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ABSTRACT 

This paper discusses a numerical technique for computing the quan- 

tum solutions of a driven pendulum governed by the Hamiltonian 

H = (pe2/2m~ 2) - [m£2mo2COS0] ~p(t/T), 

where Pe is angular momentum, 0 is angular displacement, m is pendulum 

mass, Z is pendulum length, eo 2 = g/Z is the small displacement natural 

frequency, and where ~ (t/T) is a periodic delta function of period T. 
P 

The virtue of this rather singular Hamiltonian system is that both its 

classical and quantum equations of motion can be reduced to mappings 

which can be iterated numerically and that, under suitable circumstan- 

ces, the motion for this system can be wildly chaotic. Indeed, the 

classical version of this model is known to exhibit certain types of 

stochastic behavior, and we here seek to verify that similar behavior 

occurs in the quantum description. In particular, we present evidence 

that the quantum motion can yield a linear (diffusive-like) growth of 

average pendulum energy with time and an angular momentum probability 

distribution which is a time-dependent Gaussian just as does the class- 

ical motion. However, there are several surprising distinctions be- 

tween the classical and quantum motions which are discussed herein. 
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Since we have not yet developed a completely adequate explanation for 

all these distinctions, this paper should be regarded as a progress 

report describing work on a highly interesting and numerically solvable 

model. 

I. INTRODUCTION 

1-3 
Noteworthy recent progress has been made in illustrating the 

truly stochastic behavior which can occur for the strictly determinis- 

tic systems of classical mechanics. Indeed, quite simple classical 

Hamiltonian systems can exhibit precise phase space trajectories so 

chaotic in their phase space wanderings that slightly imperfect obser- 

vation cannot distinguish this deterministic motion from completely 

stochastic motion. Even though some of these model systems have only 

a few degrees of freedom, they nonetheless illustrate a generic type 

of wild classical mechanical trajectory behavior which is of great 

significance in the study of dynamical stability and of statistical 

mechanics; moreover, the nature of such wild behavior is now being 

studied for more general systems of widespread physical interest. 

Thus, even at this early stage, it becomes highly desirable to estab- 

lish the effect introduced by quantum mechanics on this classical 

mechanical stochastic behavior. For even more than in classical mech- 

anics, most of the exact work in quantum mechanics has been devoted to 

integrable (solvable) systems, with the remaining more difficult prob- 

lems being left either to generally divergent perturbation theory or 

to quantum statistical mechanics whose foundations are less well 

understood than those of classical statistical mechanics. As a 

consequence, there is not only a dearth of quantum models exhibiting 

stochastic behavior, there is also some ambiguity even concerning the 

criteria for and the definition of quantum stochastic behavior. 

Thus a number of recent papers have appeared, using a variety of 

techniques, which seek to develop viable criteria for and a definition 

of quantum stochastic behavior. To establish their criterion, Pukhov, 
4 

et. al., generalize the notion of local instability (exponential 

separation) of initially close orbits valid for classical stochastic 

systems. In particular, they investigate the time growth of the 

change in the wave function 6~ due to a small external perturbation 

added to the original Hamiltonian, and they establish criteria suffi- 

cient to insure an exponential growth in 6~. Along somewhat related 

lines, Percival and Pomphrey 5 treat quantum mechanically a Hamiltonian 

system known to exhibit a classical transition from near-integrable to 
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stochastic behavior. They show that the quantum energy levels for 

this Hamiltonian become highly sensitive to very small added external 

perturbations only above the classical stochastic threshold, and they 

argue-that their study thus reveals a transition to quantum stochastic 

behavior. Both of these studies investigate quantum stochasticity as 

revealed through small but explicit outside perturbations. 

The works of Nordholm and Rice 6'7 and of Shuryak 8 are more 

directly concerned with the case of isolated Hamiltonian systems for 

which the Hamiltonian splits naturally into dominant terms describing 

independent degrees of freedom which are coupled by small nonlinear 

interaction terms. Nordholm and Rice 6 also present a brief but clear 

review of the older literature on quantum ergodic theory for isolated 

systems, pointing out that this problem is still very much an open one. 

