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I. INTRODUCTION 

The subject of this lecture is related to a peculiar dynamical phe- 

nomenon in classical mechanics commonly termed among physicists as the 

chaotic, or stochastic, motion. Until recently the mathematicians used~ 

speak just about ergodic properties of a dynamical system. However, 

nowadays the term "random motion" becomes also popular. I would like 

to emphasize from the beginning that the problem we are going to dis- 

cuss is purely dynamical, without any random element either in the 

equations of motion or in the initial conditions. Hence, the term - dy- 

namical, or intrinsic chaos. Below we restrict ourselves to only Hamdl- 

tonian dynamics for which the invariant measure (phase space volume) 

is known beforehand, unlike dissipative systems. 

The interest in the dynamical chaos is ~ofold. Pirst, it is a 

fundamental phenomenon in physics which, in particular, gives, at last, 

a long-awaited model for the true random process. Second, no matter 

how strange the random dynamics may appear it turns out to be fairly 

wide-spread in many fields of science and technology as, in particular, 

the present Conference demonstrates. 

In a rare occasion, when chaos comprises all the phase space of a 

dynamical system or, at least, a whole invariant surface of the mo- 

tion, a fairly simple statistical description is possible as contrasted 

to most complicated dynamical picbures of motion. In many cases~ how- 

ever, the situation is not that simple. A typical example is ~he so- 

called divided phase space,divided into regions of both chaotic and regu 

lar motions separated by highly intricate borders. It is the structure 

of that chaos border which considerably complicates statistical descrip- 

tion of the motion. Even though the mathematical theory of dynamical 

systems admits divided phase space and, moreover, terms it by a special 

notion - ergodic component - not much is actually known thus far on 

the dynamical behavior therein. Below we are going to consider a number 

of selected questions related to this topic° I choose an old Polncare 
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problem, which is still not solved completely, to discuss some recent 

developments in this field. A general review of the modern mathematical 

theory can be found in I-3, while related physical theory is surveyed, 
e.g., in 4,5 

2. POINCARE'S PROBLEM 

We begin with a "simple" example considered by Poincare 6 in his 

attempt to understand profound difficulties arising in the study of 

nonlinear dynamics, in general, and of the famous three body problem, 

in particular. Much later, this example has proven to typify a fairly 

general situation in Hamiltonian dynamics (see 4 and Section 3b be- 

low). 

Consider the motion of the ordinary pendulum under a high fre- 

quency parametric perturbation as described by the Hamiltonian 

Here ~ is  the angular pos i t i on ,  of pendulum ( ~  = 0 corresponds to 
the unstable equilibrium);p = ~ is the angular momentum and 60 o is 

the frequency of small oscillation. The perturbation is characterized 

by two small parameters: that of strength ~, and of adiabaticity 

~/k---6~@/.(~, A'~= 8. The motion of the unperturbed (a = O) pendulum, 

as is well known, is periodic for any initial conditions with one im- 

portant exception corresponding to the value of H = ~O~ . The latter 

trajectory is called separatrix since it separates the pendulum oscil- 

lation ( H< 60~) from its rotation ( H> oD-~ ). In what follows the 

separatrix is going to play a leading part in dynamical chaos. The 

motion period 7" is increasing indefinitely when approaching separa- 

trix. In in,mediate vicinity of the latter 

T I '1 
The separatrix motion is, thus, aperiodic, and it has continuous ~eurier 

spectrum which may be characterized by the integral 4: 

= " e 

The l as t  expression holds fo r  k>> ~; U(~) is  the gamma funct ion  wi th  
.6 any positive real ~,. , and 

-mk 
is the separatrix motion (in case of ~<0 /~.-- /'/im I" e ). 
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V~at is the impact of perturbation on the pendulum motion? The 

first move would be to consider the perturbation as completely nonreso- 

nant because of the condition ~>> ~ . Then, in the first approximation 

of the asymptotic theory 7 the perturbation can be neglected, or 

averaged out. Yet, in bhe second approximation it changes the 

effective potential: 

and shifts the frequencies at both stable and unstable equilibria. 

