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Transient Chaos in 
Quantum and Classical Mechanics 
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Bogolubov's classical example of statistical relaxation in a many-dimensional 
linear oscillator is discussed. The relation of the discovered relaxation mechanism 
to quantum dynamics as well as to some new problems in classical mechanics is 
considered. 

1. INTRODUCTION 

In 1945 Bogolubov published a paper entitled "An Elementary Example of 
Relaxation to Statistical Equilibrium in a System Coupled to the Thermal 
Reservoir. ''(1) The model in question is specified by the Hamiltonian 

H = H s + H z  + H s x  

N N 

=½(p2+co2q2)+½ Z (P] + coZ q]) + e ~ enqnq  (1) 
n = l  n ~ l  

It consists of a "probe" harmonic oscillator ( H s )  weakly (e ~ 0) coupled 
( H s z )  to a "thermal reservoir" (Hr) made up of N also harmonic ("ther- 
mal") oscillators with some distribution in their frequencies co,, and 
energies En 1 2 2 2 = co.q~). ~(Pn + 

Under the two assumptions (i)that the statistical properties of the 
thermal reservoir are described by the Gibbs canonical phase density 
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40  C h i r i k o v  

and (ii) that the distributions of ~n and ~on admit the limit 
2 

..~-* do) J(o)), N ~ o o  (3) 
CO n 

where J(co) is some continuous spectral density of the perturbation, 
Bogolubov proved that the probe oscillator also approaches the Gibbs dis- 
tribution as t ~ oo. In other words, in the limit N ~ oo, an infinitely small 
subsystem Hs of dynamical system (1) exhibits statistical relaxation. If 
initially, at t =  0, the energy of this subsystem Es(O ) = 0, the relaxation 
takes the especially simple form(l): 

(D 

Ps=2rcTs(t) e -Es/rw), Ts(t)= T ( 1 - e  ~) (4) 

where the relaxation rate 

7 = 5 ~2J({°) (5) 

In this Bogolubov's example, a certain particular mechanism of 
statistical laws, or of chaos (in modern language), was clearly and 
rigorously demonstrated for the first time. Previously, such a mechanism 
had been only implicitly and intuitively understood because of the very 
intricate and irregular motion of the dynamical system with an enormously 
large N. Following Ref. 2, we shall call this mechanism the temporary, or 
transient, chaos. The meaning of this term will become clear in Sec. 3. This 
approach developed since then and has now been made almost perfect by 
Bogolubov and his school, by the Prigogine school, and by many other 
scientists. Today it forms the foundations of statistical physics of 
macroscopic bodies. Various mathematical aspects of this problem have 
also been studied in detail today (see, e.g., Ref. 3), beginning from a 
classical work due to Khinchin. (4) 

The keystone of the transient chaos mechanism, as Bogolubov is used 
to emphasize, (5) is the transition N ~ o o ,  which is called the ther- 
modynamic limit in statistical physics. Some additional statistical 
hypotheses are also required for this mechanism to be efficient. In 
Bogolubov's example, they are specified by Eqs. (2) and (3). The first one, 
in particular, implies randomness and independence of the initial phases of 
thermal oscillators. It is thus clear that relaxation to the Gibbs distribution 
here is a particular case of the central limit theorem in probability theory 
(cf. Ref. 4). 

It is worth mentioning that condition (2) is actually insignificant (see 
Sec. 4), including the random phase assumption. According to Kac's 
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theorem, (6) the latter may be replaced by the requirement that the frequen- 
cies con be incommensurable, or linearly independent. However, the absence 
of any initial correlations between the probe oscillator and thermal reser- 
voir is essential. It is realized, in particular, if at the beginning the oscillator 
is in some determined dynamical state, say, Es(O)= O. 

