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Modulational diffusion, a weak instability that frequently occurs in many-dimensional, nonlinear Hamiltonian systems, is 
studied both analytically and numerically. Modulational diffusion arises when an oscillation in one of the degrees of freedom is 
phase modulated at a slow driving frequency, producing a "modulational layer" of overlapping resonances in phase spaces. 
Because the motion within this layer is chaotic, any coupling to the oscillation of another degree of freedom produces a 
long-time diffusion of its associated action along the layer. The diffusion rate for this process is evaluated analytically, and is 
compared with numerical calculations for a model, two-degree-of-freedom, nonautonomous Hamiltonian. The diffusion 
coefficient is found to vary in a series of descending steps as the frequency difference between the two oscillators is increased. 
Good agreement between analytical and numerical results has been obtained over many orders of magnitude in the diffusion 
coefficient. 

1. Introduction 

In 1892 Henri Poincar~ regarded the problem of 
studying the motions generated by the Hamilto- 
nian 

/-/(t,  0, t ) = / - / 0 ( I )  + 0, t), 
(1.1) 

as " the  fundamental problem of dynamics" [1]. 
Here the unperturbed Hamiltonian H 0 is integra- 
ble depending on the action variables I = 
(I1 . . . . .  IN) alone, and # H  1 is a small perturbation 
which is periodic in the angle variables 0 =  
(0 t , . . . ,  0n) as well as in time t, with periods 2qr 
and 2~r/I2, respectively. Some crucial aspects of 
this problem are still not completely solved, de- 
spite the enormous progress made in recent years. 
For instance, we can regard the Hamiltonian H 0 
as describing some bounded oscillations, and ask 
whether all solutions of the perturbed system are 
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still bounded. This problem of long-time predic- 
tion in many-dimensional Hamiltonian systems, 

which was originally formulated in the field of 
celestial mechanics, has in recent times become 
important in many other branches of physics. As 
an example, we note the problem of stability of 
heavy particles (protons and antiprotons) in stor- 
age rings. Indeed even in the simplest models of 
such dynamical processes, both multidimensional- 
ity and extremely long time scales must be taken 
into account (see, e.g., [6]). 

One phenomenon relevant to the stability prob- 
lem in Hamiltonian systems with more than two 
degrees of freedom is the well-known Arnold diffu- 
sion [2-7]. Here we shall analyse another source of 
instability which also seems to be of a very general 
nature, and which is related to the presence o f  a 
slow modulation. When an oscillation in one of 
the degrees of freedom is phase or frequency mod- 
ulated at a slow driving frequency, then a set of 
closely spaced resonances (multiplet) is formed 
about the oscillation frequency. Above a critical 
perturbation strength, the multiplet resonances 
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overlap [4], producing a relatively broad region of 
phase space which supports chaotic motion (mod- 
ulational layer). If these stochastic oscillations are 
coupled to another degree of freedom, the corre- 
sponding dynamical variables become themselves 
subject to a random evolution. This phenomenon 
manifests itself as long-time diffusion along the 
modulational layer ( modulational diffusion [7-11]). 
Since these layers in many-degrees-of-freedom 
non-autonomous systems form a set which in gen- 
eral extends to infinity, this process can completely 
alter the character of the motions over long times, 
and even yield unbounded orbits. 

The modulational diffusion can be regarded as 
representative of a larger class of dynamical 
instabilities, sometimes referred to as "thick layer 
diffusion" [5]. This terminology is intended to 
characterize motion along the broad stochastic 
domains generated by the overlap of several reso- 
nances closely situated in the system phase space. 
A thick layer diffusion differs from Arnold diffu- 
sion both in the structure and in the size of the 
stochastic components involved. Indeed, Arnold 
diffusion takes place within the narrow stochastic 
domains (thin layers) which unavoidably appear in 
the vicinity of separatrices of nonlinear resonances 
under the effect of arbitrary perturbation. Since 
thin layers exist for any perturbation strength, so 
does the Arnold diffusion. In contrast, a thick 
layer can exist only in some suitable parameter 
range, so that the same condition will determine 
the onset of the associated diffusion. We remark 
that even though these two classes of phenomena 
share a roughly similar exponential dependence of 
the diffusion rate on some system parameters, the 
average rate of thick layer diffusion is generally 
much larger than that of Arnold diffusion. 

A qualitative description of the modulation dif- 
fusion, including some semi-empirical estimates of 
the diffusion rate, was given in ref. 9. In ref. 7 the 
first analytical theory of this phenomenon was 
developed. In this work we continue the approach 
taken in ref. 7 to improve the theory and to 
achieve a better agreement with numerical simula- 
tions. The validity of our approximation scheme is 

then verified via numerical calculations on a sim- 
ple model. Our results are also applicable to a 
broader class of systems having sufficiently homo- 
geneous thick layers. 