Now, let us inspect the perturbation more carefully. Is it really 

completely nonresonant? And is the change (2.5) its only effect? Cer- 

tainly, it is not on the separatrix , as is obvious from the boundless 

spectrum (2.3). Hence, in some vicinity around separatrix we also can- 

not neglect the perturbation even in the first approximation. That the 

motion here is very sensitive to perturbation, which makes it highly 

intricate, has been found out and well recognized already by Poincare. 

He was very close to the discovery of chaotic dynamics although he did 

never use this sort of language, instead speaking just about homoclinic 

solutions, or trajectories. One of the problems he has left to future 

researchers was to find out the dimension, structure, and measure of 

the homoclinic region near separatrix. 

3. SOLUTION O~ THE POINCARE PROBLEM 

a. Se~aratrix maDoing 

First, we construct a mapping describing the motion near separa- 

trix in finite time steps. It is natural to choose the motion period 

T as the time step° Then, the change in energy ~ over this step is 

given by the integral of the type (2.3) while the change in perturba- 

tion phase ~ is determined by the dependence (2.2). Thus, we arrive 

at the separatrix mapping ------~--~0~4: 

= ÷ (3, 

The new perturbation parameter ~ is given by the expression 

- -P'A  
(3.2] 

While ~ is proportional to small parameter ~ , it cannot be expand 

in powers of adiabaticity parameter ~/~ . Hence, as is commonly 

believed, the expression (3.2) as well as the map (3.1) go beyond the 

asymptotic perturbation theory. However, one can argue in a different 

way: it is not so much a fault of asymptotic theory but, rather, our 

own failure to choose the proper, adequate perturbation parameter. In 
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other words, the true small parameter of the adiabatic perturbation 

is not the usual one #/~ , which enters the original Hamiltonian, but 

another one which explicitly takes account of weak resonances present 

in spite of adiabatic conditions. An important point of this philoso- 

phy relates to the fact that there is no principal difficulty in eval- 

uating this ~ . Theevaluation actually follows the usual asymptotic 

procedure of successive approximations since the unperturbed separa- 

trix motion (2.4) is used. The really crucial difference from earlier 
, f 

unsuccessful approaches to Polncare's and similar problems lies in 

seeking out the resonances even if they do appear to be absent. 

Parameter ~ immediately gives the so-called splitting of se- 

paratrix, i.e. a gap between the two branches of separatrix going up 

and down in time (the first corresponds to ~0"= O , and the second does 

so to ~)'=0, the maximal gap being ~I~I )" This effect hasalso been 
• - 6 discovered by Polncare (Section 401). In our time it was further 

studied by Melnikov 8, Shilnikov 9 and others. 

Separatrix splitting is a very important dynamical phenomenon. 

Yet, it does not tell us anything about a long-term evolution of the 

system. Are variations of aY restricted or unbounded? 

Before we proceed further we transform (3.1) introducing a new 

variable ~=%¢/~ , that is we take half of separatrix splitting as 

the unit for %O'. Ignoring a constant phase shift in the second equa- 

tion (3.1) we arrive at the reduced map 

= + = (3.3) 

b. The standard map 

For treating the separatrix mapping (3°3) analytically we in- 

troduce another approximate model 4 by linearizing the second equa- 

tion (3.3) in ~ around one of resonant values of ~ ~r where 

~.~ ~r=~OT'r, and ~ is any integer. We get the map 

T =  Z + # = o +  i (3.4) 
which is called the standard map since it is the final ~educing step 

for a number of particular problems in nonlinear dynamics 4. The new 

momentum I = (~r- ~) ~/~ , and the perturbation parameter: 

k 
= - (3.5) 

The standard map provides a local (in ~ ) description for the previous 

model (3.3) under the condition: I~,-- ~r-~l << ~ ' or ~>>~. Note 
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an additional symmetry of this map: ~-~+~r, which is not present 

in (3.3). It is just this symmetry that considerably simplifies the 

motion analysis since it makes the motion structure periodic in momen- 

tum 

We replace, further, a discrete system (3°4) by the completely 

equivalent continuous one with Hamiltonian 4 

+ t< 'Z  C°'C (3.6) 

which has an infinite series of (integer) resonances ~= ~r = ~r . If 

we single out one of them, say, F= O , and ignore (average out) all 

the others, we just come back to the pendulum whose motion we intended 

to study in this way. It is easy to see that leaving two more terms in 

series (3°6) ( ~ = ~ ~ ) we completely recover the original problem 

(2.1) with the parameters: 

