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Straightforward integration of this equation for H < U, (oscillations) gives (see, e.g., ref. [58]):
@ = 2wy 5in(@of2) cn(wqt) (2.3)

where cn(u) is the Jacobian elliptic cosine; ¢, stands for the amplitude of pendulum displacement, and
the time =0 corresponds to crossing the point ¢ =0 with a positive velocity. Term by term
integrating the Fourier series for cn(u) gives:

=

B sin(aw,t) ]
o(f) =4 ;::. w, COsh{ K w,./wg) (2.4)
Here K'= K(k") is the complete elliptic integral of the first kind; k'= VI-& k= sin(go/2). The
period of oscillations is T = 27/w where =i leg ),

w(H) = 12K (2.5)

and the oscillation spectrum is: @, = (2n = ).
In the case of rotation (H = U,), the solution has the form:
S

" » - sin(w/t)
+ o(t) =2 am(w, ) = 20t + 4 "z_;l o g (2.6)

Here am(u) is the Jacobian elliptic amplitude;
k=V2UJH + Up) = wolw,; .= V3(H+ Uy),

and we have introduced half the frequency of the mean rotation: w(H)= 7w/2K to make the
expressions (2.4) and (2.6) as similar to each other as possible; we shall use this in section 2.4. The
rotation frequency spectrum is: w, = 2nw.

Relation (2.5) shows that the pendulum frequency does depend on the oscillation amplitude, or the
energy so that the pendulum is generally a non-isochronous oscillator. The latter property is of
paramount importance for the problem of motion stability as we shall see below.

Let us consider the case of small pendulum oscillations and relate the argument k = sin(g,/2) <1 of
the elliptic integral to the pendulum energy E reckoned from the minimum of the potential energy:
—U, (2.1). We have: E = 2U,k*. Expanding the expression [K(k)]™' as a power series in k* we find:

w=1-3E-sE* - %gE’ 2.7
where we have put Uy = 1 (wo = 1). We shall need such a high accuracy in the next section to compare

eq. (2.7) with the result of the perturbation theory.
Let us introduce the dimensionless parameter of the nonlinearity:

_1 dow
T

We define a via the action I since we shall use below, as a rule, the action-angle variables ([, #). To
the accuracy « = 1 — E/8 the action I = E/w, as for a harmonic oscillator. Hence: a = —If8. For E<1
the nonlinearity of small oscillations (E, I < 1) is small (a <1).

Another characteristic property of nonlinear oscillations is the anharmonicity, i.e. the presence of
higher harmonics of the basic frequency w (2.5). For small oscillations the amplitudes of higher
harmonics are small as one can see from eg. (2.4) with K'= In(4/k) = 3In(32/E). Hence the small
oscillations are nearly harmonic.

(2.8)
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Let us consider the pendulum motion near the separatrix. We will describe the distance from the
separatrix by the relative energy:

H-Uy_ p*\(m—o)
pamp a4 (2.31)

Using the expressi-::ms in section 2.1 we find for both oscillation (}.3’{ 0) and rotation [lg::- 0):
l"';?v'luff" K(k)=3In(32/|w)); K'= #/2, and w, = w,. Hence for both kinds of motion, i.e. at both
Sides of the separatrix, the solution has the form (see eqs. (2.4), (2.6)):

sinlnwt)
(1)~ 42 n cosh{ wnw/2w,) (2-32)

(=T

for rotation only even and for oscillation only odd harmonics being present. The frequency:

; ek
(%)~ 527 w)
is decreasing indefinitely on approaching separatrix (jw|—0). From the spectrum (2.32) one can
conlude that the motion near the separatrix is approximately the same as on the separatrix except that
the motion is of a finite period. It is clear also that the nonlinearity is growing indefinitely when
approaching the separatrix (2.33).

