Proc. R. Soc. Lond. A 413, 145-156 (1987)
Printed in Great Britain

Particle confinement and adiabatic invariance

By B. V. CHIRIKOV
Institute of Nuclear Physics, Prospekt Nauky 11, 6300 Novosibirsk 90, U.S.S.R.

The general problem of adiabatic invariance is discussed by using, as an
example, the particle motion in a mirror magnetic trap. A new, resonant,
adiabaticity parameter is introduced, which allows the reduction of the

" axisymmetric problem to the standard map, and which provides a sharp
estimate for the chaos (instability) border in magnetic traps. Peculiarities
of the particle diffusion out of the trap, due to the presence of the chaos
border, are considered. The mechanism of slow Arnol’d diffusion in a
non-axisymmetric field is explained, and some rough estimates are given,
including the impact of weak noise (gas scattering).

1. INTRODUCTION

The problem of controlled nuclear fusion, aimed at the peaceful use of thermo-
nuclear power, has stimulated a broad range of fundamental research in plasma
physics. Among other problems, particle dynamics in electromagnetic fields has
been intensively studied. On one hand, these fields are supposed to confine particles
for a fairly long time within a bounded domain of space (the so-called ‘magnetic
traps’). ‘On the other, they are expected to heat the same particles up to a very
high thermonuclear temperature.

In these studies physicists have come across the first examples of a rather
peculiar phenomenon, called dynamical chaos, that is a random (unpredictable)
motion of a completely deterministic mechanical system whose equations of
motion did not contain any random parameters or any noise (see, for example,
Chirikov 1960; Lichtenberg & Lieberman 1983; Chirikov 1984; Zaslavsky 1985).
Still earlier, similar phenomena were observed in numerical experiments (Goward
1953 ; Hine 1953) on particle dynamics in an accelerator (also a ‘magnetic trap’).

Apparently the first who actually dealt with dynamical chaos was English
psychologist and anthropologist, Galton. In 1889 (almost a century ago!) he had
developed his famous device, the Galton Board, to demonstrate statistical laws
as well as statistical methods for studying mass phenomena, the methods he first
introduced into psychology (Galton 1889). Galton himself had, apparently, no

_interest in the dynamics of his fairly simple mechanical model which has been
termed later on as ‘Lorentz’s gas’, and which nowadays is intensively studied,
among others, by the Soviet mathematician Sinai and his disciples. Only 17 years
later Poincaré conjectured that a highly irregular, chaotic motion in such systems
was due to a strong local instability of the trajectories. It took more than half a
century to develop this fairly simple physical insight into a rigorous theory. Now
motion instability or, in modern language, a positive (non-zero) Kolmogorov—Sinai
entropy is the most efficient criterion for dynamical chaos (Alekseev et al. 1981),
although still not commonly accepted.
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Back to plasma physics, I shall mention also the problems concerning the
‘dynamics’ of a magnetic line itself (Gelfand et al. 1963 ; Rosenbluth et al. 1966;
Filonenko et al. 1967). These lines may be chaotic as well (a ‘braided’ magnetic
field), which results in\q considerable increase of the plasma transverse thermal
conductivity. Particle diffusion in such a field (Rechester et al. 1978; Kadomtsev
et al. 1978) provides a striking example of time-reversible chaos. Consider a toroidal
magnetic trap (say, tokamak) and write the diffusion of magnetic lines as Arg oc st
with s the distance along a line. Assuming that particle follows a certain particular
magnetic line and neglecting the scattering completely we arrive at the standard
diffusion estimate Ar,, oc £2. Now, take the scattering into account, still neglecting
all the finite Larmor radius effects. Then, the particle displacement along a line
grows as s oc # only, because of random changes of the sign of its velocity as a result
of scattering. Hence the transverse diffusion drops down to Ar, oc ti (Rechester
et al. 1978). Of course, the particle is going to leave its ‘own’ chaotic magnetic line
eventually, yet the plasma thermal conductivity considerably decreases. It is an
important practical consequence of the time reversibility of dynamical chaos.

2. BUDKER’S PROBLEM

Now we are going to discuss in some detail a typical dynamical problem in the
plasma theory, the particle motion in a mirror magnetic trap. Those devices are
now called ‘open’ (for the magnetic lines, and we hope not for the plasma!). The
problem was formulated in 1954 by Soviet physicist Budker who proposed,
independently from American physicists, to make use of such a trap for controlled
nuclear fusion (see Budker 1982). Precisely this problem was the beginning of the
study of dynamical chaos in our institute, at that time in the depths of the
Kurchatov Institute for Atomic Energy.