(3.7) 

Yet, it is not a vicious circle but a spiral of cognition! In a more 

formal language it is called renormalizationo 

Now, let us mention, first of all, that the dynamics of a single 

nonlinear resonance can be described as a pendulum motion, or in the 

"pendulum approximation". As is shown in 4, this approximation is 

applicable under fairly broad conditions. Eoreover, the original prob- 

lem (2.1) relates to the dynamics of several (three) resonances and, 

hence, does include also the resonance interaction. Here, precisely, 

lies the importance of the Poincare example and of the Poincar~ problem. 

Renormalized system (3.6) is not completely equivalent to the 

original one (2.1) in that the former has infinitely many resonances 

instead of three only for the latter. At the first glance, the problem 

becomes, thus, much more complicated, yet this is not the case. Just 

due to periodicity in ~ , the standard map, unlike the perturbed pen- 

dulum, has a sharp critical value of its parameter I~I = ~a~ which 

separates the bounded and unbounded variation of ~ . What is this 

critical value? First, we may just refer to the numerical simulation 4 

which gives ~¢r = 0.989 ~ I to the accuracy within a few percent. 

Using a completely different approach, based on a combination of 
lO 

analytical as well as numerical proeedu~es,Greene hss found ~c~= 

0.971635. This latter result has been confirmed also in ll. The ac- 
curacy of this value is open to criticism 'a, yet, at any event, it 

is fairly close to the above numerical result. 
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The critical ~ value can be also estimated, in order of mag- 

nitude, from a simple resonance overlap criterion 4 

. . . . .  
s = ------ ~ ~ @/A, ~ ~ (3.8) 

where /~@ is the frequency of small phase oscillation on a resonance, 

CA~)w is the resonance width, and ~oDw is the spacing of resonances 

under consideration. Even though Eq.(3.8) gives the correct order it 

considerably overestimates ~'~2.5 because only integer resonances 

(~0~= I v =~Z)are taken into account. Eeanwhile, in higher appro- 

ximations of perturbation theory the full set of resonances (~r@ =~z/9) 

does appear which obviously lowers ~c~- A partial consideration of 

those higher order resonances results in a much better estimate 4: 

~1 1 

Below the threshold, that is for I~I < ~ (we neglect the above 

discrepancies in ~ ), the [ variation is strictly bounded by the 

resonance width: l~II~ ~ . Abo~e the threshold the motion is 

generally (depending on initial conditions) unlimited in I and 

chaotic 4. ~rom Eq.(3.5) we immediately see that the motion near 

separatrix is chaotic within the layer l~I~ k , or: 

Xl l 3e- A/  : " - "  (3-9)  

This relation resolves 4 the Polncare problem as to the dimension 

of a homoclinic region. Thus, the whole homoclinic structure generated 

by the two branches of split separatrix is chaotic and occupies a layer 

whose width is about ~ times the separatrix splitting. That layer 

is commonly termed as the stochastic layer. 

C. Numerical evidence 

The first numerical verification of estimate (3.9) was under- 

taken 4 using the standard map as a model. Indeed, we have seen above 

that the latter is essentially equivalent to the original system (2.1) 

with parameters (3.7). As to the other resonances in (3.6), their con- 

tribution is exponentially small according to (3.9). There is an addi- 

tional complication with the standard map related to the fact that pa- 

rameter ~ = 2 is no longer small. On the other hand, numerical simu- 

lation is much simpler, of course, for a map than for a continuous 

system like (2.1). The first numerical experiments showed, however, 

that Eq.(3.2) is not exact for the map, and an additional factor has 

to be introduced: 
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Even though this factor can be calculated analytically as an effect 

of higher approximations 4, its actual evaluation seems to be formi- 

dable and constitutes an unsolved proble m. This shows also that the 

above assumed condition E 4< ~ is generally essential for the validity 

of Eqs. (3.2) and (3.9). Taking into account the factor (3.10), we 

arrive at the expression _j~/.~/~-~ 
/v,% 

to  be compared w i t h  numer i ca l  da ta .  In  a c o m p l e t e l y  d i f f e r e n t  approach 

t h i s  es t ima te  has been con f i rmed  i n  13 except  f o r  the c o r r e c t i o n  

