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stability of the motion of a charged paﬁicle in a magnetic
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Recent work on the stability of the motion of a single charged particle in an axisymmetric mirror system
is reviewed. A semiempirical condition for the overlap of nonlinear resonances leads to a reasonably
accurate estimate of the boundary for the stochastic instability and for the rate of the diffusive change in
the magnetic moment of the particle in the instability region. These estimates are compared with
numerical calculations of the trajectories of charged particles in magnetic confinement systems.

PACS numbers: 52.20.Dq, 52.55.Ke

One of the basic directions in research on controlled
fosion is the confinement of hot plasmas in "open® mag-
petic systems. In the Soviet Union, work in this direction
began with the papers by G. I. Budker, who suggested con-
fining a plasma in a confinement system with magnetic
mirrors ("corks”) (Ref. 1; see also Ref. 2). A necessary
but — very unfortunately — far from sufficient condition for
successful plasma confinement in magnetic systems is
{ ‘tability of the motion of an individual charged par-
ticce. The longitudinal motion of the particle is of course

governed by the effective potential energy
U,=uB(s), 1)

where B is the magnetic field, s is the coordinate along a
line of force,
v r! rsin’8

u:—‘s-:

2B 2 2o
Is the orbital magnetic moment of the particle, B is the
angle between the velocity v and the field B, and w is the
gyrofrequency. We are using a system of units in which
Ym=e=c=1, wherey = (1-v/c?)~2, Written in this
form, all the equations in this paper are valid for any ve-
locity of the charged particle.

@)

K the magnetic field has a maximum along a line of
force, and u = const, the particle executes stable longi-
tudinal oscillations. The magnetic moment of the particle,
bowever, which is proportional to the action variable for
Larmor rotation, isnot an exact integral of motion, but
slmply a *adabatic invariant,® which is approximately
conserved under certain special conditions. Before work
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on magnetic confinement systems was carried out, the
accuracy of the conservation of the adiabatic invariants
was not actually studied, and even the qualitative condi-
tions for the conservation of such Invarlants were formu-
lated in an extremely hazy manner. The basic condition
was believed to be that the properties of the system vary
*slowly” in comparison with the characteristic frequen~
cies of the system. For this particular problem, this con-
dition means that the change in the gyrofrequency w(s)

due to the longitudinal oscillations of the particles must
be slow. We now know that this condition is generally not
correct, even in a qualitative sense. Credit must be given
to the insight and physical intuition of G. L. Budker, who
recognized that the problem of the conservation of the
magnetic moment of a particle s an extremely subtle
theoretical problem. Wisely, he resorted to experiment,
formulating a beautiful experiment with tritium in 8 mag-
netic mirror confinement system. This experiment, car-
ried out by Rodionov,? and others, carried out at Liver-
more,? showed that the magnetic moment Is conserved
well enough that certain minimal requirements of the mag-
netic confinement system could be satisfied. The many
plasma instabilities which were subsequently discovered
drew attention away from the problem of the stability of
the motion of an individual charged particle. More re-
cently, however, interest has rekindled in this problem
(see, for example, Ref. 4), for two reasons; First, much prog-
ress has now been made In suppressing the plasma insta-
bilities. Second, we would llke a more accurate estimate
of the minimum necessary magnetic flelds and dimensions
of the confinement systems, since these systems are now
becoming extremely complicated and expensive engineering
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projects. In addition, 2 new field of appiication of the theory tudinal motion of the particle is described by the Hamjj.

of the particie motion in a2 magnetic mirror system has
arisen: the van Allen belts. For the very epergetic pro-
tons (n these belts, the accuracy with which the magnetic
moment is conserved is apparently a decisive factor gov-
erning the motion (see, for example, Ref. 3).

In principle, the problem of the stability of the mo-
tion of a charged particle in an axisymmetric mag-
netic mirror confinement system was solved by Arnol'd.®
Using the perturbation theory proposed by Kolmogorov and
worked out by Arnol'd and Moser (the KAM theory), Ar-
nol'd proved rigorously that if the magnetic field was
strong enough the charged particle would be trapped in it
for an indefinitely long time. Braun' reported an analo-
gous proof of this permanent stability of the motion of a
particle in a magnetic mirror confinement system. Ar-
nol'd's proof is of fundamental importance to the prob-
lem, but for practical applications it is important to have
an accurate estimate of the stability boundary. This es-
timate cannot be found using the rigorous KAM theory be-
cause of technical difficulties. In the present paper we
review the recent work in which a different approach is
taken to the problem, via a semiempirical condition for
the stability of the motion In terms of the "overlap of non-
linear resonances."® %

This approach grew out of attempts to solve the prob-
lem of the conservation of magnetic moment, formulated
by Budker. For many years the present author benefited
from Budker's invaluable counsel on these and many other

questions of modern physics.

1. RESONANT PROCESSES IN MAGNETIC CONFINEMENT
SYSTEMS

The role played by resonances in the changes (n the
adiabatic invariant was apparently first pointed out by
Andronov et al.!! They examined the simple case of a
linear oscillator with a sinusoidally modulated frequency.
In this system we know that for any integer

n=20/Qu, 1.1)

where & Is the average oscillator frequency and Qn i8
the modulation frequency, there 18 a parametric reso-
pance, and the action of the oscillator changes in an un-
bounded manner. Since © — 0 in the limit n—, this
simple example shows that the fact that a perturbation

is slow does not in itself guarantee conservation of the
adiabatic invariant. The resonances are the crucial con-
siderations. The role played by resonant processes be-
comes particularly apparent in quantum mechanics, ac~
cording to which a change In the adiabatic Invariant im-

plies transitions between unperturbed levels of the system.

The resonant processes In a magnetic mirror con-
finement system were studled in Ref. 8. Below we be-
gin with the case of an axisymmetric magnetic fleld,
and for simplicity we assume that the magnetic fleld
varies quadratically along a line of force:

‘i
B(s)-B.(i +—,,—) : 1.2)
where 1 I8 a constant — a measure of the characteristic

dimension of the magnetic field inhomogeneity (the fleld
doubling length). In the approximation u= ‘const, the longi~
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Py ;
H(p,s)= 2L +uBls);  py=v=i. (1.3)
Using (1.2) we see that the longitudinal oscillations
are sinusoidal with a frequemcy’)
¥Y2uB

9=l

v »
= sin B {1.4)

The changes in 4 result from resonances of these og-
cillations with the Larmor rotation. The resonance con-
dition is

o) I 1+sin*p,

~20 " dp, sin'd a.s)

n

where n Is any integer greater than zero, p = v/w is the
*total Larmor radius,” and the average value of the Lar-
mor frequency over a period of the longitudinal oscilla-

tions is

@ 1
G—?(l+sin'ﬁ.)' (1.6)
Since the magnetic field {8 symmetric with respect to the
median plane, the frequency of the perturbation due to the
longitudinal oscillations is 22 in (1.5). The straight lines
in Fig. 1 show the positions of the resonances in an axi-
symmetric magnetic confinement system.