2. Formulation of the problem 

As a model for modulational diffusion, we con- 
sider the Hamiltonian [9] 

H = / f  + ~ - e c o s ( 0 1  + X sin I2t) 

- / ~  cos  (01 - 02) ,  (2.1) 

consisting of the unperturbed part H 0 = 12/2 + 
I~/2, and of two additional terms which comprise 
the perturbation. Specifically, oscillator 1 is phase 
modulated with amplitude h at the slow modula- 
tion frequency I2, and it is coupled to oscillator 2 
with coupling strength g. In order to simplify the 
calculations, in what follows we shall assume e >> 
g, so that we can regard the 1-motion as indepen- 
dent of the 2-motion. Expanding the third term in 
the RHS of (2.1) in Fourier series, we arrive at a 
Hamiltonian which displays explicitly a set of 
primary resonances 

H {a)=IJ- ~_~ J . ( h ) c o s ( e  1 +n~2t). (2.2) 2 e 

For  sufficiently large X, the Bessel functions J , ( h )  
have significant amplitudes only when [n I < ?~, 
and fall off faster than exponentially for larger 
indices. This fact ensures the existence of quasi- 

periodic motion (invariant toil) with sufficiently 
high frequency o~ 1 = OH~t)/OI1, and therefore the 
1-motion alone is bounded for all times. At the 
same time the system parameters can be adjusted 
in such a way as to induce the simultaneous over- 
lap of all resonances with I nl < X, resulting in the 
formation of a single layer of half-width A~0 = M~2 
--X$2 centered about the value ~0 x = 0. Here we 
have introduced the new parameter M = Ato/12 
which measures the effective number of resonances 
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within the layer. This is necessary since M is often 
somewhat larger than X (cf. section 6). To describe 
the resonance overlap, it is convenient to introduce 
the so-called overlap parameter s, defined as the 
'ratio between the sum of the half-widths (A l l )  for 
the two adjacent resonances and their relative 
spacing (811) [4]. The critical parameter is then 
found to correspond to the value sen t - 2 / ¢ r  [4], 
also denoted as the "two-thirds rule" [7]. Applying 
this criterion, and approximating the amplitude of 
the Bessel functions by their rms value (~r;~) - t /2 
one obtains from (2.2) the half-width A I r =  
2et/2(~.~k)- 1/4, the spacing 8I t = 8 ~ t / ( d w t / d I t )  
= $2, and the overlap condition takes the simple 
form [9] 

stable local environment, although slowly chang- 
ing with time. Under this adiabatic perturbation, 
the local action i ' =  i ' (~)  about the fixed point 
can be shown to be bounded by KAM tori forever 
[12]. In the original variables, this condition corre- 
sponds to the appearance of a periodically oscillat- 
ing stable region within the modulational layer. 
This phenomenon is known as "trapping" [13, 14]. 
We note that the relative size of this stable domain 
is small provided that the modulational layer half- 
width M2 is large compared to the trapping reso- 
nance half-width 2f~. This yields the condition 

(M2) 
2 
>> 1 (2.7) 

~r2s z 23e 
4 12 zfA- >- 1. (2.3) 

According to this expression, resonance overlap 
will typically occur when the modulation frequency 
is sufficiently small. We remark however that the 
limit ~2 ~ 0 must be taken with some care. To this 
end let us first change variables using the gener- 
ating function 

F ( [ , O  a, t) = ( 1 -  M2cos 12t)"(01 + )k sin ~2t), 

(2.4) 

where the new Hamiltonian K = H (1) + OF/Ot, 

i 2 2,2122 
K =  -~- - ecosO +/)M22 sin ~ - T c°s2~' (2.5) 

now depends on the "slow time" variable ~ = I2t. 
By inspecting the "potential energy" u(t~)= 
- e c o s 8  + 0M22 sin ~ for any fixed ~, we note that 
as long as 

M22 
V = - - <  1, (2.6) 

E 

there is always a stable domain centered about an 
elliptic "fixed point" 00, where e sin00 = 
-M22s in~ ,  and ecos00 > 0. In other words when 
(2.6) is satisfied, some phase points experience a 

for the absence of trapping. As 12 ~ 0, one should 
consider two different cases, depending on whether 
A or the product M2 (i.e., the layer width) is kept 
constant. In the former case the inequality (2.7) is 
always violated, and all multiplet resonances merge 
together to form a single resonance, surrounded by 
a thin stochastic layer. In the latter case, the 
condition (2.7) can be satisfied for a suitable choice 
of the parameter values. Even though the stochas- 
tic trajectories still spread over most of the layer, 
some statistical properties of the motion change 
considerably. For example, the diffusion rate across 
the layer has been shown to vary as 823 [14]. Note 
that in this case the limit I2 ~ 0 is singular in the 
sense that for 82---0 only one resonance (to 1 = 
-M2) remains, and the motion (2.2) is perfectly 
regular. 

The following analysis will be developed assum- 
ing not only the overlap condition (2.3), but also 
the absence of trapping. The influence of the latter 
phenomenon on modulational diffusion will be 
briefly discussed in section 7. 

