and therefore a sufficient condition for the asymptotic
form (37) (andthus the phase screen approximsation) to be
valid is

Hojldy < 1. (40)

It can be shown that treatment of an arbitrary light
beam leads to a condition differing from (40) only in
replacing the parameter ¢ by a4, where g = min
{1/k|vel, 17K/ a0 V2],
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A simple model for the multiple passage through a nonlinear resonance is examined. Analytical expressions
are derived for the boundary of the stochastic motion and for the diffusion rate in the stochastic region, and
for both fast and slow passage through the resonance. The results of numerical simulations are reported.
These results confirm the analytic results and are used to derive a refined semiempirical expression for the
diffusion rate which may be used to analyze encounter effects in storage rings.
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The luminosity and thus the efficiency of colliding-
beam devices are determined to a large extent by "en-
counter effects,® i.e., by the electromagnetic interac-
tion of the colliding beams (cf. Ref. 1). In the case of
a weak interaction, the simplest approximation, the dy-
namics of a single particle in the given field of the op-
positely directed bunch can be analyzed; this is the ap-
proach which has been taken in all previous analytic and
numerical work on encounter effects. When the field of
the bunch is taken into account, the betatron oscillations
of a particle in the storage ring become nonlinear, and
their stability is accordingly determined by nonlinear
resonances, The interaction of these resonances can lead
to a dangerous stochastic instability under certain con-
ditions. A low-frequency modulation associated with par-
ticle synchrotron oscillations significantly lowers the
threshold for this instability (see Ref. 2, for example). In
this paper we will take the approach of Ref. 3 to study the
effect of such a modulation as a result of a multiple pass-
age through a nonlinear resonance of the betatron oscil-
lations of a particle. This approach yields effective es-
timates of the growth rate of the stochastic instability
under various conditions,

The passage through a resonance invelves a change
in the [requency of the betatron oscillations of the particle
and/or a change in the perturbation frequency, so that at
some instant these frequencies (or their harmonics) be=
come equal, and the effect of the perturbation on the par-
ticle is sharply intencified. A single passage through
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resonance has been studied in many places (see Refs,
for example), For nonlinear oscillations, the case of |
called slow passage through the resonance (see Ref. §
Section 2 of the present paper) is the case of most inf
In this case the rate of change of the frequencies due
the (given) external modulation is much smaller than
rate of change which results from the phase oscillatis
caused st resonance by the perturbation,

If the perturbation is small, the effect of a single
passage through a resonance is also small, According
a more important problem is that of the multiple pass
through a resonance, in which effects may accumulata)
These accumulating effects may be either regular® or
atochastic BT+? i

It is a relatively simple matter to calculate the d
fusion rate in the case ofa fast passage through the rel
nance, and these calculations have been carried out ind
several places.®™® The problem becomes much more!
complicated in the case of slow passage; In particulary
widely used guasilinear appreximation and the random!
phase approximation are completely inapplicable in thi
case.” Some rough estimates for this case were de=
rived in Ref. 3.

OQur major goal in the present work was to numer
aimulate diffusion during a slow multiple passage throd
regonance, in order to obtain some effective estimates)
of the rate of this diffusion. For this simulation we ad
what seems to be the simplest model, which is given b
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4 epasatrix, where the instantaneous velociry s zero]: c) spectrum of
g repency-modulated perturharion in (%) for & = 25, The hordzoneal

sy dows the average value ﬁIf“} =1/,

srtain mapping (Section 1). The results of the numerical
¢mulations (Sectlon 3) confirm the results of Ref. 3, which
wy therefore be used along with the empirical coefficient
wnd In the present paper to analyze encounter effects in
weage rings and in other problems [expression (18)].

