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PREFACE

The fact that completely deterministic, nonlinear systems can
yield wildly chaotic solution behavior has, over the past two decades,
been independently discovered and re-discovered by numerous scientists
working in a host of distinct scientific disciplines. Separated from
each other by thickets of specialized jargon and by specialized jour-
nals catering to mutually exclusive audiences, these workers had
remained largely unaware of the communality of their work. In an effort
to break down this scientific provincialism, the undersigned organized
and held during the summer of 1977 a conference on stochastic behavior
in classical and quantum Hamiltonian systems which, to our knowledge,
brought together for the first time astronomers, biologists, economists,
physicists, and mathematicians working in this common area. This vol-
ume includes some but far from all of the talks presented at that
conference. Indeed, we deeply regret the fact that, for various
reasons, many of the excellent presentations made during the conference
do not appear in these pages. Despite this fact, we hope that the
present volume will nonetheless focus the attention of a wider audience
upon this subject area.

Historically, this is the second scientific conference to be
sponsored by the city of Como as part of its traditional festivals
honoring the memory of Alessandro Volta, a native son. The now-famous
first Como Conference of 1927, which involved ten Nobel laureates among
other notable physicists, was deeply concerned with the then young
quantum mechanics and contributed significantly to its further develop-
ment. The 1977 Como Conference therefore represents a continuation of
this earlier conference in the sense that the 1977 Conferénce was also
deeply concerned with quantum mechanics. In particular, much of its
time was devoted to the problem of quantizing chaotic classical non-

linear systems, a difficulty anticipated by Einstein as early as 1917
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but largely overloocked during the intervening decades. Here also, we
hope that the beginning work described herein will be furthered by a
larger audience.

To the Mayor of Como, Antonio Spallino, and to the Mayor of
Campione, Felice De Baggis, we wish to relay thé deep appreciation felt
by all participants for the gracious hospitality provided by both their
cities. Finally, to Dr. Barbara Giovannini, for service as that
organizational mainspring without which a conference cannot succeed, we

wish to express our own personal heartfelt gratitude.

Giulio Casati

Joseph Ford
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STOCHASTIC BEHAVIOR OF A QUANTUM PENDULUM
UNDER A PERIODIC PERTURBATION

"G, Casati

Istituto di Fisica, Via Celoria 16, Milano, Italy
and

B. V. Chirikov and F. M. Izraelev

Institute of Nuclear Physics, 630090 Novosibirsk 90, U.S.S.R.
and

Joseph Ford

School of Physics, Georgia Institute of Technology
Atlanta, Georgia 30332, U.S.A.

ABSTRACT

'This paper discusses a numerical technique for computing the quan-
tum solutions of a driven pendulum governed by the Hamiltonian

H = (p62/2m22) - [mzzmozcose] ap(t/T),

where Py is angular momentum, 6 is angular displacement, m is pendulum
mass, % is pendulum length, w02 = g/% is the small displacement natural
frequency, and where Gp(t/T) is a periodic delta function of period T.
The virtue of this rather singular Hamiltonian system is that both its
classical and quantum equations of motion can be reduced to mappings
which can be iterated numerically and that, under suitable circumstan-
ces, the motion for this system can be wildly chaotic. Indeed, the
classical version of this model is known to exhibit certain types of
stochastic behavior, and we here seek to verify that similar behavior
occurs in the quantum description. 1In particular, we preseni evidence
that the quantum motion can yield a linear (diffusive-like) growth of
average pendulum energy with time and an angular momentum probability
distribution which is a time-dependent Gaussian just as does the class-~
ical motion. However, there are several surprising distinctions be-

tween the classical and quantum motions which are discussed herein.
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Since we have not yet developed a completely adequate explanation for
all these distinctions, this paper should be regarded as a progress
report describing work on a highly interesting and numerically solvable
model.