Let us now consider the full system (2.1). The 
geometrical structure of the associated phase space 
is most easily illustrated in the frequency plane 
(ool, 002) = ( cOHo/OI1, 8H0/812), which in our case 
coincides with the action plane ( I  1, 12). Here the 
layer is represented as an unbounded strip (fig. 1). 
When the two oscillators are uncoupled (# = 0) 12 
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Fig. 1. Geometrical structure of a modulational layer (unmod- 
ulated driving resonance, q = 1). 

This accounts for the random evolution of phase 
points in the 12 direction. In particular, the time 
evolution of a stochastic orbit could cause action 
points to explore the entire layer domain. The 
resonance (~1 = ~2) appearing in (2.8) is generally 
referred to as the "driving resonance" since it is 
responsible for driving the diffusion along the 
modulational layer. The problem is to determine 
the rate at which the action 12 (or any function of 
it) diffuses. The diffusion coefficient is defined as 

D(12) = ( [ A I 2 ( T ) ] 2 )  (2.9a) 
2T 

A I 2 ( T  ) = - LrTdt  ' 0H(2) (2.9b) 
002 ' 

where the average is over an appropriate ensemble 
of initial phase points (see section 3), and where T 
is much larger than the diffusion time across the 
modulational layer but much less than that along 
the layer. Evaluation of (2.9) in some perturbation 
scheme would in principle require knowledge of 
the full set of resonances of the system (2.1). 
However, we will show that the long-range diffu- 
sion is essentially supported by a selected set of 
secondary resonances. Due to this simplification 
the diffusion coefficient can be evaluated by means 
of first-order canonical perturbation theory. 

is invariant, and therefore motion along the layer 
is forbidden. The global stability of the full system 
then follows directly from that of the reduced 
system (2.2). 

Now let /~ 4: 0. (Recall, however, that t~ << e). 
The motion in the 2-direction is governed by the 
time-dependent Hamiltonian 

H (2)=  [2 ]ICOS(OI(I)--02)" ( 2 . 8 )  
2 

When the 1-motion takes place within the modula- 
tional layer, (2.8) describes a nonlinear oscillator 
(pendulum) driven by the external random motion 
Oz(t), obtained by solving the motion for (2.2). 

3 .  D i f f u s i o n  r a t e  

We now derive an expression for the diffusion 
rate, and in particular we show that D(I2) varies 
as a series of descending steps as 12 increases from 
zero, to give an overall exponential dependence, in 
agreement with some originally puzzling numerical 
results [7] (see fig. 5). The time evolution of 12 is 
determined by Hamilton's equation (cf. (2.1)) 

I2 = / t  sin ( qO 1 - 02), (3.D 

which has been slightly generalized by introducing 
the additional parameter q which is relevant to the 
case of higher-harmonic driving resonances. In 
order to calculate D as in (2.9) we need an explicit 
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expression for the phase variation q~= qOl(t ) - 
0 2 ( / )  in (3.1). Since we are interested only in the 
local behavior (in I 2 )  , w e  let # = 0  in (2.8) to 
obtain 

02 = tO21 -- 00. (3.2) 

On the other hand, the 1-motion must incorporate 
the effect of the modulation at first order in e, 
since e >> g, so we write 

no  m = ~ ,  (3.3a) 

H(tl)=-e ~ J~(X)cos(Ol+ngt ), (3.3b) 
t l  ~ " - - 0 0  

and decompose 11 and 01 into zeroth and first 
order parts 

I 1 = 11o + 111; 01 = 010 4- 011. (3.4) 

At zeroth order 11o = I o = const and 01o = lot + 
0oo; ~o = qOoo + 0o. In first order 

OH(11) 
i l l  ~--- 001 

O0 

= - e  ~ L(X)sin(Olo+n~2t),  (3.51) 
t / ~  - - O C  

011 ~--- 111. (3.5b) 

Letting 01o = lot + 0oo in (3.5a) and integrating 
first (3.5a) and then (3.5b) over time, we obtain 

01(t)=lot+ e ~ J~()t) sin[(Io+n9)t] 
. =  - ~ (Io + na)  2 

+0oo. (3.6) 

Inserting (3.6) into (3.1) and expanding again, we 
obtain 

s i n ~ ( t ) =  2~/{ m=-o¢ f i  A(m,Io) } 

+q),0 
] ) + Y~ j,n~2-to 2 t+~o , (3.7) 

t / ~  - - O C  

where j = ( . . . .  J -  1' J0 '  Jl . . . .  ) with each j,, an in- 
teger and 

A(m,Io)=-J j [ qeJm(~t) ] (3.8) 
.,[(io+m[2)2 " 

After defining 

J= ~ Jn; L= ~ j,n, (3.9) 
t t ~  - - O O  t l  E - - O C  

we rewrite the sum (3.7) as follows: 

s i n ~ ( t )  = 

with 

B(J, L, Io) 
J , L =  -oo  

×sin{[(J+ q)I o+ L~2-a~2]t + ff~o} 
(3.10a) 

8(J ,  L, 10) = E 
J, L = const 

(3.10b) 
The sum in the RHS of (3.10b) is taken over all 
combinations of j yielding J and L constant. This 
expression shows that the first-order interaction 
between the primary resonances in (2.2) and in 
(2.8) generates an infinite array of secondary driv- 
ing resonances, whose amplitudes depend on I o. 
We know that over long times the system samples 
all values II0] < Ato within the modulational layer, 
so we shall average over that domain in what 
follows. 