The results of both Ref. 3 and the present study refer
pihe case of a multiple passage through a single reso-
wice, Multiple passage through several different reso-
ances will be discussed briefly in Section 2.

|
LMODEL

Let us comsider a canonical mapping which simulates
weffect on a particle of a single ®jolt® from an opposite-
rdirected bunch:

[=]4ksin(d4Lsinof), §=0+7T, (1)
were [, § are the action-phase variables which describe
te betatron oscillations of a particle with a single degree
ifreedom, As has been explained ln detail in Ref, 10, for
asmple, a mapping of this type gives an approximate rep-
| ®sentation of the local (in phase space) structure of the
wsonances of the nonlinear oscillations. The action I
8 ormalized here in such a manner that it gives the phase
ihllt {#) of the betatron oscillations over the period (T)
{the perturbation which corresponds to a single applica-
dm of mapping (1), If we set T =1, then the action be-
ames equal to the frequency of the betatron oscillations
ki =1) and automatically incorporates the nonlinearity of
2ese oscillations (dw/dl = 0), The perturbation param-

#r k is renormalized correspondingly, The low-frequen-
Jmedulation associated with the synchrotron oscillations of
%eparticle is described by the parameters Aand @, Teany-
wa’ has discussed one method for transforming the equa-
%8 of motion of a particle in the field of an oppositely
“rocted bunch into & mapping like that in (1).

i 1 Sov. Phys, Tech. Phys. 27(2), February 1982

For system (1) we can writl.'; the exact Hamiltonian

H = P2+ k cos {0 42 sin 28)3, (1) (2)
with a perfodic é-function, 3, (f)—=1 +2§lm2mt. (the
period Is T =1).

Let us assume k <« 1, If, furthermore, we have
AfQl <« 1, then we can take the average of the §-function
in the Hamiltonlan (2): &;{t) =1. The result is the aver-
age Hamiltonian

B =12 4k cos (8 4% sin 21), (3)

which gives an approximate description of the dynamics
of the original system, (1).

Let us now assume A =0. In this case we have the
single resonance w =0, and the motion in our model ia
the same as that of the pendulum (3}, On the phase diag-
ram for this type of motion there is a certain special
trajectory: a separatrix (Fig, la), which bounds the re-
gion of the nonlinear resonance,!

The nonlinear resonance is characterized primarily
by two parameters, which we will need below. These
are the frequency of the (small) phase oacillations,

Ephs \."E (4)
{the frequency of amall oscillations of a pendulum), and
the width of the resonance (the total width along the [re-

guency scale of the separatrix for the pendulum;: see Fig.
1a),

(Bu), =4 V= 4%y, . (8)
If there iz a phaze (frequency} modulation of the per-

turbation (A = 0), the resonance condition ¢ =0, where y
@ + ) sin 1t is the resonant phase, may be written

w==uw, =—h2 cos 21 (6)

Here wyg i3 the perturbation frequency, an explicit func-
tion of the time. If | w| < Af, then the two frequencies

(w; wyp) become equal at certain times; i.e., a résonance
is passed. Figure 1b is a rough sketch of the phase diag-
ram for this motion. A modulation of the perturbation
causes oscillations of the resonance along the w axis be-
tween two extreme positions (the dashed curves in Fig. 1}.
The modulation also gives rise to a distortion of the fixed
separatrix of the resonance; this distortion depends on the
velocity and direction of the modulation. The phase diag-
ram of the motion during passage of the resonance 18 con-
veniently analyzed by the simple method of Ref. 6.

There is another way to study the effect of a periodic
modulation of the perturbation. In this approach, the fre-
quency-modulated perturbation in (3) is expanded in a
Fourier series:

cos (84 b sin 2t} = mgm I (Wycos (B4 me), o

where J;(d) is a Bessel function. Substitution of this ex-
pression into (3) yields a system of stationary resonances
w = Wy = mil or a multiplet. Formally, the number of
resonances in the multiplet is infinite, but the amplitudes
of the Fourler harmonics and thus the widths of the reso-
nances fall off rapidly (exponentially) ai|m| > A. The re=-
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sult is that only about 2\ resonances are "effectively
working® in the frequency band | w| € Ag2.