Particle confinement in ‘an open trap is provided by the conservation of an
adiabatic invariant, the magnetic moment of a particle, which is known, however,
to be an approximate motion integral only. Thus, Budker’s problem turned out
to be a particular case of the general fundamental problem of adiabatic invariance,
that is the invariance of the action variables under the special, adiabatic
perturbation.

Previously, pulsed, or single, adiabatic perturbations, which are effective over
a finite time interval only, had been mainly studied. As is well known, the principal
condition for adiabatic invariance in this case is perturbation slowness as compared
with the characteristic frequencies of a system. In the class of analytical functions
the violation of adiabaticity is asymptotically (for ¢~ + 00) exponentially small
in the slowness parameter, and hence unimportant as a rule.

In Budker’s problem we encounter a rather different situation when the
adiabatic perturbation, due to a particle longitudinal libration, is a stationary, or
multiple one. The smallness of the libration frequency as compared with the
Larmor frequency (the slowness of adiabatic perturbation) does no longer guaran-
tee the conservation of the adiabatic invariant because its small changes over
each libration period may now accumulate. Here, as in many other problems in
the theory of oscillations, the resonances (linear or nonlinear) between the particle
gyration and libration are of primary importance.
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A vague idea about the role of resonances in the problem of adiabatic invariance
arose at the dawn of the quantum mechanics, where the action variables are of
a special importance. Yet this question was only properly formulated and answered
in 1928, for linear oscillations, by Soviet physicists Andronov, Leontovich and
Mandelstam (see Mandelstam 1948). Remarkably, it proved to be sufficient simply
to carefully look at the well-known Mathieu’s equation and its solutions from the
physical viewpoint. Indeed, the stop bands of parametric resonance do exist here
for arbitrary small values of the slowness parameter

e =02/20, (1)

near € = 1/n, where n # 0 is any integer, w, the unperturbed frequency of a linear
oscillator, and Q the frequency of the harmonic parametric perturbation. Thus,
in the present case, the necessary condition for adiabatic invariance is the lack of
resonances in perturbation. Its slowness just helps in that the resonance width (Aw,)
as well as the maximal increment (y) of the instability (in action) drop
exponentially in e:

Aw, = y & §Q(3e%g)"°. (2)

Here e=2.71..., and ¢ is dimensionless perturbation amplitude: w?(t) =
wi(1—g cos 2t) (see Chirikov 1984; 1986 for details).

The problem becomes much more complicated for the nonlinear oscillations of
particle in a magnetic trap. First, the resonances now depend not only on the trap
parameters but also on the motion initial conditions, which determine the
oscillation frequencies. Moreover, a single resonance does not produce any
instability at all because of the stabilization of resonant perturbation by non-
linearity. Yet, the interaction of several nonlinear resonances (if only two) results
in a rather peculiar instability, dynamical chaos (see, for example, Lichtenberg &
Lieberman 1983 ; Zaslavsky 1985).

3. RESONANT PERTURBATION THEORY FOR ADIABATIC PROBLEMS

Consider, as a particular example, the axisymmetric trap whose magnetic field
in some axis neighbourhood depends on the coordinate s along a magnetic line as

w(8) = 3wo[(A+1)—(A—1) cosms/L]. (3)

Here w, is the minimal magnetic field, and A the mirror ratio. This model also
describes a multimirror (2L being the mirror spacing), or ‘corrugated’ magnetic
field.

An important step from the beginning is the choice of unperturbed system. We
require the magnetic moment to be constant,

4 = v2 /2w = const., (4)

where v is the transverse component of particle velocity: That choice corresponds
to the well-known Born—Oppenheimer approximation in quantum mechanics. The
unperturbed hamiltonian becomes

H'(p, s) = }? = }p®+ pw(s), (5)
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where p = §is the momentum. We use relativistic unitse = ¢ = m(1 —2)72 = 1. All
the relations hold for an arbitrary particle velocity even though some of them have
a ‘non-relativistic’ appearance.