The diffusion coefficient (2.9) becomes 

2 ~ /  rAw r T  t ~,2 j dZoJ dt sin*(t') D(°a2) = 2Aoa -a,~ - r  

f 7" d t ' '  / × sin ~ ( t " )  , (3.11) 
- T  145 o 

where both integrands are given by (3.7). We first 
perform the t "  integration to obtain 

f dt"sin~b(t")= ~ B(J,L,  Io) 
J ,L~--c to  

× j + q  ~Io j + q  /. 

(3.12) 
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Then we substitute (3.12) into (3.11) and perform 
the I 0 integration. The 8-function in (3.12) de- 
termines the condition 

Io = w 2 - LI2 (3.13) 
J+q  

Due to (3.13) the integrand in (3.11) is indepen- 
dent of t', so that the t '  integral can be performed 
immediately. We obtain 

D(o~2)- qrlx2 ~ B2(J,L) (sin2~°)~° 
Aw J.L=-:~ J + q 

(3.14) 

From (3.8), (3.10b) and (3.13) the amplitudes 
B( J, L) are 

j, L=cons, m 

J"(~k)(J+q)Z ) )  
× [  1 ]z ' a - - ~ [ L - m ( J + q ) ]  

(3.15) 
where the dimensionless variable 

w2 (3.16) 
O~=A6 d 

measures the displacement in the 2-direction in 
unit of the layer half-width. After averaging over 
~0, (3.14) becomes 

D(ot) - ~r~2 ~ B2(J, L) (3.17) 
2Aw J + q ' J , L =  -oo 

frequency plane with equations (cf. (3.10a)). 

w 2 = (J+ q)w 1 + LI2. (4.1) 

Because of the motion across the layer, the phase 
points intersect these lines repeatedly, receiving a 
small impulse in the 2-direction at each crossing 
(fig. 1). The magnitude of this displacement is 
determined by the phase and the amplitude of the 
resonant term involved. Since the 1-motion is 
bounded, for any given a not all resonances can be 
crossed. In addition many of the resonances that 
are actually crossed have negligible amplitude, and 
therefore the range of summation in (3.17) can be 
considerably restricted. To this end we first note 
that the argument of the Bessel function JJm is 
typically small (e << 1, see (3.8)), so that they are 
accurately approximated by the asymptotic ex- 
pression 

; X < < I , j > 0 .  (4.2) 

From (4.2) and recalling that J,,,(h) in (3.15) is 
exponentially small when I ml > M (cf. section 2), 
we can restrict ourselves to the domain 

Iml -< M. (4.3) 

We shall sum (3.17) in the range (4.3), regrouping 
the terms with constant J. Using (4.2) in (3.17) 
and replacing Jm()~) with the asymptotic (2~ >> 1, 
I nl < )~) formula 

which is exact to first order in e, and therefore it 
includes the contribution of all primary and sec- 
ondary driving resonances. 

4. Dominant terms 

_V[~ ~ ( ~r) (4.4) Jm(X) 2 sin h - 2 m + ~ -  , 

the normalized diffusion rate D R = DAw/I.t z then 
becomes 

The resonances which determine the diffusion 
rate (3.17) correspond to resonance lines in the 

E DA ), (4.5a) 
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with 

x E E FI 
L J ,  L = cons t  m = - M 

× [ a - l ( L - m ( J + q ) ) ]  -2tj't 

xsint , (4.5b) 

which is valid provided that the denominators in 
the RHS are not too small. For J > 1 the domi- 
nant terms of (4.5) are readily identified as the 
ones for which J of the j,, 's are equal to one, while 
all the remaining j,, 's are equal to zero. Indeed 
from (4.2) and (4.5) it is seen that negative values 
of Jm will correspond to an overall exponent for a 
exceeding J by at least two, while any term con- 
taining j,, > 1 will be reduced by a factor (jm!). 
Thus all these terms can be neglected. With this 
prescription (3.13) can be rewritten as 

J= ( a Y'.kn k ] Ab) (4.6) 

where the sum L = F_.kn k in the RHS now consists 
of J terms. For  any fixed a the dominant term in 
(4.5b) corresponds to the smallest value J*(ot) of 
J compatible with (4.3). J *  can be obtained from 
(4.6) by maximizing both L and I 0. The largest 
allowed value Lma x of L is given by the expression 

x. Therefore J*(a) is an increasing step-function 
of a, with discontinuities at the value a n = 2n + q, 
n = 0, 1 ,2  . . . .  Within each interval Aa,  = 
[a n, a ,+ l ]  the diffusion rate (4.4) is essentially 
determined by the single term Dj. ,  and therefore 
the diffusion coefficient will be discontinuous at 
the same values a , .  In particular, due to (4.2), 
DR(a  ) will exhibit a sequence of descending steps 
(hereafter referred to as "plateaus"). 

