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1. INTRODUCTION

The subject of this lecture is related to a peculiar dynamical phe-
nomenon in classical mechanics commonly termed among physicists as the
chaotic, or stochastic, motion. Until recently the mathematicians usedto
speak just about ergodic properties of a dynamical system. However,
nowadays the term "random motion"™ becomes also popular. I would like
to emphasize from the beginning that the problem we are going to dis-
cuss is purely dynamical, without any random element either in the
equations of motion or in the initiael conditions. Hence, the term -~ dy-
namical, or intrinsic chaos. Below we restrict ourselves to only Hamil-

tonian dynamics for which the invariant measure (phase space volume)
is known bheforehand, unlike dissipative systems.

The interest in the dynamical chaos is twofold. PFirst, it is a
fundamental phenomenon in physics which, in particular, gives, at last,
a long-awaited model for the true random process. Second, no matter
how strange the random dynamics may appear it turns out to be fairly
wide~spread in many fields of science and technology as, in particular,
the present Conference demonstrates.

In a rare occesion, when chaos comprises all the phase space of a
dynamical system or, at least, a whole invariant surface of the mo-~
tion, a fairly simple statistical description is possible as contrasted
to most complicated dynamical pictures of motion. In many cases, how-
ever, the situation is not that simple. A typical example is the so-
called divided phase space,divided into regions of both chaotic and regu
lar motions separated by highly intricate borders. It is the structure
of that chaos border which considerably complicates statistical descrip-
tion of the motion. Even though the mathematical theory of dymamical
systems admits divided phase space and, moreover, terms it by a special
notion - ergodic component -~ not much is actually known thus far on
the dynamical behavior therein. Below we are going to consider a number
of selected questions related to this topic. I choose an o0ld Poincaré
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problem, which is still not solved completely, to discuss some recent
developments in this field. A general review of the modern mathematical
theory can4'b€53 found in 1"3, while related physical theory ig surveyed,
e.2., in 2,

2. POINCARE'S PROBLEM

We begin with a "gimple" example congidered by Poincare 6 in his
attempt to understand profound difficulties arising in the study of
nonlinear dynsmics, in general, and of the famous three body problem,
in particular. Much later, this example has proven to typify a fairly
general situation in Hamiltonian dynamics (see and Section 3b be-
low).

Consider the motion of the ordinary pendulum under a high fre-
quency parametric perturbation as described by the Hamiltonian

H(P» ¢, 0 -& + @y ('osga (/+ £ (osd) (2.1)

Here gﬂ igs the angular pes:Ltlon. of pendulum (sﬂ = O corresponds to
the unstable equilibrium); P=-‘ ¥ 1is the angular momentum and &), is
the frequency of small oscillation. The perturbation is characterized
by two small paremeters: that of strength £, and of adiabaticity
4/)\= o [0 ,{l= 8 . The motion of thé unperturbed (£ = 0) pendulum,
as is well known, is periodic for any initial conditions with one im-
portant exception corresponding to the value of H= &, . The latter
trajectory is called separsatrix since it separates the pendulum oscil-
lation ( H< W) from its rotation ( H> wf ). In what follows the
geparatrix is going to play a leading part in dynemical chaos. The
motion period T is increasing indefinitely when approaching separa-
trix. In immediate vicinity of the latter

H
ZH, 5 W= — (2.2)
T w? f

The separatrix motlon is, thus, aperiodic, and it has continuous Fourier
gpectrum which may be characterized by the integral 4:

#)- ot o~
A ()= S Fe ﬂ) ,7)(/\) A/

The last expresgsion holds for >\>>i /_(m) is the gamma function with
any positive real M , and
¢, ()= 4 arctan (e )-— 7 (2.4)
_-"\"
igs the separatrix motion (in case of m<OQ /4”= 14‘”'" e ).

(2.3)
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What is the impact of perturbation on the pendulum motion? The
first move would be to consider the perturbation as completely nonresg-
nant because of the condition A>>{ . Then, in the first approximation
of the asymptotic theory 7 the perturbation can be neglected, or
averaged out. Yet, in the second approximation it changes the
effective potential:

2
L/((,a):: a)f’- Co.sga — Q)oz’ (C’os ® - ZE—;\? Cos—?;ﬂ) (2.5)

and shifts the frequencies at both stable and unstable equilibria.

