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DEGENERATION OF TURBULENCE IN SIMPLE SYST~S 

B.V.Chirikov and F.M.Izraelev 

Institute of Nuclear l~ysics 
630090 Novosibirsk, U.S.S.R. 

The results of numerical studies of a simple dis- 
sipative system are presented including the appear- 
ance of the stoahastic attractor under sufficiently 
strong dissipation. The degeneration of turbulent 
motion into a periodical one under a weak dissipa- 
tion is emphasized and studied both qualitatively 
and quantitatively including the dependence on the 
number of degrees of freedom. 

Recently a large number of papers has been published in which the 
stochastic motion in dissipative systems was studied from various 
points of view. A broad interest to this problem was stimulated, in 
particular, by a hypothesis due to Ruelle and Takens /I/ who made 
an attempt to link the problem of turbulence and the modern ergodic 
theory. Apparently first the stochasticity in a simple dissipative 
model was observed in numerical experiments by Lorenz /2/ who dis- 
covered, in particular, that trajectories of this model were at- 
tracted to a set of very complicated structure. Such a set was 
called the 'strange attractor' in Ref./I/. This popular term seems 
to us stark unsatisfactory since from the standpoint of modern er- 
godic theory those structures are, on the contrary, perfectly natu- 
ral. They are common, for example, in the well-known Anosov sys- 
tems, or the C-systems /3/, which possess the full set of statisti- 
cal properties including the strongest one - Bernoilli property.* 
Graphically speaking, that attractor seems strange only for a 
stranger. So, we are going to use below another term - the stochas- 
tic, or chaotic attractor. 

The properties of stochastic attractor were studied in a number of 
works (see, e.g., review paper /4/). In one of our former studies 
/5/ we also did observe stochastic attractor which we called the 
foliation of the phase plane having borrowed the term from the 
theory of Anosov systems. At the same time we had discovered and 
studied in more detail later on /6/ the phenomenon of degeneration 
of stochastic motion into a periodical one. This phenomenon turned 
out to be fairly common in many simple models of turbulence includ- 
ing the original Lorenz model (see Ref./7/) as well as Henon's map 
which is similar to one studied in Refs./5,6/. The degeneration 
occurs due to the capture of a stochastic trajectory, under the in- 
fluence of a weak dissipation, into one of the stable regions which 
are typical for Hamiltonian oscillatory systems. Apparently first 
such a capture was actually observed by Liberman and Lichtenberg 
/10/. Even though the degeneration of stochasticity is not a uni- 
versal phenomenon as pointed cut correctly in Ref./11/ - it is im- 
possible, for example, in any Anosov system due to the structural 
stability - nevertheless that phenomenon proves to be quite common 
for simple dissipative models. 

* Let us mention that the latter property was actually discovered 
and described already by Lorenz in his paper /2/. 
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In what follows we are going to consider this phenomenon using two 
models studied in Refs./5,6/. 

I. 2-DIMENSIONAL HODEL 

The model is described by a map 

( 1 .1 )  

: t x -F-o. t 
where braces denote the fractional part. The map models a nonlinear 
oscillator with angle coordinate X and momentum (action) p The 
fractional part describes a periodical dependence (of period ~) in 
both coordinate and momentum, the latter being introduced to simpli- 
fy the computation. As a result the oscillator phase plane is re- 
duced to the unit square, or to be more precise, to a torus. The 
oscillator suffers a damping (parameter E ; and a periodic pertur- 
bation (of iteration period;. The dependence of perturbation on co- 
ordinate is given by the function ~(~ . 