( 3 . 1 0 ) .  New and more accu ra te  da ta ,  ob ta ined  by  Veches lavov ,  are p r e s -  

en ted i n  ~ i g .1  as the dependence o f  ~ on mot ion t ime ( the  number 

of map iterations) for both the outer (curve 1) and the inner (curve 

2) parts of stochastic layer (~ = 0.5). Note unusually big fluctua- 

tions which we are going to discuss below (Section 4c)~ The values of 

%~T s were calculated from the mean motion period 7"~ for a single tra- 

jectory in the layer, using the relation 4 

= e x p  (3. 

2 ! 

7 8 eogt 

Pig. I Stochastic layer half-width vs. motion time 

It is obtained via simple averaging of Eq.(2.2) assuming the uniform 

distribution of trajectory over the layer. Eq.(3.11) gives in this 

case ~ = .0329. Thus, the accuracy of simple estimate (3.11) is a- 

bout 20 percent for this not a very big ~ = 8.89° 

The agreement can be improved by taking account of: i) frequen- 

cy shift (2.5); ii) nonuniform equilibrium distribution in the layer 
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(see Fig.2 as an example 14); iii) the effect of marginal resonance 

inside the layer 4, the final accuracy achieved being about 4 per- 

cent. Note a slight asymmetry of the layer in Fig°1 which indicates 

the accuracy of asymptotic relation (2°2). 

~ig. 2 

tO 

O.6 

I 

Equilibrium distribution of a single 
trajectory in stochastic layer: ~ = 10 7 

(broken line); ~ = 4xi0 6 (circles)° 

4. ON STRUCTURE OF THE CHAOS BORDER 

Chaotic motion, particularly that in a stochastic layer, is, in 

principle, undistinguishable from a true random process according to 

the algorithmic theory of dynamical systems 3. The random means here 

unpredictable, or uncomputable, which appears to be in conformity with 

our intuitive ideas of what the random is like. However, the randomness 

does not yet determine the statistical properties of motion. As is well 

known, the most fundamental of them is correlation° 

a° Diffusion near the border 

Consider, first, the standard map (3-°4). The "force" correla- 

tion is defined by 

where averaging is performed either along a trajectory (in motion time 

) or over an ergodic component of the motion° For sufficiently 

large ~ , when regular component of the motion is negligible, this 

36 



correlation is known to decay fairly fast 15 , so that the sum 

"~= 4 
does certainly converge. Hence, a simple statistical description of 

the chaotic motion is possible by means of th~ diffusion equation: 

where the diffusion rate 

(4.3) 

(4 .4)  

For large I~1 the c o r r e l a t i o n  co r rec t i on  "~F zv "'"1t<1 (4.2) 
Vanishes, and the diffusion rate approaches its limiting, uncorrelated 

value ~ = K2/4. In the opposite case I~I --~ ~ the correlation domi- 

nates, and diffusion rate rapidly decreases 4 

where ~ 1 / 5 ,  and 0 ~  2 .55 acco rd ing  to numer ica l  s i m u l a t i o n .  

For separatrix mapping (3.3) the diffusion becomes inhomogene- 

cue since the dependence D(IKI) turns into D(JyJ) according to Eq.(3.5). 

Generally, the diffusion equation includes an additional (drift) term. 