Now, let us inspect the perturbation more carefully. Is it really
completely nonresonant? And is the change (2.5) its only effect? Cer-
tainly, it is not on the separatrix , as is obvious from the boundless
spectrum (2.3). Hence, in some vicinity around separatrix we also can-
not neglect the perturbation even in the first approximation. That the
motion here is very sensitive to perturbation, which mekes it highly
intricate, has been found out and well recognized aslready by Poincare.
He was very close to the discovery of chaotic dynamics although he did
never use this sort of language, instead speaking just about homoclinic
solutions, or trajectories. One of the problems he has left to future
researchers was to find out the dimension, structure, and measure of
the homoclinic region near separatrix.

3. SOLUTION OF THE POINCARY PROBLEM

&. Separatrix mapping

First, we construct a mapping describing the motion near separa-
trix in finite time steps. It is natural to choose the motion period
T as the time step, Then, the change in energy > over this step is
given by the integral of the type (2.3) while the change in perturba-
tion phase @ is determined by the dependence (2.2). Thus, we arrive
at the separatrix mapping (W, 6)— (W 9)4:

w=w-+ % Sin 8; g=06+ )\'an—‘g—l- (3.1)
The new perturbation parameter g is given by the expression
~-F\N/2
2 2
E=-47eX e (3.2)

While g is proportional to small parameter & , it cannot be expand

in powers of adiabaticity parameter I/C\ . Hence, as is commonly
believed, the expression (3.2) as well as the map (3.1) gZo beyond the
asymptotic perturbation theory. However, one can argue in a different

way: it is not so much a fault of asymptotic theory but, rather, our
own failure to choose the proper, adequate perturbation parameter. In
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other words, the true small parameter of the adisbatic perturbation

is not the usual one f/)» s Which enters the original Hemiltonian, but
another one which explicitly takes account of weak resonances pregent
in spite of adiabatic conditions. An important point of this philoso-
phy relates to the fact that there is no principal difficulty in eval-
uating this g . The evaluation actually follows the usual asymptotic
procedure of successive approximations since the unperturbed separa-
trix motion (2.4) is used. The really crugial difference from earlier
unsuccesgful approaches to Poincaré's and similar problems lies in
seeking out the resonances even if they do appear to be absent.

Paremeter § immediately gives the so-called splitting of se~
paratrix, i.e. a gap between the two branches of separatrix going up
and down in time (the first corresponds to W= , and the second does
so to wW=0, the maximel gap being Zlgl ). This effect hasalso been
discovered by Poincare {Section 401). In our time it was further
studied by Melnikov 8, Shilnikov E and others.

Separatrix splitting is a very important dynamical phenomenon.
Yet, it does not tell us anything about a long-term evolution of the
gystem. Are variations of W restricted or unbounded?

Before we proceed further we transform (3.1) introducing a new
variable 3::107@5 s that is we fake half of separatrix splitting as
the unit for w . Ignoring & constant phase shift in the second equa-
tion (3.1) we arrive at the reduced map

y=y+ Sné; §=6-Xbelyl (3.3)

b. The standard map

Tor treating the separatrix mapping (3.3) analytically we in-
troduce another approximate model 4 by linearizing the second equa-
tion (3.3) in Y around one of resonant values of Y= Y, where
A ln g,:i&?‘r, and ¥ is any integer. We get the map

I=I+KS%ng; 8=6~+1 (3.4)
which is called the standard map since it is the final reducing step
for a number of pariticular problems in nonlinear dynamics 4, The new
momentum I=(gr~g)>\/g, , and the perturbation parameter:

= - "‘")\ (3.5)

K ™
The standard map provides a local (in 4 ) description for the previous
model (3.3) under the condition: \LJY— Yer|<< Yy » or A>>27° . TNote
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an additional symmetry of this map: I->I1+4%3r, which is not present
in (3.3). It is just this symmetry that considerably simplifies the
motion analysis since it makes the motion structure periocdic in momen-
tum I .

We replace, further, a discrete system (3.4) by the completely
equivaleni continuous one with Hamiltonian

oo

H(1,6,%)= .%f+ K-> Cos (8- 2art) (3.6)

=—- 00

which has an infinite series of (integer) resonances [=1,.=Zar , If
we single out one of them, say, r=0 , and ignore (average out) all
the others, we Jjust come back to the pendulum whose motion we intended
to study in this way. It is easy to see that leaving two more terms in
series (3.6) (r==%1 ) we completely recover the original problem
(2.1) with the parameters:

2 _Z22 .
Yet, it is not a vicious circle but a spiral of cognition! In a more
formal language it is called renormalization.