To complete our approximation scheme, we must 
still retain from the resonances (4.1) with J = J* ,  
only the ones that can be crossed. These must 
satisfy the condition 

L*--[,~-(J*+q)],M<_L 
=~_~nk <[a+(g*+q)] ,M,  

k 
(4.9) 

which is readily obtained from (4.1) by letting 
b)l = Tab) respectively. Since the upper bound of 
(4.9) is always larger than L* =J'M, we can 
replace (4.9) by the more restrictive condition 

L* < L < J * M .  (4.10) 

Taking into account (4.3) and (4.10), the partial 
contributions Dj .  (cf. (4.5)) can be written as 

D~(a)=K(J*)  

X 

2 

L=L* nl+ "" 

(4.11) 

where 

Lm~ = ~ I  ( M - k ) = J( M - J 2--~I ). (4.7) 
k ~ 0  

~ince M >> 1, for J not too large, we can write 
Zma x ~ JM. Replacing this expression in (4.6) with 
I 0 = Ab) we obtain 

J * = J * ( a ) =  [ ½ ( a -  q ) ]u  (4.8) 

K(J*)  = 2 [ J *  + ql 'lJ*l-1 

a(,,,,,,,) 

q e  ] 2 1 J * l  

j , 

(4.12a) 

s i n ( • -  2 n i +  4 )  

{ a - - - ~ l  [ L - n i ( J * + q ) ] }  2 '  

where [x]i denotes the smallest integer larger than (4.12b) 
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and with 

- M < n l  <n2< .. .  < n j . < M .  (4.13) 

The resonance lines with J = J *, and L satisfy- 
ing (4.10) are displayed in fig. 1. They define 
triangular-shaped regions within the modulational 
layer (interaction regions) where the diffusion pro- 
cess is originated, as a consequence of resonance 
crossing. We remark that this geometrical struc- 
ture is common to any sufficiently homogeneous 
thick layer, formed by the overlap of a large 
number of resonances with comparable amplitude, 
spacings and directions. For this reason the esti- 
mate (4.11) can be viewed as typical of thick layer 
diffusion, provided that the Bessel functions are 
replaced by the appropriate resonance amplitudes. 

The sum (4.11) can be explicitly evaluated for 
small J. For J * = 0  (or a ~  [ - q , q ] )  we have 
directly from (4.5b) (the product within the braces 
in (4.11) collapses to uni ty)  

D O = ~-~q, (4.14) 

that is the primary plateau is flat. Indeed in this 
domain the diffusion is supported by the primary 
driving resonance, whose amplitude is constant. 
For J *  = 1 (4.11) takes on the simple form 

Dj( ) =/¢(J)(J!)  -2 
M 

n= L * / J  

(4.15) 

where Y' .knk  = n i in (4.12b) and the J-dependence 
has been written out explicitly, in preparation for  
future use (see section 6). Here, however, we con- 
sider only J = 1. After transforming (4.15) into an 
integral (and J,,()~) in (4.4) replaced by its rms 
value (TrX) -1/2) we obtain 

M 
D j ( a ) = K ' ( J )  ( 4 J _ l ) q [ f ( a ) + g ( a ) ] ,  (4.16) 

qe ] 25JI 
K ' ( J )  = 21J + q]41s , - ,  2 ~V/~At..O)2 ] , 

(4.17a) 
f ( a )  = [ (a  - q)(J  + q)/j l t-41yl,  (4.17b) 

g(o~) = -- (~  -~ q ) l -4 [ J I ,  (4.17c) 

which is invalid at and near a = q, where the 
argument of the Bessel functions diverges and 
(4.2) no longer holds. This singularity corresponds 
to a sudden drop in the diffusion rate at the end of 
the primary plateau (" precipice" [9], see also sec- 
tion 6). 

5. Modulated driving resonance 

Of considerable interest in practical application 
is the more general case in which the driving 
perturbation is also modulated. In this case the 
diffusion originates near the intersection of two 
multiplets. As a model for this process we study 
the following example 

]2=l~sin(qO 1 - 02 + ~ sinI2t) = # sin~,  (5.1) 

that is we have modified (3.1) by introducing a 
modulation in the phase of the coupling term. For 
simplicity, both amplitude and frequency of the 
modulation have been assumed to be identical to 
those of the first degree of freedom. The generali- 
zation of the following analysis to different values 
of these parameters is straightforward. Expanding 
the RHS of (5.1) as in (3.7) we obtain 

s i n t b ( t ) =  ~ (  f i  A(m, Io))Jp(~ ) 
j , p  m =  - o o  

×sin  ~=~_.2_ j. + q I o 

+ q~o), 

(5.2) 
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where the A(m, Io) are given by (3.8). Following 
the procedure developed in section 4 with Je(?~) = 
(qr~) -~/2, the normalized diffusion rate becomes 
(cf. (4.4-5)) 

