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In this paper, we analytically prove a long suspected link between integrable hamiltonian systems and average linear
growth with time of separation distance between initially close phase space states. Specifically, it is shown that almost afl
solutions to the linearized variational equations derived from bounded, integrable hamiltonian systems exhibit an average
linear growth with time, becoming unbounded at ¢ > e, The orbits of bounded, integrable hamiltonian systems are thus
always locally marginally unstable, forever lying on that sharp border which divides completely stable from completely un-

stable motion.

For classical hamiltonian systems, the time-averaged
rate at which initially close states separate in phase
space is a hallmark frequently used [1—-7] to establish
the generic stability type of the systems. Unstable sys-
tems [8] for example, whose motion displays extremely
stochastic behavior [9], are actually defined [10] in
terms of everywhere exponentially separating states. On
the other hand, for KAM stable systems [8] (integrable
or near-integrable) which exhibit only a very limited and/
or weak type of stochasticity, numerical experiments {7,
11] have so frequently revealed an average linear separa-
tion of initially close states that linear separation is
now regarded as an extremely strong indicator of inte-
grability or, at worse, near-integrability even though
no formal proof of any such connection has been given.
In this paper, we analytically establish one-half of this
previously missing proof; namely, we show that bound-
ed, integrable hamiltonian systems do indeed yield an
average local separation of states which grows linearly
with time. Stated this way, however, it might appear
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that we are here only adding a mathematical footnote

to the literature of an already well-established fact. How-
ever, if we slightly restate our results, they become
somewhat startling, even unbelievable one might say.
Certainly we ourselves were incredulous at first, as

were several of our colleagues in pure mathematics *!.
We now turn to a development of this alternative state-
ment of our results. _

Perhaps the simplest way to study the local stability
properties of time evolving states for a hamiltonian
system is to consider the behavior of solutions to the
associated linearized variational equations
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*1 Of the several mathematicians with whom we discussed our
results, only V.I. Arnol’d anticipated our conclusions.
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whete (g;, p;)denote the positions and momenta of the
system having the hamiltonian H, and where (8p;, 6p;)
denote the infinitesimal variations of the coordinates
and momenta. Egs. (1a, b) are linear, coupled, time-de-
pendent differential equations; the exp11c1t time depen-
dence appearsin the coefficients, such as 9 H/aq, ap;,on
the right hand side of egs. (1a, b) because these coeffi-
cients are to be evaluated on a specified reference orbit
of the system. But now linear differential equations
with periodic coefficients — such as Mathieu’s or Hills
equation — have been extensively studied [12] (see also
the first paper of ref. [3]) by mathematicians; and al-
though egs. (1a,b), in general, have quasi-periodic co-
efficients, the integrable systems under consideration
do nonetheless posses an everywhere dense set of phase
space surfaces entirely composed of periodic orbits.
Thus when any one of these periodic orbitsis used asa
reference orbit in egs. (1a, b), this well-known mathe-
matical theory asserts that the reference orbit is locally
stable when the solutions of eqgs. (1a, b) execute bound-
ed oscillations, is locally unstable when they grow ex-
ponentially with time, and is locally marginally un-
stable for the exceptional, borderline case in which the
solutions grow linearly with time.

Armed with this well-known information, we nu-
merically integrated eqs. (1a, b) for a reference orbit
of the integrable, equal-mass Toda lattice [13]. Since
the Toda lattice has only bounded orbits and since
any two sufficiently close states must evolve on two
everywhere adjacent, nested surfaces in phase space,
we anticipated that the associated solutions to egs.
(1a, b) would oscillate indicating local stability of the
reference orbit. We were thus quite shocked when the
computer “overflowed” indicating that the solutions
to egs. (1a, b) had become numerically too large to be
contained in the computer. In short, we found that
the reference orbit was locally marginally unstable and
that the variational solutions were linearly (in time)
headed for infinity when the computer ceased to func-
tion. We then immediately showed analytically that
this type behavior is not unique to the Toda lattice.
Specifically, all orbits of every bounded, integrable
hamiltonian system are locally marginally unstable,
neglecting orbit sets of small or zero measure; more-
over, the solutions to the associated variational equa-
tions become unbounded as ¢ - oo, exhibiting an aver-
age linear growth with time. Let us now turn to the
proof.
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By definition [8], for a bounded, integrable ham-
iltonian H = H(g;, p;) there exists an analytic canonical
transformation to new variables (J;, 6;),

ql = qi(']k’ ok)’ P,' = pi(Jk9 ek) s (za»b)

bringing H to the 6y-independent form H = H(J})
alone. In terms of the (J;, 8, ) variables, the solutions
to the equations of motion take the especially simple
form