Although both the longitudinal and radial oscillations
(the Larmor revolution) are sinusoidal for a magnetic
field of the type in (1.2), their frequencies (R, w) depend
on the magnetic moment {see (1.4) and (1.6)]. In this
situation we speak in terms of nonisochronous or
nonlinear oscillations. Significantly, the ratio of the
frequencies (w/29) also changes with a change in g or
in the slope of the velocity, 8y, in (1.5). Accordingly, an
individual nonlinear resonance simply leads to bounded
oscillations of u and correspondingly of the frequencies
Q and wr These oscillations are shown schematically by
the arrows in Fig. 1; they are usually called "phase® os-
cillations.

Another qualitative explanation can be offered for the
mechanism of the phase oscillations: As a particle moveé
in a constant (over time) axisymmetric magnetic field,
there are two exact integrals of motion: the energy, or
the velocity modulus

a.n

v=const,

and the angular momentum, which can be written ap-
proximately as

or?

—p - ‘:’— (r—p,*) = const,

M= a.n

where rg Is the distance from the Larmor center to the
symmetry axis of the fleld, and p, =v,/w I8 the Larmof
radlus. These integrals define a four-dimensional hyper=
surface in the six-dimensional phase space of the systes.
The particle moves along this hypersurface. Since e
frequencies Q and 3 are independent of the (three) coor= .
dinates of the particle, the projection of this integral by,
persurface onto the frequency plane Is a curve, showd
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cally by the dashed curve in Fig. 1. In the case
we conclude from (1.8) that r¢ ~ const and thus

. Then from (1.4) and (1.8) we find, eliminating
following approximate equation for the integral

1.9)

= expression depends on two parameters of the par-
e motion: v and re.

i i general, and for this problem in particular, the
curve Intersects the resonance lines, Ac-
sardingly, €ach individual resonance can lead to only
pssaded phase oscillations. If the resonance perturbation
g large, however, the regions of phase oscillations of
ring resonances will overlap (Fig. 1), so there is
e possibility that the particle may *wander™ somewhat
smong the resonances. In particular, for a displacement
he left along the invariant curve in Fig. 1 the magnetic
sament decreases, and the particle ultimately escapes
@rough the magnetic mirrors. The boundary of the insta-
Mlity which occurs in this manner is determined for the
sverlap of the nonlinear resonances. This condition was
formulated in Ref. 8 for the present problem, and it has
smbeequently been generalized to several other cases of
scalinear oscillations.?%

" CHANGE IN THE MAGNETIC MOMENT OF THE
PARTICLE IN THE CONFINEMENT SYSTEM

The typlcal behavior of u as a function of time during
ooe half-period of the longitudinal oscillations of the par-
ticle In the conflnement system (from one reflection to the
sext) is shown schematically in Fig. 2. R Is clear that
ere are two qualitatively different changes in u: os-
clllations (An) at the Larmor revolution frequency and
s more or less rapid change (*jump®), Apy, as the me-
dian plane is crossed (t =0 in Fig. 2). This behavior of
s was found in the very first numerical simulation of par-

: motion in magnetic confinement systems®? (see also

. 13).

The rate of change of the magnetic moment i3

.0, vty vpw,' 4B
i ﬁ(v’—-i-)smO g ein20, @.1)

T M UL

where R, is the radius of curvature of a magnetic line of
force, and # is the perturbation phase, which is related
to the Larmor phase # by the approximate relation

rsin ®=r. sin 0. 2.2)

Equation (2.1) is exact; it holds, in particular, for trajec-
tories which enclose the symmetry axis of the fleld (re <
Py

Since the perturbation field ¢ is fast (it varies at the
Larmor frequency w), the oscillations of u are given in
order of magnitude by

ﬁl‘..g..._g_‘-g(i, 23)
e i ®

where we are assuming Re ~ I for simplicity. The small
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FIG. L. Overlap of nonlinear resonances in the G, @ frequency plane,
Solid lines) resonance lines, & = 24m; dashed curve) projecuon of the
surface of the :xtegrals of motion (v = const; M = const) onto the frequency
plane; arrows) phasc cscillations at the nonlinear resonances. This splirting
results from the azimuthal ichomogeneity of the magnetic ‘ieic "Sec. 7).

dimensionless quantity € is usually called the "adiabatic
parameter.” This parameter Is defined more accurately
beleyy.

Significantly, the oscillations of u in (2.3), which are
generally not small, do not grow in time. An accurate
proof of this assertion runs into certain difficulties, The
proof was firstgivenby Krushkal,' who managed to analyze
all orders of the asymptotic perturbation theory in the
small parameter £ in (2.3).

It Is possible, however, to simply bypass the oscilla-
tory part of the variation In i, by transforming from the
differential equations of motion of the particle to the so-
called Poincaré mapping or difference equations which
describe the states of the particle at certain finite time
intervals (Sec. 4). For the present problem, the charac-
teristic time interval is conveniently chosen as the half-
period of the longitudinal particle oscillations (7/Q). This
approach implies, in particular, a transformation from the
continuous equation in (2.1) for i to the finite variation
Ap 4 over a time' 7/Q.

To find Ay we must simply integrate (2.1) over a
half-period of the longitudinal oscillations. The inte-
grand [the right side of (2.1)} corresponds to high-fre-
quency oscillations (w) with a low-frequency (@) ampli-
tude and phase modulation. K the right side of (2.1) I8 an
analytic lunction of t, and it of course always is for
real fields, the integral Auy will be an exponential func~
tion of the adiabatic parameter:

Ap,

—

"

2.4)

~ c—-lll.