For a sort of perturbation which we use to call trivial (for more 
detail see Ref./12/), for instance 

x-os (1.2) 

model (1.1) is a C-system /3/, hence, a weak dissipation cannot 
destroy the stochasticity which takes place under condition 

k>O , or k <-~ (1.3) 

Instead, we are going to consider the perturbation 

which i s  by no means a t r i v i a l  one s ince  w i t h o u t  d i s s i p a t i o n  (E= O) 
and for any k there exist stable regions on the phase plane (x,p~ 
The biggest of them are formed around the fixed point (a periodic- 
t r a j e c t o r y  o f  p e r i o d  T = 1): ~ = p = p °  ; X = X = X  ° • Th i s  p o i n t  i s  
s t a b l e  u n d e r  c o n d i t i o n  

< 0 (1.5) 

whence one can derive (see Ref./5/) the special ko values for 
which the fixed point ( ×o pc ) is situated Just in the middle of 
the stable region (1.5). Iccording to Ref./5/ the stable area is 
estimated by 

For ko = 3.46 and E= 0 a phase plane picture is given in Fig.1. 
A region of stable trajectories as well as that of stochastic mo- 
tion is clearly seen. It is important that the size of stable re- 

~ ion decreases rapidly with increase in k even for special k 
1.6). According to numerical data in Refs./13,5/ this size drops 

still more sharply for arbitrary k~ ko (see Section 2 below). 

The dissipative system (1.1) may be considered as the simplest mo- 
del of the so-called auto- or self-oscillation. The latter differs 
from a 'passive' motion damping by the final state of the system 
which is a limit cycle with finite oscillation amplitude rather 
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Fo~r.1 Phase plane of system ( 1 . 1 , 1 . 4 )  
ko= 3.46; E = O. Four trajectories 

of different initial conditions (Xo,~ o ) 
are shown inside a stable region. On the 

than the stable equilib- 
rium. Pot our model (1.1) 
both cases don't differ 
at all because of perio- 
dicity in p . In work 
/6/ the dependence of the 
capture time on various 
parameters was studied. 
It turned out that the 
following rather accu- 
rate empirical relation 
holds 

(1.7) 

where ~ is the number 
of iterations of the map 
(1.1) until the capture 
(the stochasticity 'life' 
time); where ~ stands 
for the area of the stable 
regions (the phase square 
area is equal to 1) and 
where E is the damping 
parameter. The data con- 
cerning relation (1.7) 
are summarized in Pig.2. 

Relation (1.7) has been 
established via indepen- 

outside is the stochastic region filled dent measurements of the 
up with a single trajectory which missed 
a few bins (white spots). The number of mean capture time /%/ and 

the area of the stable 
iterations for each trajectory N = 105. regions for values of ko= 

= 3.463 5.56; 12.98. To 
measure the stable area the phase square ( X,p ) was subdivided 
into a number of bins the crossing of which by a stochastic tra- 
Jectory having been registered. The number of missed bins did deter- 
mine then the stable area. The finest subdivision of the phase plane 
amounted to 512 x 1024 = 524288 bins. 

Por k = 7.66 we failed to measure the stable region which turned 
out to be much stretched in one direction while shrinked in the 
other. Relation (1.7) leads to S ~ 2.8 x 10 -5 in this case. 

One could expect the capture time NL~ {/S . It is the period of 
time during which a moving at random system gets into a vicinity of 
stable area S . Watching the motion on display has shown, indeed, 
that the system used to encounter the stable area in N~ itera- 
tions at average. However, the probability of capture proved to be 
very low (~E). This is apparently related to the transition zone 
surrounding a stable region, the diffusion being very slow in the 
former. This transition zone as if defends the stable region 
against penetration there a stochastic trajectory. Fig.3 shows an 
example of motion in the transition zone followed an encounter of 
a stable region. The structure of the transition zone was studied 
in detail in Ref./14/. Zone relative area rapidly increases with 
decreasing the absolute size of stable region. For example, at ko = 
= 120.1 the transition zone area roughly equals that of the stable 
region itself ( S ~ 1.6 x 10 -4 ). We managed to measure the latter 
by means of on-line display. As soon as we saw on the display a 
trajectory penetrated into the transition zone and filled it up 
we stopped computation and recorded the distribution of trajectory 
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Fig.2 The stochasticity 'life time' vs. dissipation: 
® - -  k = 3 . 4 6 ;  ~ - - k =  12 .98 ;  ~ - -  k = 5 . 5 6 ;  
* -- k = 7.66; straight line corresponds to 

relation (1.7); dotted line indicates transition 
to stochastic attractor. Arrow at the last point 
points out that the capture has not been actually 
observed, the point giving the lower border for 
the life time. 

over the transition zone that allowed us Just to estimate its area. 