Figure 1b shows an example of the frequency depen-
dence of the harmonic amplitudes [T (A )], for A =25. On
the (w, §,) phase plane [y = & + mat; see (7)] there is
a separatrix corresponding to each of these resonances,
similar to that shown in Fig. 1a, but with a width

(8o = 4 VRT T TR ] A (b (8)

In this latter expression we have used the rms value
LIt (Wyp==1f=d (W= 1; |m| <1} this value is shown by the
horizontal line in Fig. 1b, The stationary resonances w =
m{ in our model correspond to synchrotron—betatron
resonances of a particle in the storage ring, while the
moving resonance in Fig. 1b is a betatron-oscillation
reésonance.

The approach based on the system of stationary reso-
nances is particularly convenient for finding the nature
of the motion, which is determined by the parameter de-
acribing the overlap of the nonlinear resonances:

= () /2 = &Qph fmh)'h @, (9)

Here 01 is the distance between adjacent resonances of
the multiplet, which is equal to the modulation frequency
(Flg. 1c), and we have used (8) for the width of the reso-
nance, Stochastic motion arises if!% s > 0.63.

In stochastic motion, the system undergoes diffusion
in the action I (or the frequency w = I} within the interval
of separatrix oscillations shown in Fig, 1b (only here is
the resonance passed) or (equivalently) within the width of
the multiplet in Fig. lc, i.e., in the interval |I| =|w]| =
AQ. This is apparently the type of diffusion which was ob-
served in Ref. 7. More dangerous, however, is the case in
which several adjacent betatron resonances are passed,
since in this case the diffusion extends over a consider-
ably larger region. In terms of synchrotron—betatron
resonances, this situation corresponds to an overlap of
adjacent multiplets. This case does not occur in the aver-
aged system (3), which simulates only a single batatron
resonance, but it may occur in the original model (1). To
see this, we write the Hamiltonian (2) in the form

H:",—;-i—k E I (k) eos (8 4 mZt < 2ent),

T

{10)

We see that the complete system of rescnances (w + mQ +
2mn =0) of model (1) I8 a sequence of multiplets separated
by a distance fw = 27 (Fig. 2). The condition for the over-
lap of adjacent multipleta is

sy =001, (11)
! |
H i
il ol
il L
-ax -X -ag 0 rQ =
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In terms of the passage of the system through g .
resonance (Fig. 1b), the case s); € 1 mans that only,
single resonance is passed, while with spg > 1 the g
passes through many different resonances, corresp,
to different multiplets.

It becomes considerably more complicated to giga
the dynamica of the system in this latter case, but fgp
diffusion to extend to the region of several multiplety g
is sufficient that afd be only slightly greater than the |
critical value s{§) =~ 1. On the other hand, it is clegs
that in this case the diffusion rate iz determined quigs
accurately by only one of the multiplets. Certain aspey
of the diffusion in the case syy > 1 wi].lbedlanuaw
briefly at the end of the following section.

2. CALCULATION OF THE DIFFUSION RATE

The diffusion rate for the case of multiple passage
through a single resonance under stochastic conditiony |
was calculated in Ref. 3, The results of that paper de.
pend strongly on the rate at which the resonance is pagg
the rate being conveniently represented by the dimens
less parameter

b=y 2

oo wRES

where wyy is the perturbation frequency, which depends
explicitly on the time by virtue of the frequency mod
tion in (6), and Qpy, is the frequency of the phase osci
tions in (4) of the moving betatron rescnance (Fig. 1b),
The parameter v is the rate of displacement of the re
nant value of the frequency due to the modulation of the |
perturbation, divided by the rate of change of the fre-
quency due to the phase oscillations (at a high mnp!ltult
of these oscillations).