I. INTRODUCTION

Noteworthy recent progressl-3 has been made in illustrating the
truly stochastic behavior which can occur for the strictly determinis-
tic systems of classical mechanics. Indeed, quite simple classical
Hamiltonian systems can exhibit precise phase space trajectories so
chaotic in their phase space wanderings that slightly imperfect obser-
vation cannot distinguish this deterministic motion from completely
stochastic motion. Even though some of these model systems have only
a few degrees of freedom, they nonetheless illustrate a generic type
of wild classical mechanical trajectory behavior which is of great
significance in the study of dynamical stability and of statistical
mechanics; moreover, the nature of such wild behavior is now being
studied for more general systems of widespread physical interest.
Thus, even at this early stage, it becomes highly desirable to estab-
lish the effect introduced by quantum mechanics on this classical
mechanical stochastic behavior. For even more than in classical mech-
anics, most of the exact work in quantum mechanics has been devoted to
integrable (solvable) systems, with the remaining more difficult prob-
léms being left either to generally divergent perturbation theory or
to gquantum statistical mechanics whose foundations are less well
understood than those of classical statistical mechanics. As a
consequence, there is not only a dearth of quantum models ekhibiting
stochastic behavior, there is also some ambiguity even concerning the
criteria for and the definition of quantum stochastic behavior.

Thus a number of recent papers have appeared, using a variety of
techniques, which seek to develop viable criteria for and a definition
of quantum stochastic behavior. To establish their criterion, Pukhov,
et. al.,4 generalize the notion of local instability (exponential
separation) of initially close orbits valid for classical stochastic
systems. In particular, they investigate the time growth of the
change in the wave function 8§y due to a small external perturbation
added to the original Hamiltonian, and they establish criteria suffi-
cient to insure an exponential growth in §y. Along somewhat related
lines, Percival and Pomphrey5 treat quantum mechanically a Hamiltonian
system known to exhibit a classical transition from near-integrable to
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stochastic behavior. They show that the quantum energy levels for
this Hamiltonian become highly sensitive to very small added external
perturbations only above the classical stochastic threshold, and they
argue that their study thus reveals a transition to quantum stochastic
behavior. Both of these studies investigate quantum stochasticity as
revealed through small but explicit outside perturbations.

The works of Nordholm and Rice6'7

and of Shuryak8 are more
directly concerned with the case of isolated Hamiltonian systems for
which the Hamiltonian splits naturally into dominant terms describing
independent degrees of freedom which are coupled by small nonlinear
interaction terms. Nordholm and Rice6 also present a brief but clear
review of the older literature on quantum ergodic theory for isolated
systems, pointing out that this problem is still very much an open one.
Both Nordholm and Rice as well as Shuryak regard their isolated quantum
systems as behaving stochastically when the unperturbed eigenstates of
the dominant, independent modes are strongly coupled by the weak inter-
action in the sense that the expansion of the exact quantum state is a
sum of many unperturbed, independent mode states. The approach of
Nordholm and Rice is, in principle, exact but in practice is forced to
rely heavily on numerical (computer) computations whereas the work of
Shuryak is strictly analytic but only approximate since it is based on
a generalization of the order of magnitude resonance—overlap estimates

3 For further details on work in this area, the reader is

of Chirikov.
referred to the papers listed as Reference 9. Additional discussions
of quantum stochasticity appear, of course, in several of the compan-
ion papers in this volume.

But strangely enough, to our knowledge, no quantum investigation
has previously been made for the simplest possible Hamiltonian system
known to exhibit chaotic trajectories, namely a periodically driven
(i.e., time-dependent) one degree of freedom Hamiltonian system.
Perhaps this is because such driven systems are, in general, no easier
to solve than the conservative two degree of freedom systems whose
quantum behavior has been previously studied. However, there is one
notable exception to this general rule, and it is this exception which
we seek to exploit in this paper. In particular, both the classical
and quantum equations of motion for pendulum Hamiltonians of the type

H = (pg/2me?) + V(9) sp(t/T) , (1)

where 6 is angular displacement, is angular momentum, m is pendulum
g P Py g

mass, % is pendulum length, V() is angular potential energy, and
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Gp(t/T) is a periodic delta function of period T, can be reduced to
mappings and solved numerically as we shall show. Indeed, the class-
ical motion for Hamiltonian (1) using V(6) = -mgacosé = -mzzwozcose
has already been extensively investigated,3 and it is for this reason
that we chose to begin our gquantum studies using this particular model.
In Section II, we derive the classical mapping equations for our
model and discuss the nature of its solutions. In Section III, we
derive and discuss the guantum mapping equations. Section IV presents
our numerical results for the quantum problem and these results are
then discussed in Section V. Brief concluding remarks appear in
Section VI. This paper represents a progress report describing cal-
culations on an exceptional type of driven quantum system which can be
solved, at least numerically. It is our hope that future studies on
this or related model systems may lead to a broader understanding of

quantum chaotic behavior.