The quantity £4, which determines the argument of the
exponential function, 18 naturally adopted as the adiabatic
parameter,

The functional relationship in (2.4) i{s easily derived
on the basis of the following considerations: We consider
the right side of (2.1) as a function of t and continue it into
the plane of the complex variable r =t + ity; that is, we
simply make the replacement t — r. If the function of 2
complex variable found in this manner is analytic in some
band along the real axis, the Integration path (t; = 0) can
be displaced along the imaginary axis. Converting to the
Larmor phase, 8 ~ wt — wT, in (2.1), we see that this
displacement leads to the appearance of an exponential
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FIG. 2. Schemadc behavior of the
magnetic moment of the particle as
a function of time. The median
plane of the confinement system is
crossed a t = 0.

factor:

sin A—Im (e"*)~e

—at,

@.5)

The magnitude of the displacement, t;, is governed by
that singularity of the integrand which Is nearest the real
axis. For example, for the "quadratic® field in (1.2) this
singularity is the zero of the magnetic field at some point
Tp: B(rp) =0 [see (2.1)]. Since the “jump® Apy actually
occurs near the median plane (at the minimum value of
B; Fig. 2), we can set 8 ¥ vt — vy = TVCOS fy and § =
8¢ + wot — By + wyT. Hence 1p = il/(vcos By) and Apg ~
Im (elfP) ~ e-1/Cagn 8, where the adiabatic parameter
satisfies

_i_~ L. ! @.6
€. UCOSPs  PecosSBe -6)
Finally, we can write
AE_E in 8,: E"‘A —1/eg
" S1D Us, & y (2.7)

where A s some coefficient which depends on the param-
eters of the system (see below). The quantity { is the
actual small parameter of this problem of the accuracy
with which the adlabatic invariant is conserved.

In the estimate for £, we used oanly the first term
in (2.1), which is related to the curvature of a magnetic
line of force. The second, higher-frequency term (2w)
leads only to an exponentially small correction (~e2a),
and we will ignore it below. For the same reason, the
varlation of the right side of (2.1) with t can be found in
only the zeroth approximation, that is, for p = const,

The behavior In (2.7) was found empirically (in nu-
merical simulations) many years a.go.ﬂ The first ac-
curate calculation was apparently that of Ref. 15. Curi-
ously, the equation for Apq in Ref, 15 was found there
through a solutfon of the quantum-mechanical problem

" of the motion of a magnetically confilned electron in the

Vs

semiclassical approximation.

A simple approximate equation for Auy was dertved
in Ref. 13 by directly integrating (2.1):

1 2 .1

~ — . ——

te 3 pecosBe : (2-8)

The equation for the coefficient of the exponenttal function
found there, however, was unnecessarily complicated.
Furthermore, as was shown later,!® the results of Ref. 13
hold only for small values of 3¢ and only for magnetic
flelds which are similar to the ®"quadratic® field In .2).
In the latter case, the result of Ref. 13 was generalized to
arbitrary angles 8, by Krushkal'.!¥ According to Ref. 16,
the adiabatic parameter in this case is

]
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EXD -
VrVOn "“‘fAf“v.’\f., v

t+sin’ 3,
2sin 3.

1 1 i
_-Ev(m' LAy

{+sin 3,
1—sin J, - ]

(2.9)

The quantity Apuq has been calculated more recently for g
broader class of magnetic fields.! It should be noted that
the ratio of (2.9) and (2.8),

ﬂ(pc) - %‘V(po)cos B,

{s approxi mately equal to unity at angles up to 3y = 60*
[#(50°) = 0.9; »(60°) = 0.83].

In the limit 8, — 7/2 we have the approximate rela-
tions
i 1 2

—m—ln—

Letig: 4 (3)

2.1

/2.

For the field in (1.2), or for sinusoldai longitudinal
oscillations, the final equation for Au; is, according to
Ref. 16 (see also Ref. 10),

where §, =

r‘ -1ty

=__3:t_____g
T pesinge

Although a slightly different expression was derived for
the coefficient of the exponential function in Ref. 17, the
simpler version in (2.12) also agrees with the results of
the numerical calculations of Ref. 17.

2.13)

3. ANHAR MONIC LONGITUDINAL OSCILLATIONS

Corrections to the adiabatic parameter for the an-
harmonlc nature of the longitudinal oscillations, due to s
devlation of the function B(s) from the quadratic function
in (1.2), were also calculated in Ref. 16, In this case the
equation for €, becomes extremely complicated, but
in cases of practical interest the anharmonic correction
turns out to be small. The correction is largest at By=0,
since the oscillations are most anharmonic in this case.
For a field of the type (n «< 1)

st s

= 2 = Q1)
B(s) B.(1+p tng )

this maximum correction Is (8, = 0), according to Ref. 16

4
1.2 4403,
La 3 Pe

e

For example, for the field configuration

{—acos(2as/L)
{—a

B(s)=B,

with the "mirror ratio® k = (1 + a)/(1 —a), the correctios

#

to l/ﬂa is 0.3n = ~1/10k —1). The
As another example we consider the fleld of s mag~

petic dipole. In this case, in the approximation ofa”
ratic® fleld, we have

—

[= (%B—) '—!i:R.-'V_fR.
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R
———-_-_,—.- (B, B.4
At )

F . Ry !5 the distance from the center of the dipole to
e Larmor center in the median (equatorial) plane of the
e. In particular, for By = 0 we have the ratio pg -
"“)‘1 = 0.314. When the correction in 3.2) is in-
-',ponted. this ratio increases to 0.352, that is, by about
The exact value is!f 0.325, or only 3.5% away from
e spproximation in (3.4).
According to Ref. 16, the change in u_in the dipole

geld can be written in the following form?) (after a cor-
gection of the arithmetic error in Ref. 16):

8n R,y Vre™V Ry\ et
8= T 7)) (E) sin Ps “4'18(_}7) sinp, ' (3.5)

. ape €4 can be taken in the "quadratic” approximation,
. 3.4), as shown above.

The anharmonicity of the longitudinal oscillations also
leads to changes in the frequencies R and w. For the
magnetic field configuration in (3.1) we have the approxi-
mate results (see, for example, Ref. 18)

Wy i 3“ 4
om (14t o).

-

@.6)

These expressions hold under the condition 7 cot? By € 1;
for a dipole field, n = 32/81 = 1/3 and B4 > 35°.
r—
. According to (2.7), the change in the magnetic mo-
ment over a half-period of the longitudinal oscillations,
Ayy, depends on the Larmor phase 6, at the time at which
the median plane is intersected. For a complete descrip-
_*" = of the motion we must also find the change in the phase
. Letween one intersection of the median plane and the
next. This change can be written approximately

1+1/2
s (l)o_'i_:‘__'_u&v (4.1)
2 72“(0.
where the last expression holds for the field in (1.2). We
thus find the mapping u, 64 = #, 6y, where

* =u+ip sin O,
e (4.2)

B,=0,+a ;)

The "phase advance® d(u) is defined here as a function of
the new value of the magnetic moment (u) after crossing
the median plane with phase 8.