Both Nordholm and Rice as well as Shuryak regard their isolated quantum 

systems as behaving stochastically when the unperturbed eigenstates of 

the dominant, independent modes are strongly coupled by the weak inter- 

action in the sense that the expansion of the exact quantum state is a 

sum of many unperturbed, independent mode states. The approach of 

Nordholm and Rice is, in principle, exact but in practice is forced to 

rely heavily on numerical (computer) computations whereas the work of 

Shuryak is strictly analytic but only approximate since it is based on 

a generalization of the order of magnitude resonance-overlap estimates 

of Chirikov. 3 For further details on work in this area, the reader is 

referred to the papers listed as Reference 9. Additional discussions 

of quantum stochasticity appear, of course, in several of the compan- 

ion papers in this volume. 

But strangely enough, to our knowledge, no quantum investigation 

has previously been made for the simplest possible Hamiltonian system 

known to exhibit chaotic trajectories, namely a periodically driven 

(i.e., time-dependent) one degree of freedom Hamiltonian system. 

Perhaps this is because such driven systems are, in general, no easier 

to solve than the conservative two degree of freedom systems whose 

quantum behavior has been previously studied. However, there is one 

notable exception to this general rule, and it is this exception which 

we seek to exploit in this paper. In particular, both the classical 

and quantum equations of motion for pendulum Hamiltonians of the type 

H = (pe/2mZ2) + V(e) 6p(t/T) , (i) 

where ¢ is angular displacement, P8 is angular momentum, m is pendulum 

mass, £ is pendulum length, V(¢) is angular potential energy, and 
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(t/T) is a periodic delta function of period T, can be reduced to 
P 

mappings and solved numerically as we shall show. Indeed, the class- 

ical motion for Hamiltonian (i) using V(e) = -mgZcos0 = -mZ2~o2COSe 

has already been extensively investigated, 3 and it is for this reason 

that we chose to begin our quantum studies using this particular model. 

In Section II, we derive the classical mapping equations for our 

model and discuss the nature of its solutions. In Section III, we 

derive and discuss the quantum mapping equations. Section IV presents 

our numerical results for the quantum problem and these results are 

then discussed in Section V. Brief concluding remarks appear in 

Section VI. This paper represents a progress report describing cal- 

culations on an exceptional type of driven quantum system which can be 

solved, at least numerically. It is our hope that future studies on 

this or related model systems may lead to a broader understanding of 

quantum chaotic behavior. 

II. DISCUSSION OF THE CLASSICAL MODEL 

The specific Hamiltonian we choose to study is given by 

H = (ps/2mZ2) - [mZ2eo2COS0] 6p(t/T) , (2) 

which is merely Hamiltonian (1) specialized to V(0) = -mgZcos0 = 

-mZ2~o2COS8 , where obviously ~o 2 = g/Z. Here the periodic delta 

function, which may be expressed as 

~p(t/T) = ~ 6[j-(t/T)] = 1+2 ~ cos(2n~t/T) , 
j=-~ n=l 

(3) 

"turns on" the gravitational potential for a brief instant during each 

period T. The classical equations of motion for Hamiltonian (2) are 

P0 = -(m~2~o2SinS) ~p(t/T) (4a) 

= ps/m~2 (45) 

where the dot notation indicates time derivative. Letting e n and 

(po)n be the values of e and Pe just before the nth delta function 

"kick", we may integrate Eq. (4a,b) to obtain the mapping equations 

(po)n+ I = (p8) n - m£2~o2TsinO n , (5a) 
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en+ 1 = 0 n + (pe)n+iT/m£ 2 (5b) 