Now, let us mention, first of all, that the dynamics of a single
nonlinear resonance can be described as a pendulum motion, or in the
"pendulum approximetion®. As is shown in 4, this approximation is
applicable under fairly broad conditions. Moreover, the original prob-
lem (2.1) relates to the dynamics of several (three) resonances and,
hence, does include also the resonance interaction. Here, precisely,
lies the importance of the Poincare example and of the Poincaré problem.

Renormalized system (3.6) is not completely equivalent to the
original one (2.1) in that the former has infinitely many resonances
instead of three only for the latter. At the first glance, the problem
becomes, thus, much more complicated, yet this is not the case. Just
due to periodicity in I , the standard map, unlike the perturbed pen-
dulum, has a sharp critical value of its parameter Iﬁ(f== F(CF which
separates the bounded and unbounded variation of I . What is this
critical value? First, we may just refer to the numerical simulation 4
which gives }(cr= 0.989 22 1 to the accuracy within a few percent.
Using a completely different approach, based on a combination of
analytical as well as numerical procedures,Greene 10 has found o
0.971635. This latter result has been confirmed also in T, The ac-
curacy of this value is open to criticism '“, yet, at any event, it
is fairly close to the above numerical result.
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The critical 1( value can be also estimated, in order of mag-
nitude, from a simple resonance overlap criterion
s = Bw) _{/___\/ﬁ-(:' n 2o g (3.8)

_ Seo, 2 Lar

where 124¢ is the frequency of small phase oscillation on a resonance,
éhaﬂr is the resonance width, and Sco, is the spacing of resonances
under consideration, Even though Eq.(3.8) gives the correct order it
congsiderably overestimates ]<CY~/2.5 because only integer resonances
(w, = I, =4%r) are taken into account. Meanwhile, in higher appro-
ximations of perturbation theory the full set of resonances(@%q,=23”7@)
does appear which obviously lowers T(C,. A partial consideration of
those higher order regonances results in a much better estimate 4:
K2 1.1.

Below the threshold, that is for |K|< ! (we neglect the above
discrepancies in K. ), the I variation is gtrictly bounded by the
resonance width: |al|= 4vVK . Above the threshold the motion is
generally (depending on initial conditions) unlimited im I and
chaotic *. From Eq.(3.5) we immediately see that the motion near
geparatrix is chaotic within the layer [%{Ié A, or:

3 ~7A/2
lwl % w, = ME|=47ed@ (3.9)

This relation resolves 4 the Poincaré problem as to the dimension

of a homoclinic region. Thus, the whole homoclinic structure generated
by the two branches of split separatrix is chaotic and occupies a layer
whose width is about )\‘ times the separatrix splitting. That layer

is commonly termed as the stochastic layer.

¢c. Numerical evidence

The first numerical verification of estimate (3.9) was under-
taken 4 using the standard map as s model. Indeed, we have seen above
that the latter is essentially equivalent to the original system (2.1)
with paremeters (3.7). As to the other resonences in (3.6), their con-
tribution is exponentially small according to (3.9). There is an addi-~
tional complication with the standard map related to the fact that pa-
remeter £ = 2 is no longer small, On the other hand, numerical simu-

letion is much simpler, of course, for a map than for a continuous

system like (2.1). The first numerical experiments showed, however,

that Eq.(3.2) is not exact for the map, and an additional factor has
to be introduced:
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E—~>ER,; R,=x 215 (3.10)

Even though this factor can be calculated analytically as an effect

of higher approximations 4, its actual evaluation seems to be formi-
dable and constitutes an unsolved problem. This shows also that the
above assumed condition £ «< { is generally essential Ffor the validity
of Egqs. (3.2) and (3.9). Taking into account the factor (3.10), we

arrive at the expression j”f?’
-7 I/R(
w, = 6472 R,

7(3/2 (3.11)
to be compared with numerical data. In a completely different approach
this estimate has been confirmed in 13 except for the correction

(3.10). New and more accurate data, obtained by Vecheslavov, are pres-
ented in Fig.1 as the dependence of 10} on motion time (the number

of map iterations) for both the outer (curve 1) and the inner (curve
2) parts of stochastic layer (]( = 0.5). Note unusually big fluctua-
$ions which we are going to discuss below (Section 4c¢). The values of
W, were calculated from the mean motion period 7:n for a single tra-
jectory in the layer, using the relation

wy = 32-exp (1= VK" T..) (3.12)
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Fig. 1 Stochastic layer half-width vs. motion time

It is obtained via simple averaging of Eq.(2.2) agsuming the uniform
distribution of trajectory over the layer. Eq.(3.11) gives in this
case W, = .0329. Thus, the accuracy of simple estimate (3.11) is a-
bout 20 percent for this not a very big X = 8.,89.