(2.33)

3. Nonlinear resonance

Free oscillations in a conservative system with one degree of freedom are always stable (if the
motion is finite, of course) and therefore are of less interest for us. What happens if one switches on
an external perturbation? The Hamiltonian may be written in this case as:

H(I 8,1t)= HyI)+ V(1 8,1). (3.1)

The external perturbation is described here via an explicit dependence of the Hamiltonian on time. We
will assume below that the perturbation is periodic in time with a period T, and the basic frequency
1 =2#/T. The frequencies of the perturbation spectrum are nfl in this case. An almost periodic
perturbation with an arbitrary discrete spectrum ({1,) does not lead to any qualitatively new effects. A
perturbation with a continuous spectrum but restricted in time (a perturbation pulse) is of less interest
since it causes only a small (e <€ 1) change in the oscillation energy. Finally, a stationary perturbation
with a continuous spectrum, for example, an irregular sequence of pulses, causes a diffusion-like
process in the system. The theory of such processes, which are very important for applications,
comprises now a vast section of the theory of both linear and nonlinear oscillations. The latter
problem is, however, beyond the framework of the present paper. So, we assume the perturbation to
be periodically dependent on the phase

r={t+1 (3.2)

where 7, is the initial phase. We expand the perturbation in a double Fourier series:

H(0,7)=Hf+e Y Vy,(De, (3.3)

L
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where the new perturbation

v, (5.14

=¢j_12 cos(@ — mt) cos(f — nt)
2_zrﬂ..rr [m_jl}{n_jl}

and #(J,, 8, t) is determined by the second relation of eq. (5.10).

The perturbation (5.14) has terms resulting in half-integer resonances: J, = J,, = (2p + 1)f2 with any
integer p. Corresponding resonance phases are 268, —(m +n)t, m+n=2p+ 1 where we have s=
approximately # = @, since the difference |# — 8,/ ~ k is small (see eq. (5.10) and below). Note that ths
new Hamiltonian is inapplicable near integer resonances (J,, = 2p) owing to small denominators in eg
(5.14). Characteristics of a half-integer resonance J,, = p + 3 are determined by the sum:

B | TS S )
L R o oyl .t o1

Since this sum is independent of p all half-integer resonances are alike except a shift in J. This i
obvious also just from the periodicity of the phase space structure in I discussed at the beginning of
this section: there is only one half-integer resonance per unit square of the reduced mapping (5.2
Substituting J, =1, =1 into eq. (5.14) and neglecting non-resonant terms we deduce from eq. (5.13
the Hamiltonian for a half-integer resonance as

HP =37 - (zmk) cos(20 — 1). (5.1¢
Applying the technique of section 3.2 we find the separatrix to be described by:
T2 =3+ xk cos(h —i) (5.17

Substituting now #(#,) according to eq. (5.10) into the perturbation (5.14) we may represent H, as -
series in the small parameter k. However, it makes sense to retain only terms ~k” in addition sincs
following a new canonical transformation according to Kolmogorov the perturbation will be —°
(section 2.2). To get terms ~k” it suffices to set in eq. (5.10)

sin(@,— nt)
(n __Jl}'

B*H|_k$jl{ﬂl}: ﬂt_‘t E
After substitution of this expression into eq. (5.14) we get terms ~k” as

2 el {m_jI}{n_Jl}{!_ij
Some terms here result in third harmonic resonances with phases 38 —(m+n+Dt; m+n+1=p anc
Jy=J.=p/3 (p# 3q for any integer g to avoid integer resonances). All the resonances are alike agair
except a shift in J,. Indeed, the denominator in eq. (5.18) may be written as: (3m —p) (3n—p) -
(3m +3n-2p). It suffices to consider only p = I; 2 within the interval of periodicity AJ, =1 (ses
below). But quantities (3m — 1) and (3m —2) are exchanged under m —1—m, the sum (5.18) being
unchanged. The same is true also for n. Thus, each of third harmonic resonances is determined by the
sum:

yo -k s Sin(28, —(m + n)t) sin(6, - Ir) .18

3 81 B 81
= mﬁ,z_l-,mm -DBa-03I-17 ,,E,ncam— D@r-D03m+2n-2)

= —§6.4, (5.19

The Hamiltonian describing a third harmonic resonance has the form:
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H? = 311 - i8:k° cos38— 1) (5.20)
and the resonance separatrnz =
I =32(A)), sinie — i)
(A1) = |5,k = 930>

* Resonances of the first thres Sermomics zr= cetined m fg. 5.4 at 1 = 0. One can see that the maxima
of all the resonances coincide = # #cf. i 570 Therefore. the overlap condition corresponds to the

maximal width of resonance sepsrstmces
{ﬁ.}h:zﬁ_: f”l:z'rt', 1.1.{7: :—L‘ '_'i"_'- {5.22]