As an aside, let us observe that, when T tends to zero allowing 

us to replace T by dt, Eq. (5a,b) becomes 

dp0 = - (m£2eoZSine) dt (6a) 

de = (pe/m£2)dt , (6b) 

which are precisely the equations of motion for the conservative, grav- 

itational pendulum Hamiltonian 

H =(pe2/2m£ 2) - mgZcos8 (7) 

recalling that ~o 2 = g/Z. Thus as the time T between delta function 

"kicks" tends to zero, the gravitational potential is "turned on" 

continuously and the motion generated by Hamiltonian (2) becomes 

identical with that generated by the integrable I Hamiltonian (7). As 

T increases away from zero, the orbits of Hamiltonian (2) increasingly 

deviate from those of the integrable pendulum, eventually exhibiting 

chaotic or stochastic behavior. Consequently, one may adopt either of 

two viewpoints regarding Hamiltonian (2). As written above in Eq. (2), 

it obviously describes a free rotator perturbed by delta function 

"kicks". The remarks of this paragraph show that Hamiltonian (2) may 

also be regarded as describing a gravitational pendulum perturbed by a 

periodic driving force. This latter viewpoint becomes clearer if we 

rewrite Hamiltonian (2)~ using Eq. (3), as 

H = [(pe/2m£2) - mg~cos0] - 2mg~cose ~ cos(2n~t/T) (8) 
n=l 

In particular, it is the viewpoint represented by Hamiltonian 8) that 

led to the title of this paper. 

Returning to Eq. (5a,b), let us now define the dimensionless 

angular momentum Pn via the equation Pn = (pe)nT~m£ 2 , and then let us 

write Eq. (5a,b) in the so-called standard form 

Pn+l = Pn - Ksin0n (9a) 

en+l = 8n + Pn+l ' (9b) 
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where K = (~oT) 2 is the only remaining mapping parameter. As mentioned 

earlier when K tends to zero, this mapping becomes precisely integrable 

with all orbits lying on (or forming) simple invariant curves of the 

mapping. When K is small, the KAM theorem 2 insures that the mapping 

is near-integrable, meaning here that most mapping orbits continue to 
• 3,10 

lie on simple invariant curves. Numerical computatlons show that 

at least some of these simple invariant curves persist as K approaches 

unity. Moreover, for the K region 0<K<l, the momentum variation is 

bounded with IAPI~K I/2. As K reaches and exceeds unity, all the prev- 

iously existing simple invariant curves completely disappear and most 

mapping orbits become chaotic point sets. For K>>I, numerical evidence 

shows that the P-motion is characterized by a simple, random walk 

diffusion equation having the form 

P2~ (K2/2) t , (i0) 

where p2 is the average of the squared angular momentum at integer 

time t = n measured in units of the period T and where initially P is 

taken to be zero. The average here is over many orbits having distinct 

e ° initial conditions or over many sections of the same orbit (normal- 

izing P to zero at the beginning of each segment). In order to 

indicate the source of Eq. (10), let us note that from Eq. (9a) we may 

obtain 

(n-l) 

(Pn - Po ) 2 = K 2 ~ (sine sinek) (ii) 
j ,k=o J 

Averaging Eq. (ll) over 0j and Ok, taking both to be uniformly distri- 

buted random variables, yields Eq. (10); this procedure is validated 

by numerical iteration of chaotic orbits. But in addition to Eq. (i0), 

the empirically observed angular momentum distribution itself has the 

time-dependent Gaussian form 

f (P) = [K(wt)I/2] -I exp [-p2/K2t] , (12) 

as would be expected from the central limit theorem provided we regard 
(n-l) 

P in the equation P = P - K E sin0. as being a sum of random 
n n o j=o 3 

variables. It is precisely this stochastic momentum (or energy) 

diffusion we shall seek to empirically observe in the quantum descript- 

ion of this model to which we now turn. 
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III. DISCUSSION OF THE QUANTUM MODEL 

We now seek to solve Schrodinger's equation 

H~(8,t) = i ~ ~(0,t)/St (13) 

for the system governed by Hamiltonian (2). In this section, we 

regard the system as a free rotator perturbed by delta function "kicks" 

and we expand the wave function #(8,t) in terms of the free rotator 

eigenfunctions (2~) -leinS. In particular, we write 

~(e,t) = (2~) -I ~ An(t)e in0 (14) 
n=-~ 

Over any period T between delta function "kicks", the An(t) evolve 

according to 

An(t+T) = An(t)e -EnT/~ = An(t)e-in2T/2 , (15) 

where 

E n = n2~2/2mZ 2 (16) 

are the free rotator energy eigenvalues and where 

T = ~ T/m~ 2 (17) 

During the infinitesimal time interval of a "kick", we may write Eq. 