1 ~ 82(J, L) (5.3) 
DR(a)=2---~ J.L= oo J+q ' 

where 

B(J ,L)= ~., 
J, L = const  

/ I qe 1~I 4° (a,o)~ 
J~ ('--~-~)-( J + q)J t /  

[ a - ~ - [ L - m ( J +  q ) ] ] 2 ) ) '  

(5.4) 

with 

J=EJ,,; L=L(p)=~_,n,+p. (5.5) 
n k 

Eq. (4.6) now becomes 

Y'.nk +P) 
J= ( ~a k A~ 

M To - q '  (5.6) 

which, for any given a, is minimized by letting 
I o = A~o, Ekn, = JM and p = M, to give 

J*  = J * ( a )  = [ ½ ( a -  q -  1)] I, (5.7) 

so that the primary plateau is broader than that of 
the unmodulated case, and all secondary plateaus 
are shifted (fig. 2). For J = J *  the resonances 
crossed must now satisfy the condition 

L*=[a-(J*+q)] ,M<_L<_(J*+I)M (5.8) 

and therefore the diffusion rate becomes 

Dj.(a)=K(J*)  E E 
L=L* n l +  " . .  + n j . + p = L  

,1) 2 X FIA(a, ni, p , (5.9) 

J*-~ 2 

J*=l 

J*--O 

Fig.  2. G e o m e t r i c a l  s t r uc tu r e  o f  a m o d u l a t i o n a l  l ayer  ( m o d -  

u l a t e d  d r i v i n g  r e s o n a n c e ,  q = 1). 

where 

z~(~,,~,, p)-- 

(5.10a) 

s i n ( h -  2 n , +  4 )  

{ot--'-~l [L (p )_n i ( j  . +q)])2 

(5.10b) 

Again the sum-(5.9) can be explicitly evaluated 
for small J. When J* = 0, or lal < q + 1, all j,,'s 
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are zero so that (5.8) reads 6, Numerical results 

(a-q)M<_p<_M, (5.11) 

that is the diffusion coefficient is the sum of 
M(1 + q - a)  identical terms or 

M 
Do(a  ) : 2-~q (1 + q - a) .  (5.12) 

On the first plateau ( J *  = 1 or a e [1 + q, 3 + q]) 
eq. (5.9) becomes 

D j (  a)  = K (  J ) ( IJ I ! )  - 2 
M M 

x E E a(.,.,p)-4'J* 
L*-M p=L+Jn 

J 

(5.13) 

where we have again included the J-dependence 
explicitly. Evaluation of (5.13) now yields 

Dj(a)=K'(J) 
M 2 

( I J l ! ) z (4 l J I -  1)(4lJ I - 2) 

x [ f ( c t )  + g (a )  + h] ,  (5.14) 

In order to evaluate the accuracy of our 
approximation scheme we have computed numeri- 
cally the diffusion rate (2.9) for both the unmod- 
ulated and the modulated driving resonance (for 
numerical techniques see [4, 6, 10]). To increase 
the efficiency of the computation we have ignored 
the influence of the 2-motion on the 1-motion, 
consistent with the assumption e >> # (cf. section 
2). Then the processes described by (3.1) and (5.1) 
respectively, have been simulated numerically, with 
the phase 0 x evolving according to the uncoupled 
Hamiltonian (2.2), with parameters X---10, $2 = 
0.01, e = 5 × 10 -4, and q = 1. The corresponding 
effective layer half-width Ao~ has been evaluated 
via resonance overlap, by taking into account the 
actual amplitude of the Bessel functions in corre- 
spondence to the boundary of the layer. In this 
way one finds Ato = 1.45 M2 or M = 14, in good 
agreement with a numerical value obtained by 
computing the equilibrium probability distribution 
of the action I x (fig. 3). In this case the actual 
layer width exceeds that predicted by the cruder 
estimate M = X = 10 (see section 2) mainly be- 
cause X is not large enough. 

where 

K ' (  J ) = - ~  lJ + q141J1-1 

=l[J+ql l  
f(a) q\ j ] 

qe ]21JI 

2(;X- (a,,,)2 ' 

(5.15a) 

-41Jr 
( a  -- q - -  1) 2-41JI, 

~ , ( a / =  - (a + q -  1) 2-4IJL 

q 

h = 2121J + ql ]  1-41:t. 