Indeed, the Jokker-Plank-Kolmogorov (JPK) equation can be ~vritten in 

the form (see, e.g. 16): 

Here " ~ - -  "~ / (~ ;¢ ]  i s  the f l u x ,  and ~ ( ~ ) i s  the d r i f t  v e l o c i t y  re la ted  to 
equilibrium distribution :o (~) by the expression 

t , l .4 )=  D (W + =i 2,, po(<,<,) (4.7) 

Inspection of Jig. 2 shows that there are two regions within a sto- 

chastic layer where the drift can be neglected: 

i) near the layer center where :o~) = const exactly (variations 

of :o seen in Jig. 2 are due to fluctuations) and where -----~){~}~)~= 

1 1 4 ;  

ii) near the layer border where ~¢~2 ~ const approximately only 

(see below), and where 

' - ( 4 . 8 )  
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(see Eqs° (4.5) and (3°5)). Since the border line is of a complicated 

shape, the y variable above (as well as ~ ) is assumed to have been 

transformed in such a way as to "straighten out" this line (I~I = k )° 

In a model like (2.1) the diffusion spreads across the layer, 

and is obviously restricted by a finite layer width. Neglecting so far 

the slow diffusion (4.8) at the layer edges, it takes ~r~ itera- 

tions for a trajectory to get across the layer, or for a distribution 

function to relax° Since, however, Eq.(4.4) still holds, a long time 

correlation does arise due to the boundary conditions. How simple the 

nature of that correlation may appear, it led to a paradox (or, rather, 

misunderstanding) 17-19 that the mixing precludes the diffusion in- 

stead of implying it. A formal reason for such a surprise conclusion 

is in that the mixing does provide existence of the limit in (4.4), 

while the paradox is a result of too literal understanding of this 

limit. It reminds us of an additional (besides the mixing) condition 

for the diffusion description of relaxation in a chaotic system to be 

applicable. Namely, there must exist two different time scales of the 

motion 

¢C << ~r (4.9) 

that of correlation decay ( ~C ) on which the limit (4.4) is asymptoti- 

cal, and the other one of relaxation (~p) on which the same limit is 

local. For example, the motion in a stochastic layer has ~C-v~, and 

~r ~ ~£' so that the condition (4.9) requires k>m ~. 

The long time correlation within stochastic layer is of a pri- 

mary importance in many-dimensional systems where the diffusion along 

the layer (the so-called Arnold diffusion 4) does generally occur. 

~or the latter diffusion to be long-range, it has to be independent 

of the diffusion across the layer (due to different perturbation terms 

involved, for example) to get rid of that correlation. 

Now, what would be the impact of the slow diffusion (4.8) on 

the motion in stochastic layer? Ib turns out to be crucial if the 

exponent O0~ 2. Assume the following diffusion equation near the layer 

border 

- 

~ - ~× 
where we have introduced a new variable X = I-- a/a (~ >o), and 

rescaled t appropriately. First, let us try to find the eigenfunc- 

tions, that is to solve the equation 

x + = o 
dx a-"E' 
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It admits a solution via the cylindrical functions 7f~~p(zj~.=/=~], 

; p = (4.~2) 

I f ~  the solution is regular at X = 0, and the relaxation is expo- 

nential. However, for ~ I the solution is generally singular, and 

one would expect a nonexponential relaxation. 

The general solution of this diffusion problem is not known. 

However, we may analyze a particular self-similar solution to Eq.(4.10) 

which, as is easily verified, reads: 

Here C 
the flux 

, j f :  -- "%) %'_= ) C.s . e × p  s ~4.~3) 

is an arbitrary constant, and S ~--- X" "~ {/~-'~') . At X = 0 

is  always zero, while density ~(SJmay be non-zero ( for  C ~  o). Due 
to the self-similar nature of this solution the second boundary condi- 

tion cannot be imposed at any fixed X (e.g., at the layer center, 

= I). However, asymptotically as ~-~0o it doesn't matter since 

the diffusion mainly proceeds in an ever narrowing region at the layer 

edge. The size ~-~ of this region ( ~ I) scales with ~ as 
4/ (~  - ~ ) 

d ~  

X ~  ~ - ,  while for g--~ OO the flux (4.14) becomes independ- 

ent of X • 

If the initial density at the layer edge is less than that at 

equilibrium, the relaxation corresponds to a negative (i.e. toward the 

edge) flux (C> o), and to the boundary conditions: 

where equilibrium distribution ~o is assumed to be constant, and 

/-(z) is the gamma function. Asymptotically as ~-~oo, and except 

the diffusion region ,v X~) , the relaxation proceeds as follows 

]7~Cx>,) cpe'x.,~o)l.---,- IIQId-~- <~-~ - -  - -  #_~_ ( 4 . 1 6 )  
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In the opposite case a similar positive flux sets in (~< 0), and 