The agreement can be improved by taking account of: i) frequen-
ey shift (2.5); ii) nonuniform equilibrium distribution in the layer
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(see Pig.2 as an example 14); iii) the effect of marginal resonsnce
ingide the layer 4, the final accuracy achieved being about 4 per-
cent. Note a slight asymmetry of the layer in Fig.1 which indicates
the accuracy of asympitotic relation (2.2).

I

@2 04 a6 @ 1 1

Fig. 2 EBquilibrium distribution of a single 7
trajectory in stochastic layer: # = 10

(broken lineg); £ = 4x106 (circles).

4. ON STRUCTURE OF THE CHAOS BORDER

Chaotic motion, particularly that in a stochastic layer, is, in
principle, undistinguishable from a true random process according %o
the slgorithmic theory of dynamical systems 3. The random means here
unpredictable, or uncomputable, which appears to be in conformity with
our intuitive ideas of what the random is like. However, the randomness
does not yet determine the statistical properties of motion. As is well
known, the most fundamental of them is correlation.

a. Diffugion near the border

Consider, firgt, the standard map (3.4). The “"force" correla-
tion is defined by

C.(z) = {Sin6(#+e)- Sin 6(2)p (4.1)

where averaging is performed either along a trajectory (in motion time
¢ ) or over an ergodic component of the motion. For sufficiently
large }( s when regular component of the motion is negligible, this
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correlation igs known to decay falrly fast s so that the sum

Z C (2) (4.2)

=1
does certainly converge. Hence, a simple statistical description of

the chaotlic motion is possible by means of the diffusion equation:

20(1,¢) _ 2% (1,2)
T» - DI 2 (4-3)

where the diffusion rate

D(K!) = f‘i”wg%é—)—z k [./+ 45 (l](/)] (4.4)

For large |K| the correlation correction 'S‘F /k/ e (4.2)

vanishes, and the diffusion rate approaches its limiting, uncorrelated
value ])oo = XK°/4. In the opposite case |K]—=1 the correlation domi-
nates, and diffusion rate rapidly decreases

DK ~ a-(Kl- 1) 4.5)

where Q2 1/5, and X % 2.55 according to numericel simulation.

For separatrix mapping (3.3) the diffusion becomes inhomogene-
ous since the dependence D(]K|) turns into D(|y]) according to Eq.(3.5).
Generally, the diffusion equation includes an additional (drift) term.
Indeed, the Fokker—Plank—Kolmovorov (FPK) equation can be written in
the form (see, e.g. 16 ):

o200 Q=X UG @
Here C?(Q,t) is the flux, and LLCy)ls the drlft velocity related to

equilibrium distribution #L C;) by the expression
d d
= = I .
Uly) 7s Dly) + 3(5/7;7 In b, (y) 4.7)
Inspection of Fig. 2 shows that there are two regions w1th1n a sto-

chastic layer where the drift can be neglected:

i) near the layer center where f’(y) = const exactly (variations
Oo
of f geen in Pig. 2 are due to fluctuastions) and where D{y)~ =
1/4;

ii) near the layer border where /iﬁy)ﬁéconst approximately only
(see below), and where

Do) ma(1-4L)7 (5.0
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(see Egqs. (4.5) and (3.5)). Since the border line is of a complicated
shape, the y variable above (as well as € ) is assumed to have been
transformed in such a way as to "straighten out" this line (]33!::).).

In a model like (2.1) the diffusion spreads across the layer,
and is obviously restricted by a finite layer width. Neglecting so far
the slow diffusion (4.8) at the layer edges, it takes f;’v )?’ itera~-
tions for a trajectory to get across the layer, or for a distribution
function to relax. Since, however, Eq.(4.4) 8+ill holds, a long time
correlation does arise due to the boundary conditions. How simple the
nature of that correlation may appear, it led %o a paradox (or, rather,
misunderstanding) 17-13 that the mixing precludes the diffusion in-
stead of implying it. & formal reason for such a surprise conclusion
is in that the mixing does provide existence of the limit in (4.4),
while the paradox is a result of too literal understanding of this
1imit. Tt reminds us of an additional (besides the mixing) condition
for the diffusion description of relaxation in a chaotic system to be
applicable, Namely, there must exist two different time scales of the
motion

Z, << 7, (4.9)

that of correlatlon decay ( ﬁ ) on which the limit (4.4) is asymptoti-

cal, and the other one of relaxatlon (t ) on which the same limit is

1oca.1 For example, the motion in a stochastic layer has i’ N_/ and
Y }\ , so that the condition (4.9) requires A>>1.

