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Statistically processing a group of excited states with the total angular momentum and parity .I” = 1 + in the cerium atom 

reveals that their eigenfunctions are random superpositions of some few basic states. A possible dynamical mechanism 

responsible for the formation of those chaotic states is briefly discussed. 

The motion of many dynamical systems in classical 
mechanics is known to be chaotic, or stochastic (see, 
e.g., ref. [l] ). Among those are many-electron (highly 
excited) atoms as their autoionization shows, for ex- 

ample. The latter is related, in turn, to the absence of 
any small perturbation parameter in the atom (unlike 
the solar system which is similar to a classical atom), 
and to the singularity of the Coulomb interaction. 

In quantum mechanics such a temporal dynamical 
chaos is impossible because of the discreteness of the 
energy spectrum. The transition to classical chaos re- 
quired by the correspondence principle is realized, 
according to refs. [2,3] , on a certain diffusion time 

scale TR -D-l = p, where p is the mean level density, 

and R = 1. On this scale the quantum system does not 
yet “feel” (according to the uncertainty relation) the 

spectrum discreteness, and it is diffusing over an en- 
ergy surface (generally, an invariant surface (a layer, 
see below) of all the exact motion integrals) as in the 
classical limit, provided the perturbation is strong 
enough to substantially mix up the unperturbed quan, 
turn states [4]. 

As TR rapidly grows with quantum numbers Z, any 
initial state with sufficiently large I has enough time 
to relax into the microcanonical distribution. It im- 
plies that the corresponding (Wigner) eigenfunctions 
become ergodic on the energy surface. As1 -+ m this 
has been rigorously proved by Shnirelman [S] (see 
also ref. [6]), the quantum ergodicity requiring only 
the ergodicity of motion in the classical limit. If, how. 
ever, the classical motion possesses stronger statistical 
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properties, particularly, an exponential correlation 

decay, it is reasonable to expect the eigenstates to be 
some random gaussian functions. The gaussian statistic 
naturally appears due to decorrelation of an evolving 
quantum state in the process of its would-be classical 
relaxation on the energy surface. To the best of my 
knowledge a similar conjecture had been first put 
forward in ref. [7] , although without any relation to 
the classical dynamical chaos which was discussed in 
ref. [8] (see also refs. [3,9] ). 

Specifically, this conjecture may be formulated as 
follows. Consider an ensemble of eigenfunctions $, 

with all exact motion integrals, except the energy, 
fixed, and represent them in the basis of some unper- 

turbed states p,r : 

tirn =a,,,iP,, vn = *,a,, . (1) 

Then, the elements of the real orthogonal matrix a,, 

are assumed to be random with the gaussian statistic 
of parameters 

6,,) = 0, a2(amn) = kziH) Gz,,)~ =N-' (2) 

Here N(E) is the eigenfunction dimension in the Hilbert 
space, i.e. the effective number of basic states coupled 
into an eigenstate or the width of the energy layer. 
The elements amn cannot be, of course, completely 
independent owing to the conditions of normalization 
and of orthogonality of J/, . However, if N % 1, the 
former is apparently insignificant while the latter is 
also considerably weakened as any two random and 
independent vectors are almost orthogonal: amn a,,, 

0.3759601/85/$03.30 0 Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Volume lOSA, number 2 PHYSICS LETTERS 18 March 1985 

- N-lj2 provided b mn) = 0. This implies vanishing 

a,, correlations as N + m (see, e.g. ref. [lo]). We 
shall call such eigenstates chaotic. They determine the 
maximal chaos allowed in a closed quantum system 

or, in brief, the maximal quantum chaos (MQC). Note 
that MQC is composition chaos, e.g. the composition 
of an eigenfunction out of some basic functions or 
that of an initial state out of eigenstates. In the latter 

case MQC does not imply temporal chaos as the system 
evolution in time is still almost periodic. 

The “gibbsian” measure for a,,,,, (2) is also derived 

in the statistical random matrix theory (RMT) from 
a “microcanonical” measure for $J vectors, i.e. from 
their isotropic distribution in the Hilbert space (see, 

e.g., ref. [lo]). In this respect the MQC conjecture 
above is equivalent to the main statistical hypothesis 
in RMT. However, the dynamical approach outlined 
above allows one, in principle, to find out the condi- 
tions of applicability for RMT as well as an important 
eigenstate characteristic, N(E), which is absent in the 
statistical theory. The matrix dimension d in the latter 
is an arbitrary parameter while actually it should satis- 
fy d &N(E). Besides, the statistical description turns 
out to be extended not only to the ensemble of eigen- 

states of a single system but even to a single eigenstate 
asN+=(cf. ref. [ll]). 