(13) as 

i ~/~t = -m~2~ 2cos86 (t/T)~ (18) 
o p 

Integrating Eq. (18) over the infinitesimal interval (t+T) to (t+T+), 

we find 

~(e,t+T +) = ~(8,t+T) e ikc°s0 , (19) 

where 

k = (mZ2eo2T)~) (20) 
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Now expanding both sides of Eq. (19) in free rotator eigenfunctions 

y ie ld s  

An(t+T +) e in8 = ~ Ar(t+T)bs(k) e i(r+s)~, (21) 
n=-~ ris=-~ 

where we have used the expansion 

ikcose (k) 
e = ~ b s 

is8 
e (22) 

with bs(k) = iSJs(k) = b_s(k) and with Js(k) being the ordinary Bessel 

function of the first kind. Because of the orthogonality of the 
ine 

e , we may use Eq. (21) to establish that 

A n(t+T +) = ~ A r(t+T)bn_ r(k) (23) 

Finally using Eq. (15), we obtain the quantum mapping 

An(t+T +) = ~ Ar(t)bn_r(k) e -ir2T/2 
r~-~ 

(24) 

giving the A n at time (t+T +) in terms of the A n at time t. Using Eq. 

(24) and Eq. (14), we could obtain ~(0,t+T +) in terms of ~(e,t), but 

in the calculations of interest here, the A n momentum-representation 

is more useful. Before turning to these calculations however, let us 

briefly discuss the quantum mapping of Eq. (24). 

First, let us note that the mapping of Eq. (24) can actually be 

numerically iterated to obtain the time development of a quantum 

solution provided only one or a few of the initial An(0) are non-zero. 

Even though the sum on r is infinite, the bs(k) = iSJs(k) coefficients 

become negligible II outside the range s~2k. Thus for reasonable sized 

k-values starting from only one (or a few) initially non-zero An(0) , 

we may iterate through many periods T before the increasing number of 

non-zero An(t) exceeds the practical limitations of a large computer. 

Moreover, accuracy can be monitored via the normalization condition 

IAn ]2 = i. Next, let us observe that the classical mapping depends 

on the single p~rameter K = (~oT) 2. Thus one might, at first glance, 

expect the quantum mapping to depend only on the product (kT) since 

K = (kT) as one may immediately verify from Eq. (17,20). Indeed 

Ehrenfest's theorem makes it reasonable to suppose that the product 

K = kT is particularly significant since it would control the time 
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evolution of the center of a wave packet; however, the additional 

quantum spreading of the packet might not depend on this product 

alone. Not only does the numerical evidence presented later indicate 

that the quantum mapping does indeed depend separately on k and T, 

but examination of Eq. (24) itself shows that this must be the case. 

First, independent of the value of k, Eq. (24) is invariant to the 

replacement of T by (7+4~); thus contrary to the classical case, the 

quantum motion places an upper bound on T (or T), Since in Eq. (24) 

there is no loss of generality in restricting T to the interval 

05~$4~. This quantum anomaly arises because the wave function for the 

unperturbed free rotator is periodic in T independent of initial 

conditions. Also in Eq. (24) when k<l, only one or a very few bs(k) 

coefficients will be appreciably different from zero. For both these 

reasons, one would expect the classical and quantum motion to differ 

greatly when K is large due to a small k and a large T. This is only 

one of a variety of perhaps interrelated classical-quantum distinc- 

tions. Finally since from Eq. (19) it is clear that k is the parameter 

which controls the amount of energy absorbed by the rotator due to the 

driving delta function "kicks", it may be worthwhile to use Eq. (20) 

and write Hamiltonian (2) as 

H = (p0/2mZ2) - (~kT-IcosS) ~p(t/T) , (25) 

thus revealing k as an explicit coupling parameter. 