Jk =Jk0 , (33)

k = [wk(Jlo, ""JIO’ .)] t+ Gko s (3b)

where J; o and 6, are initial conditions and where

wy = 0H[8J},. We may now immediately write down

the solution to eqs. (1a, b) by differentiating eqgs. (2a, b)
and by inserting eqgs. (3a, b) to find

oq;

6qt. = IE[&I 6]]0 ao (t8wl + 6010):] (43)
oP; op;

Spl- EI:BJI 6.]10 aa (ta O)l + 6010)} (4b)

where 6J;, and 86, are the initial variations of the v,
0;) variables and where 8w; (= Z5(3w;/3Jy )8/ ) is

the variation of wy; due to the variation of the J;.

In eqs. (4a, b), 8J; and 86 are all constants, all coef-
ficients 8q;/aJ), etc., are at worst quasi-periodic func-
tions, and 8« is not zero in general; thus, eqs. (4a, b)
make it explicitly transparent that 8q; and p; exhibit
an average linear growth with time, becoming unbound-
ed as t - oo, Fig. 1 shows a typical plot of separation dis-
tance versus time for two initially close, integrable sys-
tem states. One here clearly sees the quasi-periodic oscil-
lations superimposed on the average linear growth.

In order to emphasize that this linear average growth
is not an artifact due to quasi-periodic reference orbits
and in order to illustrate the physical source of the
average linear growth with time of variational equation
solutions, let us consider any bounded, periodic refer-
ence orbit of the integrable, hamiltonian simple pendu-
lum. The variational equation has the form

d%(8q)/d* + F(1) (59) = 0, (5)
where F(t + T) = F(t) with
F() = (w? - 1) + % cn?(u), (6)
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Fig. 2. Two close phase space orbits for the pendulum yield-
ing the variational eq. (5). The sequentially growing arrows in-
1:10°6 | dicate the relative positions of the two, initially close, time
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Fig. 1. A graph of phase space separation distance D versus
time for two initially close states of an integrable system. As
predicted by eqs. (4a, b), small quasi-periodic oscillations ap-
pear superimposed on the long term, average linear growth.
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provided 0 < B <22 Eq. (5) is an example of Hill’s
equation and, as such, might be expected to yield solu-
tions which oscillate indicating stability, solutions
which grow exponentially indicating instability, or
solutions which grow linearly with time indicating mar-

ginal instability. In the general theory of Hill’s equation,

marginal instability is the rare and exceptional case and
is, therefore, largely ignored in the theory. However,
when (as here) the variational eq. (5) is derived from
a bounded hamiltonian, then eqs. (4a, b) insure that
the solutions to eq. (5) fall precisely in this exceptional
case. The surprise of this result can be somewhat re-
moved by noting that Hill’s equation is normally used
to determine the stability character of isolated equi-
librium points or of isolated periodic orbits to which
the present theory does not apply as we discuss later;
whereas in eq. (5) we are examining the stability prop-
erties of a one parameter family of non-isolated per-
iodic reference orbits.