II. DISCUSSION OF THE CLASSICAL MODEL

The specific Hamiltonian we choose to study is given by
H = (pe/2mz2) - {mzzwozcose] Gp(t/T) , (2)

which is merely Hamiltonian (1) specialized to V(e) = -mggcosé =
-mlzwozcose, where obviously woz = g/%. Here the periodic delta
function, which may be expressed as

o] (o]

§_(t/T) = 3. slj=(t/T)] = 142 3, cos(2nwt/T) , (3)
P j=— n=1

"turns on" the gravitational potential for a brief instant during each

period T. The classical equations of motion for Hamiltonian (2) are

Py

—(mzzmozsine) Gp(t/T) (4a)

De
]

py/me? (4b)
where the dot notation indicates time derivative. Letting 6, and
(pe)n be the values of 6 and Py just before the nth delta function

"kick", we may integrate Eg. (4a,b) to obtain the mapping equations

= - 2, 2mai
(pe)n+l (pe)n me “w Tsiné, . (5a)
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o = T/me2 . (5b)

n+l n + (pe)n+l

As an aside, let us observe that, when T tends to zero allowing
us to replace T by dt, Egq. (5a,b) becomes

dp, = - (mzzwozsine) dt (6a)

de = (pe/mzz) at , (6b)

which are precisely the equations of motion for the conservative, grav-
itational pendulum Hamiltonian

H =(p92/2m22) - mgrcoso (7)

recalling that woz = g/%. Thus as the time T between delta function
"kicks" tends to zero, the gravitational potential is "turned on"
continuously and the motion generated by Hamiltonian (2) becomes
identical with that generated by the integrablel Hamiltonian (7). As
T increases away from zero, the orbits of Hamiltonian (2) increasingly
deviate from those of the integrable pendulum, eventually exhibiting
chaotic or stochastic behavior. Consequently, one may adopt either of
two viewpoinis regarding Hamiltonian (2). As written above in Eq. (2),
it obviously describes a free rotator perturbed by delta function
"kicks". The remarks of this paragraph show that Hamiltonian (2) may
also be regarded as describing a gravitational pendulum perturbed by a
periodic driving force. This latter viewpoint becomes clearer if we
rewrite Hamiltonian (2), using Eq. (3), as

©

H = [(pe/2m22) - mgicos6] - 2mggcos® . cos(2nmt/T) (8)
n=1

In particular, it is the viewpoint represented by Hamiltonian (8) that
led to the title of this paper.
Returning to Eq. (5a,b), let us now define the dimensionless

angular momentum Pn via the equation P = (pe)nT/mQ,2 , and then let us
write Eq. (5a,b) in the so-called standard form 3
P41 = P, - Ksino (9a)
6 = 96_+ P (9b)

n+l n n+l '/
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where K = (wOT)2 is the only remaining mapping parameter. As mentioned
earlier when K tends to zeroi this mapping becomes precisely integrable
with all orbits lying on (or forming) simple invariant curves of the
mapping. When K is small, the KAM theorem2 insures that the mapping

is near-integrable, meaning here that most mapping orbits continue to
3,10 show that
at least some of these simple invariant curves persist as K approaches

lie on simple invariant curves. Numerical computations

unity. Moreover, for the K region 0<K<1l, the momentum variation is
bounded with IAPI%KI/Z. As K reaches and exceeds unity, all the prev-
iously existing simple invariant curves completely disappear and most
mapping orbits become chaotic point sets. For K>>1, numerical evidence
shows that the P-motion is characterized by a simple, random walk
diffusion equation having the form

P2y (K2%2/2)t , (10)

where P? is the average of the squared angular momentum at integer
time t = n measured in units of the period T and where initially P is
taken to be zero. The average here is over many orbits having distinct
S initial conditions or over many sections of the same orbit (normal-
izing P to zero at the beginning of each segment). 1In order to
indicate the source of Eg. (10), let us note that from Eg. (9a) we may
obtain