Recently, Bogolubov came back to his classical example in its quan- 
tum version. (5) 

Presently, a remarkable peculiarity of Bogolubov's example is that the 
system (1) is completely (and trivially) integrable at any finite N. Such a 
system has a complete set of N commuting integrals of motion, and its tra- 
jectories fill up N-dimensional tori. Hence the motion is not even ergodic. 
Nevertheless, in the limit N ~  o% the statistical relaxation does occur, 
which requires at least the mixing. Moreover, the relaxation is exponential 
in time, obeying (4), which is one of the strongest statistical properties 
according to modern ergodic theory. At present the possibility of such 
statistical properties in an infinite system which is completely integrable at 
any finite N has been rigorously proved indeed. (3~ In Bogolubov's example 
it is explained by the fact that after the earlier transition to the limit N-+ oe 
the perturbation spectrum of the probe oscillator becomes continuous 
[-Eq. (3)], which is a necessary condition for the mixing. The importance of 
this transition was especially stressed even in the first paper of this series 
written by Bogolubov and his teacher Krylov in 1939 (see Ref. 7), where 
the Fokker-Planck-Kolmogorov diffusion equation has been derived in 
this way in both the classical and quantum cases. 

Therefore, one may say that the relaxation in Bogotubov's example is 
a relaxation in the continuous spectrum, while the thermal reservoir H z 
presents a dynamical model of external random noise. An important new 
question is what the statistical properties of Bogolubov's model (1) are at 
arbitrarily large but finite N. A related question is" Is the relaxation in the 
discrete spectrum possible, i.e., by taking the limits N--, m and t ~ oo 
(e- ,0) ,  not successively but simultaneously? We shall discuss these 
questions in Sec. 4. 

2. DYNAMICAL CHAOS 

In 1939, the same year when the article by Bogolubov and Krylov (7) 
was published, the papers by Hedlund and by Hopf appeared, which 
marked the beginning of modern ergodic theory (s~e, e.g., Ref. 9) based 
upon the property of the strongest (exponential) local instability of motion. 
By the end of the forties this new theory had already been applied by 
Krylov to the foundations of statistical physics. (1°~ 
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As there is no instability in Bogolubov's example, the new ergodic 
theory put forward a different mechanism for statistical laws in dynamical 
systems which is usually now called among physicists the dynamical chaos 
(stochasticity). Its most striking distinction from the transient chaos at 
N-~ oo is just the fact that N may be not only finite but also very small. 

In a Hamiltonian system, for example, it suffices to take N >  1 for 
chaos, including N =  1.5 (an oscillator with one degree of freedom driven 
by an external periodic perturbation). Generally, the chaos may occur even 
in a one-dimensional mapping such as the following, for instance (see, e.g., 
Ref. 11, Sec. 5.2c,d): 

k c2~i(p (Pn+l=k~°nm°d 1, Zn+l=Zn, Z= (6) 

where k >  1 is any integer. Curiously, the solution of this difference 
equation can be written explicitly: 

zn = z(0 k"), (p, = ~ook" mod 1 (7) 

However, this does not help us at all to get rid of the chaos, which appears 
just upon the transition from a regularly growing but unphysical angle 
(phase) (p to the physical direction of vector z, i.e., to q0 rood 1. 

The mathematical theory of dynamical chaos has been developed in 
the works by Kolmogorov and his school, by Anosov and his pupils, and 
by many other researchers (see Ref. 9). 

The significance of dynamical chaos is, first of all, that it extends 
statistical laws into a completely new domain of simple (small N) 
dynamical systems. Even though one cannot introduce "macroscopic" 
variables in such systems, and neither is there any "thermodynamic limit" 
here, their evolution is also described by some kinetic (particularly, dif- 
fusion) equation. In the case of a closed system it results in the relaxation 
to a microcanonical distribution for the whole system and to a Gibbs 
canonical distribution for any of its small subsystems (if N is large enough). 

The ultimate origin of dynamical chaos is related to continuity of the 
phase space in classical mechanics. The exactly fixed (imaginarily!) initial 
conditions contain an infinite amount of information which gradually 
determines the whole motion via the mechanism of local instability. (12) 

Is there any relation between the two sorts of chaos described above, 
which seem so different at first glance? The key to the solution of this 
problem lies in the following important property of dynamical chaos: Its 
motion spectrum is always continuous (at finite N!), i.e., just that for which 
the limit N ~ oo is required in the theory of transient cfiaos. Now we are 
almost ready to answer the above question, but first let us see what hap- 
pens with dynamical chaos in quantum mechanics. 
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3. QUANTUM PSEUDOCHAOS 

The problem whether dynamical chaos is possible in quantum 
mechanics was first considered in the late forties by Krylov (1°t and has 
been resolved by him in the negative. Since then his answer has not 
changed. The point is that the energy (frequency) spectrum of any quan- 
tum system bounded in the phase space is purely discrete, which implies an 
almost periodic temporal evolution of the system wave function O(t). This 
is just opposite to the classical dynamical chaos. 