The long time correlation within stochastic layer is of a pri-
mary importance in many-dimensional systems where the diffusion along
the layer (the sc-called Arnold diffusion - ) does generally occur.
For the latter diffusion to be long-range, it has to be independent
of the diffusion across the layer (due to different perturbation terms
involved, for example) to get rid of that correlation.

Wow, what would be The impact of the slow diffusion (4.8) on
the motion in stochastic layer? It turns out Lo be crucial if the

exponent o0 > 2. Assume the following diffusion equation near the layer

Eﬁ. a¢_£_ (4.10)
3t bx 3K
where we have introduced a new variable X = {— y/)\ (‘3 >0), and

rescaled +t appropriately. First, let us try to find the eigenfunc-

border

tions, that is to solve the equation

4 g '—”I‘P 2 =0 (4.11)
dx X dX& + € 7286
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It admits a solution via the cyllndrlcal functions Z (z) (d'#'e}

- 71—
/ae(x).:x!?&% zaex z} p= ( (4.12)

If ot <{ the solution is regular at X = O, and the relaxation is expo-
nential. However, for ¢4 > 1 the solution is generally singular, and
one would expect a nonexponential relaxation.

The general solution of this diffusion problem is not known.
However, we may analyze a particular self-similar solution to Eq.(4.10)
which, as is easgily verified, reads:

¢! = C“P(S) C-s” exp(@é 9 s dw) (4.13)
=X'tl/@-2).

Here C is an arbitrary constant, and
the flux

X =0

Q(x,t):—x""%?:—x 5% "g'TGXP(@L‘«’f)S /(4 14)

is always zero, while demnsity SP(S) may be non-zero (for (< 0). Due
to the self-similar nature of this solution the second boundary condi-
tion cannot be imposed at any fixed X (e.g., at the layer center,

¥ = 1). However, asymptotically as £t —>00 it doesn't matter since
the diffugion mainly proceeds in an ever narrowing region at the layer
edge. The gize XD of this region ( S~ 1) scales with ¥ as
X:DOC £ (°c 2) , while for § —» 00 the flux (4.14) becomes independ~
ent of X .

If the initial density at the layer edge is less than that at
equilibrium, the relaxation corresponds to a negative (i.e. toward the
edge) flux ( C> 0), and to the boundary conditions:

(32)

(of) 0; (oo, )= /C’m/g 1 /g_ F“ 2«, (4.15)
(06 2)05"2

where equilibrium distribution /; is assumed to be constant, and

r(z) is the gamma funcition. Asymptotically as z‘—»oo, and except

the diffusion region ~v X:D , the relaxation proceeds as follows
oo

Ho(x,z‘)— 50()(,00)!—-» S}Qldt = ...".f..lzi (1.16)

2 pre 2
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In the opposite case a similar positive flux sets in (€< 0), and
Eq.(4.16) remains unchanged. Thus, the slow diffusion (ol > 2) near
the chaos border results in a power-type relaxation.

Since the time correlation of a pair of functions depends on
the relaxation for one of them, we would expect, generally, the same
power law (4.16) for the correlation as well. The latter may be faster
though, if the relaxing function is close to equilibrium one neasr the
border already from the beginning.

5.0

Y -1

53 g
a0 taeaal

L

Ol

Fig. 3 Electron current out of magnetic trap (arbltrary -9.9
units) ve., time (in msec); straight line: N oc

There is an interesting experiment on the behavior of electrons
in a magnetic trap 20 which appears to confirm a power-type relaxa-
tion. The authors 20 observed a nonegponential dependence on time
for the electron current Jt)=~eN out of the trap, due to a
chaotic motion of electrons in inhomogeneous magnetic field, and did
fit it by a doubly exponmential function. On the other hand, the chaotic

region of that electron motion is known %to always have the border 4.

If one rescales the data 20 ;. 4y, log-log plot, as shown in Fig. 3,
they perfectly fit, for a sufficiently large time, the power dependence
ﬁ& ol ﬁ"g with expoeent 4 ~ 2.2. This isg to be compared %o the
flux (4.14): @QoC ¢ "x-2 , whence o 2z 2.83. Remarkebly, this
value is not far away from that for the standard map (b= 2.55, see
(4.5)). It indicates some universal behavior near the chaos border.
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For further studies of this behavior +the Poincaré recurrencies proved
to be wvery useful 14.