Below we restrict ourselves for simplicity to two limiting cases

1/A <€sin%6, <€ 1, (6a)

|1/A—sin?6,| < 1/A. (6b)

Here 6, is the pitch-angle at the field minimum: x4 = v?sin26,/2w,. Case (a)
corresponds to a small (harmonic) libration in the ‘potential’

Uls) » oyl +82/s); 8, =2L/ny/(A—1) < L, )

where s, characterizes the spatial field scale. For (b) the motion is close to
separatrix H® = H? = uAw,, or the loss cone 6, =6, sinf, = A~% <1, which
separates the trapped (Af, = 6,—6, > 0) and untrapped trajectories. It is con-
venient to describe the distance from the separatrix by the dimensionless quantity

_ 2H—Hy)
) = #A—1)w,

The unperturbed frequencies are:
_OH v/ (2pw,) _

~—44/AAG,; |w) < 1. (8)

Q('Il,) - aI s QO( )9
b
OH® LAY
<(0(/L, I)>=F/I/—zw0+m:\/(7)2~—2 sin200’ (9(1/)
Q 2
Qu) ~ Z (;); (o)) ~ Awo(l _X(u_)) ~ Ao, (9b)

Here, A(u) =1In(32/|wl|), I is longitudinal action, and {w) the Larmor gyro-
frequency averaged over the libration period. Define the slowness parameter of

the adiabatic perturbation as

e(p, I) = o> ¥ ok v/ A sin®6,, (10a)

~—EmVline,, (10B)

where p,, = v/w, is the maximal Larmor radius. Notice that even for (a), harmonic
libration (7), the latter is essentially nonlinear because its frequency (9a) as well
as the frequency ratio (10a) depend onaction variables x4, I. Both actions are
related by the energy conservation H® = const., whence I ~ LH"/+/ (2w, u) for (a).

A specific difficulty of stationary adiabatic problems in the theory of nonlinear
oscillations is that one cannot directly use here the powerful asymptotic methods
in the perturbation theory, particularly, a fairly simple and efficient averaging
method. This can be seen from estimate (2) for the linear problem. Even though
the dependence on the perturbation amplitude is a power law, which can be
obtained via a standard asymptotic series, the expansion in the small slowness
parameter ¢ fails. On the other hand, at large perturbation amplitudes, which
are typical for adiabatic processes, € is the only small parameter. An example is
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the model under consideration (3) for A > 1. The difficulty is still worse because
for stationary oscillations the change in action variables consists of two quite
different parts:

(1) the quasiperiodic variation, for instance, Au, ~ €, which is relatively big but
non-cumulative and, hence, unimportant after all;

(ii) the resonant variation, Ay, ~ e~'/¢ (over a libration period, see (12) below),
which just results in motion instability and particle losses even though it is rather
small compared with (i).

To overcome this difficulty, introduce a new ‘good’ adiabaticity parameter
which, first, would describe the resonant cumulating variation Ax, only, and,
second, would include the non-analytical exponential Au, ~ e7'/¢ from the begin-
ning. Both objectives are naturally realized by the construction of a map over the
libration period. Because of the symmetry of model (3) in respect to the field
minimum, the map over half a period is sufficient. At any resonance (m{w) = 2nQ),
the quasiperiodic variations Au, can be completely excluded, hence the term
‘resonant perturbation theory’. Actually, such an approach had been used already
by Chirikov (1960) and was further developed later on (Chirikov 1978; see also
Chirikov 1979, 1984).

To realize this approach one needs, first of all, to calculate Au, by some direct
integration. Curiously, this problem has been solved initially for the quantum
equations of motion with subsequent transition to the classical mechanics (Dykhne
et al. 1961), an amusing zigzag of cognition! A simple classical procedure for
evaluating Au, has been developed and applied by Hastie et al. (1968).

For the field (3), Ay, isexponentially small because of the (per period) singularity
w(s) =0 at s =is; (7). Because s, < L for A » 1 (6, < 1) the change in x occurs
in a small neighbourhood of the field minimum. Introducing an new dimensionless
variable

P = v/ (1t ptmay) = 800y % 6, < 1 (11)
we obtain in both cases ((a) and (b)) (Chirikov 1984)
_ It rgv/Ae s _3np, VA
g—(AP)max"‘gz T e =71 <1 (12)

for the amplitude of the variation of P, which we choose as a new ‘good’
adiabaticity parameter £. Here r, is the distance of the Larmor centre from the
symmetry axis at a field minimum; €5 ~ ¢ the field ‘smoothness’ parameter (cf.
(10)), and the last inequality is the applicability condition for (12).

4. THE STANDARD MAP

The resonant change in P depends on the Larmor phase ¢ at the field minimum:
AP = £-sin¢. In turn, the ¢ variation is determined by the frequency ratio (10),
or by the parameter of perturbation slowness: A¢ = nt/e(P). This leads to a map
(P, ¢)— (P, @) over half a libration period

P=P+Esing; ¢ =¢+n/e(P), (13)

which describes a long-term particle motion.