(n-1)

_ 2 _ 2 . .
(Pn PO) K< 2;- (51nej51nek) . (11)
j.k=0

Averaging Eqg. (1l1) over Bj and Oy taking both to be uniformly distri-
buted random variables, yields Eq. (10); this procedure is validated
by numerical iteration of chaotic orbits. But in addition to Eq. (10),
the empirically observed angular momentum distribution itself has the
time-dependent Gaussian form

/2]-1

f(P) = [K(ﬂt)l exp [-P2/R%t] , (12)

as would be expected from the c?nt{?l limit theorem provided we regard
n—

Pn in the equation P, =P, - K b sinej as being a sum of random
j=o

variables. It is precisely this stochastic momentum (or energy)

diffusion we shall seek to empirically observe in the quantum descript-
ion of this model to which we now turn.

e
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ITI. DISCUSSION OF THE QUANTUM MODEL

We now seek to solve Schrodinger's equation
Hp(e,t) = i Hh ayp(o,t)/st S (13)

for the system governed by Hamiltonian (2). In this section, we
regard the system as a free rotator perturbed by delta function "kicks"

and we expand the wave function ¢ (6,t) in terms of the free rotator

eigenfunctions (Zn)_lelne. In particular, we write

b, 0) = 2n 1Y A ()l (14)

n==«

Over any period T between delta function "kicks", the An(t) evolve

according to
- —in2
A (t47) = A (t)e EnT/h _ 5 (y)in?r/2 , (15)
n n n
where
E = n2h2/2mg 2 (16)
are the free rotator energy eigenvalues and where
t =H T/me2 . (17)

During the infinitesimal time interval of a "kick", we may write Eq.
(13) as

i Ray/ot = —mzzmozcoseép(t/T)w ) (18)

Integrating Eqg. (18) over the infinitesimal interval (t+T) to (t+T+),

we find
V(6,t+TT) = y(e,t+T) e KCOS® ‘ (19)

where

kK = (mzZmOZT)/h) . (20)
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Now expanding both sides of Eq. (19) in free rotator eigenfunctions

yields
é; a_(e+rh) &MM0 = ;: A_(t+T)b_(k) et (FF)E, (21)
n=-c r,S=-w
where we have used the expansion
eikcose — i; bs(k) eise (22)

S==o

with b_(k) = i%J_(k) = b__(k) and with J_(k) being the ordinary Bessel
function of the first kind. Because of the orthogonality of the
elne, we may use Egq. (21) to establish that

oo

. _
A (t+T") —rZEWAr(t+T)bn_r(k) . (23)
Finally using Eqg. (15), we obtain the quantum mapping

A (£+T7) = 3 A_(t)b__ (k)

r=—°°

e—ir21/2 (24)

giving the An at time (t+T+) in terms of the An at time t. Using Eq.
(24) and Eq. (14), we could obtain w(e,t+T+) in terms of y(8,t), but
in the calculations of interest here, the An momentum-representation
is more useful. Before turning to these calculations however, let us
briefly discuss the quantum mapping of Eq. (24).

First, let us note that the mapping of Egq. (24) can actudlly be
numerically‘iterated to obtain the time development of a guantum
solution provided only one or a few of the initial An(O) are non-zero.
Even though the sum on r is infinite, the bs(k) = iSJS(k) coefficients
become negligiblell outside the range s¥2k. Thus for reasonable sized
k-values starting from only one (or a few) initially non-zero An(O),
we may iterate through many periods T before the increasing number of
non-zero An(t) exceeds the practical limitations of a large computer.
Moreover, accuracy can be monitored via the normalization condition
z |An|2 = 1. Next, let us observe that the classical mapping depends
on the single parameter K = (on)z. Thus one might, at first glance,
expect the quantum mapping to depend only on the product (kt) since
K = (kt) as one may immediately verify from Eq. (17,20). Indeed
Ehrenfest's theorem makes it reasonable to suppose that the product