In Pig.2 the dotted ~_~ve indicates a sharp increase in the cap- 
ture time for a relatively strong damping ( E> 10 -~ ). A detailed 
analysis of the phase plane structure has revealed (see Ref./6/) 
that a sort of stochastic attractor appeared in this case. As seen 
in Fig~4, there are some (white) regions which seem to be'forbidden' 
for the motion. If initially the system happens to be within one of 
t h o s e  r e g i o n s  i t  comes o u t  ~ . m e d i a t e l y  and n e v e r  g e t s  b a c k .  These  
r e g i o n s  ha ve  s h a p e  o f  s t r i p s  w i t h  v a r i o u s  w i d t h ,  and t h e i r  c e n t r a l  
c u r v e s  c o r r e s p o n d  t o  t h e  i t e r a t i o n  o f  t h e  'max ima l  damp ing '  l i n e  

p = O. S u c c e s s i v e  i t e r a t i o n s  o f  t h i s  l i n e  a r e  r e l a t e d  t o  more and 
more n a r r o w  f o r b i d d e n  s t r i p s  wh i ch  fo rm a f i n e  s t r u c t u r e  o f  t h e  
foliation. This structure is clearly seen in F i g . 4 b .  

The whole phase plane is foliated, thus, into two components one of 
which contains 'forbidden', or repulsion regions while the other, 
to which all the trajectories are attracting, is just the stochastic 
attractor of the Cantor structure and of zero measure. It is inter- 
esting to mention that for still bigger E the attraction structure 
looks like Just a few lines. However, some Cantor structure appar- 
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Motion of system (1.1,1 4~ in 
ition zone, ko= 3.46; E 0. 

The picture was taken after the penetra- 
tion of trajectory into transition zone. 
Number of points (iterations) is 400. 

ently persists within 
these lines as well but 
it is more difficult to 
resolve the structure 
numerically. A similar 
observation has been 
made in Ref./8/. 

The foliation occurs 
apparently for any small 
E including those for 

which the degeneration 
happens later on. Hence 
the foliation picture 
observed on display does 
not prove, generally, 
that the stochastic at- 
tractor really exists. A 
sharp increase of the 
capture time for suffi- 
ciently strong dissipa- 
tion (see Fig.2), and a 
corresponding coarse- 
grained foliation, is a 
more straightforward in- 
dication of the bifurca- 
tion to stochastic at- 
tractor. This increase 
in capture time is relat- 
ed a p p a r e n t l y  t o  t h e  

d e s t r u c t i o n ,  a t  l e a s t ,  o f  some s t a b l e  r e g i o n s .  In  F i g . 2  t h e  d o t t e d  
c u r v e  ha s  drawn a s sumi ng  t h e  i n d e p e n d e n c e  o f  t h e  s t a b l e  r e g i o n  a r e a  
f rom d i s s i p a t i o n .  I f  one would  c o n s i d e r ,  on t h e  c o n t r a r y ,  t h a t  r e -  
l a t i o n  (1.7) persists the stable area would decrease down to 

~< 2.5 x 10 -~ (the last point in Fig.2). 

P P 
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× X 

a b 

a - Phase plane foliation, or alleged stochastic 
attractor; k ~ 9.76; E = 0.2; ~= I0 s . 

b - A part of the phase plane in Pig.4a, 
magnification x 16. 
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2. 4-DIMENSIONAL MODEL 

The studies of 2-dimensional model (Section I ) have shown that the 
stochastic self-oscillations may take place within some interval of 
time (before the capture). It is true that the stochasticity life 
time grows rapidly with parameter k in Eq.(1~1) because of a sharp 
decrease in the area S "of the stable regions. ~ According to Ref. 
/13/ the following estimate holds for E = O: 

$ ,,_ e ×p [_ 3 (,(r~ ~'). ( ~-~ _ i'~] (2.1) 

Nevertheless, for moderate k ~ 4 the stable regions are fairly bi g, 
and hence the stovhasticity life time is rather short (see E q . ( 1 . 7 ) L  

What might be  the influence of the number of degrees of freedom? To 
a n s w e r  t h i s  q u e s t i o n  we s t u d i e d  a 4 - d i m e n s i o n a l  m o d e l  d e s c r i b e d  by 
t h e  map : 

= { p (x')- E.(p- o.S'  + o.s') 1 

 -tx+ -o.5t 

where C is coupling parameter. For E = O this map is canonical. 