150 B. V. Chirikov

The cumulative non-adiabatic variation of x is related to resonances at P = P,
where ¢(P,) = in with any integer n. The rate of accumulation is determined by
the new parameter £, which may be called therefore the resonant adiabaticity
parameter as well as the whole perturbation theory based upon it (§3). Notice that
high harmonics of the libration frequency, which are required for the resonances
at large n, are present even in the case (a) of harmonic oscillations due to the
libration-modulated Larmor frequency.

Because £ does include the principal non-asymptotic effect of adiabatic per-
turbation, one can use any standard asymptotic expansion in £, particularly, the
efficient averaging method (Chirikov 1960, 1978, 1979, 1984).

Map (13) can be simplified still further by linearizing the second equation in P.
Introducing a new variable p = G(P)+ G’ (P) AP with G(P) = n/e we arrive at the

so-called standard map . - _
p=p+Ksing; ¢=¢+p, (14)
which describes the local (in P) dynamics of model (13). These depend on the only

arameter
P _8Im ry /A e Ve

K(P) =80/ (P)| ~ 55 L~ G po (150)
2 2 ,—1/e
K(P)z27n ro A% e71/°B (15b)

64 L e3AP

Here AP = P—P,~ Af,; P, =sinf,. We shall call K the stability parameter
because there exists a critical value K, separating bounded motion in p(K < K)
from uitbounded motion (K > K,). The latter just means the instability (non-
adiabaticity) of particle motion that brings the particle onto the loss cone at
P =P, = 2"t < 1. In terms of nonlinear resonances the critical K is determined
by their ‘overlapping’ which results in an unbounded ‘wandering’ of trajectory
in p (Chirikov 1979). On the other hand, the Kolmogorov—Arnol’d-Moser (K.A.M.)
theory does rigorously guarantee (for K 0) the boundedness of p and 4 oscillation,
which results in the eternal confinement of a particle in the trap (Arnol’d 1963).
In this sense the adiabatic invariant becomes an exact one. Notice that for some
initial conditions the eternal oscillation of a particle is, nevertheless, chaotic.
Thus we encounter the curious phenomenon of chaotic adiabaticity. On the other
hand, there are domains of regular bounded oscillations for K > K as well.

The precise K, value is obtained in the theory of critical phenomena, which is
a recent development of the K.A.M. theory. According to Greene (19779) and to
MacKay & Percival (1985) the critical K lies within the interval

0.9716... < K, <% = 0.9843.... (16)

Such an uncertainty is of no importance for applications, of course, yet it leaves
open some interesting questions in the theory of the critical structure (Chirikov
& Shepelyansky 1986).

The elusively simple model (14) has turned out to be very popular in the studies
on nonlinear and chaotic dynamics. Besides, as was shown above, the standard
map has a direct bearing on some real physical problems. A new example is the
dynamics of a comet under Jupiter’s perturbation (Petrosky 1986).

Among the early researchers on model (14) was British physicist J. B. Taylor.




. Adiabatic particle confinement 151

To the best of my knowledge, the standard map first appeared in the problem on
electron dynamics in a new relativistic accelerator, the microtron, invented by
Soviet physicist Veksler (1944). This was studied by Kolmensky (1960) and many
others (see, for example, Kapitsa & Melekhin 1969). In all these papers the case
of a stable regular acceleration only was considered. The main microtron domain
corresponds to the standard map parameter K as follows

_2nwV _ 2n
T ¢B  sing,

~ 6.59, (17)

where o, V, ¢, are the frequency, amplitude, and equilibrium phase of the
accelerating voltage respectively, and where B is the magnetic field strength. The
value (17) is much greater than the critical one. As a result, the regular acceleration
domain is only about 19, of the phase plane, even for the optimal sin ¢, = 0.95.
The other initial conditions give rise to chaotic electron motion, that is the
microtron turns into a ‘stochatron’, upon some necessary changes in its design,
of course. Such a chaotic electron acceleration has been observed recently in a
‘plasma microtron’ (Vaskov et al. 1984).