'd
b. Poincare recurrenciesg

Congider separatrix map (3.3), and follow a single trajectory
while it crosses successively the symmetry line Y = O. The motion
time interval between two successive crogsings we shall call the re-
currence time ¢ . As motion proceeds the distribution of 2’ values
tends to & limiting function F:CEJ defined as the probability for a
recurrence to occur later than 2~ . Obviously, F(1) = 1 (for the
map), and generally F(Z°)— 0 ag 2 — o©. An exception from the lat-
ter ig, for example, the asymptotic motion (2.4) along the unperturbed
pendulum separatrix. Note that in case of the motion with discrete
spectrum (quasiperiodic or almost periodic motions) F(Z )= 0 at any

T greater than some 7, , while in chaotic motion F(Z”) # O for
8ll 2 . Poincaré recurrencies do not imply, thus, quesiperiodicity as
ig stated sometimes.

In stochastic layer motion the asymptotic behavior of P(72e)
as — 00 relates to the strgcture of the layer border. Such an ap-
proach was actually used in 1 where the power dependence

F(z)~2"F;, 221 (4.17)

z

has been found with p = 1/2. As was pointed out in 14, it corre-
gponds to the free homogeneous diffusion until the layer border is
reached, that is for 2 < >\9' . At larger T°>> >\9' the dependence
F(7’) approximately remains of a power-type but the exponent P changes;
according to numerical dats 14, the mean P for various A\ is
<p>as3/2. Begides, apparently irregular variations of p(72°) are
present which do not depend on trajectory and, hence, relate to the
border structure rather than to fluctuations in motion.

C. Scaling

As was mentioned above, there are numerical indications sug-
gesting some universal behavior near the chaos border in the phase
space. Now we are going to consider a theoretical model for this al-
leged universality. That the resonance structure determining transi-
tion to chaos is hierarchic has been known already since quite long
ago (see, e.g. 22’4). Yet, only in the pioneering work due to
Greene 10 that structure has been exploited to evaluate a critical
perturbation for the standard map. Hierarchic and scaling behavior at
the transition to chaos was further studied extensively in many papers
(see, e.z. 11513 and references therein). A distinctive feature of
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our problem (see also 23 ) is in that the perturbation strength here
is not a parameter, as for standard map, but rather s function of dy-
namical varisbles (mainly, momentum Yy for separatrix map (3.3)).
Thig leads just to a chaos border in the phase space rather than to
a critical perturbation strength.

Agsume the following scaling hypothesis: near the chaosg border
any two of dynamical variables (V°, W ) are interrelated by a power

W oC u o (4.18)

where ﬂw, is scaling parameter, and ,Dw, e = 1. Choosing one va-
riable () as the fundamental scaling unit we have

1 oC u_P”’ (4.19)

dependence ;

Such & scaling hypothesis is essentially identical to that in
the fluctuation theory of phase transitions 24 which leads to some
gimilarity of these two problems. However, important distinctions
should not be migssed. The scaling in phase transitions is continuous
and essentially statistical (fluctuation scaling), while in our prob-
lem scaling is discrete (see below), and does relate to both chaotic
as well as purely regular components of motion on both sides of the
chaos border. What makes the two problems similer is a crucial impact
of an infinite sequence of scales (continuous or discrete) upon the
behavior at transition.

Trangform (x, @) variables in such a way as %o provide: X oC
o (x)- Wg| near the border, 27 (k) being the motion frequency of
system (3.3) under consideration, and &3, = @ (0) the frequency at the
border x = 0. Hence: Pc = P+ O choosing (w—wg) as the funda-
mental scaling unit (p =1), ﬁ( = 1. Noteﬁhat in original variables
the exponent g, would depend on g (see ). The measure of chaotic
component Mec X gince at the border the resonances are just about to
overlap in all scales (comp. Fig. 2), whence /D/q = 1.

To proceed further we need to relate these scales to that of
time. It can be done via the overlap parameter S (3.8). The width
(Aco)?’ of a high order resonance @g= V/% depends on its phase
oscillation frequency .Q.q’ 4 5 q,CAcd) ~ g while the reso-
nance spacing Scoq/fv@ . The latter follows from the total number
of resonances, within a given interval of w , which is proportional
to q,g' . In o more formal way it is also implied from the bvest approxi-
mation of a given irrational number ( €&z in our case) by the con-
vergents of the continued fraction representation
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r C (wg)
W, — — | ~ —— (4.20)
[ € 9 I 4
Hence, at the chsos border ql
(aw)q, 2 (4.21)
The overlap para?ﬁeter ) is related to the Greene residue 10:
R, qu, . For standard map with I'Kf = C‘_ s which corresponds to

the chaos border in map (3.3), R — 1/4 as g-—o0 10 in accordance
with estimate (4.21). ‘