IV. NUMERICAL RESULTS FOR THE QUANTUM MODEL 

For the quantum model discussed in Sec. III, we have numerically 

iterated Eq. (24) to obtain the time evolved {An(t)} starting from 

various initial {An(0)} sets. For each computer run, starting with a 

definite {An(0)}set, we calculated at each iteration the probability 

distribution 

p (n) = [An]2 • (26) 

the average energy (in units of ~2/mZ2) 

<E> =~ (n2/2) p(n) , (27) 
n 
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and the average angular momentum (in units of ~) 

<p8> = ~ np(n) (28) 
n 

In all runs after fixing k and T, we chose only one An(0) or a few 

(~i0) adjacent An(0) to be non-zero. Surprisingly, the computed final 

state p(n) appeared to be independent of the precise initial state, a 

point to which we return later. Typical results for four runs are 

discussed below. Each of these four runs was started with only the 

ground state free rotator Ao(0) being non-zero. 

In order to investigate the extent to which the numerically com- 

puted quantum distribution p(n) of Eq. (26) mimics the classical sto- 

chastic distribution of Eq. (12), let us write Eq. (12) in terms of the 

quantum variables. Using the definitions of T, P, and K and the fact 

that Pe = n ~, we may write the quantum version of Eq. (12) as 

f(n) = [k(~t) i/2] -I exp(-n2/k2t) (29) 

where t is integer time measured in multiples of the "kick" period T. 

Note in Eq. (29) the dependence on k rather than K (=k~). If the 

quantum system indeed mimics the classical motion for K = k~>>l, then 

we would expect the p(n) of Eq. (26) to equal the f(n) of Eq. (29), 

since loosely speaking the quantum solution is an "automatic" average 

over many classical orbits. For ease of graphical comparison, let us 

introduce the normalized variables X = n2/k2t, fN(n) = k(~t) i/2f(n), 

and PN(n) = k(~t)i/2p(n); in these variables we need only determine the 

validity of the simple equation 

-X 
0N(n) = fN(n) = e (30) 

For k = 40 and T = 1/8, we plot the numerically determined (ZnPN) 

versus X at t = 25 in Fig. i. The straight line zn(e -x) = ~nfN(n) is 

graphed for comparison. One notes here that the comparison is rather 

good indicating that the quantum motion indeed appears to be stochas- 

tic here. It must be noted in Fig. 1 that each plotted point for 

£nPN(n) actually represents an average value of this quantity taken 

over ten adjacent energy levels; this averaging reduces but does not 

eliminate fluctuations. In Fig. 2 we present a graph of PN(n) and 

fN(n) for the parameter values k = i0 and T = 1/2. In Fig. 2, contrary 

to Fig. i, one notes that the quantum system is not behaving stochas- 

tically despite the fact that the classical value of K is five for 
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both cases and, classically, stochasticity would be expected for both. 

This is yet another of the several 

-° l 

I I I I I 
0 2 4 6 8 X 

Fig. i. A plot of the logarithm of the quantum probability distribut- 
ion p(n) versus the normalized variable X = n2/k2t at time 
t = 25 for k = 40 and $ = 1/8 (K = 5). The straight line is 
a plot of Zn(e-X). Were the quantum motion stochastic, these 
two curves should be identical; the fact that they are quite 
close indicates a great similarity between the classical and 
quantum motion for this case. 

=L 

Fig. 2. 

- 0  

- 4  

- - 8  ~ 

--12, 

-16 

t ! i I I 
0 2 4 6 8 X 

A plot of the same variables as in Fig. 1 but for k = l0 and 
T = 1/2. Here the curves are quite distinct indicating a 
lack of stochasticity in the quantum motion even though K = 5 
as in Fig. i. We do not yet understand this quantum anomaly. 
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quantum anomalies which we shall discuss in the next section. 