5. THE CHAOS BORDER AND STATISTICAL ANOMALIES

Back to Budker’s problem we see from (15) that there is always a chaos border
in the magnetic trap determined by the condition K = K, = 1. In velocity space
the border is a cone with vertex angle 6, ~ Py, where

1 i e ¥
<t~ 2 (%) N <, (180)
r A2 e~ len 1
| ~4.2-2 .
A6, & 4.2 2 < 7 (18d)

The inequalities recall the applicability conditions for simplifying assumptions of
§3. One may say that the ¢liaos border widens the adiabatic loss cone 6, ~ A%,

A very intricate critical structure near the chaos border consists of alternating
components of regular and chaotic motions whose spatial (in 6) scales indefinitely
decrease towards the border while the temporal ones increase without limit. This
leads to a long-time ‘sticking’ of a chaotic trajectory, and, hence, to a sharp drop
of the diffusion rate. As a result, the statistical relaxation proceeds abnormally
slowly according to some power, rather than exponential, law.

If, for example, the particles fill up all the chaotic component connected with
the adiabatic loss cone homogeneously, the number of still confining particles N(¢)
first decays exponentially in time because of an ordinary relatively fast diffusion
off the chaos border. However, as soon as the relaxation process approaches the
border its rate drops and, according to numerical experiments (Chirikov &
Shepelyansky 1981 ; Karney 1983), proceeds approximately as follows:

N(t) oc t72. (19)

The time correlation in the chaotic motion with a border decays in the same way.
However, if the particles are injected near the adiabatic loss cone, i.e. relatively
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far from the chaos border, than N(¢) decays according to (19) from the beginning
but for a different reason, namely homogeneous diffusion inside the trap. In this
case N(t) is proportional to the integral probability of Poincaré’s recurrences into
the initial state, at the loss cone. For different models this initial stage of the
process was observed in some numerical experiments (Channon & Lebowitz 1980;
Yamaguchi & Sakai 1986). However, as soon as the diffusion reaches the chaos
border the decay proceeds as (Chirikov & Shepelyansky 1981)

N(@t) oc t74. (20)

The latter régime was apparently observed by Indian physicists in a laboratory
experiment on electron dynamics in a magnetic trap (Bora et al. 1980). The
empirical value of the exponent in (20) was approximately — 1.3 (Chirikov 1984).
A power-law correlation decay C(r) oc 77? with the exponent p <1 (19)
qualitatively transforms the diffusion related to that correlation. Formally, the
diffusion rate becomes infinite. Actually, it means that the dispersion o2 of
distribution function grows abnormally fast (Chirikov & Shepelyansky 1984):

o2(t) oc 1277 ~ 8, (21)

This occurs, for instance, in the chaotic component of the standard map in the
presence of a domain of regular microtron acceleration (17) with the chaos border
around, that is when the microtron behaves as a stochatron. In numerical
experiments (Karney et al. 1982) the empirical ‘diffusion rate’ increased by a factor
of about 100, even though the relative area of the regular microtron acceleration
was as small as A, & 0.02. The theory of critical phenomena leads to the estimate

o? ~ ad 1K, (22)

where a & 0.5 from the numerical data (Karney et al. 1982).

6. ARNOL'D DIFFUSION AND UNIVERSAL NON-ADIABATICITY

Above we considered the axisymmetric magnetic trap where the particle motion
is essentially two dimensional (two degrees of freedom). Any asymmetry of the
magnetic field, making the motion three dimensional, greatly complicates the
particle dynamics so that only rough estimates can be derived. In what follows
we are going to discuss the three typical cases.

(@) A strong asymmetry, the multiplet overlap

Because of a particle drift with frequency £, each of resonances (w) = 2n (§4)
splits into a multiplet of m subresonances with spacing £, and with

Moy +20AQ [Aw)  AQ]{w) _ (o>
"I T, “’[@*9]%‘ 9y

v (23)
where A{w), AQ are the full widths of frequency modulation on a drift surface
(Chirikov 1978). Under condition v 2 2Q/{w) = 1/n < 1 the neighbouring multi-
plets do overlap, and a usual global chaos sets in. The critical K value considerably

diminishes K, (v) & v/ (m) (2,/2Q)* ~ eV 2 e <l. (24)

c
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In the last estimate 2,/2 ~ ¢ = 2/{w) is assumed, and the lower bound for K (v)
is determined by the multiplet overlap. For K > K (v), the diffusion rate is about
that at v = O(K > 1) as it depends on the spectral density of perturbation.

(b) A moderate asymmetry, the modulational diffusion
Let
&~ Qu/<0y SV S 1/n~e, (25)

then multiplets do not overlap, yet they exist as m 2 1 (the left inequality). Under
condition K 2 K (v) (24) the resonances within a multiplet do overlap and form
a solid chaotic layer along a resonance (w) =2nQ2, the layer width being
Aw =~ m; ~ v{w). In the absence of multiplet overlap the diffusion can still go
along resonance {w) = 2n2 (for a simple model of such a modulational diffusion
see, for example, Lichtenberg & Lieberman 1983 ; Vivaldi 1984).