(5.15b) 

(5.15c) 

(5.15d) 

As before (5.14) is invalid at and near a = q  + 1 
where f(a) diverges. 

o o 
,2- 

d-  

o 
. - 4 '  

EL 
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o 
o 

0 -2 .00  

~ . ~ - ~  1 . 3 5  

+ - - - -  1 . 4 5  

1.55 

-' 1.00 0.00 I'.00 9.00 
l//Ao 

Fig. 3. The layer width: action probability distribution. 
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In fig. 4 we plot the results for the unmodulated 
case. The thick solid line represents the analytical 
expressions (4.14) and (4.16) for J = 0 and J = 1, 
respectively, whereas the thin line corresponds to 
the sum (4.11) evaluated numerically for J = 1-4. 
We have obtained the best fit with the numerical 
data by letting Ao~ = 1.35M2 or M =  13, which 
corresponds to the portion of the layer over which 
the probability distribution is constant (see fig. 3). 
The small oscillations in the thin line of fig. 4 
reflect the presence of the sine function in (4.12b). 
One sees that the terms we have selected from the 
first-order expression (3.17) are sufficient to pro- 
vide an accurate estimate of the diffusion rate, at 
least in that region of the modulational layer where 
the diffusion is rapid enough. Beyond the first 
plateau, (4.11) instead yields a small but signifi- 
cant underestimate of the diffusion coefficient, and 

moreover it does not reproduce correctly the de- 
pendence on a within each plateau. For this rea- 
son it appears that no prediction about the 
asymptotic (a  ~ oo) behaviour of D(a) can be 
made using the first-order scheme we have devel- 
oped. A qualitative description of the structure of 
the tail can nonetheless be derived from the fol- 
lowing considerations: 

1) No secondary plateau is levelled, since the 
amplitude of all secondary driving resonances de- 
creases as a increases (see (3.15)). In addition, for 
any given a, the diffusion is driven mainly by the 
resonances located by the right boundary of the 
layer (that is with L = L*), whose amplitude is 
maximal. 

2) For  all plateaus the number of resonances 
located within the interaction regions decreases 
with increasing a (see fig. 1). 
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I =  10.00 
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e =  ,5,10 -4 

I 

r0oo 

D i m  • 

• I I I D  

i l 
1'.00 2'.00 ,3'.00 4'.00 5'.00 6.00' 7'.00 8"00 

Q 

Fig. 4. Normalized diffusion rate. First-order dominant  terms. 
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Fig. 5. Scaled diffusion coefficient (unmodulated driving resonance). 

Both essential features are accounted for in the 
estimate (4.16), and therefore the latter can be 
generalized to the case IJI > 1, provided that a 
fitting parameter R=R(J )  (to be determined 
numerically) is inserted in expression (4.17a) by 
replacing ~ with eR(J). In doing so we intend to 
fit the numerical data by adjusting the overall 
perturbation strength. It can be readily seen that 
for every J the sum (4.16) gives the partial contri- 
but ion of those terms in (3.7) for which all j , , 's  are 
zero except one. In fig. 5 we display the scaled 
diffusion rate (4.16) for J--- 1-4 where the param- 
eter R is found to increase linearly, 

R ( J )  --- 2 J  - 1. (6.1) 

The good agreement with the numerical data, not 

only in the overall decay rate, but also in the 
detailed structure of the tail, suggests that the 
diffusion coefficient may possess self-similar prop- 
erties. In particular, if (6.1) is assumed valid for all 
J and the plateau oscillations averaged away, the 
asymptotic (a  ---, o¢) decay rate becomes 

DR(a  ) --* C ( a ) e  B(~-°) (6.2) 

where 

c ( a )  =-L -e2q -1 , 

B = l + l n  qe 
. 

(6.3a) 

(6.3b) 
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Expressions (6.2-3) are obtained from (4.16-17) 
by letting J = ½ ( a -  q), and then taking the limit 
a ---, oo. The exponential-type diffusion coefficient 
we find for modulational diffusion has already 
been detected in the case of Arnold diffusion 
[4-6], and it seems to be a distinctive feature of 
this class of instabilities. 

In fig. 6 we plot the expressions (5.12) and 
(5.14), (for J = 0 and J > 0, respectively), which 
correspond to the case of a modulated driving 
resonance (cf. section 6). As before we have intro- 
duced a fitting parameter R = R(J) which is de- 
termined numerically as 

R(J)=2J. (6.4) 

R(J) is still linear, but now R(1)=  2, and there- 

fore the expression (5.14) underestimates the diffu- 
sion rate. A similar discrepancy can also be seen 
on the main plateau (fig. 6) where no fitting 
parameter was introduced. In addition the best fit 
with the numerical data here corresponds to M = 
12, slightly smaller than the value employed in the 
unmodulated case ( M =  13). In this respect we 
observe that the effect of the modulation is to 
subdivide the amplitude of the original driving 
resonance among the multiplet elements, so that it 
is conceivable that J + 1 terms might contribute 

significantly also on the J th  plateau, and in par- 
ticular near its far end. Comparison with the previ- 
ous case reveals that by modulating the driving 
resonance one can considerably enhance the diffu- 
sion coefficient, especially for small a, due to the 
expansion of the size of the main plateau. 

