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Numerical experiments, which show that the uniform Yang-Mills fields have
stochastic oscillations, are discussed. There is evidence, moreover, that the white
and almost white colors are stable.

PACS numbers: 03.50.Kk

The dynamics of classical, spatially uniform Yang-Mills (YM) fields have been in-
vestigated in Ref. 1. Although this is a special case, it reduces, as shown in Ref. 1, to
a simple Hamiltonian system with N=9 degrees of freedom. The dynamics of this
system for the special case V=2 have also been investigated numerically in Ref. 1 and it
was assumed there that its motion is stochastic. The numerical experiments for V=2
and 3 performed by us showed that the color in this case fluctuates stochastically,
i.e., the classical YM equations appear to be nonintegrable at least in this special case.

Specifically, we have investigated the dynamics of a system with the Hamilton-
ian (N=3)
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where x, y, z are proportional to the vector-potential components, and %, 3, and Z are
proportional to the chromoelectric-field components.! The exponential local mo-
tion winstability, which is characterized by the KS entropy # (Krylov-Kolmogorov-
Sinai entropy), was used as the stochasticity criterion (see, for example, Refs. 2 and
3).
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To calculate the local stability numerically, along with the equations of motion
of the system (1)

_'x.____x(yz +22); 5/'=—y(x2+22); .z.-“—"z (x2+y2) (2)
we have simultaneously integrated the linearized adjoint equations
E=-(P+22) E-2x(ynszl);if= i b=, @)

which can be derived by substituting in Eq. (2) the expressions x+§,y+1n, and z+¢
and which characterize the behavior of a beam of adjacent trajectories in the linear
approximation. The x(¢), ¥(2), and z(¢) functions in Eq. (3) are determined by Eqs.
(2). The energy conservation in the calculation was better than 1%.

The stability of motion of the system (2) is characterized by the Lyapunov in-
dices (LI) A; of the system (3) (see, for example, Refs. 3 and 4). The easiest to cal-
culate is the maximum LI

Inp(t) , . .
Ap=lim | ————); p? =&+ P+ 824774 )
t > oo - ]

and p(0)=1. The following inequalities are valid for the KS entropy:
A< h <AL (N=1), %

of which the most important one is the inequality on the left-hand side, which shows
that at A,,, >0 the KS entropy # is >0 and hence the motion has a stochastic com-
ponent (see below). In the case of an integrable system (quasiperiodic motion) the
“distance” between the adjacent trajectories p(¢) <t (on the average) (see, for exam-
ple, Ref. 5), and A, =0. The function A(¢)= [In p(?)] /¢ is shown in Fig. 1. A(tmax)
was assumed to be the Lyapunov index, where 7, is the total time of motion.
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FIG. 1. Lyapunov index for the system (1). 1-Typical trajectory of the stochastic component
(A, = 0.35); 2—trajectory with initial conditions near the white oscillations [("max/tio) ~ 0.1;
A, =0.37]; 3—stable trajectory (rmax/#o ~107%; A, <4 X 107*, the scale is increased 200 fold).
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Because the Hamiltonian (1) is uniform, A,,, < H'/# . The average value of the di-
mensionless LI A, = \,,, /HY* along the 22 trajectories with different, randomly selected
initial conditionsis{}\, )~ 0.38 (¢yax = 10? - 10® ,H = 1). The standard spread of the
specific values of A, turned out to be small (0.04), indicating that all the trajectories
belong to the same stochastic component. This does not rule out the existence of
other independent stochastic or even stable components (see below); however, it is
unlikely that they can replace an appreciable part of the energy surface. In any
event, we were able to detect only one very small, stable region in the neighborhood
of the in-phase oscillations [x(£)=y(#) = z(¢) are the white oscillations (WO) (Ref. 6)].

In the small neighborhood of this periodic solution the Hamiltonian (1) can be
conveniently represented in the form

342 3ut 647 +2g2 (343 +¢2)?
H=—2—-+ 5t 5 +6uq1(q§—q§)+—-—-—-—-2 )
(6)

where x=u+q; +q;,y=u+q1-q,,and z=u-2q,. At q, =q, =0 the white oscilla-
tion along the u coordinate is described by the expression u(#) = u, cos wt; w=1.20
o (Ref. 3) (see Ref. 6). Atgy,q, <<u, the influence of transverse motion (gy, g, )
(TM) on u(#) can be disregarded, assuming that it is given, A characteristic feature of
transverse motion is the absence of quadratic (with respect to ¢, and g, ) terms in
the potential energy (6). The white oscillations are therefore stable in the linear ap-
proximation. If #=const, then the cubic terms in (6) will lead to an unstable mo-
tion. The rapid oscillations in u#, however, lead to a dynamic stability of the trans-
verse motion (Kapitsa’s pendulum; see, for example, Ref. 7). The effective average
Hamiltonian of transverse motion is

. . 1 3u? 2
<H > = 3§? +q§+_(1+ o)(3q§+q;), (7)
2 w?
It is important that this system has an additional integral of the motion because of
axial symmetry in the variables+/3 g, and q,. According to the numerical results,
the size of the stable region 7y /U ~ 1072 (+2 =3q% + 4¢3, tmax = 10°, or ~103
transverse oscillations).

At N =2 the in-phase oscillations of the two colors [x(¢)=y(¢), z=0] tum out
to be unstable in the linear approximation, since the transverse-motion Hamiltonian
contains a defocusing quadratic term whose effect exceeds the dynamic focusing.
The numerical values of A, for #y,x ~ 10% turn out to be of the same order of magni-
tude as those for N =3, and the stochastic component apparently includes the entire
energy surface. It should be noted, however, that the ergodic dimension on the ener-
gy surface diverges as |x| and {y|—>°o, and the distribution function does not reach
an equilibrium state in spite of stochastic motion. Note that for =3 this turns
out to be a finite dimension in spite of infinite motion.

Thus the oscillations of the classical, spatially homogeneous YM fields turn out
to be stochastic at least in the special case V=2 or 3. An example of oscillations of
one of the components of chromoelectric field is shown in Fig. 2. It is highly un-
likely that the stochastic component vanishes completely in a more complex system
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FIG. 2. Stochastic oscillations of the YM fields. The dark circles represent the instantaneous
values of the component £, (1E, | < E™* =1) of the chromoelectric field (¥ = 3).

(3<N<9) and especially in the general case of spatially inhomogeneous YM fields.

We take this opportunity to express our sincere gratitude to V. E. Zakharov, Yu,
F. Pinelis, and I, B. Khriplovich for useful discussions.
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