this border coincides, in order of magnitude,
with the border of stochasticity (5.3). According to [12], the border of
eternal stability for mapping (5.2) lies somewhere in the interval :

0.517 <p <0524 ; y =0 <4
0.77 <y, <078 ; ¢, =0 (>-4)
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Already the first experiments showed that in immediate vicinity
of this border motion is stable to the accuracy of round-off errors (*). For
example, at the trajectory with initial conditions v, =05y 0 = 0.67
(comp. (5.4)) only a weak diffusion was observed with the rate
D ~ 3 x 10727

P

ex

It is interesting to mention that for random round-off errors the
diffusion rate would be a 100 times more : D, & 3 x 10-25. This proves
once more that, generally speaking, one should not consider round-off
errors as a random perturbation since they are determined completely
by a definite computer algorithm.

We have proceeded with the experiments using double precision
computation to decrease a single round-off error down to ~ 10-24 [12].
This was achieved at the expense of computation time which rised up to
about 200 usec per iteration.

Experimental diffusion rate at a stable trajectory dropped down to
Dexp ~ 2 x 10~5! which was again about 150 times less than for random
runding-off.

Figure 4 shows a tiny little piece of a stable trajectory running in an
immediate vicinity of stochastic region (initial conditions : ¢, = 0.516 ;
Y, = 0). The difference Ap between the trajectory and the interpolation
quadratic curve has been computed and plotted (Fig. 4) to reduce trajectory
oscillations. We see that all 16 experimental points (of total number 107 ! )
are fitted to a smooth curve —stable phase trajectory— with the accuracy
~ 10-—20_

Inspite of complicated structure the transitional zone has rather sharp
boundaries as seen from Figure 5. Here the number of iterations until
leaving the transitional zone for stochastic region is plotted versus the initial
v, (W, = 0) [12].

Similar transitional zones have been observed also around the islets
of stability for mapping (2.1). An example of motion in transitional
zone of the latter mapping is shown in Figure 6 while Figure 7 gives a
section of the same zone with magnification x 16.

§ 6. A WEAK DISSIPATION

In this section we will give some preliminary results of recent experi-
ments concerning the impact of a weak dissipation on stochastic component.

(*) A single round-off error was ~ 1012,
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Fig. 4. — A piece of phase trajectory at the limit of stable region; mapping (5.2);
107 iterations.
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Fig. 5. — Dependence of the «lifetime» N (number of iterations) in transitional
zone on initial @, (lﬁo = 0): I - transitional zone main region - the «plateauy;
II - a barrier protecting the stable region; interruptions in the curve N(¢,) correspond
to the internal region of nonlinear resonances; the hatched strip characterizes expe-
rimental uncertainty in the position of the border of eternal stability (5.4); mapping
(5.2).
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We mean the dissipation of both signs, that is to say, oscillation damping as
well as autooscillations. A model mapping was chosen (comp. (1.3)) :

g={pt+kf(Y)—elp—vy)} ©.1)

V= +-1/2} '
New parameter € characterizes the rate (inverse number of iterations)
of exponential “damping” to ¢ = ¢, or to a sufficiently “‘strong” nonlinear
resonance around periodical trajectory.

The latter process may lead to a “‘cupture” of stochastic trajectory
into an islet of stability, and, hence, to its degeneration into a periodical
trajectory. Our experiments show that such a cupture does use to happen,
indeed. However, the “lifetime” of stochastic component has proved to be
fairly long, and it rises with decreasing € and, especially, with increasing k.
For example, at special k = 3.46 and € = 10—4 the cupture occurs in
7 x 10% iterations (in average, with very big fluctuations due to the initial
conditions). If e = 5 x 104 the latter number drops to 1.5 x 104, i.e.
about inversely proportional to €. The stable area in this case is equal to
0.12. For £ = 12.9 and € = 6 x 104 (the stable area is about 10-2) the
capture occurs in 1.4 x 105 iterations, i.e. about inversely proportional to
the stable area. If € rises 4 times as much stochasticity “lifetime’ goes down
about 5 times, again nearly in proportion to 1/e.

For a small dissipation the time of capture is much longer than that of
getting into the transitional zone of a stable region. Spying the motion on
display we have clearly seen the system coming many times to an islet of
stability, penetrating into the transitional zone, staying there hundreds
iterations, and then coming back to the stochastic region. An example of
motion inside a narrow transitional zone is given in Figure 6.

For k& ~ 3.46 the system returns to the transitional zone in about 10%
iterations independently of € and with much less fluctuations than for the
“lifetime”. If k¥ = 12.9 this number increases to 15 x 103,

The ergodicity of motion implies that the longer system stays inside
the transitional zone the more seldom does it come back into the correspond-
ing region. Hence, a kind of barrier arises at the internal edge of transitional
zone (see Fig. 5) which considerably delays the penetration into the stable
region, provided the dissipation is small enough.

Let us mention in conclusion an interesting observation : under a
fairly strong dissipation (e ~ 0.1) a kind of “foliation” of the phase plane
occurs (Fig. 8), that is to say, the formation of a set of strips which the
phase point keeps off. It is very likely that such a foliation, more and more
fine though, takes place for any dissipation whatever small it may be.
Could this “‘reduction” of stochastic component prevent it from being
captured into islets of stability and provide, thus, the stationary stochastic-
ity ? The strong dissipation certainly improves the “stability” of stochastic



Fig. 6. — A picture of motion in the transitional zone of mapping (2.1) with
singular perturbation: k = 3.46; € = 107%; 400 iterations (display, light buttons
are seen around the phase square).

component against the capture, we have been observed this, But does it
provide. under certain conditions. the eternal stochasticity in spite of
dissipation ?
That is the Question !
We are deeply indebted to the Nature for inexhaustible diversity
of Its simplest Revelations.
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