Eq.(4.16) remains unchanged. Thus, the slow diffusion (~> 2) near 

the chaos border results in a power-type rel~xationo 

Since the time correlation of a pair of functions depends on 

the relaxation for one of them, we would expect, generally, the same 

power law (4.16) for the correlation as well. The latter may be faster 

though, if the relaxing function is close to equilibrium one near the 

border already from the beginning. 

I.o 

O~ 

O.I 

@ @@@ 
@®@ 

@@@ 
-. 

-...,,. 
.-.. 

\ 
"k 

, , , I , , I I  ¢ \  
0.5 L~ t 

Pig. 3 Electron current out of magnetic trap (arbitrary 
units) vs° time (in msec); straight line: ~ ~ - ~ ' £  

There is an interesting experiment on the behavior of electrons 

in a magnetic trap 20 which appears to confirm a power-type relaxa- 
20 

tion. The authors observed a nonexponential dependence on time 

for the electron current ~(~)=- e~ out of the trap, due to a 

chaotic motion of electrons in inhomogeneous magnetic field, and did 

fit it by a doubly exponential function. On the other hand, the chaotic 

region of that electron motion is known to always have the border 4 

If one rescales the data 20 in the log-log plot, as shown in Pig. 3, 

they perfectly fit, for a sufficiently large time, the power dependence 

N ~ ~-~ with exponent ~ ~ 2o2.  This is to be compared to the 

flux (4.14): ~ ~ ~-~ , whence ~.~ 2.83. Remarkably, this 

value is not far away from that for the standard map (oO~ 2.55, see 

(4o5)). It indicates some universal behavior near the chaos border. 

40 



For further studies of this behavior the Poincare recurrencies proved 

to be very useful 14 

b. Poincare recurrencies 

Consider separatrix map (3.3), and follow a single trajectory 

while it crosses successively the symmetry line ~ = 0. The motion 

time interval between two successive crossings we shall call the re- 

currence time ~ . As motion proceeds the distribution of ~ values 

tends to a limiting function F('d ~) defined as the probability for a 

recurrence to occur later than ~ . Obviously, F(1) = I (for the 

map), and generally P(~)-~0 as ~-~c~. An exception from the lat- 

ter is, for example, the asymptotic motion (2°4) along the unperturbed 

pendulum separatrix. Note that in case of the motion with discrete 

spectrum (quasiperiodic or almost periodic motions) F(~)--~- 0 at any 

greater than some ~ , while in chaotic motion F(~) ~ 0 for 
• s 

all ~ ° Polncare recurrencies do not imply, thus, quasiperiodicity as 

is stated sometimes. 

In stochastic layer motion the asymptotic behavior of ~(~) 

as ~--,oo relates to the structure of the layer border. Such an ap- 
21 

proach was actually used in where the power dependence 

has been found  w i t h  p = 1 /2 .  As was p o i n t e d  ou t  i n  14 i t  c o r r e -  

sponds to the free homogeneous diffusion until the layer border is 

reached, that is for ~ ~£ . At larger ~>>~ the dependence 

F(~) approximately remains of a power-type but the exponent p changes; 

according to numerical data 14 the mean , ~ for various ~ is 

~p>~3/2. Besides, apparently irregular variations of p(~) are 

present which do not depend on trajectory and, hence, relate to the 

border structure rather than to fluctuations in motion. 

c. Scaling 

As was mentioned above, there are numerical indications sug- 

gesting some universal behavior near the chaos border in the phase 

space. Now we are going to consider a theoretical model for this al- 

leged universality. That the resonance structure determining transi- 

tion to chaos is hierarchic has been known already since quite long 

ago (see, e.g. 22,4). Yet, only in the pioneering work due to 

Greene 10 that structure has been exploited to evaluate a critical 

perturbation for the standard map. Hierarchic and scaling behavior at 

the transition to chaos was further studied extensively in many papers 

(see, e.g° 11,13 and references therein). A distinctive feature of 
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our problem (see also 23) is in that the perturbation strength here 

is not a parameter, as for standard map, but rather a function of dy- 

namical variables (mainly, momentum ~ for separatrix map (3.3)). 