K = kt is particularly significant since it would control the time
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evolution of the center of a wave packet; however, the additional
guantum spreading of the packet might not depend on this product
alone. Not only does the numerical evidence presented later indicate
that the quantum mapping does indeed depend separately on k and 1,

but examination of Eg. (24) itself shows that this must be the case.
First, independent of the value of k, Eg. (24) is invariant to the
replacement of t by (t+47); thus contrary to the classical case, the
quantum motion places an upper bound on t (or T), since in Eqg. (24)
there is no loss of generality in restricting 1t to the interval
O<tg<d4n. This quantum anomaly arisés because the wave function for the
unperturbed free rotator is periodic in 1 independent of initial
conditions. Also in Egqg. (24) when k<1, only one or a very few bs(k)
coefficients will be appreciably different from zero. For both these
reasons, one would expect the classical and quantum motion to differ
greatly when K is large due to a small k and a large t. This is only
one of a variety of perhaps interrelated classical-quantum distinc-
tions. Finally since from Egqg. (19) it is clear that k is the parameter
which controls the amount of energy absorbed by the rotator due to the
driving delta function "kicks", it may be worthwhile to use Eq. (20)
and write Hamiltonian (2) as

H = (p,/2me2) - ( kT Lcoss) 5, (/T (25)

thus revealing k as an explicit coupling parameter.

IV. NUMERICAL RESULTS FOR THE QUANTUM MODEL

For the quantum model discussed in Sec. III, we have numerically
iterated Eqg. (24) to obtain the time evolved {An(t)} starting from
various initial {An(O)} sets. For each computer run, starting with a
definite {An(O)}set, we calculated at each iteration the probability

distribution
p(n) = [A |2 (26)
the average energy (in units of H2/ms2)

<E> =2, (n2/2) o(n) , (27)
n .
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and the average angular momentum (in units of )

<pe> = an (n) . (28)
n

In all runs after fixing k and 1, we chose only one An(O) or a few
(v10) adjacent An(O) to be non-zero. Surprisingly, the computed final
state p(n) appeared to be independent of the precise initial state, a
point to which we return later. Typical results for four runs are
discussed below. Each of these four runs was started with only the
ground state free rotator A,(0) being non-zero.

In order to investigate the extent to which the numerically com-
puted quantum distribution p(n) of Eg. (26) mimics the classical sto-
chastic distribution of Eqg. (12), let us write Eg. (12) in terms of the
quantum variables. Using the definitions of t, P, and K and the fact
that Py = 1 kh, we may write the quantum version of Eq. (12) as

£(n) = [k(rt)1/?17! exp(-n2/k2t) (29)

Where t is integer time measured in multiples of the "kick" periéd T.
Note in Eg. (29) the dependence on k rather than K (=kt). If the
quantum system indeed mimics the classical motion for K = kt>>1, then
we would expect the p(n) of Eq. (26) to equal the f(n) of Eq. (29),
since loosely speaking thebquantum solution is an "automatic" average
over many classical orbits. For ease of graphical compariso?}zlet us
f(n),

and pN(n) = k(wt)l/ p(n); in these variables we need only determine the

introduce the normalized variables X = n2/k?t, f (n) = k(rt)

validity of the simple equation

_ _ =X
py(n) = fy(n) = e . (30)
For k = 40 and t = 1/8, we plot the numerically determlned (znpN)
versus X at t = 25 in Fig. 1. The straight line in(e” ) = zan(n) is

graphed for comparison. One notes here that the comparison is rather
good indicating that the quantum motion indeed appears to be stochas-
tic here. It must be noted in Fig. 1 that each plotted point for
2npN(n) actually represents an average value of this guantity taken
over ten adjacent energy levels; this averaging reduces but does not
eliminate fluctuations. In Fig. 2 we present a graph of pN(n) and

f (n}) for the parameter values k =10 and t = 1/2. 1In Fig. 2, contrary
to Fig. 1, one notes that the quantum system is not behaving stochas-
tically despite the fact that the classical value of K is five for
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both cases and, classically, stochasticity would be expected for both.
This is yet another of the several

—0

-2+

=

S

Qz _4--
Q o7

-—81-

0 2 4 6 8 X

Fig. 1. A plot of the logarithm of the quantum probability distribut-
ion p(n) versus the normalized variable X = n2/k2t at time
t =25 for k = 40 and 7 = 1/8 (K = 5). The straight line is
a plot of 2n(e~X). Were the quantum motion stochastic, these
two curves should be identical; the fact that they are quite

close indicates a great similarity between the classical and
quantum motion for this case.