If the resonance is passed rapidly (v = 1), the fre-
quency w, which is changed by the perturbation because
the nonlinearity of the oscillations, cannot keep up with
the perturbation frequency wpg. The result of the passag§
is thus (in a first approximation) the same as that for a
linear oscillator®:

Jfﬁ'.,l".’_ - rsm [tn‘,- + *} (13

e
where iy, is the value of the resonant phase § at the time
of the exact resonance {§ =0), and the sign is determined
by the direction In which the resonance is passed,

In this case of fast passage, the value of y ls ar-
bitrary,® and under the condition for stochastic motion,
8 > 0,63 (see the discussion above), the sequenceé . is
approximately random and is distributed uniformly over
the interval (0, 27) (Refs. 3 and 10). The diffusion rate

‘ FIG. 2. Perturbarfon spectrum for model (1) [see {10)]
1
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b="T7 f""ll ‘_th'
T = 27/t is the modulation period, during which the
is passed twice.

This approximation is valid if the rate at which the
is passed, v, changes only slightly during the
e i.e,, over the time during which the separatrix
g Fig- 1b intersects some point in the phase plane which
ents the system. For this condition to hold, the
(dth of the separatrix must be at least smaller than its
gelllation amplitude: (Awy) < Af.

Even under this condition, however, the rate v will
aange In the course of the diffusion (for different pass-
ges), from a maximum value at the center of the mul-

t to zero at its edges. It can be shown that this effect
ws a negligible influence on the average diffusion rate
wver a broad range of parameters.!! Below, we will un-
grstand v as representing its maximum value A%/ ﬂE,.h
4§ see (6) and (12)].

For a slow passage through the resonance®® (v <« 1)
¢ can write

[ e JZ.E#J/I + 2mp — %qa: = w8y (e 4 9.) (h=e — 40, (15)

(14)

shere the phase . cmmtake?n values only in the
wrrow interval =v < $, < (47v)"/?, and the sign in (15)
s determined by the direction in which the rescnance is
nussed.

In the limit v — 0 the change Al = +8/mphL does not
#pend on the passage rate and is completely reversible
i =const), This result! agrees with a conclusion
reached by Symeon and Sessler.§

On the other hand, the condition for stochastic motion,
shich may be written as s?~ Qjp/aWA =VA/v » 1in
e present case, shows that the motion is always stochas-
te if the resonance is passed slowly.

The explanation for this apparent contradiction is? that
for any finite v = 0 the passage through the resonance is
wt completely reversible, because of the change in the
shase y .. It Is clear that the diffusion rates will depend
oe precisely this irreversible increment (6. The latter
is determined primarily by the second term in (15), which
contalns a large logarithm. From (15) we [ind the rough
| estimate &1 ~ vQpp lnv and thus the diffusion rate®
D, s f"%:;ﬂ (Inu}f, (16)
where C = 2 is a numerical factor whose value is found
from the numerical simulations (Section 3).

A method commonly used to calculate the diffusion
rate for a dynamic system is the so-called quasilinear
Yproximation (see Ref. 9, for example). In the problem
4 hand, this approximation is equivalent to replacing the
diserete spectrum of the perturbation, kly, (Fig. le), by
icontinuous spectrum [because the phase # becomes
Slochastic In Hamiltonian (3)] with the same spectral den-
| sity P =k}, /0. This change leads to the diffusion rate

D, =sP=rkt]YyQ=~in2=1D, a7
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which agrees with the direct calculation in (14) for fast
passage of the resonance,

For slow passage of the resonance, however, the dif-
fusion rate drops off sharply (at a given spectral density
of the perturbation):

D,|D,; == Ci*(Inv). (18)

This result shows that the quasilinear approximation
is completely inapplicable in this region because of the
strong correlations of the phase ¢, Furthermore, for a
slow passage of the resonance there is a wide range of
initial conditions which lie within the separatrix and which
move along with it (Fig. 1b) for which diffusion does not
occur at all. This is the well-lmown region of phase sta-
bility or locking, in which the motion is quasiperiodic
(Section 3).