This leads just to a chaos border in the phase space rather than to 

a critical perturbation strength. 

Assume the following scaling hypothesis: near the chaos border 

any two of dynamical variables (%P, ~) are interrelated by a power 

dependence: Pu~ 

,U~oc t4. (4.18) 

where fl~ is scaling parameter, and p~ • ~ = I. Choosing one va- 

riable (~) as the fundamental scaling unit we have 

oC ~ # ~  (4.19) 

Such a scaling hypothesis is essentially identical to that in 

the fluctuation theory of phase transitions 24 which leads to some 

similarity of these two problems. However, important distinctions 

should not be missed. The scaling in phase transitions is continuous 

and essentially statistical (fluctuation scaling), while in our prob- 

lem scaling is discrete (see below), and does relate to both chaotic 

as well as purely regular components of motion on both sides of the 

chaos border. What makes the two problems similar is a crucial impact 

of an infinite sequeuce of scales (continuous or discrete) upon the 

behavior at transition. 

Transform (x, ~ ) variables in such a way as to provide: × oC 

100(×)- ~ near the border, ~,oO@) being the motion frequency of 

system (3.3) under consideration, and oD~ = oo~o] the frequency at the 

border x = O. Hence: Px = fl~ ' or, choosing (~O-o0~) as the funda- 

mental scaling unit ( ~  ~ ), ~ = I. Note that in original variables 

the exponent fl~ would depend on ~ (see 11). The measure of chaotic 

component /wc~ X since at the border the resonances are Just about to 

overlap in all scales (comp. Fig. 2), whence ~/ = I. 

To proceed further we need to relate these scales to that of 

time. It can be done via the overlap parameter S (3.8). The width 

~oo)~ of a high order resonance ~= r/~ depends on its ph&se 

oscill~tion frequency ~ as 4,5: ~6a~))~-v_O.~ while the reso- 

~60~,v~ -z.. The latter follows from the total number nance spacing 

of resonances, within a given interval of ~O , which is proportional 

to ~ . In a more formal way it is also implied from the best approxi- 

mation of a given irrational number ( cO~ in our case) by the con- 

vergents of the continued fraction representation 25: 
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I - T I ~ 
Hence, at the chaos border 

The over lap parameter S~ i s  re la ted  to the Greene res idue 1 0  
~ ~ £ £  For standard map w i t h  IKI = ~ = , ,  which corresponds to 

" 10 the chaos border in map (3.3), ~--* 1/4 as ~-~c~ in accordance 

with estimate (4.21)o 

Suppose that a given scale is essentially determined by some 

resonance O5~ Then, the associated time scale would be "7"~ ~ 

and C~)~ oC I~- ~gl. '~ence, p~ =p~ = -i/2. ~he ~scaling for 
diffusion rate near the border is, hence, D ~ (~OJ)~/% oC 

X~/~ - ~C X ~'~, and the diffusion parameter o0 = 5/2 which is 

close to the numerical values given above. 

Since resonance width (~o~)~ ~ ~7/~ , where ~ is the 

corresponding Fourier amplitude of the limiting perturbation in the Ha- 

miltonian (see below), the scaling (4.21) implies ~ c~C $- ~, 

i.e. the perturbation has two continuous derivatives only. This is pre- 

cisely the critical smoothness of perturbation for the map 26,4 It 

means the following: If the initial perturbation V~)is an analytic 

function, its Fourier amplitudes, as is well known, fall off exponen- 

"-V~ OC ~xp(- - -  8 " ~ )  , f o r  example. However, as we pro- tially, like 

ceed to higher approximations the amplitudes grow, or parameter 6" 

decreases 27. ~--~(~) , At critical perturbation the dependence 

~¢p. on ~ becomes, as everything else, power-type, 10 of that is 

~(~e)= 0. On the other hand, as is also known 26, the initial per- 

turbation needs not to be analytic for a chaos border to exist, instead 

i t  s u f f i c e s  f o r  ye (~ )  t o  be only smooth ,  tha t  i s  oC $ provided 
Pe > ~  ° Otherwise, the motion is chaotic for any non-zero pertur 

hation strength. 