Under C'~i (strong coupling) the capture was not observed up to 
N = 108 iterations for any k used in computation including k~i 

when the corresponding 2-dimensional system ( e = o) has a big 
stable region. This suggests that the stable regions becume very 
small. The stability conditions for a fixed point have now the form 
(comp.  Eq. (1.5)) : 

where ~=Z~ ,~ ( * )  ; ~ = Z + k ~ ( ~  B . For s tab i l i t y  both i n e q u a -  
l i t i e s  have to hold with both sign~. Since conditions (2.3) are ob- 
viously more rigid as compared to Eq.(1.5) the size of stable re- 
gions drops considerably. 

Numerical determination of the stable region volume is rather dif- 
ficult even for E = O. For example, with k~3, C = 0.9 a trajec- 
tory of arbitrary initial conditions filled up all the bins of the 
phase hypercube subdivision 32 x 32 x 32 x 16 = 524288. Nevertheless, 
a stable fixed point does exist at PQ=~o" 0.5; ~o=~°= 0.025.The 
trajectory started near this point fills only about 3 x 10 "~ frac- 
tion of the full phase volume. This seems to indicate that the 
stable regions may be much stretched and, thus, may occupy only a 
part of each bin. 

For a weak coupling the capture does occur, yet it disappears sharp- 
ly by. a negligible increase in coupling parameter ( AC ~ 10 "~ , N= 
= 10 ~ iterations). The critical coupling depends on dissipation as 
follows: Ccr= 0.10; O.179; 0.30 for E = 0.05; O.1; 0.2 relatively. 

An example of 2-dimensional projection of a phase trajectory is 
given in Pig.5. Unlike the 2-dimensional model a distinctive feature 
of this motion is the presence of some clearly regular structure. 

* off the special intervals of ~ described in Section I. 
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An example of 2-dimensional projections of a stochastic 
trajectory in 4-dimensional phase space of system (2.2): 
k A ~ 1.278, k~1.25; C = 0.2; E = 0.1. 

On the left - projection Lx,p~ ; on the right - projection 
[~ ,~% . Passing of a regular structure is recorded. 

~! . ~.." ...-...:"~'.: 
• " " • I " . ~  " . ' * "  ~ * * : '  

." . . . : ' - . ,  .; . . : ; .  

• . . ' : / . . ~  
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11:: .:...-,.... • . ~ .. 

Stochastic attractor in system (2.2) under s strong 
dissipation: k A ~1.278; kz ~1.25; E = 0.6; 

C = 0.8. On the left, proJection.(q,?3 ; 
on the r ight ,  project ion ~ , ~  ; N :  10"-" 
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Watching the motion on display reveals that such structures always 
do appear in an irregular manner to exist a relatively short period 
of time ( ,~10 ~ iterations). If the coupling is decreased down to 
the critical value that change of structures seems to become more 
regular, yet still not a periodical one. 

For a strong dissipation ( ~ ~ 1) the stochastic attractor was ob- 
served in the model (2.2) as well that is a foliation of the 4-di- 
mensional phase space (see Fig.6). 

Thus, the reported numerical experiments show that the stochastic 
motion in a nonlinear oscillatory system may degenerate into a pe- 
riodical one under a weak dissipation. The 'life time' of stochast- 
ic 'self-oscillations' depends on the area of remained stable re- 
gions which, no matter how small they are, do influence the global 
dynamics of the system. Increasing the number of degrees of freedom 
sharply enlarges the stochasticity lifetime. 
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