O q 
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o :  o 

4 . .  

& 
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I '  

# 
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Fig. 6. Scaled diffusion coefficient (modulated driving resonance). 



302 B. I / .  Chirikov et al. / A theo~, of modulational diffusion 

7. Concluding remarks 

The derivation of the coefficient of modulational 
diffusion (3.17) was based on the validity of cer- 
tain statistical assumptions. Specifically, the phase 
average appearing in (3.11) was performed assum- 
ing a rapid decay of autocorrelations of the dy- 
namical variable 01 =01(t  ) associated with the 
motion across the modulational layer. Such ran- 
domization is guaranteed by the simultaneous 
validity of the inequalities s > 1 (overlap) and 
V > 1 (no trapping), respectively (see section 2). It 
should be stressed however, that if the system is in 
the trapping regime ( V < I ) ,  phase correlations 
decay more slowly and new dynamical effects come 
into play. Since this phenomenon alters the statis- 
tical properties of the motion across the stochastic 
layer, it is expected to affect the rate of modula- 
tional (i.e. longitudinal) diffusion as well. We re- 
call that two different asymptotic regimes are pos- 
sible, depending whether )~ or the product )~fl are 
kept constant while taking the limit ~ ( or V) -~ 0 
(cf. section 2). Accordingly, we shall discriminate 
among these two possibilities also in the case of 
modulational diffusion. 

In the case ~ ~ 0 with )~ = const., the layer is 
progressively transformed into a thin separatrix 
layer. As a result, the modulational diffusion is 
converted into the weaker Arnold diffusion. 

The other regime to be considered corresponds 
to ~ - ~  0 but  X ~ =  const. (see section 2). The 
behaviour of the diffusion coefficient is unknown 
in this case, and this problem requires further 
investigation. However, preliminary numerical ex- 
periments indicate that within the range 0.1 < V < 
1, the diffusion rate does not differ considerably 
from that of the case V > 1. This result is con- 
sistent with the fact that the parameter V was not 
explicitly involved in the derivation of the diffu- 
sion coefficient. 

A transition to a different diffusion regime will 
also occur when the overlap condition no longer 
holds. For s < s¢~it the layer decomposes into sub- 
layers, due to the appearance of KAM surfaces 
within it. The theory developed in section 4 can be 

generalized to this case from the following consid- 
erations. 

The I 0 average in (3.11) must be restricted to a 
suitably smaller domain, corresponding to the sub- 
layer to which the orbit belongs. In addition we 
recall that the resonant terms considered so far are 
effective only near the right boundary of the layer 
(see fig. 1). However, if a trajectory is confined to a 
sublayer located, say, near the left side of the 
layer, other terms become dominant and must be 
taken into account. We shall therefore consider 
also resonant lines of negative slope, correspond- 
ing to negative values of the index J = EkJk (cf. 
(3.9) and (4.1)). By generalizing the procedure 
described in section 4, one can then identify domi- 
nant contribution and hence construct a complete 
map of the interaction regions, as depicted in fig. 
7. The numbers labelling the regions in which the 

J<O 
J ) O  

SUBLAYE 

W 
2 ~  
F 

Fig. 7. Sublayer diffusion: map of interaction regions (q = 1). 
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layer decomposes denote the order of the 
perturbation parameter e which characterizes the 
associated amplitudes. As an example, let us con- 
sider a sublayer as depicted in fig. 7, whose 
boundaries are represented by vertical dashed lines. 
The size of the corresponding plateaus varies with 
a, to attain an asymptotic value for large ~x. Since 
the latter is smaller than that corresponding to 
diffusion along the whole modulational layer, we 
expect the asymptotic parameters B and C corre- 
sponding to sublayer diffusion (cf. (6.2-3)) to be 
smaller. In particular the global decay rate B will 
be scaled as follows: 

max II01 ) (7.1) 
B ~ B  2 A~ ' 

where the maximum in (7.1) is taken over the 
sublayer domain. 

The picture we have presented here will hold for 
sublayers whose size is larger than the resonance 
spacings. When this is no longer the case (s << sent), 
modulational sublayers are transformed into thin 
layers about separatrices of the multiplet reso- 
nances, and a transition to Arnold diffusion will 
Occur. 

In closing we would like to mention that the fine 
structure of the diffusion coefficient is actually 
much more complicated than that we have 
described so far. Indeed accurate numerical calcu- 
lations have revealed a sharp increase in the 
diffusion rate about those values of a which corre- 
spond to integer and half-integer multiples of the 
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modulational frequency. In fig. 8 we display a fine 
scanning of such frequency in a domain centered 
on the precipice of the main plateau (for the 
unmodulated case), which uncovers variation in 
the diffusion rate up to three orders of magnitude. 
This phenomenon, which is currently under inves- 
tigation, could originate from the "sticking" of 
phase points near the boundary of the modula- 
tional layer, which yields long segments of trajec- 
tories characterized by a very slow diffusive mo- 
tion [15, 16]. 
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