Suppose that a given scale is essentially determined by some
resonance coq/ . Then, the associated time scale would be T n .Q-
and (Aw) oclw - 0),]. Whence, ID =/D = =1/2. The scallng for

9 (3 T
diffusion rate near the border is, hence, ) ©C CAw) /T oC
XZ/T oC xi. , and the diffusion parameter o = 5/2 wh:l.ch is
cloge to the numerical values given above. /
2

Since resonance width (ACO) oc V , where . V$ is the
corresponding Fourier amplitude of the llmltlng perturbation 1n +the Ha-
miltonian (see below), the scaling (4.21) implies V oC q
i.e.the perturbation has two continuous derivatives only. This is pre-
cisely the critical smoothness of perturbation for the map 2 ’4. It
meang the following. If the initial perturbation l/o( 9) is an analytic
function, its Fourier amplitudes, as is well known, fall off exponen~
$ially, like V;OC eXp(— 6'062,) , for example. However, as we pro-
ceed to higher approximations the amplitudes grow, or parameter 6"
decreases °l; &° —» &(K). At critical perturbation the dependence
V;P n g becomes, as everything else, of power-type, that is
6‘( ) 0. On the other hand, asg is also known 2 s, the initial per-~
turbatlon needs not to be analytic for a chaos border to exist, instead
it suffices for V (9) to be only smooth, that is V cC ‘l - provided

Po > P, - Otherwise, the motion is chaotic for any non-zero periur
mwmtion strength.

As was mentioned above, the scaling near the chaos border is
discrete. It means that there exists a denumerable sequence of princi-
pel sceles which is determined by a sequence of resonances ="V, /Q/n,
converging to the border: vy, /q, —> Wy as q, — ©Oo ., The resonance
sequence depends on arithmetical properties of irrational Wy , for
example, on its representation ag a continued fraction: {w } =
[é,, @ yeses €45 ] Wwhere g, >4 are integers, and brackets denote
the fractlonal part. According to Greene's conjecture 10 @, is the

"golden mean", i.e. {mg}- 34.— [4;1,..., s = (V54 )/2"'06!2
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It is not known whether this is true for the standard map but general-
ly it does not hold 2’23. A much weeker hypothesis that ¢35 has
a "golden tail", i.e. {‘OGIS = [84’ s @n, 1, o+, 4, ] seems plausible.
The main problem is to match the arithmetic of 0, to the critical
value of K which depends on X (comp. 23). Apparently, the dis-
crete scaling accounts for p(?' ) variations mentioned above.

Pinally, let us estimate the contribution to Poincaré recur-
rences from internal chaos borders of resonance stochastic layers.
That there are many such layers within the main layer is immediately
geen in Pig. 2 from a low equilibrium density near the border. It
also follows from the limiting wvalue of Greene residue R = 1/4 which
means that the resonance centers near the border are not destroyed.

Let the time scale of a given resonance be Tq, . Then the mean
sojourn time in its region of measure Mg € X‘L is, due to ergodicity,
NQ.T‘.V /t oc Xg » where N‘Z ig the number of entries into this
region, and 2 is the total motion time. Assume the universal distri-
bution of Poincaré recurrences F(’c:') o< @—Fwith gome, unknown so
far, P . Particularly, this implies the probability F?« oC (7;,/?'),;

(q,/’a')F (2" 4, ) for any internal chaos border of a resonance
stochastic layer. Then, the contribution to Poincaré recurrences in
the mein layer from a particular resonance would be

) %97 " ¢ g7’ |
F qu,F%/NOC ~ v °C'~€_—7,:“ (4.22)

where MNocC ¥ is the total number of recurrences. Now we need to sum
up the contributions of all undestroyed resonances which do retain
their stochastic layers. The number of those resonances can be esti-
mated as follows. Define the border zone X, (CI«) ag G'(Xz)- Q ~ 1
where @’CX) is the exponential factor of the perturbation Fourier
amplitudes introduced above. Assuming a linear dependence &(x) ¢ X
near the border we arrive at the gealing Xz ol CL- for the border
zone gize. The latter implies that for a given g Just one resonance
gets into this zone, so we are to merely sum up contributions (4.22)
over ¢, :

/ 3 &) 1 / In
~ F ol 5 #f,‘ FOC 3 =£
F %I (P‘z)?z P 2_2 P

/ R
From universality F (&)~ F(), and P = 2. Pirst of all, this
would imply that the main contribution to Poincaré recurrences were
not due to the diffusion near the main layer border dbut from a laby-
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rinth of infinite hierarchies of internal chaos borders where the
trajectory spends most of its recurrence time. If confirmed, it would
tory spends most of its recurrence time. If confirmed, it would
also mean that near the chaos border the above scaling hypothesis
holds only approximately, to logarithmic accuracy. This also would
change the behavior of both relaxation as well as correlation near
the chaos border as compared to estimates in Section 4a based upon
the diffusion equation (4.10). In any event, a power-type relaxation
inevitably leads to big fluctuations in motion which are clearly seen,
for example, in Fig. 2.