Turning now to the physical or intuitive explana-
tion of the linear growth of the solutions to eq. (5),
let us consider fig. 2 which shows a sketch of two ad-
jacent phase space orbits surrounding the stable equi-
librium point of the pendulum. The sequential arrows

in this figure depict the average linear growth with time
of the separation distance between two initially close
states. Here each time evolving state moves periodically
along its respective oval, but the rate of rotation is dif-
ferent on each oval, yielding the linear average growth
of arrow length. Quite clearly in fig. 2, the evolving ar-
row will eventually reach a maximum length following
which the arrow size will oscillate; in short, the average
linear growth will saturate and thereafter oscillate. But
as the spacing between the two orbits shown in fig. 2
decreases, the time interval of average linear growth in
arrow size becomes increasingly long, until, for the in-
finitesimally close orbits implied by eq. (5), the aver-
age linear growth continues without limit. Thus, despite
its paradoxical features, the average linear growth and
unbounded behavior of the solutions to integrable sys-
tem variational equations is intuitively quite obvious.
As a final application of the results presented here,
let us discuss a simple, analytical scheme for predicting
stable and unstable behavior in hamiltonian systems
which has been proposed by Toda [14] and used [15]
and amplified [16] by others. It is perhaps easiest to
discuss this matter using the integrable hamiltonian

1
H=3@}+p}+q? +qd) +qlq, +343. (8)

which yields variational equations that we choose to
write in the matrix form
e @
——(1 +2Q2) 6(]2
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The Toda scheme now computes the instantaneous
eigenvalues of the matrix on the right hand side of
eq. (9) for a specified configuration space point (g4,
q,). If the resulting eigenvalues are negative, then 8¢,
and 8¢, locally oscillate and the reference orbit passing
through the point (g4, q,) is claimed to be locally
stable; if the eigenvalues are positive, then 8¢ and
8q, locally exponentiate and the reference orbit is
claimed to he locally unstable. For the case at hand in
eq. (9), the instantaneous eigenvalues are

A=—1%2q, —2q,. (10)

Recalling hamiltonian (8), we may show that these
eigenvalues are strictly negative for system energies

E <1/24; there are configuration space regions of
positive eigenvalues for 1/24 < £ < 1/12; above E

= 1/12 the system motion can become unbounded. As
a consequence of the theory developed here, we im-
mediately note that the Toda predictions are totally
incorrect for this integrable hamiltonian, since its
bounded orbits are locally neither stable nor unstable;
they are, in fact, all locally marginally unstable. How-
ever, our intent here is not merely to present another
counter-example to the Toda criterion, since this has
been done before by others [17,18] . We wish to make
it abundantly clear that the Toda criterion as well as

its later modifications [15,16] is neither right nor
wrong for any example; it is simply irrelevant. For as
eqs. (4a, b) and/or fig. 1 show, it is not the instan-
taneous behavior of solutions to eqgs. (1) that deter-
mines the stability character of the reference orbitals;
it is rather the average behavior of these solutions, com-
puted over an interval long enough to “wash out” the
short term oscillations, that establishes stability type.
In short, no matter how alluringly simple the Toda crite-
rion is and no matter how many example systems are dis-
covered for which this method “works”, this criterion
is, at best, inadequate.

Let us now conclude this paper with a brief discus-
sion of certain exceptional cases for which eqgs. (4a, b)
do not apply or do not yield linear time growth. We
here adopt the attitude of physicists, listing some inter-
esting exceptions without trying to be mathematically
exhaustive. First, let us note that the 8¢, in eqgs. (4a, b)
is zero for integrable harmonic systems or for two ini-
tially close states lying on the same orbit; for these
cases the reference orbit is stable and the solutions to
egs. (4a, b) are either constant or oscillate. Perhaps
the most interesting exceptional reference orbits are iso-
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lated periodic orbits or equilibrium points (such as the
origin in fig. 2). All such isolated orbits correspond to
singularities in the transformation egs. (2a, b) and, for
them, eqs. (4a, b) are not valid. For example, the un-
stable periodic orbits of integrable systems are “linked”
by separatrix surfaces across which egs. (2a, b) must
change their analytical form; or for a stable equilib-
rium point such as that of fig. 2, the transformation
eqgs. (2a, b) are singular because the angle variable be-
comes undefined at the equilibrium point. In short,
without entering into all the mathematical details of
these singularities, our formalism says nothing about
the stability properties of isolated periodic or equilib-
rium orbits which form a set of measure zero in the
totality of all orbits. Qur results show that marginal
local instability prevails for all the remaining comple-
mentary set containing almost all orbits. In a sense, it
is our neglect of this commonly considered and signif-
icant zero-measure set that gives our conclusions an
element of surprise.
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