This is the Poincaré mapping, which describes the
change In the state of the particle (in terms of the vari-
ables u, 6) after a half-period of the longitudinal oscilla-
tions,

The resonances w = 2an% {see (1.5) and Fig. 1] corre-
spond to certain resonant values p = up, which can be
found from the condition [see (4.1)]
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d(p.)=2xn. (4.3)
We expand the function d(u) near the resonant value and
introduce a new variable (the impulse) I:

d(p)=d(p.)+d.’ (pa) (n—p.) md(n.) +1.

This expansior is valid for | — py 1/ < |pptg=#n!/B~
1/n <« 1, that is, for resonances of a high harmonic of the
longitudinal oscillations. We will see that these harmonics
are present even In particle motion in the "quadratic® field
in (1.2), because of the modulation of w at the frequency of
the longitudinal oscillations.

Using (4.4), we can replace the mapping in (4.2) by
the following mapping, which has been linearized with re-

spect to u:
J=I+K sin 6,
B=0+],

where we are omitting the subscript "0* from 6. The sole
parameter of this mapping {8

K=p,&(1.)d (1)

For the "quadratic® field in (1.2) we find from (2.12) and
(4.1)

(44)

(4.5)

(4.6)

3nt Ir, 3+sin’f, e
8 p.’ sin* ﬂo '

@“.7

where £, is given by (2.9). Analogously, for the field of
a magnetic dipole we find, using (3.5) and the correction
to the frequencies in (3.6),

K=2.23 (%)

s {41/, sin® B, +8in'Pe .

-l/t..
sin’ B,

(4.8)

1

5. STABILITY BOUNDARY

The properties of the mapping {n (4.5) were studied in
detail in Ref. 10, where this mapping was labelled the
*standard™ mapplng since it arises in many problems of
the theory of nonlinear oscillations.” Numerical simula-
tions with (4.5) show!? that the stability boundary corre-
sponds to the following value of the mapping parameter:

K=K.,=1. (5.1)

The condition for the overlap of the first-approximation
resonances leads to K; ~ 72/4 =~ 2.5 Ref. 10). When the
second-approximation resonances and the stochastic layer
of first-approximation resonances are taken into account,
the agreement with the empirical value in (5.1) improves
substantially: K, = 1.05 (Ref. 10). Below we will adopt
the value in (5.1). In principle, this value can depend
somewhat on N, the number of iterations of the mapping
in (4.5). Inthe numerical simulations of Ref. 10 the value
of N reached 107; the variation in K, in this region is very
slight. A rough estimate of the accuracy of the critical
value in (5.1) is of the order of a few percent.¥

The structure of the phase plane of the standard map-
ping in (4.5) is periodic not only in 6 (with a period 27)
but also in I (with the same period). It is therefore suffi-
cient to analyze the motion of the system (4.5) on a 2T x 2w
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FIG. 3. Phase plane of the mapping in (4.5) for one trajectory after 108
fterations. K = 1.16. One of the resonant values p = up is indicated.

~ The hatched region corresponds to an unstable (stochastic) variation in

} the magnetic momeat of the particle.

phase square. The period over I corresponds to the dis-
tance between the adjacent resonances up in (4.4). Fig-
ures 3 and 4 show examples of the phase diagram of the
motion of system (4.5). The horizontal axis corresponds
to one period of the Larmor phase (In the median plane of
the confinement system), while the vertical axis shows
two periods of the impulse I, which is proportional to

( = up) [see (4.4)]. One of the resonant values u = pp

{s marked. The neighboring resonance coincides with the
upper and lower edges of the figure, by virtue of the peri-
odicity in L

Figure 3 shows the region filled by one trajectory
(hatched). This trajectory passes from one resonance to
a neighboring resonance and, because of the periodicity In
I, to any other resonance, The motion along I is thus un-
bounded; that is, this {s an example of unstable motion
(K = 1.16). Numerical simulations!® show that the motion
along I is irregular. The particle moves as if it were
subjected to random forces, although the motion is ac-
tually described by the purely dynamic equations in (4.5).
This motion has been labelled "stochastic® motion.**1?

In this case the motion can be described by a diffu-
ston equation with the empirical diffusion coefficient!®

D;-(Al) l!zilx(K..i)" (5‘2)

which refers to a single iteration of the mapping in (4.5).
Alternatively, for the magnetlc moment [see (4.2)], we
have

SO YRR

o X (5.3)

D,

In the case K > 1 the diffusion coefficlent corresponds
to random and independent phases 9. There ls a "mixing"
{n terms of the phase 8 (Ref. 9).

If the parameter K 18 only slightly larger than the crit- stable trajectories. Nevertheless, the stability
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FIG. 4. The same as in Fig. 3, but for K = 0.96 (1¢® iterations). The
stochastic motion in this case is confined to a narrow region along the
separatrix of the nonlinear resonance. The variations of y are strictly
bounded.

¢ -

ical value K; =1, the unstable motlon fills only a part of
the phase plane, with an extremely unusual shape (Fig.3).
The rest of the phase plane (not hatched) corresponds to
bounded oscillations of u.

Figure 4 shows an example of stable motion, for which
the oscillations of u are bounded for any initial conditions.
In this case the trajectory does not move (at least in 10¢
{terations) to an adjacent resonance (at the center of the
figure; cf. Fig. 3). Nevertheless, the trajectory fills a
region of finite width which i{s a more or less narrow layer
running along the separatrix of the nonlinear resonance.
Numerical and analytic study of the motion in this regioa
shows®"¥ that it is stochastic; hence this layer is called
the "stochastic layer.” The fundamental distinction betwess
this case and Fig. 3, however, is that the stochastic mo=~
tion in the layer is bounded and causes only slight al-
though irregular changes In u. Nevertheless, in an axially
asymmetric magnetic confinement system the stochastie
layers govern the stabllity of the motion (Sec. 8).