Certainly, the problem of the chaos border structure needs
and deserves further studies.

Acknowledgements

» T would like to express my sincere gratitude to D.L.Shepe-
lyansky, Ya.G.Sinai, V.V.Vecheslavov and F.Vivaldi for many interest-
ing and helpful discussions on the problems touched upon in this lec-
ture.

REFERENCES

1. V.I.Arnold and A.Avez, Ergodic Problems of Classical Mechanics,
Benjamin (1968).

2. I.P.Kornfeld, Ya.G.Sinai, S.V.Fomin, Ergodic Theory, Nauka, 1980
(in Russian).

3. V.M. Alekseev and M.V. Yakobson, Physics Reports, 75, 287 (1981).

4. B.V.Chirikov, Physics Reports, 52, 263 (1379).

5 A.J, Lichtenberg and M.A, Lieberman, Regular and Stochastic Mo~
tion, Sprigger-Verlag (1982). h

6. H. Poincare, Les methods nouvelles de la mechanique céleste,

Vol. II (18937, Sections 225-232; Vol. 1 , section 401.

7. WNW.N, Bogoliubov and Yu.A. Nitropolsky, Agsymptotic Methods in the
Theory of Nonlinear Ogcillations, Hindustan Publ. Corp., Dehli,
19671.

8. V.K. Melnikov, Dokl. Akad. Nauk SSSR, 144, 747 (1962) (in Russian).

9., L.P., Shilnikov, Mat. sbornik, 77, 461 68) (in Russian).

10. J.M. Greene, J. Math. Phys. 20, 1183 (1979).

11. L.P.Kadanoff, Phys. Rev. Lett. 47, 1641 (1981); S.J. Shenker
and L.P, Kadanoff, J. Stat. Phys., 27, 631 (1982).

12. B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, in Soviet
Scientific Reviews, Section C, Vol. 2 %1981), p. 209,

13. TD.F. Escande, Large-Scale Stochasticity in Hamiltonian Systems,
Intern. Conf. on Plasma Physics, G&teborg (1982). .

14. B.V. Chirikov, D.I. Shepelyansky, Statistics of the Poincare
Recurrences and the Structure of Stochastic layer of a Nonlinear
Regonance, Preprint 81-69, Institute of Nuclear Physics, Novosi-

irsk (1981) (in Russian).

15. C. Grebogi and A,N. Kaufman, Phys. Rev., A24, 2829 (1981).

16. E.M. Lifshits, L.P. Pitaevsky, Physical Kinetics, Nauka (1979)

(in Russian).

17. J.L, Lebowitz, in Statistical Mechanicg, New Concepts, New Prob-
lems, New Appliggtions, Univ. of Chicago Press (1972).

18. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, .
Wiley, New York (1975), Appendix.

45



19.
20.
21.

22.
23.

24.
25.
26.
27.

G.E. Norman,L.S. Polak, Dokl. Akad. Nauk SSSR, 263, 337 (1982)
(in Russian).

D. Bora, P.I. John, Y.C. Saxena and R.K. Varma, FPlasma Physics,

22, 653 (1980).

§7R.O§hannon and J.L. Lebowitz, Ann. W.Y. Acad. Sci., 357, 108
1980).

J.M. Greene, J. Math. Phys., 9, 760 (1968).

J.M. Greene, in Nonlinear Dynamicg and the Beam-Beam Interaction,

A.I.P. Conf. Proc., N°57 (19%95, P. 257,

A.7, Patashinskii and V.L. Pokrovskii, Fluctuation Theory of

Phase Transitions, Pergamon (1979).

A.Ya. Khinchin, Continued Fractions, Fizmatgiz, Moscow (1961)
(in Russian).

J. Noser, Stable and Random Motions in Dynamical Systems,

Princeton Univ. Press (1973).

V.I. Arnold, Usp. mat. nauk, 18, N°6, 91 (1963)(in Russian).

46