-O__
R
S’
Q® 87
oo
=N
~]6II
} } - $ {
0 2 4 6 8 X

Fig. 2. A plot of the same variables as in Fig. 1 but for k = 10 and
T = 1/2. Here the curves are quite distinct indicating a
lack of stochasticity in the gquantum motion-even though K = 5
as in Fig. 1. We do not yet understand this quantum anomaly.
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quantum anomaliés which we shall discuss in the next section.

In order to summarize all the computed data for the above two
runs plus two additional ones, we list the various computed parameters
in Tables I-IV which appear at the end of this section. 1In eéch table,
the first column lists the value of the integer time t. The second
column lists the normalized average energy <E>N at each time normalized
in sueh a way that were the system motion stochastic exhibiting the
Gaussian distribution (30) then the table values for <E>g would

sequentially read 1, 2, 3, 4, and 5; in particular <E>y is given by

<E>N = <E>/(k2t1/4) ' (31)
where t; is the number of iterations per output. The third column
lists a parameter B determined by a least squares fit of the exper-
imental data to the formula

o) = A e % . (32)

If the motion were purely stochastic, B would equal unity. The fourth
column lists a parameter W, given by

Wy = [a/k(nt) /2] f exp (-Bn2/k2t) dn = a/BY/? ; (33)
loosely speaking, Wy is related to the percentage of stochastic energy
diffusion in the motion. For purely stochastic motion, we would find
W
computed using the fitted Eq. (32) and given by

a= 1. The fifth column lists (Wd/B) which is the average energy

-BX

<E> = A (n2/2) e

s

dn = Wd/B . (34)
The sixth column lists the ratio £ given by

£ = <E> / <E>d ’ (35)
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TABLE I. A listing of stochastic energy absorbtion parameters as a
function of time for one computer solution of the driven
quantum pendulum. The parameters are defined in the text.
Here k = 40, v = 1/8, and K = kt = 5. The number of bg(k)
values used in Eq. (24) was 101.

t <E>y B Wy W,/B £ R, lagl?
5 1.55 3.67 331 90.3 1.55 0.38 0.0024
10 2.79 2.49 92.6 37.3 1.39 1.36  0.0061
15 3.77 0.76 0.90 1.18 1.26 1.01  0.0037
20 5.01 0.75 0.87 1.16 1.25 1.67 0.0053
25 5.66 0.83 0.87 1.05 1.13 1.43  0.0040

TABLE II. A listing of stochastic energy absorbtion parameters as a
function of time for one computer solution of the driven
quantum pendulum. Here k = 40, v = 1/40, .and K = kKt = 1,
The number of N of bg(k) values used in Eg. (24) was 101.

2
t <E>y B Wy Wy/B 3 R, laol
30 0.089 29.1 0.28 0.0096 0.0056 16.50 0.043
60 0.100 53.2 0.27 0.0051 0.0029 6.70 0.012
90 0.068 76.4 0.24 0.0031 0.0018 9.48 0.014
120 0.077 94.2 0.14 - 0.0015 ~0.0005 4.89 0.0063
150 0.048 116.0 0.15 0.0013 -0.0002 25.4 0.028
where <Es> is given by Eq. (27) and

<BE>. = (k2/4)t (36)

d

is essentially Eg. (10) expressed in terms of the guantum parameters
or, alternatively, it is <n?/2> computed using Eg. (29). If the motion
were completely stochastic, the fifth and sixth columns of each table
would be identical. The seventh column lists the ratio Ro=|A0|2k(nt)l/2
of the actual probability of the zeroth energy level to that expected
from the Gaussian distribution of Egqg. (29). The last column lists
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|A,]?2 itself. The number of Bessel functions (or bg(k)) needed in
Eq. (22) to accurately compute each run is listed in the table captions.
Finally, in all four runs at least 1,000 An—values (-500<n<500) were
computed at each iteration and, as mentioned earlier, accuracy was
checked by verifying normalization of the A_-sum.

We now turn to a discussion of these experimental results.