Thus, we see that there is a far-reaching similarity between the quan- 
tum dynamics and that of a classical completely integrable system like 
Bogolubov's model (1). It is also clear that in both cases the number of 
independent frequencies Nc~, which determine the dynamics, rather than ?V\ 
is essential. As N ~ 0% the number No~ ~ oe as well, in both classical and 
quantum mechanics, which results in the transient chaos whose mechanism 
is actually the same in both cases, as has been established in the first paper 
by Bogolubov and Krylov/7) However, in quantum mechanics there is 
another possibility, namely, at finite N >  1 (including small N), N~ ~ or, 
which corresponds to the quasiclassical limit. 

At any finite 1\~, true dynamical chaos is impossible. However, the 
fundamental correspondence principle requires, nevertheless, some trans- 
ition from quantum to classical mechanics in general, and to the classical 
dynamical chaos, in particular. How does one resolve this apparent con- 
tradiction? The idea is (2) to introduce some characteristic time scales of the 
quantum evolution. The most important one seems to be the so-called dif- 
fusion (relaxation) time scale, which is given, according to Ref. 2, by the 
estimate: td,~ht], where t/ is the mean density of the system energy (or 
quasienergy) levels. The physical meaning of this scale is very simple and 
also relates to a fundamental uncertainty principle. Indeed, while t ~ td, the 
energy uncertainty AE~> t l -  1 well exceeds the average level spacing, and the 
system does not yet "feel" the spectrum discreteness. Hence, the evolution is 
temporary, determined by a would-be continuous spectrum, and it may be 
the same as in the classical limit. Various numerical experiments (2'~3'14) 
prove that it is just the case indeed, in spite of the absence of any strong 
local instability of motion, on scale ta, in quantum dynamics. (13) 

Numerical simulations also show that at t~> td, the quantum diffusion 
completely vanishes (2"~3 15) and turns into a stationary oscillation of ¢(t) 
and into localization of the quantum state in momentum space, par- 
ticularly on an energy surface. 

In the case of a time-dependent perturbation, the localization always 
terminates the classical relaxation process. However, in a closed system 
with bounded energy surfaces the relaxation picture may be quite different. 
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Namely, if the localization length exceeds the size of the energy surface, any 
initial state has enough time for relaxation to a microcanonical dis- 
tribution. This implies ergodicity of almost all eigenfunctions. (16) The con- 
dition for ergodicity is roughly given by the discreteness parameter of quan- 
tum spectrum 

=-- td~r t 'hT>l  (8) 
tR 

where tR = t'-1 is the classical relaxation time. 
The temporal evolution of a quantum system is always almost 

periodic, even if its eigenfunctions are ergodic. Thus, the quantum chaos 
may be, at the most, a temporary imitation of the true randomness which 
is reached in the classical limit only. Hence the term temporary, or 
transient, pseudoehaos. (2~ 

4. RELAXATION IN DISCRETE SPECTRUM 

Now we come back to the classical example of Bogolubov, and 
attempt to answer the questions posed at the end of Sec. 1. 

Consider first some fixed N~> 1. Then, the perturbation spectrum for 
the probe oscillator in model (1) is discrete with some finite mean fre- 
quency density T = N/A, where A ¢ 0 is a width of the full spectrum of ther- 
mal oscillators. The studies of quantum dynamics described above suggest 
the existence of a similar time scale ta~ ~ on which the perturbation acts as 
if it were of a continuous spectrum with the density 

J(e)) - (9) (,)2 

Hence, the probe oscillator would relax on this scale as in the limit N - ,  o% 
Eq. (4), provided 7~A,  the condition that is always satisfied as e ~ 0 .  
However, the result of relaxation crucially depends on the classical dis- 
creteness parameter 

K = 7 r ~ k - ~ )  < N  (10) 

which is quite similar to its quantum counterpart (8). The last inequality 
relates to the above condition ), < 3. 