As was mentioned above, the scaling near the chaos border is 

discrete. It means that there exists a denumerable sequence of princi- 

pal scales which is determined by a sequence of resonances - -  - -  ~O~ =~/~ 

converging to the border: K,/~ --~ ~O~ as ~, --, o~ . The resonance 

sequence depends on arithmetical properties of irrational co~ , for 

example, on its representation as a continued fraction: ~a~} 

[~ ,  g~,,.,, g. ~,.,~ where ~ are integers, and brackets denote 

the fractional part. According to Greene's conjecture 10, ~8 is the 
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It is not known whether this is true for the standard map but general- 

ly it does not hold 12,23. A much weaker hypothesis that ~ has 

a "golden t a i l " ,  i . e .  ~ 6 ~  = [~4, , . . ,  ~ - ,  ~ , , , . , ~  .... J seems plausible. 
The main problem is to match the arithmetic of gO~ to the critical 

value of ~ which depends on X (compo 23)° Apparently, the dis- 

crete scaling accounts for p(~) variations mentioned above. 

Finally, let us estimate the contribution to Pozncare recur- 

rences from internal chaos borders of resonance stochastic layers. 

That there are many such layers within the main layer is immediately 

seen in Fig. 2 from a low equilibrium density near the border. It 

also follows from the limiting value of Greene residue ~ = I/4 which 

means that the resonance centers near the border are not destroyed. 

Let the time scale of a given resonance be ]-~ . Then the mean 

sojourn time in its region of measure /~oC X$ is, due to ergodicity, 

N $ ~ / #  c~z x$  , where A/~ is the number of entr ies into th is  
region, and ~ is the total motion time. Assume the universal distri- 

bution of Poincare recurrences F~) ~ ~-P with some, unknown so 

fa r ,  ~ . Particularly, this implies the probability F~ oc E T ~ / ~ )  P 
( ~ / ~ ) P  ( ~  ¢ }  for  any in terna l  chaos border of a resonance 

stochastic layer. Then, the contribution to Polncare recurrences in 

the main layer from a particular resonance would be 

( P, / /v x P P -  
P /V ~ p (4.22) 

where ~/~# is the total number of recurrences. Now we need to sum 

up the contributions of all undestroyed resonances which do retain 

their stochastic layers. The n~mber of those resonances can be esti- 

mated as fol lows. Define the border zone Xz ~ )  as ~-~XzJ. ~ ~ 
where 6~×~  is the exponential factor of the perturbation Fourier 

amplitudes introduced above. Assuming a linear dependence 6~X)~ X 

near the border we arrive at the scaling Xz oC ~-f for the border 

zone size. The latter implies that for a given ~ just one resonance 

gets into this zone, so we are to merely sum up contributions (4.22) 

over ~ : 

F",,  F P= 

From universality FI('~J-~F{~), and p = 2. First of all, this 

would imply that the main contribution to Poincare recurrences were 

not due to the diffusion near the main layer border but from a laby- 
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rinth of infinite hierarchies of internal chaos borders where the 

trajectory spends most of its recurrence time. If confirmed, it would 

tory spends most of its recurrence time. If confirmed, it would 

also mean that near the chaos border the above scaling hypothesis 

holds only approximately, to logarithmic accuracy. This also would 

change the behavior of both relaxation as well as correlation near 

the chaos border as compared to estimates in Section 4a based upon 

the diffusion equation (4.10). In any event, a power-type relaxation 

inevitably leads to big fluctuations in motion which are clearly seen, 

for example, in Fig. 2. 

Certainly, the problem of the chaos border structure needs 

and deserves further studies. 
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