The statistical analysis of atomic states has been 
restricted as yet to their energies (see, e.g. ref. [12] , 
where it is shown that there exist a series of states con- 

firming RMT predictions). Meanwhile, the vast empiri- 
cal data collected to date and aptly presented in atlas 
[ 131 allow one to analyze the atomic eigenfunctions 

as well. 
As an example of chaotic eigenstates a series of 35 

excited states in the cerium neutral atom has been 

chosen having Jm = l+ and energy E x 2-3 eV (D = 

0.027 eV) above the ground state of J” = 4-. The CeI 
ionization potential is 5.54 eV. The eigenfunctions 
have been calculated for 3 1 of 3 5 states, and they are 
presented in ref. [13] by the two leading basic states 
qn of largest probabilities in the superposition: a: = w 1 

2 w2 = a;. Altogether, 34 basic states have been re- 
corded for the eigenfunctions in question. 

Assuming the MQC conjecture (2) and N 9 1 the 
w distribution can be shown to be an approximately 
gaussian one with the parameters (a more detailed sta- 
tistical analysis will be published elsewhere): 

(w,)=N-l lnN, (w2)=NN-1(lnN-1), 

o(~~)“-u(w~)=N-~. (3) 

Fromref. [13]:(wl)=0.177;tw2)=0.111;whence 
N(l) = 15.4 f 1.6;Nt2) = 16.0 + 3.8. The rms standard 
deviations of the expected distributions are given 

throughout the paper. The variance and 4th moment 
of the w 1 distribution are equal (normalized to unity) 
within their uncertainties 

(N’~)u)~ = 1.14 -+ 0.25, 

((wl -(w+)~)/~u~ = 1.36 k 1.0, 

which also confirms the gaussian statistic. 

(4) 

The global structure of the eigenstates is presented 
in fig. 1. It forms a layer shown by two dashed straight 
lines. Here m is the eigenstate’s serial number increas- 
ing with E, , and n is that for basic states ordered ac- 
cording to the mean m of those eigenstates where a 
given tpn appears as a leading one. If some p,, is lead- 
ing in a single +, only (shaded squares in figure) it 
has been excluded from further statistical analysis 
since those 4 are artificially concentrating near the 
layer axis. The distribution of the rest of the q,, in n, 
that is over an energy surface, is compatible with the 

homogeneous one (x2(4) = 2.1, confidence level CL 
= 30%), the variance being equal to IJ~ = 19.6. Whence, 
the effective number of basic states on the energy sur- 
face is NE = flu, = 15.3 f 1.2. This value is very 

close to N(l) = 15.4 * 1.6 above, which implies the 
ergodicity of eigenstates, each effectively coupling all 

Fig. 1. The global structure of atomic eigenstates JI,,, as given 
by the distribution of leading basic states ‘pn (see text). 
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basic states on the energy surface. 
The distribution of a given pn in m also agrees 

with the homogeneous distribution (x2(4) = 5.1; CL 
= 30%). From the variance, CJ~ = 17.4, the energy sur- 
face “width” AE/D =N,+, = 14.4 + 1 .l. The observed 

equality NV = NE required by normalization of the 
wavefunctions [see eq. (2)] gives an additional con- 

firmation of the above results. 
Some other statistical tests have also been applied 

and did confirm the MQC conjecture. Particularly, 

the number of eigenfunctions in which a given qn ap- 
pears as a leading one agrees with the binomial distri- 
bution of the parameter p = 2/N. This gives also the 
number of the basic states missed in fig. 1 (and in ref. 
[ 131): 4.5 + 2. 

A relatively small value of the dimension N allows 
one to observe the global structure of eigenstates in 

atoms unlike nuclei where N - lo6 (see, e.g. ref. [ 141). 

On the other hand, small N imposes some limitations 
on the RMT applicability in regard to many-level cor- 

relations. The principal differences in the excitation of 
atoms and nuclei were already emphasized by Bohr in 
his first paper on the compound nucleus [ 1.51. Present- 
ly, these differences look quantitative rather than 
qualitative, yet they are still fairly big. 

I am greatly indebted to V.V. Flambaum, I.B. 
Khriplovich, A.I. Shnirelman, O.P. Sushkov and V.G. 
Zelevinsky for stimulating discussions. 
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