Now we can improve the sheorstical ssmmmase for critical perturbation. First, we take account of
half-integer resonances oaly Them e persardenon is critical if a half-integer resonance separatrix
just touches separatrices of rwo afiscess moeper resonances. overlapping the gap between them:
(AJ), + (AJ); = 3, whence-

(5.21)

5
v’ku;—“-‘—*:’;-‘to_m Ko~ 146 (5.23)

where the subscript indicates e resomamce par determining critical perturbation. The value (5.23) is
considerably lower than the oid ome dwe = meeger resonances: K, = 2.5, yet the former still much
exceeds the experimental K, =1

Taking account of third hermessc sesomences we need to consider the two pairs of adjacent
resonances: (0,3) and (% %) I the Srst case soaching condition is: (AJ), + (AJ); = 3, whence:

k=015, K,~098 (5.24)
For the second pair: (AJ); = (AT = ; witich sves
kn=0185; Kn=135 (5.25)

The latter value of K is decisiwe. Bat & mproves only slightly the estimate (5.23).*%
Further progress in theoretical estmates may follow two lines:
1. Taking account of still hagher Barmonc resonances: m > 3. | wonder if one of the readers would

like to try this,
>

e
B <
e

Qs

Fig 54 Dhegem of seperseraces for resonances: Jo=0; 1/3; 12, 203; 1.

*As was shown by Cary [140] e sxsmase © 25 cam 5e mproved by taking account of the frequency shift due to (V,(6))# 0 (sec eq. (5.14));
he arrives at Viy, = 0.180; K= 1%

o R
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in the previous method, see table 6.1) and for 6 x 10° iterations (cf. the values of N in table 6.1). W Ve have used here the‘:
have obtained that the quantity s, lies within the interval (1.004-1.013) that is compatible with - ..957' expression in eq
value of 5., = 1.006, eriod of motion.

We may use this result to check the critical value of K = K, for the standard mapping found = 11 ““mfarlbﬂg of the
section 5.1: K, =0.989. Applying the relation K,=1/|s,| (6.11), where s, are the two nearest 10 » gble 6.1. A good agreen

resonant values we have got from the computation data; Jditional confirmation fc
heck of the second equal

e (6.15) Thus, we come to the c
tochastic layer of a nonli
“ig. 6.1 with A =8.89 (K -
“hould be compared witf
-omputed for a rather lar
~Lin(B)o Lm(22 ... The most important |
T{s}-«w (| |) VK |“(|3|.,._ ] (6.1 tochastic motion, that is

The last expression is again related to the case in which the pendulum represents an integer nonline:| jerturbation parameter |
resonance of the standard mapping (5.1), period T being measured in the number of iterations. Frox tochastic layer w, prove
the numerical experiments one can easily find the mean value Ty = fx/N where ty is the tjme intervz [N€ structure of a stoch
of motion corresponding to exactly N periods, or to the N + 1 crossings of the surface 6 = slets of stability (fig. 6.1
To deduce the theoretical mean (T,) one needs to average eq. (6.16) over time, which s(f) dEpeﬂ Roughly speaking, the la
on, or, due to the ergodicity, over the stochastic component in the layer. Neglecting stability domains _akes place, and there a
inside the layer, which are of importance near the layer edges only, we can average eq. (6.16) over ihe Jow diffusion and a sub
whole layer. Recall now that the original mapping, whose properties we are studying, is the stangara Slructure of the phase p
one (5.1). Since the transformation of variables (I, 8)— (s, r) by tramsition from the standard : , latter being qualitatively
whisker mapping is not canonical we need the Jacobian of this transformation. The latter may b
represented as a sequence of successive transformations: (I, 8) (5.1)=(J, 8) (4.18) > (L, ¢.) —~ (w. =) 53, The KS-entropy in
(6.1)= (s, 7) (6.9) where I.. ¢, are the action-angle variables of the unperturbed system (4.18) with the
Hamiltonian:

Let us consider still another method to determine the width of a stochastic layer. The method =
based upon the measurement of the mean rotation period (or a mean oscillation half-period) T i-
stochastic layer. For the free oscillations of a pendulum near the separatrix (see section 2.4):