If x ~> 1, the relaxation would be accomplished in spite of the spectrum 
discreteness, just as in quantum dynamics. Similarly, some residual 
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oscillations of any relaxing quantity do generally persist because of its 
almost periodic dependence on time. Yet, the oscillation amplitude can be 
shown to decrease as ~c -1/2. Moreover, the oscillations may be efficiently 
suppressed by an appropriate time averaging. Here is also the answer to 
the second question in Sec. 1. We can take both limits, N ~ oo and t ~ oo 
(e ~ 0), simultaneously, provided that ~c--+ oo also, i.e., that gZN---~ oo if we 
keep J =  const (~2N= const) or eN--, oo for c~ = const. If, instead, we kept 
t¢ = const as N--+ o% the relaxation would never be complete in the sense of 
a residual oscillation. 

In the more interesting case ~ ~ 1 the time scale r is insufficient to heat 
the probe oscillator up to the temperature T. As t--+ oo the average 
oscillator energy can be shown to increase only up to <Es}~ Txf-£~ T. 

The straightforward analogy to the quantum problem in Sec. 3 would 
lead to the estimate (Es}~cT, which proves to be wrong. The point is 
that, for ~c~ 1, the energy (Es> is essentially determined by just a single 
thermal oscillator with the minimal difference Ico,-col,  while for ~c>>l 
many ( ~ r y ~ c )  oscillators do contribute to (Es>. 

To make the similarity with quantum mechanics still closer, let us 
somewhat complicate Bogolubov's example by introducing a linear 
coupling among all the oscillators (CG'-*C~m,), and consider their 
simultaneous relaxation. Mathematically, this problem is reduced to the 
diagonalization of the matrix 

Hmn=coZ6m,+eam, (11) 

by a rotation of coordinate axes: qn--* Qm, where qn=bnmQm with some 
orthogonal matrix bnm and the normal coordinates Qm. But this is just one 
of the basic problems in random matrix theory, a statistical theory of com- 
plex quantum systems which explicitly takes account of the discreteness of 
quantum spectrum (see, e.g., Ref. 17). 

Coming back to our mechanical problem, we first observe that con- 
dition (2) is insignificant for Bogolubov's example. In Ref. 1 it was applied 
to obtain the relation <En> = T only (cf. Ref. 7). Therefore, the relaxation 
(4) would occur for any (nonsingular) Pz, the only difference being that 
the final temperature of the probe oscillator would be determined now by 
the average energy of thermal oscillators at frequency conic  o, that is, 
T ~  (En>~o,=~o. Thus, the relaxation becomes local in frequency. 

A similar local relaxation also occurs for the model (11), provided 
1 < ~c <N,  (10). In the corresponding quantum problem, the condition ~c > 1 
implies that the perturbation ec~ exceeds the mean spacing of unperturbed 
eigenvalues &o2~co &o.~cod/N. This results in a breakdown of pertur- 
bation theory, in intense transitions among neighboring unperturbed 
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states, and in their strong mixing by perturbation. It is a necessary con- 
dition for the quantum pseudochaos known as Shuryak's criterion. (18) In 
the present case, yet not always, it coincides with the other condition (8) 
related to the diffusion time scale. 

The local relaxation produces the canonical distribution of oscillators 
with a frequency-dependent temperature T(m). What are the conditions for 
the global relaxation to a unique temperature over the whole frequency 
band A? A sufficient condition would be 7>A, or 

2 3(2 /£ 
- - ~ - - > 1  (12) e Nco2d 2 N ~  

which implies an efficient interaction among all the oscillators and, hence, 
their simultaneous relaxation. This global relaxation is, of course, quite dif- 
ferent from the local one, (4), as a necessary condition for the latter (7 ~'A) 
is just violated according to Eq. (12). 

The global relaxation in a linear oscillator was apparently first obser- 
ved by Ford et al. ~9) in numerical experiments with a version of model (11) 
and for A = 0, that is, for a degenerate (resonant) unperturbed system with 
all the frequencies equal. In this case, condition (12) is obviously satisfied, 
but there is no room for the local relaxation. 

In the quantum problem the condition (12) means that perturbation 
mixes up all the unperturbed states and not just a few neighboring ones as 
for ~c > 1 only. This may be elucidated in two ways. 

First, one may apply Shuryak's criterion for transitions among 
arbitrary unperturbed states. Since their mean separation is 6(o2~o)A,  

while the effective perturbation V~ e~ ~ (we assume matrix elements O~mn 
to be random and independent), the ratio V/6co 2~ (~/A)1/2> 1, which is just 
the condition (12). 