In order to summarize all the computed data for the above two 

runs plus two additional ones, we list the various computed parameters 

in Tables I-IV which appear at the end of this section. In each table, 

the first column lists the value of the integer time t. The second 

column lists the normalized average energy <E> N at each time normalized 

in such a way that were the system motion stochastic exhibiting the 

Gaussian distribution (30) then the table values for <E> N would 

sequentially read i, 2, 3, 4, and 5; in particular <E> N is given by 

<E> N = <E>/(k2tl/4 ) , (31) 

where t I is the number of iterations per output. The third column 

lists a parameter B determined by a least squares fit of the exper- 

imental data to the formula 

PN(n) = A e -BX (32) 

If the motion were purely stochastic, B would equal unity. The fourth 

column lists a parameter W d given by 

W d = [A/k(~t) I/2] f exp(-Bn2/k2t) dn = A/B I/2 ,- (33) 

loosely speaking, W d is related to the percentage of stochastic energy 

diffusion in the motion. For purely stochastic motion, we would find 

W d = i. The fifth column lists (Wd/B) which is the average energy 

computed using the fitted Eq. (32) and given by 

<E> = A f (n2/2) e -BX dn = Wd/B . (34) 

The sixth column lists the ratio ~ given by 

= <E> / <E> d , (35) 
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TABLE I. A listing of stochastic energy absorbtion parameters as a 
function of time for one computer solution of the driven 
quantum pendulum. The parameters are defined in the text. 
Here k = 40, T = 1/8, and K = kT = 5. The number of bs(k) 
values used in Eq. (24) was i01. 

t <E> N B W d Wd/B ~ R ° lao 12 

5 1.55 3.67 331 90.3 1.55 0.38 0.0024 

10 2.79 2.49 92.6 37.3 1.39 1.36 0.0061 

15 3.77 0.76 0.90 1.18 1.26 1.01 0.0037 

20 5.01 0.75 0.87 1.16 1.25 1.67 0.0053 

25 5.66 0.83 0.87 1.05 1.13 1.43 0.0040 

TABLE II. A listing of stochastic energy absorbtion parameters as a 
function of time for one computer solution of the driven 
quantum pendulum. Here k = 40, T = 1/40, .and K = kT = i. 
The number of N of bs(k) values used in Eq. (24) was i01. 

t <E> N B W d Wd/B ~ R ° lao ]2 

30 0.089 29.1 0.28 0.0096 0.0056 16.50 0.043 

60 0.i00 53.2 0.27 0.0051 0.0029 6.70 0.012 

90 0.068 76.4 0.24 0.0031 0.0018 9.48 0.014 

120 0.077 94.2 0.14 0.0015 -0.0005 4.89 0.0063 

150 0.048 116.0 0.15 0.0013 -0.0002 25.4 0.028 

where <E> is given by Eq. (27) and 

<E> d = (k2/4)t (36) 

is essentially Eq. (i0) expressed in terms of the quantum parameters 

or, alternatively, it is <n2/2> computed using Eq. (29). If the motion 

were completely stochastic, the fifth and sixth columns of each table 

would be identical. The seventh column lists the ratio Ro=]Aol2k(~t) I/2 

of the actual probability of the zeroth energy level to that expected 

from the Gaussian distribution of Eq. (29). The last column lists 
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IAol 2 itself. The number of Bessel functions (or bs(k)) needed in 

Eq. (22) to accurately compute each run is listed in the table captions. 

Finally, in all four runs at least 1,000 An-values (-5005n~500) were 

computed at each iteration and, as mentioned earlier, accuracy was 

checked by verifying normalization of the An-SUm. 

We now turn to a discussion of these experimental results. 

V. DISCUSSION OF NUMERICAL RESULTS 

We have presented results for four runs selected to illustrate 

typical behavior in a modest variety of k and ~ ranges. The parameter 

values k = 40>>1 and T = 1/8<<1 (corresponding to a classical K = 5) 

used in the computations yielding Fig. 1 and Table I are those for 

which one would expect quantum stochastic behavior, since the corr- 

esponding classical system is certainly highly stochastic for this 

case. A survey of Fig. 1 and Table I reveal that these expectations 

are verified reasonably well. However, it must be emphasized that our 

calculations yield a solution only over a finite time interval, that 

the computed p(n) distribution contains large fluctuations, and that 

the various parameters in Table I are only crude indices which do 

deviate from their expected values. Pending further study, our results 

here must be regarded as providing only an indication of 

TABLE III. A listing of stochastic energy absorbtion parameters as 
a function of time for one computer solution of the 
driven quantum pendulum. Here k = i, T = 5, K = kT = 5. 
The number N of bs(k) values used in Eq. (24) was 23. 