To conclude this section we will briefly discuss the
extent to which the results above may be changed in the
case of a pronounced overlap of multiplets [spg = 20 -
(6w)™! > 1)

In the diagram of stationary resonances (Figs. lc and
2) the average density of resonances along the frequency
scale increases by a factor of about spy. The parameter
representing the overlap of adjacent resonances s in (13),
increases by the same factor:

s == 8 (We)" {‘—'thﬂ-l: sw 1. (19)
This increase significantly lowers the stability boundary,

In the gquasilinear approximation, the diffusion rate
would Increase by the same factor, For fast passage, for
example, we find, instead of (17),

D, =2 a3 1. (20)

In terms of the passage of resonances, this result
corresponds to an independent effect of the value of sy
for the different rescnances through which the system
passes under these conditions. If this independence is
retained in the case of slow passage also, then the diffu-
sion rate also Increases to a value syg times that in (16):

D, = C (2B} (Invfs s 1. (21)
The conditions under which the different resonances
act independently, however, require further study. In
particular, it is not clear at this point whether the quasi-
linear approximation remains valld even in the case of
fast passage of the resonances if spp = 1.

3. NUMERICAL SIMULATIONS

The basic purpose of the numerical simulations was
to determine the rate of the diffusion In I as a function of
the parameters of the model. The diffusion rate was cal-
culated from

D=l — LYt — (22)
where Ik and I; are the values of I averaged over certain
time intervals centered at fy and t;, and the angle brackets
denote the average of D over the different intervals, This
double averaging significantly suppresses the effect of
bounded oscillations (the "background™), which are always
present, and it permits reliable measurements of an ex-
tremely small diffusion rate {(see Flg. 3 and the discussion
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FIG. 3. Dependence of the normalized diffusion rate D/Dy on the resonance
passage rate ¥(log i the common logardthm), Points) Results of the numer-
Ical caleulaton: corve) estimate for ¥ << 1 In 18) with the empldecal
value C = 2.0,

L]

below). This technique has been described in detail else-
where, 112

In the numerical calculation, the initial parameters of
the model were varied over the intervals k =107%-10"",
A =3.3-10-3,3 - 104 and § =107%-10"1, The reso-
nance overlap parameter (9) lay in the range s = 2,2-705;
the maximum resonance passage rate was v = 3.3 +» 107%-
3.3 - 10%; and the ratio AQ/(Aw); = 2.6-26. The product
AQ =3.3 remained the same in all cases (Fig. 3). The
choice of the value of AQ was discussed above in Sec-
tion 1.

A typical time reqguired for calculation of a trajec-
tory was t = 10° iterations of mapping (1), For small val-
ues of the resonance passage rate, the calculation time
was increased to 3 * 10° iterations because of the very
low diffusion rate with respect to the background level.
For the minimum value v =3.3 - 10~% and k =0.1, for ex-
ample, the diffusion rate for t = 10° was D =~ 9 + 1075,
while for t =3 - 10° the rate dropped off by a factor of
more than 20, to the value D = 3.8 « 107%, Clearly, the
previous high "diffusion® rate is actually determined ex-
clusively by the background. On the other hand, as the
caleulation time increases further observed diffusion rate
changes only very slightly. Att =6 - 105, for example,
we find D = 4,3 - 107, The difference which does remain
between the two latter values is apparently due to stat-
istical fluctuations. The absence of dependence of the
measured diffusion rate on the time of the motion, which
was also checked in other cases, confirms that the process
under study is a diffusion. At the rate v =8.3 - 107% and
above, 10f iterations prove sufficient for a reliable deter-
mination of the diffusion rate. For example, we find D =
29-107T(t=10% and D ~ 1.8 « 1077 (t =3 - 10°) for v =
8.3 - 1073, The background level depends not only on v but
also on other parameters, primarily k. Consequently,
the very small diffusion rate D ~ 1.7 - 1078 at v = 0.33,
for example, iz much higher than the background because
of the small value k = 1073,

As an additional control we carried out two test sim-
ulations, In the first, the multiplet overlap parameter
was sp = 0.80 < 1, so that the diffusion region was limited
to the width of a single multiplet. Under these conditions
the observed diffusion rate should decrease as the time
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of the motion increases. This effect is in fact obser