Strong mixing of all the unperturbed states implies ergodicity of the 
exact eigenfunctions in the unperturbed basis. The ergodicity condition for 
matrices of the type (11) with a small random perturbation is obtained in 
the random matrix theory and does coincide with Eq. (12), indeed (see, 
e.g., Ref. 17, Chap. IV G, where c~c02,-~d2). Such a condition had first 
been obtained in numerical experiments ~2°) and then explained by 
Dyson ~21/via a very nice and physical picture of the eigenvalue "dynamics" 
in e, i.e., as the perturbation grows. It gives another interpretation of con- 
dition (12). Indeed, for random and independent c~_n's, the resulting dis- 
placement of unperturbed eigenvalues is 60) 2 ~ ec~ x/-N. Then, the condition 
(12) implies c5co n >A, which means that each eigenvalue has "crossed" all 
the others in the process of "motion" and, hence, has been mixed up with 
any other unperturbed state. 



Transient Chaos in Statistical Physics 47 

The same interpretation holds for the classical problem as well. Here 
successive "crossings" of the frequencies of normal oscillators also have the 
result that the latter become a superposition of more and more unpertur- 
bed oscillators. 

5. CONCLUSION 

A simple Bogolubov's example, which exposes the mechanism of 
transient chaos in classical statistical mechanics, turns out to be even 
more instructive in the problem of quantum chaos where that mechanism 
is the only one possible. In particular, the quantum random matrix theory 
reveals a far-reaching analogy to a much less developed (however, strange 
it may seem!) theory of the classical many-dimensional linear oscillator. 

Well, and what about a nonlinear classical oscillator? Quantum 
mechanics may help here, too, if the oscillator is a completely integrable 
one like, for example, the Toda lattice (see, e.g., Ref. 11, Sec. 1.3c). The 
crucial point here is the mixing up of many linear (unperturbed) modes, 
which requires a sufficiently high excitation energy. Indeed, numerical 
experiments by Ford and co-workers (22) revealed the energy sharing among 
the linear modes under this condition. 

There are also other applications which are much closer to quantum 
dynamics. These are linear waves in nonhomogeneous dispersive media, in 
a plasma, for example, (23) or in waveguides and resonators. (24~ It is instruc- 
tive to mention that in the latter case an apparently academic Sinai's 
problem on the classical billiard dynamics (25) turns out to be of practical 
importance. In all those systems, chaos is possible (23'24) in the geometrical- 
optics approximation, which is the analog to the quasiclassical 
approximation in quantum mechanics. Note, however, that this chaos is 
only a transient one, i.e., a pseudochaos. 

The last but not least application of the transient chaos concerns the 
global problem of numerical experiments in classical dynamical chaos. A 
principal limitation here is the discreteness of any quantity in the digital 
computer. This calls forth a naive analogy with the discrete phase space in 
quantum mechanics. As a matter of fact, the computer dynamics proves to 
be even more "quantal," since any dynamical trajectory on a discrete lattice 
eventually becomes just periodic as compared to an almost periodic quan- 
tum O(t). This problem was discussed recently in Ref. 2, for example, but 
actually it has already been known for a long time in the theory and prac- 
tice of the computer pseudorandom number generators. Such generators 
(algorithms) appeared in the early fifties, well before the theory of 
dynamical chaos was developed. At that time the term "pseudo" was 
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related to the widespread belief in the impossibility, in principle, of any 
"true" randomness in dynamical systems. Today we know that this is 
wrong (Sec. 2). However, the term "pseudo" remains and now relates to the 
fact that in a digital computer (as well as in quantum mechanics!) only a 
temporary imitation of true dynamical randomness is possible. For exam- 
ple, map (6) in real numbers does produce a random sequence ~0 n (mod 1). 
Yet, the same map in integers (the most widespread and the best generator) 
provides a pseudorandom string of integer (pn's which is actually periodic. 
Moreover, as is shown in Ref. 2, a simple discretization of the action 
variable in a classical chaotic dynamical system (J--+ n'AJ) qualitatively 
mimics the quantum pseudochaos with h = zlJ! 

Thus, the phenomenon of transient pseudochaos, which was once 
taken as the basis of classical statistical physics, now has been reborn in 
quantum mechanics and may help again in the solution of new problems in 
classical dynamics. 
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