6. NUMERICAL SIMULATIONS

Let us compare these estimates of the stability bousé=
ary for the motion of a charged particle in a magnetic
mirror confinement system with the results of numerical
calculations of the trajectories. Figure 5 shows the ré=
sults of such a calculation for the field of a magnetic dl= .
pole, taken from the data of Dragt.® The open circles

triangles show "unstable” trajectories. The calculatios
actually spanned only ~20 intersections of the medias
(equatorial) fleld plane, and the stability condition wis
the scatter of points on a phase plane llke that in Figs. 9.
and 4. Because of the complicated structure of the phaé¥

plane, this "local® stabllity condition does not guarssted 7.
the correct separation of trajectories into stable and

show the parameters of "stable® trajectorles, while the h

B. V. Chirikov

o Y

oA~ A U s |

gv

[ X~ <]

P I S I B A

e B e




; be distinguished quite clearly from Fig. 5. Its em-
% ertcal position 18 shown by the dashed line

o 2041 8in b (6.1)
- R,
' gue solid curve shows the estimate of the stability bound-
pased on the resonance-overlap condition (K = 1).
e stability parameter K was calculated from Eq. (4.8)
with £, from (2.9). The agreement with the results of
" @ pumerical calculation can be judged satisfactory, par-
ly in view of the roughness of the empirical sta-
aility condition, as mentioned above. For the five stable

polnts which stand out (Fig. 5) the average value is

& 146, (6.2)
Per

where pcr corresponds to the theoretical boundary K =1.

A more accurate comparison can be made by using
@e pumerical data of Ref. 21 on the motion of particles
combined by magnetic mirrors with the "quadratic® field
I (1.2). Table I, taken from Ref. 10, shows the parameters
of six unstable trajectories lying near the stability bound-
ary. These trajectories were traced until they 12ft the system
@fter N intersections of the median plane). The values of
K listed in Table I were calculated from Eq. {(4.7). I all
eases we have K > 1, and it can be shown that (4.7) over-
estimates the stability parameter K. Actually, however,
the boundary K = 1 corresponds to a very long particle
lifetime in the system, while for the trajectories con-
sidered here the typical value is N ~ 300. According to
Ref, 10, the value of K increases approximately in accor-
dance with the empirical law

Kx=1+ (100/X)**. (6.3)

The values of Ky are also listed in Table . We now see
that Eq. (4.7) underestimates K by an average of 30%, and
the rms scatter in the values is £10%. The last column

o Table I shows the error in the calculation of the critical
Larmor radius p, from Eq. (4.7) with correction (6.3):

&, (K.—K)/K,
.PT - 1/84—2 ) (6-4)

The error is apparently due mostly to the error of (2.12)

for Aug when the Larmor radius p 4 becomes comparable
to the characteristic dimensions of the field, ! =~ 130 cm
In the present case.®?

We wish to point out that the first three trajectories
listed in Takle I encircle the axis of the system (r¢ < P h
8¢ that the theory derived above is also applicable in this
case. Such particles can of course escape from the con-
finement system only under the auxiliary condition ro > Rg
(Table I). The so-called Stormer radius Rg can be writ-
ten approximately as??

Ri=pe (sin’ p.-—’k-) (6.5)

where k is the mirror ratio. In the opposite case (ro < Rg),
the particles are confined forever, regardiess of the over-
18p of nonlinear resonances. This confinement is guaran-
teed by the exact Integrals of the energy, (1.7), and of the
fngular momentum, (1.8). The mechanism responsible for
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the fact that the stochastic instability which arises upon
resonance overlap does not remove the particles from the

magnetic confinement system is as follows: The diffusion
coefficlent in (5.3) is proportional to the quantity ¢2 ~r}
in (2.12), but ro does not remain constant as u changes
because of the conservation of angular momentum. From
(1.8) we have

o 2
rls ;(uﬂl)- (6.6)

)y

For trajectories which circumvent the axi{s of the system {

we have M < 0 [see (1.8)], so as u decreases there Is >
also a decrease In r¢, and this radius vanishes at some )
finite value u = u 4 =—M (the orbit becomes "centered,®

and the diffusion along z or, more precisely, In the dlrec->
tion of a further decrease In u is halted). If the minimum ™
angle 84 corresponding to u4 does not lie on the adiabatic
cone, i.e., if sin?B; = 2wyuy/v? > 1/k, the particle cannot \>
escape from the system, despite the stochastic instabil-
ity. This latter condition is precisely the same as the
condition for absolute confinement, r¢ < Rg, as is easily
shown, '

AVAN o

7. STRONG AZIMUTHAL INHOMOGENEITY: RESONANCE
OVERLAP

Turning to the motion of a charged particle in a non-
axisymmetric magnetic configuration, which is both a
more interesting problem and a problem more important
for applications, we first consider the case of a pro-
nounced azimuthal inhomogeneity of the magnetic field.
The corresponding condition is given below in (7.3).

Because of the azimuthal field inhomogeneity, all
characteristics of the particle motion, including the fre-
quencies w and 9, are modulated at the azimuthal drift
frequency Qg « 2. As a result, each of the resonances
w =200 (Sec. 1) splits into a muitiplet, as shown sche-
matically in Fig. 1. The distance between the lines in the
multiplet is 24, while the total number of lines is gov-
erned by the modulation depth of the frequencies @ and 1.

Alternatively, it can be shown that the system of main

0oy i I | L
a4
$tn B,

FIG. 5. Stability boundary for the motion of a particle in the field of a
magnetic dipole according to the data of Dragt.® Open circles) Stable
trajectories; filled circles) unstable tajectories; dashed line) empirical
stability boundary (pe/Fg = U.11 sin B,); solid curve) stability boundary
according to the resonance-overlap condirion (K = 1).
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TABLE |

K s R,. 3. M ) Ky T K A_Zn._
cm em cm deg * v Ky [
£0.7 19.3 18 63 0314 | 3701 180 1.20 0.75 0.24
%8 234 15 64 0271 | 340 1.62 1.05 0.65 0.21
»5 215 14 64 0239 | 310 ] 164 1.04 0.62 0.18
28.1 319 11 62 0219 | 270 | 168 1.4 0.68 0.43
244 35.9 7 59 0208 | 220 173 1.40 0.81 0.07
202 398 4 568 0492 | 180 | 1.79 150 0.4 0.05
Average 1.22 0.72
Scatter +0.48 +0.10
resonances {8 now governed by three frequencies: Q4/Q ~ Eq.
5-2n0+mQ =0, (7.1) The rate of diffusion in 4 In the limiting case of a

where Q is the frequency of the longitudinal oscillations,
averaged over the drift motion, and @ is the Larmor fre-
quency, averaged over both the longitudinal oscillations
and the drift. The maximum i{ndex of the drift-frequency
harmonics in the case of frequency modulation is (see,
for example, Ref. 22)

A i+2r1AQ!1
- - 2
Q4
z‘(IA&I+lAQl)_z.:__-“'_c:.__'

o 9’9y a4

where |Aw | and ]A Q| are the modulation amplitudes of
the frequencies w and Q on the drift surface.
Provided

Im|
(7.2)

20<|m|2,5ne (7.3)
the adjacent multiplets overlap (Fig. 1). This is the case
of a pronounced azimuthal inhomogeneity of the magnetic
field of the system.