At v =0.17 and t = 10, for example, we find the ratio
D/Dg = 1.5 » 1072, which 1s not very different from thg
the case sy =1.05 (D/Df =~ 3.3 - 107%. The reason fg
this result is that over this short time the diffusion dq
not manage to fill the multiplet. As the diffusion time
increased to t = 10%, however, the ratio D/Df=~ 1.9 - |

falls off by nearly an order of magnitude, > g L

In the second control simulation, the initial conditi
were chosen to correspond to a point near the center
the oscillating resonance separatrix (Fig. 1b), where g
ls a stable region of regular motion at sufficiently low |
rates v. In this region there is no diffusion, of course,
and the observed value 1s determined exclusively by the
background. With v =0.17, for example, the rate of the
"diffusion” (the background) at the center of the reso- |
nance turns out to be D =~ 10~%, while in the stochastle
component we have D = 1074,

Comparison of the numerical results (Fig. 3) with
alytic results shows that the latter give a satisfactory
scription of the dependence of the diffusion rate on the |
parameters of the model. For a fast passage of the reg
nance (v = 1,3) the average value is {D/Dg) = 0.74 £ 0.}
In the case of a slow passage (v = 0.66), the average y
of the numerical factor in (18) is (C) = 2.0 + 0.45. Th
region near v =1 is not described by either (16) or (17)
In this region (0.66 = v = 1.3) the diffusion rate drops ¢
sharply with v, by approximately an order of magnitude

There is significant scatter in the points in Fig. 3,/
for reasons which are not completely clear. The scatte
is not, at least, a result of statistical fluctuations alone.
For v =8.3 « 107%, for example, the significant decres
in the diffusion rate with respect to the analytic value
D/Dg =1/6 (C =2) is seen for various trajectories,
question requires further study.

We wish to thank F. M, Izrailev and J. Tennyson for
useful discussions.

Uit oty = nl.:h- there is 4 gystematic change (n I at an average rate [ = |
(8fx }(fpy = Dim‘.l. Symon and Sessler® smudied the extreme case 07, = 0, |

Tl Storth and I =
M. Month and J. . Herrera (editond, Monlinear Dynamies and the B

Beam Interactlon, AIP Conf, Proc, Mo, 57 (1979,
e M, lzrailev, Physica D Mo, 3, 243 (19380), -
8. V. Chidkov, Preprint 267, Institute of Nuclear Physes, S{berlan Branch
Academy of Sclences of the USSR, Novosihirsk (196, ;
“Yu. A, Mitropol'skit, Time- Varying Pmcesses in Monlinear Osclllawry
Systems [In Russian], Academy of Sclences of the Ukrainfan 55R, Klev
(1955,
%. Symon and A, Sessler, Proc. CERN Sympostum, Vol. 1 (1956, p, #, 3
. V. Chirlkov, Dokl Akad. Nauk SSSR 125, 1015 (1959 [Sov. Phys. Dol
4, 390 (1953 i
'R, Chasman, A. Garren, R. L. Gluckstern, and F. F, Mills, Proceedings of
the Mnth Imematonal Conference on High Energy Accelerators, SLAC
(1914, p. 604,
. Tenmyson, “The [nstabllity threshold for bunched beams {n ISABELLE"
AIP Conf, Prog, Mo, 57 (1973, p, 158,
L. A, Anstmovich and R Z. Sagdeev, Plasma Physes for Physlelss [in
Russlan], Atomizdat, Moscow (1979,
", v, Chidkov, Phys. Rep. 52, 244 (1978, |
Yg, v, Chidkov and D, L, Shepelyamkil, Preprint 80-211, [nstitute of N"-.
clear Physics, Siberdan Branch, Academy of Sclences of the USSR, 1
Novosbink (1930),
%G, V. Gadiyak, F. M. Izrallev, and B. V. Chirkov, Proceedings of the
Seventh Imternational Conference on Monlinear Osefllations, I1=1, 315
Barlin (1575,

Translated by Dave Parsons

B. V. Chirlkav and D, L. Shepelyanskii