t <E> N B W d Wd/B ~ R O lao [2 

150 0.0108 13.1 0.023 

300 0.0092 29.5 0.029 

450 0.0079 40.0 0.015 

600 0.0057 55.4 0.015 

750 0.0079 66.2 0.020 

1.78xi0 -3 3.18xi0 -4 12.6 0.58 

9.83xi0 -4 -7.50xi0 -6 27.9 0.91 

3.70xi0 -4 -4.60xi0 -5 22.9 0.61 

2.80xi0 -4 -2.50xi0 -5 38.2 0.88 

2.96xi0 -4 1.90xlO -6 35.9 0.74 
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A listing of stochastic energy absorbtion parameters as a 
function of time for one computer solution of the driven 
quantum pendulum. Here k = 10, x = 1/2, and K = k¢ = 5. 
The number of N of bs(k) values used in Eq. (24) was 41. 

t <E> N B W d Wd/B ~ R ° [ao]2 

90 0.27 1.12 0.055 0.049 0.27 1.24 0.073 

180 0.27 1.71 0.066 0.039 0.13 4.44 0.019 

270 0.32 2.43 0.077 0.032 0.10 4.55 0.016 

360 0.26 2.93 0.066 0.023 0.066 4.74 0.014 

450 0.30 3.75 0.070 0.024 0.061 4.86 0.013 

quantum stochastic behavior for the above parameter values. 

The parameter values k = 40 and ¢ = 1/40 (classical K = i) used 

for Table II are those which classically lie on the border of stochas- 

ticity, and the data presented in Table II clearly indicates that the 

quantum behavior for this case is also non-stochastic. Table III 

which presents results for k = 1 and ~ = 5 (classical K = 5) indicates 

that the quantum motion is non-stochastic even though the corresponding 

classical motion is stochastic. However, as mentioned earlier, this 

difference between the quantum and classical case is understandable 

and to be expected. For small k values, the impulses or "kicks" do 

not give rise to many e in0 "harmonics" in Eq. (22), and thus energy 

cannot be absorbed into many energy levels as is the case for k>>l 

where 2k "harmonics" are involved. This dependence of quantum stochas- 

ticity on k and not just the product (k¢) as in the classical case 

receives support from the calculations resulting in Table I{I, but 

more work will be required to establish the approximate k-value 

determining the border of quantum stochasticity. 

The results presented in Table IV and Fig. 2 which involve k = i0 

and ¢ = 1/2 constitute a true puzzle, since here k>>l and the corres- 

ponding classical K = 5 just as for Table I and Fig. i. Thus one might 

have expected stochastic behavior rather than the stable, non-stochas- 

tic data which actually appears. It is possible that the stochastic 

border occurs for higher k-values than previously anticipated, or it 

is possible that one here is observing a totally new and unexpected 
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effect; only further study can reveal the appropriate and correct 

alternative. In this regard, let us mention that there are further 

unique quantum effects. For example regardless of k-value or initial 

4(0,0), the free rotation mapping of Eq. (15) is the identity map 

when T = 47; for this T-value after an integer number t of "kicks", 

we have from Eq. (19) that 

~.(t) = 4(0) exp[itkcosS] (37) 

which yields the average energy growth given by 

<E> = -(~2/2m~2) /de~*(~2/~82)~ ~ t 2 (38) 

that is proportional to t 2 , corresponding to resonant rather than 

diffusive energy absorption. Moreover, when • = 27, one may use 

Eq. (24) and a well-known Bessel function identity II to rigorously 

that An(t+2T +) = An(t) for all n; that is, the full driven prove quan- 

tum solution is strictly periodic independent of 4(0,0) or the value 

of k. Finally, resonant energy growth proportional to t 2 has also 

been observed for T = 47/m, where m = 3, 4, 8, and 32, although the 

T-widths of these resonances become increasingly narrow as m increases. 