The overlap of adjacent (in terms of m) resonances in
(7.1) is now aided considerably, since the distance between
these resanances {8 much smaller: 22 — Q4 « Q. Then
the critical value K in (4.6) i8 now much smaller than
K; =1 in (5.1) for an axisymmetric configuration. The
new critical value, K = K;, can be estimated as follows.
The value of K in (4.5) 18 proportional to the square of
the ratio of the width of the nonlinear resonance to the
distance between adjacent resonances (see, for example,
Refs. 8 and 9). Because of the frequency modulation by
the drift motion, the distance between the resonances de-
creases by a factor 20/, and the square of the reso-
nance width, which 18 proportional to the amplitude of the
corresponding perturbation harmonic,??® decreases by a
factor of about (2|m [)¥/? (Ref. 22). As a result, the sta-
bility boundary according to the overlap of nonlinear reso-
nances, in (7.1), is now governed by the condition

x-x.xv'z'fm_l(%)'
Ty
212, Q. \a ‘

Here K is found from (4.7) or (4.8), and the last — eitreme-
ly rough — estimate 18 found from the condition N/ w ~
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strong resonance overlap (K >» K,) is again given by (5.3),
since the sequential values of the phase 6 can be assumed
random and independent (Sec. 5). Near the new stabllity
boundary, (7.4), we can write

ﬁﬁ’p.' K,\?

D= (1-%) - .9

1
8. SLIGHT AZIMUTHAL INHOMOGENEITY: ARNOL'D
DIFFUSION

The most Interesting case is that of a slight azimuthal

inhomogeneity, defined by the condition [cf. (7.3)}

N« =~ ¢t
[C ]

@®.1)

In this case the overlap of adjacent resonances does not
make the critical value of K lower than that for an axi-
symmetric system; that is, K; ~ 1. However, any (ar-
bitrarily small) azimuthal field inhomogeneity leads to
the possibility of a qualitatively different behavior of the
particle: motion along the resonance w =~ 2nQ (Fig. 1k
In an azimuthally inhomogeneous field, only one of the two
exact integrals of motion, (1.7) and (1.8), is retained: the
energy integral (1.7). The position of the center of the
Larmor circle (r¢) can now vary in an arbitrary manner;
in particular, it can vary in a manner such that, along with
a variation in u or [n the angle 3;, a constant ratio &/20 =
const 1s maintalned. For the "quadratic? field in (1.2} we
have wy(r) =~ wyg (1 — ¥/ 2[%). Also,using(1.5), we can
write an approximate condition for motion along the reso-
nance: .

_ rty 1+sin’p, ~ .0
(1 21’) g, ok

%

This equation shows that a decrease in the angle 5y is ao-
companled by an increase Inr,. The particle ultimately
reaches a mirror or disappears at a side wall of the chﬂ'

ber,

The possibility of motion of this type makes the Ar-
nol'd theorem® on the permanent confilnement ofac
particle to the magnetic confinement system {nappltcable
as soon a8 the system becomes anything less than
axisymmetric. This circumstance was always emphastsed
by Arnol'd.* Furthermore, Arnol'd discovered 8 8
mechanism for motion along a resonance,’ subsequ
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samed "Arnol'd diffusion.”* An upper limit on the rate

of this diffusion was derived rigorously by Nekhoroshev.2’

A ponrigorous but (the author hopes) better estimate (Sec.

10) was found in Ref. 24 and, more -accurately, in Ref. 10.
1s estimate is ultimately based on the condition for non-

Imear-resonance overlap.

The mechanism for Arnol'd diffusion involves the ex-
{stence of the so-called stochastic layer near the sep-
aratrix of a nonlinear resonance.””!? This layer can be
seen clearly In, for example, Fig. 4. It turns out that this
stochastic layer exists for any arbitrarily small perturba-
tion; for example, for the mapping (4.3) it exists for any
K~ 0. For this reason, Arnol'd diffusion can be called a
wiversal instability of multidimensional nonlinear oscilla-
tions.”® In this case the term "multidimensional” means
that the number of degrees of freedom is greater than 2,
For two degrees of freedom, e.g., in the motion of a par~
ticle in an axisymmetric confinement system, the motion
is confined to within the stochastic layer because of the
particular topology of the phase space, and no real insta-
bility occurs, as explained above (Sec. 5).

In the case of a multidimensional system, on the other
hand, e.g., a particle in an axially asymmetric confinement
*-5tem (three degrees of freedom), there {s the possibility

fnotion along the stochastic layer, i.e., motion per-
pendicular to the plane of Fig. 4, or approximately along
a resonance line in Fig. 1.

* " In the case K « 1 the width of the stochastic layer

" and the diffusion rate are exponentially small [see (10.10)].
For this reason, Arnol'd diffusion cannot be studied in a
real system (e.g., a magnetic confinement system) through
numerical integration of the trajectories at the present
state of computer technology. A special, very simple,
model system was used in Ref. 26; this system is com-
patible with numerical simulations of Arnol'd diffusion.
The results of this work show that the relatively simple
semiempirical theory of Arnol'd diffusion,?!® which is
ultimately based on the resonance-overlap condition,

gives an extremely satisfactory description of this un-
usual phenomenon.

9. EXPERIMENTS ON THE MOTION OF ELECTRONS
IN A MAGNETIC CONFINEMENT SYSTEM

The first experiments’ on prolonged confinement of

electrons combined in magnetic mirrors were followed by ’

studles of this topic in many places. In the absence of a
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P FI1G. 6. Particle lifetime in the mag-
o Iy nedc confinement sysem as a func-
UM lte “  rion of the magnetic field for various
g } 3 residual gas pressures}’
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FIG. 1. Differential ; spectrum of the electrons in the confinement sys-
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_ tem according to Ref. 27, fimax = V'/2By, p= 5+ 10torr[sicl = 3.4 sec

after injection. The arrows show the resonant valies y = yq.

theory, however, the results were of an empirical nature,
It was suggested in Ref. 24 that the extremely unusual
features of the nonadiabatic behavior of electrons in a
magnetic confinement system could be attributed to Ar-
nol'd diffusion. Below we will analyze this hypothesis In
more detail, making use of the most complete experimen-
tal data obtained in Refs, 27 and 5.