V. DISCUSSION OF NUMERICAL RESULTS

We have presented results for four runs selected to illustrate
typical behavior in a modest variety of k and t ranges. The parameter
values k = 40>>]1 and t = 1/8<<1l (corresponding to a classical K = 5)
used in the computations yielding Fig. 1 and Table I are those for
which one would expect quantum stbchaStic behavior, since the corr-
esponding classical system is certainly highly stochastic for this
case. A survey of Fig. 1 and Table I reveal that these expectations
are verified reasonably well. However, it must be emphasized that our
calculations yield a solution only over a finite time interval, that
the computed p(n) distribution contains large fluctuations, and that
the various parameters in Table I are only crude indices which do
deviate from their expected values. Pending further study, our results
here must be regarded as providing only an indication of

TABLE III. A listing of stochastic energy absorbtion parameters as
a function of time for one computer solution of the
driven quantum pendulum. Here k =1, v =5, K=kt = 5.
The number N of bg(k) values used in Eq. (24) was 23.

t <E>y B Wy Wd/B | £ R, |a0]2
150 0.0108 13.1 0.023  1.78x10”> 3.18x10”% 12.6 0.58
300 0.0092  29.5 0.029  9.83x10"% -7.50x107% 27.9  0.91
450 0.0079  40.0 0.015  3.70x10"% -4.60x107° 22.9 0.6l
600 0.0057 55.4 0.015  2.80x10”% -2.50x107° 38.2 0.88
750 0.0079  66.2 0.020  2.96x10"% 1.90x107% 35.9 0.74
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TABLE IV. A listing of stochastic energy absorbtion parameters as a
function of time for one computer solution of the driven
gquantum pendulum. Here k = 10, 7 = 1/2, and K = kt = 5.
The number of N of bg(k) values used in Eq. (24) was 41l.

t <E>y B Wy W4/B £ R |ao|2
90 0.27 1.12 0.055 0.049 0.27 1.24 0.073
180 0.27 1.71 0.066 0.039 0.13 4.44 0.019
270 0.32 2.43 0.077 0.032 0.10 4.55 0.016
360 0.26 2.93 0.066 0.023 0.066 4.74 0.014
450 0.30 3.75 0.070 0.024 0.061 4.86 0.013

quantum stochastic behavior for the above parémeter values.

The parameter values k = 40 and t = 1/40 (classical K = 1) used
for Table II are those which classically lie on the border of stochas-
ticity, and the data presented in Table II clearly indicates that the
quantum behavior for this case is also non-stochastic. Table IIT
which presents results for k = 1 and 1 = 5 (classical K = 5) indicates
that the quantum motion is non-stochastic even though the corresponding
classical motion is stochastic. However, as mentioned earlier, this
difference between the quantum and classical case is understandable
and to be expected. For small k values, the impulses or "kicks" do
not give rise to many eine "harmonics" in Eq. (22), and thus energy
cannot be absorbed into many energy levels as is the case for k>>1
where 2k "harmonics" are involved. This dependence of quantum stochas-
ticity on k and not just the prodﬁct (kt) as in the classical case
receives support from the’calculations resulting in Table III, but
more work will be required to establish the approximate k-value
determining the border of quantum stochasticity.

The results presented in Table IV and Fig. 2 which involve k = 10
and 1= 1/2 constitute a true puzzle, since here k>>1 and the corres-
ponding classical K = 5 just as for Table I and Fig. 1. Thus one might
have expected stochastic behavior rather than the stable, non-stochas-
tic data which actually appears. It is possible that the stochastic
border occurs for higher k-valu€s than previously anticipated, or it

is possible that one here is observing a totally new and unexpected
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effect; only further study can reveal the appropriate and correct
alternative. 1In this regard, let us mention that there are further
unique quantum effects. For example regardless of k-value or initial
v(6,0), the free rotation mapping of Eg. (15) is the identity map
when 1 = 4w; for this 1-value after an integer number t of "kicks",
we have from Eq. (19) that

p(t) = ¢(0) explitkcoss] (37)
which yields the average energy growth given by
*
<E> = ~(h2/2me2) fdenp (82/362)y ~ t2 (38)

that is proportional to t2?, corresponding to resonant rather than
diffusive energy absorption. Moreover, when t = 27, one may use
Eq. (24) and a well-known Bessel function identityll to rigorously
prove that An(t+2T+) = An(t) for all n; that is, the full driven gquan-
tum solution is strictly periodic independent of y(6,0) or the value
of k. Finally, resonant energy growth proportional to t2 has also
been observed for t = 47/m, where m = 3, 4, 8, and 32, although the
t-widths of these resonances become increasingly narrow as m increases.
Apparently, these peculiar resonant (or anti-resonant at t = 21)
effects are due to the strictly periodic nature of the unperturbed free
rotator wave function; while all unperturbed classical rotator orbits
are periodic, there is no period common to all solutions as occurs in
the quantum case. _