Some data concernir

; stochastic layer, were p
Hy=3*+kcos 6=k(1+w) el et

describing the oscillations of frequency w(w) (see eq. (2.33)) near the separatrix. Jacobians of all the
transformations but one (I., ¢.— w, 7) in the above chain are constants independent of the dynamical
variables. So we need to evaluate only the Jacobian a(w. 7)/3(L, @) = (awfaL) (37/dg,). The las:
expression is due to the fact that w depends only on I, but not on ¢.. The deviative aw/al, may be found
from the relation aH,/al, = w(w), whence: awlal.= wlk (see eq. (6.17)). To evaluate drlde, we write:
7= 01° and wt” = ¢, = const — the value of ¢, at the surface 8 = 7; t° is the time at which the system
crosses this surface. Eliminating t° we get: + = —(l¢./w, and d1fdg, = —0w, whence the Jacobian we
are interested in #(w, 7)/a(I.. ¢.) = —(1/k does not depend on the dynamical variables, and so does the
full Jacobian (s, 7)/4(I, #). Hence we can evaluate any average simply over the phase plane {7, 5) of
the whisker mapping. Since T(s) does not depend on 7 we get:

| 376) 1 g 1 2rrt
T, = J‘ds T(s)= V'K ( = K V'_fln (E—K“”)
' (6.18) Fig 6.1. Structure of a stochast
w, =32 exp(¥1 - VKT,). : § <{—the inner hall {oscillation

i
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Table 6.2
The KS-entropy in the stochastic laver
hy ol
K linear map h,=h; T, (621}
0.15 00231 1.050 1.58
0.00643)  10.292) 0.44)
0.2 002495 (1.964 1.45
{10,000 {lL654) (0,99)
0.3 00355 0.725 1.0
0.5 D636 0.765 1.15
0.7 00820 01684 103
I 0.132 0,638 1.5
1.3 0.227 0.799 1.21
2 0.425 0,89 1.35
3 0.672 0.896 1.35
4 0.833 0.824 1.24

M)). For very small K the value of h, grows, apparently, due to an insufficient motion time (see
wve). The values of h, for t= 10" are given in brackets. In the case of K =02 h, value has
zscended” down to the theoretical one but for K = 0.15 it did so still much lower. This is caused,
rhaps, by a “sticking” of the system in a peripheral part of the layer. For K > 1 the ratio h/hw
yws up appreciably, probably, due to the overlapping of different stochastic layers. Summarizing,
: can conclude that the idea of a constant KS-entropy in the stochastic layer (per motion period T,)
rmits us to describe satisfactorily and, what is both important and pleasant, very simply the
itability rate inside the stochastic layer up to K ~ 1 and even, strange though it may seem, for fairly
ge K, with less accuracy though (see table 5.1).

{. Again about the border of stability

Now we can turn back to the evaluation of the border of gross instability for the standard mapping
:ction 5.1). The best estimate deduced from the overlap condition for the resonances of the first
ree harmonics gives: Kr=1.35 (5.25). Taking account of the stochastic layer around separatrix
'rmits us to improve this estimate.

Below we will confine ourselves to a simplified scheme for the overlap taking account of the integer
id half-integer resonances only and neglecting the stochastic layers of the latter. The relation
:tween the dimensionless energy w and displacement 8/ from the unperturbed separatrix can be
wnd from the Hamiltonian (6.17). Since w = §Ho/k = J(8))/k = [(81)/K we get: (81)/I = Kw/I’>
/4, the latter expression corresponding to the maximal width of separatrix at 8 = 7 (I = I, = 2VK)
hich determines the overlap condition. The edge of the stochastic layer is related to w = sy wy, St
cing given by eq. (6.13). It is convenient to describe the influence of stochastic layer on the
:sonance overlap by a factor giving an effective width of a resonance:

= =

‘ hd P
I(K)=1 +f—‘r =145 = s &)
B e Selee, (e:#) T 4
'here r = 2.15 is the empirical correction (6.5) due to higher approximations. ' 3 :
,:.'JI<-1' L bk
:L----{s. o
.‘l'll-t.h_‘ F -"u.r"l

reg, o
“b