Figure 6, from Ref. 27, shows the typical lifetime of
electrons combined between magnetic mirrors, measured
by various methods for various residual gas pressures,
as a function of the magnetic field. A characteristic fea-
ture of this behavior is the presence of two plateaus. The
*upper plateau” can be explained in a natural manner by
arguing that in a sufficiently strong magnetic field the
nonadiabatic effects are negligibly weak, and the lifetime
{s determined completely by scattering of electrons in the
residual gas. At some critical magnetic field the electron
lifetime falls rapidly by more than an order of magnitude
(obviously because of nonadiabatic effects), and then re-
mains nearly constant as the fleld is reduced further (the
"lower plateau®). The lifetime at this lower plateau is
roughly proportional to the pressure, like that at the upper
plateau. Similar variations were also found in Ref. 5, In
an experimental study of electron motion in the field of a
magnetized sphere, simulating the geomagnetic field.

To explain the reason for the appearance of the lower

plateau, we consider the electron spectra over u, mea-
sured in Ref, 27. A typical spectrum from Ref. 27 I8
shown in Fig, 7. This spectrum was recorded 3.4 sec
after the injection of electrons {nto the system. The mag-
netic field was slightly below the critical value (Flg. 6).
A characteristic feature of the spectrum Is the presence
of two *"dips,” l.e., intervals of # in which there are es-
sentially no electrons. On the other hand, because of the
scattering In the gas there is a continuous flux of elec~

~ trons into these intervals from the neighboring regions

along the u scale. These dips evidently correspond to

the formation of some *holes" or "gaps® in phase space,
through which the electrons "leak out® of the confinement
system. It is seen from Fig. 7 that these gaps coincide,
approximately with resonances w = 20n. A8 an ar-
gument in favor of this identification we point out that
the histogram in Fig. 7 was constructed by differentiation
of the directly measured integral spectrum,’’ and this pro-
cedure results In larger errors. In particular, the fact
that the electron density becomes negative at certain places
in Fig. 7 shows that there are errors. Nevertheless, the
dips In the spectrum of electrons over u, at points corre-
sponding to the resonance values up, definitely indicate
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leakage of electrons from the confinement system along
the resonances. This behavior can be explained in a nat—
ural manner on the basis of Arnol'd diffusion (Sec. 8).

We also find an explanation for the formation of the lower
plateau in Fig. 6, i.e., for the halt to the rapld decrease
in the electron lifetime as the magnetic field is reduced,
which Is an extremely surprising result at first glance.
Specifically, Arnol'd diffusion spans only the relatively
narrow stochastic layers, which contain a negligible frac-
tion of the electrons. The bulk of the electrons arrive at
one of the stochastic layers only as the result of scatter-
ing in the gas. In order to escape from the confinement
system now, however, the electron need only reach the
nearest stochastic layer; in other words, it i8 sufficient
that the electron be scattered through an angle much
smaller than that required for entrance into the loss cone
(#/ pmax = 8in? 8y = 0.4 in Fig. 7). For example, for
electrons lying halfway between the fourth and fifth reso-
pances in Fig. 7 (8, =~ 60 scattering through an angle of
about 5° s sufficient for reaching the newest stochastic
layer, while the loss cone is about 20° away. As a result,
the lifetime i8 reduced by a factor ~ (20°/5%) =16, In
agreement with the data in Fig. 6.

The lifetime governed by Arnol'd diffusion is thus
Aways proportional (for the overwhelming majority of the
particles) to the characteristic time for scattering by the
residual gas, but is much shorter than this scattering
time. In contrast, the diffusion upon resonance overlap
(Sec. 5), including the overlap of multiplets in an axially
asymmetric confinement system (Sec. 7), Is independent of
scattering in the gag. The particle lifetime under the con-
ditions remalins finite (and relatively short) for an ar-
bitrarily low gas pressure.

10. ESTIMATE OF THE RATE OF ARNOL'D DIFFUSION
IN A MAGNETIC CONFINEMENT SYSTEM

The complete system of resonances for particle mo-
tion in an axially asymmetric confinement system is

0p—28n+Qym=0, 10.1)

where p, n, and m are arbitrary integers. In principle,
Arnol'd diffusion can occur along any of these resonances,
and that resonance along which the diffusion does occur is
~alled the "leading®™ resonance. We will see below, how-
er, that the maximum diffusion rate corresponds to the
"strongest” or main resonances of the system [see (10.5)],
which are the resonances & = 20in in the case under con-
sideration here (Fig. 1). Diffusion along the leading reso-
pance occurs under the influence of the perturbation terms

with frequencles

Oamwp—20n+Qm (10.2)

because of the resonance of this perturbation with phase
oscillations at the leading resonance. We note that in
(1.2) we must necessarily have m # 0 (p and n are ar-
bitrary), since only such a perturbation (which depends
on the azlmuthal angle) will alter the angular momentum

in Q1. 8), as is necessary for motion along the leading reso-

pance, & = 26n (Sec. 8).

The frequency of the phase oscillations at the leading
resonance is [see (4.5) and (7.8)]
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QP~Q,K'~me""‘. 0.3 l

where we are assuming Q/w ~£4. For the lower har-
monics of the perturbation {in m and p; see (10.2)} and fop
a small value of €4 in (10.3) we have Qp < |wp|. The
effect of the perturbation under these conditions i8 ex-
ponentially small (cf. Sec, 2):

Al —-C g
Ba ne Q

n @0.4)

Here Aup is a measure of the displacement of the particly
along the leading resonance, n ~ AB/B is the azimutha]

~ inhomogeneity of the magnetic field in (7.2), and G ~ 1 iy

a constant.

The coefficient of the diffusion along p is propor-
tional to (AuA)? and can be estimated very roughly from

D.~ (Au‘)tw,‘,mulﬂ!e-—!clc_?/ﬂp‘ (10.5)

The exact value of the coefficient of the exponential func.
tion is not important because Dy is 2 very strong functios
of ¢4 [see (10.3) and (10.4)].

The diffusion rate along a resonance with m = 0 [n
(10.2) is negligibly low, since the frequency of the phase
oscillations at this resonance contains the additional smal}
factor ~vn «< 1.