Subsequent to the Como Conference, we continued the above Fig.
l-run fbr k = 40 and t=1/8 and discovered that the diffusive quantum

energy absorption obeys Egq. (29) up to a time t_ (break-time) after

which diffusive enérgy absorption appears to coﬁtinue but at a much
slower rate. Empirically, we find tB proportional to k in sequences
of runs for which K = (kt) is held fixed. This result further
"explains" the lack of any diffusive energy absorption in the data of
Table III where k = 1 and t = 5 which is classically stochastic. A
very crude, but possible explanation for the appearance of this
break-time tB may lie in the uncertainty relationship AEAtR.

Note in Eq. (17) and Eqg. (18) that the classical limit K0 is equival-
ent to k+» and t»0. Thus for large k and small T(h fixed), we
might expect the quantum behavior to mimic the classical at least for
a time interval At during which the discrete nature of the free
rotator energy level spectrum is insignificant. From Eq. (15), one
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notes that 1 is a measure of the "effective" energy level spacing.
Thus taking AEvt and AtmtB in AEAtMﬁ, we have thr-lmk for fixed
K(=kt}, where tB is the time required for the quantum system to
"notice"” that its energy levels are discrete. Further numerical study
will be required to verify this possible explanation.

In closing this section, let us mention that we have sought to
verify a sensitive dependence of final quantum state upon initial
state similar to that implied by the exponential separation3 of init-
ially close classical orbits. Holding K = kt fixed, we have tried
k-values from k = 1 to k = 100 using various pairs of initially close
{An(O)} initial states*only to find that the final state probability
distribution p(n) = An An was identical for each member of a pair to
within numerical error. Even starting from non-close initial states
such as A = A8 —and A = e ™ yielded the same final An*An distrib-
ution. Each of these initial quantum states (for large k and small t)
appeared to be approaching the unique final state probability distrib-
ution given by Eq. (29), at least for times t<tB. Moreover, Eq. (29)
is being approached from each of these definite initial states without
the need for a time or an ensemble average. These rather startling
results tempt one to speculate that the unique final state probability
distribution for an isolated (chaotic) quantum system might be the
microcanonical distribution, however premature such a speculation
might be. Regardless of such speculations however, our present comput-
ations reveal no sensitive dependence of final state upon initial
state, indeed they indicate a surprising lack of such dependence.
Certainly in the classical limit of sufficiently large k and sufficient-
ly small (K = kt>>1), initially close wave packets must exponentially
separate, but apparently even k = 100 and 1t = 0.05 does not lie in the

classical parameter range.

VI. CONCLUDING REMARKS

This progress report has been presented in order to expose an
example of a whole category of classically chaotic Hamiltonian systems
whose exact quantum behavior can be investigated, at least numerically.
It is our belief that future studies of the type Hamiltonian models
revealed here can provide substantial information regarding the nature
of chaotic behavior in deterministic guantum systems. Certainly the
~calculations for the specific pendulum Hamiltonian system considered
herein provide at least an initial indication of the surprises and the
possibly significant results which may await future investigators.
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Regardless of final outcome, it now appears that a new doorway to
quantum chaos may have opened and this progress report is an invitation
for others to join us in crossing over its threshold.

In closing, we wish to'express our profound appreciation to Ya. G.
Sinai, E. V. Shuryak, G. M. Prosperi, G. M. Zaslavsky, D. Shepelyansky,
and F. Vivaldi for many enlightening discussions regarding these
problems. During the‘period of final editing for this paper, we rec-
eived a specially prepared, handwritten preprint describing some
splendid related work from Michael Berry, N. L. Balazs, M. Tabor, and
A. Voros concerning "kicked" free particle systems. We have enormous
admiration for the willingness of these authors to share their indepen-

dent discoveries with us prior to publication.
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