According to (10a), modulational diffusion proceeds in both 6, and 7, while

olre))

sin® 6, ~ const. (26)

Because the magnetic field goes down with 7, any decrease in 6, leads to an
increase in r,. Notice that in the axisymmetric trap the radial motion is forbidden
by the conservation of angular momentum.

In our case the non-axisymmetric perturbation is a high-frequency one that is
the detuning from the nearest resonance dw ~ 2 > Aw = v{(w) ~ vQ/¢ is much
larger than the multiplet width. It is also adiabatic as the inverse frequency ratio
is small. Hence, the effect of this perturbation is exponentially small too, and the
corresponding resonant adiabaticity parameter £,; can be roughly estimated as

§M~vexp<—2n|—§%|)~ve_“6/"262 e %; an~1. (27)

For a more accurate evaluation see Vivaldi (1984); Chirikov et al. (1985).
With initial condition inside any multiplet the diffusion occurs, and the particle
lifetime in the trap is of the order

T, T
T~T, gl\—’lz ~ V_(2) ezae/v s 6_2 eza/e,

Tol~ Q& ~ Qeg? e ¥es, (28)

where 7, is the lifetime at K > 1 or v X €. If one takes account of the dependence
Tol€g) (€5 ~ €, O, ~ 1) the lifetime 7(¢) decreases with 1/e down to the minimal

Q a Q ,
'rmin~g;§exp(4A/;)~E§e“/€ (@ ~ 1)

at maximal e~ 4/v (25). The minimal critical value now is still less
K. (v) ~ ev/v 2 €8 ~ v (cf. (24)). The last estimate is the condition for a multiplet
formation (25).

A considerable decrease in the instability threshold illustrates the general rule:
the lower the modulation frequency 2,; of perturbation, the easier it is for chaos
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to occur even though it may be confined within a multiplet, for example. The
reason is very simple: upon splitting in a multiplet, the width of each resonance

Aw, < 24, and the overlap parameter Aw, /Ry Q;I% grows indefinitely as
2y —>0.

(¢) A weak asymmetry, the Arnol’d diffusion

Is there any loss of particles for v < €2 (K< 1) or for K< K ,(v)? A fine
mechanism of the weak instability in many-dimensional nonlinear oscillations has
been discovered by Soviet mathematician Arnol’d (1964), Kolmogorov’s disciple.
As further investigations revealed (Gadiyak et al. 1977 ; Chirikov 1979 ; Lichtenberg
& Lieberman 1983) Arnol’d’s mechanism leads to a slow diffusion along narrow
chaotic layers around the destroyed separatrices of nonlinear resonances. This
process has been termed Arnol’d diffusion. Its most interesting and important
feature is universality, as chaotic layers exist at any arbitrarily weak perturbation
because the frequency of phase oscillations at a resonance 2,0 towards the
separatrix.

Here again we come across a typical example of ‘inverse adiabaticity’ for
stationary oscillations driven by high-frequency perturbation. The estimate (27)
still holds for the resonant adiabaticity parameter £, too, where now Aw = 4Q,
is the full width of a nonlinear resonance. However, the width can be arbitrarily
small as well as £,. Because (see (14) and (15), 6, ~ 1)

Q, ~ Qv K~ (Q2]eg) e (29)
then far v <€ €* (no multiplet)
En ~ vexp(fege!/*p); f~1. (30)

The first estimate of the destruction (‘splitting’) of separatrix by a high-
frequency perturbation was due to Poincaré (1899). Recently this problem has
been studied by many authors (see, for example, Lichtenberg & Lieberman 1983;
Zaslavsky 19835), including an accurate evaluation of the full width of a separatrix
chaotic layer (Chirikov 1979; Escande 19835).

From (30), a rough estimate for the particle lifetime 7, similar to (28), can be

obtained in the form TQV? ~ exp (2fep e!/*B). (31)

A distinctive feature of the Arnol’d diffusion in a magnetic trap is the
tremendous drop of its rate (ca. 771) with a slowness parameter €5 of the adiabatic
perturbation (a double exponential).