For high harmonics of the perturbation, the frequency
wm falls off rapidly, roughly in accordance with (see, for
example, Ref. 10)

Wr

0.9

O Tals T
Here wy 18 a_constant which depends on the main fre-
quencies 3, @, and Qq of the resonance system in (10.2),
N= 3, is the number of main frequencies, and

0.7

The amplitudes of the higher perturbation harmonics, how-
ever, fall off even more rapidly = exponentially (Sec, 2%
Let us assume, for example, that these amplitudes are
proportional to exp(~c | m!), where o is some constant.
Then in the argument of the exponential function which de=
termines the rate of Arnol'd diffusion in (10.5) we have the

|m|*=p*+n.

additional term N
low! @ 1 4

— . —— } —— — E ' N -t

2C 2, 2C (Qp) T 2glm|mE (Iml) .

where we are using (10.6) for the perturbation freqnenclc,
@Wp,. The new argument E(/m ) has 2 maximum at
C id
Iml=me=[ -0 -57] |
2, WL

which is equal to

C . LA
Ema= g [ V-0 55

From (10.5) we find an estimate for the Arnol'd dlff“l’,_&,
coefficient: _ sd

D,~wp’ne

- /Q )
a{wy. p'Y,
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l

».tom | t sec ';T 3,. deg ﬁ‘ » d
10- ~4 8.98 46 7.89 3.66 7.79
5x10~* 4 6.64 55 6.78 4.38 8.86
10-* 4 6.61 86 8.25 3.37 7.29
Average 380 7.88
TABLE II
N i
amg® 07— IC(N-1)]""; g(W)= 5. (10.11) stor | veec | L | aedeg| 4 > P
. 5%40-'¢ ~4 178 35 136 1.75 3.36
This estimate of D, is of course highly simplified; this Ix 4010 I py s 5 e 1 3.36
problem is analyzed in more detail in Ref. 10 (see also 5x40-10 4 146 70 205 0.55 -3.59
Ref. 26)- Average 163 292

The rigorous upper limit derived for the Arnol'd dif-
fusion rate by Nekhoroshev?® has a structure similar to
10.10). The most important difference lies in the mag-
pitude of g. According to Ref. 25, q3) = 4/59 ~ 1/15.
The numerical simulatfons carried out {n the second paper
in Ref. 26 show that this value of q is probably much too

3

low.

For the problem under consideration here, that of
a charged particle confined by magnetic mirrors, we have
N =3, and the frequency of the phase oscillations, Qp,
at the leading resonance, ® = 2%n, is given by estimate
(10.3). Also noting that Dy ~ u?/1, where 7 is the par-
ticle lifetime in the confinement system, we find from
{10.10) the following estimate for the rate of Arnol'd dif-

fusion in the system:

1w’ exp (be'/*), (10.12)

where b ~ ator /w)/? varies weakly (as the cube root)
with all the parameters other than o [b ~0?/3; see
(10.11)]. A characteristic feature of this estimate is the
very strong dependence of the particle lifetime in the
confinement system on £ (a double exponential!). This

yesult implies highly accurate conservation of the adiabat-
c invariant of the particle — the magnetic moment in the
sense of the accumulated changes in it (Sec. 2).

We again emphasize that, in contrast with the more or
less accurate theory for the stability of a particle con-
fined in an axisymmetric system (Sec. 5), the estimate in
(10.12) has been derived using a highly simplified picture
of an extremely complicated process: Arnol'd diffusion
{see Refs. 26 and 10 for more details). This estimate is
thus crude. although the very weak dependence £4(7) (a dou-
ble logarithm) makes this crudeness somewhat less im-
portant in a determination of the critical parameters of
the system.

Let us attempt a quantitative comparison of the an-
alytic estimate in (10.12) with the experimental data from

. Refs. 27 and 5. The greatest uncertainty results from the

abgence of data on the azimuthal asymmetry of the mag-
netic field, which has not been measured specially. Never-
theless, judging the accuracy of control measurements of
the magnetic field in Refs. 27 and 5, we can assume with
some justification that we have n ~ 10~ for the fleld of

an ironiess solenold!” and n ~ 10~! near the surface of a
magnetized sphere.’ Here again, because of the very weak
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dependence €4(n)in (10,12), the unavoidable errors in the
values adopted for n could not greatly affect the critical

value of gq.

We will make the comparison with experimental data
in the following manner: We adopt the parameters of the
system for the critical magnetic field (Fig. 6) at which
the proposed Arnol'd diffusion substantially reduces the
particle lifetime in the confinement system. For T we
choose the value on the upper plateau, on the basis that
the critical field corresponds to that case in which the
rate of Arnol'd diffusion along the leading resonance is
comparable to the diffusion rate due to scattering by the
residual gas. As the leading resonance we choose that
which is nearest the particle with the maximum angle 8,.
For example, for the case in Fig. 7 we choose n =5 (the
angle corresponding to this resonance i8 84 =8y = 55°).
Finally, we calculate the adiabatic parameter €, from
Eq. (2.9). Then we find the only unknown, b, from (10.12).

The results of this comparison are shown in Table IT
(for the data of Ref. 27) and Table III (the data of Ref. 5).
In the latter case the electron energy is ~100 eV, and the
magnetic induction is ~30 g. The case in Table II corre~
sponds to the spectrum in Fig. 7.

The values of b In Table II agree well. The last case
fn Table I does not fit the pattern, apparently because
the angle spanned by the electrons is too large (8, ~ 70%).
The adiabatic parameter £, and the diffusion rate are
very small. In this case the particle escapes from the
system more rapidly if it is first scattered by the residual
gas to smaller angles 8, and it "misses® several reso-
nances with a small value of £4. The average values of
b are noticeably different apparently because of the be-
havior in (10.11): The spectrum of the particle motion
in the fleld of the magnetic dipole is richer in higher har-
monics, and there are correspondingly smaller values of
o and thus b.

It should hardly be appropriate to use the complicated
expression in (2.9) to evaluate ¢; for use In the estimate
in (10.12), because the latter estimate is so crude. We
accordingly use the simpler expression in 2.8) and set
B¢ = 45°. Then (10.12) can be written

1.1 26 |n In(ten')—d, (10.13)
P
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where the quantities d = 6lnb dependon the configuration

* of the magnetic field of the confinement system (Tables 11
and [II). The estimates in (10.12) and (10.13) are of course
meaningful only for small values of €4, far from a reso-
nance overiap (Sec. 5). They are apparently suitable for
a rough estimate of the effect of Arnol'd diffusion In a
magnetic confinement system. It is nevertheless clear
that further study {s required, both theoretical (in par-
ticular, to evaluate the parameter d) and experimental, to
test and refine the theory of Arnol'd diffusion.

Urhe subscript *0® is the value of the corresponding quantity in the median
plane (s = 0), which is the symmetry plane of the magnetic confinement
sysem.

2)An analogous result was derived slightly earlier in Ref. 28, where the
numerical coefficient of the exponential function was found to differ from
thar in (3.5) by a factor 3%/ %/2 = 0994,

3n a mare recent paper, Nekhoroshev™ gives a refined estimate, which
leads to q(3) = 1/8 in the present case.
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