Apparently, these peculiar resonant (or anti-resonant at T = 27) 

effects are due to the strictly periodic nature of the unperturbed free 

rotator wave function; while all unperturbed classical rotator orbits 

are periodic, there is no period common to all solutions as occurs in 

the quantum case. 

Subsequent to the Como Conference, we continued the above Fig. 

1-run for k = 40 and ~ =1/8 and discovered that the diffusive quantum 

energy absorption obeys Eq. (29) up to a time t B (break-time) after 

which diffusive energy absorption appears to continue but at a much 

slower rate. Empirically, we find t B proportional to k in sequences 

of runs for which K = (kT) is held fixed. This result further 

"explains" the lack of any diffusive energy absorption in the data of 

Table III where k = 1 and T = 5 which is classically stochastic. A 

very crude, but possible explanation for the appearance of this 

break-time t B may lie in the uncertainty relationship ~EAt~. 

Note in Eq. (17) and Eq. (18) that the classical limit ~÷0 is equival- 

ent to k+~ and T÷0. Thus for large k and small T(~ fixed), we 

might expect the quantum behavior to mimic the classical at least for 

a time interval At during which the discrete nature of the free 

rotator energy level spectrum is insignificant. From Eq. (15), one 
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notes that T is a measure of the "effective" energy level spacing. 

Thus taking AE~T and At~t B in AEAt~, we have tB~T-l%k for fixed 

K(=kT), where t B is the time required for the quantum system to 

"notice" that its energy levels are discrete. Further numerical study 

will be required to verify this possible explanation. 

In closing this section, let us mention that we have sought to 

verify a sensitive dependence of final quantum state upon initial 

state similar to that implied by the exponential separation 3 of init- 

ially close classical orbits. Holding K = kT fixed, we have tried 

k-values from k = 1 to k = i00 using various pairs of initially close 

{An(0)} initial states only to find that the final state probability 

distribution p(n) = A n A n was identical for each member of a pair to 

within numerical error. Even starting from non-close initial states 
-n 2 , 

= = such as A n Ao~no and A n e yielded the same final A n A n distrib- 

ution. Each of these initial quantum states (for large k and small T) 

appeared to be approaching the unique final state probability distrib- 

ution given by Eq. (29), at least for times t<t B. Moreover, Eq. (29) 

is being approached from each of these definite initial states without 

the need for a time or an ensemble average. These rather startling 

results tempt one to speculate that the unique final state probability 

distribution for an isolated (chaotic) quantum system might be the 

microcanonical distribution, however premature such a speculation 

might be. Regardless of such speculations however, our present comput- 

ations reveal no sensitive dependence of final state upon initial 

state, indeed they indicate a surprising lack of such dependence. 

Certainly in the classical limit of sufficiently large k and sufficient- 

ly small T(K = kT>>l), initially close wave packets must exponentially 

separate, but apparently even k = 100 and T = 0.05 does not lie in the 

classical parameter range. 

VI. CONCLUDING REMARKS 

This progress report has been presented in order to expose an 

example of a whole category of classically chaotic Hamiltonian systems 

whose exact quantum behavior can be investigated, at least numerically. 

It is our belief that future studies of the type Hamiltonian models 

revealed here can provide substantial information regarding the nature 

of chaotic behavior in deterministic quantum systems. Certainly the 

calculations for the specific pendulum Hamiltonian system considered 

herein provide at least an initial indication of the surprises and the 

possibly significant results which may await future investigators. 
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Regardless of final outcome, it now appears that a new doorway to 

quantum chaos may have opened and this progress report is an invitation 

for others to join us in crossing over its threshold. 

In closing, we wish to express our profound appreciation to Ya. G. 

Sinai, E. V. Shuryak, G. M. Prosperi, G. M. Zaslavsky, D. Shepelyansky, 

and F. Vivaldi for many enlightening discussions regarding these 

problems. During the period of final editing for this paper, we rec- 

eived a specially prepared, handwritten preprint describing some 

splendid related work from Michael Berry, N. L. Balazs, M. Tabor, and 

A. Voros concerning "kicked" free particle systems. We have enormous 

admiration for the willingness of these authors to share their indepen- 

dent discoveries with us prior to publication. 
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