At very small eg the diffusion is driven by some high-order resonances whose
detuning dw < 2 while their strength is only(!) exponentially small. As a fairly
simple analysis shows (Chirikov 1978; for details see Chirikov 1979) the latter
mechanism considerably reduces the lifetime

TQv? ~ exp (b e'/24B); q= N, (32)

where N = 3 is the number of degrees of freedom of the particles and b ~ 1 only
weakly depends on the parameters.
Arnol’d diffusion has been carefully studied on some simple models (Gadiyak
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etal. 19777; Chirikov 1979; Lichtenberg & Lieberman 1983 ; Petrosky 1984 ; Kaneko
et al. 1985) including the case of high-order driving resonances, or Nekhoroshev’s
régime (Chirikov et al. 1979). A rigorous upper limit for the diffusion rate has been
derived by the Soviet mathematician Nekhoroshev (1977), Arnol’d’s pupil. The
latter estimate can be reduced to the form of (32) with one important difference,
namely, for N > 1 the exponent ¢ ~ N? rather than ¢ = N in (32). This interesting
question remains open. At any rate, in the numerical experiments on a simple
model, made by V.V. Vecheslavov as a continuation of the previous work
(Chirikov et al. 19779), the dependence like (32) was observed down to the extremely
weak perturbation which would correspond to ez = 0.07 and £ ~ 107°.

Arnol’d diffusion was apparently observed also in the laboratory experiments
on long-term confinement of electrons in magnetic traps (Ponomarenko et al. 1968;
Ilyin et al. 1977). In any event, the dependence 7(B) had the characteristic shape
of two plateaux with a sharp jump in between. The upper plateau at B > B, (the
critical magnetic field) is determined by the residual gas scattering of an electron
on angle A§ ~ 1. The lower plateau is caused by the same scattering but in the
nearest chaotic layer of a nonlinear resonance that is on a substantially smaller
angle. The latter results in the decrease of electron lifetime by one order of
magnitude approximately. Hence, some external noise (scattering) is of great
importance for the Arnol’d diffusion because otherwise it would take place for very
special initial conditions only, namely, within the chaotic layers whose total
relative measure is negligibly small (of the order of (32)). The same is true for the
modulational diffusion too, yet the relative layer width here is much bigger
(~my/2 ~ v/e 2 €). One may say also that such a diffusion greatly amplifies the
effect of the scattering or of any other noise.

Notice that the critical field B, = w, is nearly independent of the asymmetry
v (see (12)): o
§2E \I;(;j) & In In (72v%) —In b. (33)

Here 7 is of the order of the gas scattering time.

Thus, in spite of the universal Arnol’d diffusion the adiabatic invariance proves
to be fairly precise generally, and even absolute (eternal) for most initial
conditions.

I am deeply grateful to all my colleagues from many countries for a permanent
collaboration, in one way or another, which is vital for the progress in this new
exciting field of research.

REFERENCES

Alekseev, V. M. & Yakobson, M. V. 1981 Physics Rep. 75, 287-325.

Arnol’'d, V. 1. 1963 Usp. mat. Nauk 18 (6), 91-192.

Arnol’d, V. 1. 1964 Dokl. Akad. Nauk SSSR 156, 9-12.

Bora, D., John, P. 1., Saxena, Y. C. & Varma, R. K. 1980 Plasma Phys. 22, 653—-662.
Budker, G. I. 1982 Collected Works, pp. 72-90. Moskva: Nauka.

Channon, S. R. & Lebowitz, J. L. 1980 Ann. N.Y. Acad. Sci. 357, 108-129.
Chirikov, B. V. 1960 Plasma Phys. 1, 253-260.




156 B. V. Chirikov

Chirikov, B. V. 1978 Fiz. plasmy 4, 512-541.
Chirikov, B. V. 1979 Physics Rep. 52, 263-379.
Chirikov, B. V., Ford, J. & Vivaldi, F. 1979 A4.1.P. Conf. Proc. 57, 323-340.
Chirikov, B. V. & Shepelyansky, D. L. 1981 In Proc. 9th Int. Conf. on Nonlinear Oscillations
(ed. Yu. A. Mitropolsky), vol. 2, pp. 421-424. Kiev: Naukova Dumka.
Chirikov, B. V. 1984 In Topics in plasma theory (ed. B. B. Kadomtsev), pp. 3-73. Moskva:
Energoatomizdat.
Chirikov, B. V. & Shepelyansky, D. L. 1974 Physica D 13, 395-400.
Chirikov, B. V., Lieberman, M. A., Shepelyansky, D. L. & Vivaldi, F. M. 1985 Physica D 14,
289-304.
Chirikov, B.V. 1986 Asymptotic Methods in Adiabatic Problems. Preprint no. 86-22.
Novosibirsk : Institute of Nuclear Physics. (In Russian.)
Chirikov, B. V. & Shepelyansky, D. L. 1986 The Chaos Border and Statistical Anomalies.
Preprint no. 86-174. Novosibirsk : Institute of Nuclear Physics. (In Russian.)
Dykhne, A. M. & Chaplik, A. V. 1961 Zh. eksp. teor. Fiz. 40, 666-669.
Escande, D. F. 1985 Physics Rep. 121, 165-261.
Filonenko, N. N., Sagdeev, R. Z. & Zaslavsky, G. M. 1967 Nucl. Fusion 7, 253-266.
Gadiyak, G. V., Izrailev, F. M. & Chirikov, B. V. 1977 In Proc. 7th Int. Conf. on Nonlinear
Oscillations, Berlin, 1975, vol. I1-1, pp. 315-323. Berlin: Akademie-Verlag. (In Russian.)
Galton, ¥. 1889 Natural inheritance. London.
Gelfand, I. M., Graev, M. 1., Zueva, N. M., Mikhailova, M. S. & Morozov, A. I. 1963 Dokl. Akad.
Nauk SSSR 148, 1286-1289.
Goward, F. K. 1953 In Lectures on the Theory and Design of an Alternating Gradient Proton
Synchrotron, pp. 19-30. Geneva: CERN.
Greene, J. M. 1979 J. math. Phys. 20, 1183-1201.
Hastie, R. J., Hobbs, G. D. & Taylor, J. B. 1968 In Proc. 3rd Int. Conf. on Plasma Physics and
Controlled Nuclear Fusion Research, vol. 1, pp. 389-402. Vienna: IAEA.
Hine, M. G. N. 1953 In Lectures on the Theory and Design of an Alternating Gradient Proton
Synchrotron, pp. 69-82. Geneva: CERN.
Ilyin, V! D. & Ilyina, A. N. 1977 Zh. eksper. teor. Fiz. 72, 983-988.
Kadomtsev, B. B. & Pogutse, O. P. 1979 In Proc. 7th Int. Conf.on Plasma Physics and Controlled
Nuclear Physics Research, vol. 1, pp. 649-682. Vienna: IAEA.
Kaneko, K. & Bagley, R. J. 1985 Phys. Lett. A 110, 435-440.
Kapitsa, S. P. & Melekhin, V. N. 1969 The microtron. Moskva: Nauka.
Karney, C. F. F. 1983 Physica D8, 360-380.
Karney, C. F. F., Rechester, A. B. & White, R. B. 1982 Physica D 4, 425-438.
Kolomensky, A. A. 1960 Zh. tekh. Fiz. 30, 1347-1354.
Lichtenberg, A.J. & Lieberman, M. A. 1983 Regular and stochastic motion. New York:
Springer-Verlag.
MacKay, R. S. & Percival, I. C. 1985 Communs math. Phys. 98, 469-504.
Mandelstam, L. I. 1948 Collected Works, vol. 1, pp. 297-304. Moskva: Akad. Nauk SSSR.
. Nekhoroshev, N. N. 1977 Usp. mat. Nauk 32 (6), 5-66.
Petrosky, T. Y. 1984 Phys. Rev. A 29, 2078-2091.
Petrosky, T. Y. 1986 Phys. Lett. A 117, 328-332.
Poincaré, H. 1899 Les méthodes nouvelles de la mécanigque céieste, vol. 3, §401. Paris.
Ponomarenko, V. G., Trajnin, L. Ya., Yurchenko, V. I. & Yasnetsky, A. N. 1968 Zh. eksp. teor.
Fiz. 55, 3-13.
Rechester, A. B. & Rosenbluth, M. N. 1978 Phys. Rev. Lett. 40, 38—41.
Rosenbluth, M. N., Sagdeev, R. Z., Taylor, J. B. & Zaslavsky, G. M. 1966 Nucl. Fusion 6,
297-300.
Vaskov, V. V., Gurevich, A. V., Karfidov, D. M. & Sergeichev, K. ¥. 1984 Zh. eksp. teor. Fiz.
(Pisma) 40, 101-103.
Veksler, V. 1. 1944 Dokl. Akad. Nauk SSSR 43, 346-348.
Vivaldi, F. M. 1984 Rev. mod. Phys. 56, 737—754.
Yamaguchi, Y. & Sakai, K. 1986 Phys. Lett. A 117, 387-393.
Zaslavsky, G. M. 1985 Chaos in Dynamic Systems. New York : Harwood.




