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Localization of Diffusive Excitation in the Two-Dimensional
Hydrogen Atom in a Monochromatic Field
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We present new data from numerical simulations of microwave excitation of a two-dimensional hydro-
gen atom, which show that in a wide parameter range under the one-dimensional delocalization border,
the quantum localization phenomenon persists. We theoretically reconsider the problem of two-
dimensional localization, by using an appropriately constructed four-dimensional map over an orbital

period of the electron, and thus explain the numerical results.

PACS numbers: 32.80.—t, 05.45.+b

We recently reported =3 about our extensive studies of
a one-dimensional model for a highly excited hydrogen
atom in a linearly polarized monochromatic microwave
field. The most interesting effect which was numerically
observed and theoretically explained was the localization
of the diffusive excitation under the condition

eo<eé')zw8/6/(6no)l/2. 1)

Here, no>> 1 is the initially excited level, €o=eng and
wo=wng are the rescaled field strength and frequency,
and all physical variables are in atomic units. We also
checked the validity of the one-dimensional model for ex-
tended states (with parabolic quantum number n,=1
and magnetic quantum number m =0) by means of a
two-dimensional model [see Fig. 7(c) of Ref. 3], which
made use of a basis of unperturbed bound-state eigen-
functions, up to n=128. A theoretical explanation was
also given'"® together with a rough estimate for the two-
dimensional delocalization border:

6.;2)"-&)8/6(712!10)1/2. )

Here we report about preliminary results of two-
dimensional numerical simulations with initial conditions
ng=66, n, <30 (which is about the largest possible
value) and parameter values 0.04 <¢=<0.06 and wo
=1.5 and 2.5. Since two-dimensional computations are
much more time consuming, we had to restrict our simu-
lation to a relatively short number of field periods,
7=<120. In Fig. 1(b) we show a typical two-dimensional
behavior, for both the quantum and the corresponding
classical models. From Figs. 1(a) and 1(b) it is apparent
that the quantum motion in the principal quantum num-
ber n is localized. This is also confirmed by Fig. 2, where
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FIG. 1. Classical (dashed curve) and quantum (full curve)
numerical results for the two-dimensional hydrogen atom un-
der a microwave field. Here no=66, wo=2.5, € =0.04,
ny=15, and 7 is time measured in number of field periods.
(a) Second moment w2 of n. (b) Second moment u; of n;. We
also show the ratio of ua/nz to the first moment u,; of ns in the
classical case (open circles) and in the quantum case (full cir-
cles). It is seen that this ratio is close to 1 (right-hand scale).
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the classical and quantum distributions integrated over
n, are plotted versus the number of absorbed photons
(which, as shown in Ref. 4, more conveniently exposes
the localization phenomenon). Moreover, in all the in-
vestigated cases, the localization length is satisfactorily
described by the one-dimensional estimate. 34

Two relevant facts emerge from these data: (i) Fig. 2
shows that the n motion remains essentially one-dimen-
sional independently of the value of ny; (ii) the n, motion
has a qualitatively different character, namely, it shows
no localization (in the sense that the quantum 7, motion
remains close to the classical one at least in the inspected
time interval) [Fig. 1(b)]; yet this fact has no impact on
the localization occurring for the n motion (Fig. 2).
Thus the picture emerging from numerical results is
completely different from the one assumed in deriving
the estimate (2).

In the attempt at understanding the above numerical
results, we developed a new theoretical approach, which
is a two-dimensional generalization of the theory of Ref.
4. The two-dimensional Hamiltonian in action-angle
variables is>®
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FIG. 2. Classical (dashed curve) and quantum (full curve)
distribution functions, averaged in the time interval 110 <t
=120, vs the number of absorbed photons N =[(2ng§) ~!
—(2n2) "'l/w (Ref. 4) for the same parameter values as in
Fig. 1. The straight line is the one-dimensional theoretical ex-
ponential distribution.

H=— # +en?coswt | 3 ecosy —2 2, (x;cossOcosy — y,sinsOsiny) |.

n s=1

e is the eccentricity [e =(1 —/%/n?)'? with / the orbital
momentum], and the Fourier amplitudes x;,y; are

xs=s Jies), y,=C(se) "1 —e?)2J(se).

6 is the azimuthal angle, y is the angle conjugate to /,
i.e., it is the angle between the major axis of the ellipse
and the direction of the field. Under the assumptions

on>>1, 1/n < Q/wy) ', (3)
Xs,ys admit the asymptotic expansions

x; = (0.411/55)(1+1%/2n?),

ys == (1/n)0.447/s*.

If (3) are satisfied, then / <n and e is close to 1. Actual-

G(N,9,I,w) =No+1¥ —21(—20N) =2 = k[(1 — @NI?) cosp cosy — 1.090 T singsiny],

where k =27x0.411¢/0>>. The details of the derivation
of Eq. (4) will be presented elsewhere.’

In deriving (4), we assumed conditions (3) which en-
sure that the Fourier components of the perturbation de-
cay according to a power law. In order to simplify the
map, it is convenient to go over to new canonical vari-
ables (V,J,0,%) (Refs. 5 and 6) defined by

tan¥ =(B/A)tany, 0=¢+X,
J+N=j;dl'AB/(A2sin27(+Bzcos27(), (5)

A=1—Nol? B=1.09']
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ly, the error involved by these asymptotical expressions
even for wn®=1 is only =30%. We derived a con-
venient approximate description of the 2D dynamics by
means of a 4D map. This map describes the change,
during one orbital period of the electron, of the canonical
variables N, I, ¢, y, where IV is energy divided by w
(N=—1/2n’w), and ¢ is the phase canonically conju-
gate to N (¢ is just the product of w by the time and ¥ is
the angle between the major axis of the ellipse and the
external field). We found this map by integrating the
exact Hamiltonian equations of motion over one orbital
period; while doing so, we substituted the unperturbed
motion in the field-dependent terms and we kept only the
resonant term of the perturbation.

As a result, we found that the generating function of
the map leading to the new values (V,7,4,¥) is

(4)
! In these new variables the map is given by
X=x—k(8H/dJ) cosb,
J=J+k(8H/8x) cosb, )

N =N —kHsin0,
6=0—2rw(—2wN) "2 —k(3H/3dN) cosb,
where H?(J,N,x) =A?cos*y+ B?sin’y.

A decisive simplification of the dynamics described by
(6) would be gained under a couple of assumptions that
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would allow for a sort of decoupling of the (V,8) from
the (J,Xx) dynamics. These conditions are (i) that the
change in J and X in one step be small, so that a
continuous-time approximation for the first couple of
Egs. (6) is valid, and (ii) that H be only weakly depen-
dent on N. Conditions for (i) and (ii) will be specified
below. With the assumption (i), the (J,X) equations be-
come

J=kcosOH/0X, X=—kcosOdH/dJ,

and if we introduce a new time o by do/dt =k cos (¢ is
the number of iterations) the (J,X) dynamics is ruled by
the Hamiltonian H, which is therefore a constant of the
(J,%) motion; in other words H can change in time only
through changes in V. Then, with use of (ii), the (V,0)
equations become almost identical to the 2D mapping
described in Ref. 4 and the (V,0) motion is strictly one
dimensional. For approximately one-dimensional states
(I<n, y<1), H==1 and the (V,0) equations coincide
with the one-dimensional equations4; moreover, in the
new time o, the motion in the (X,J) variables will not
depend on the (V,8) motion.

However, since the connection of the time o with the
real time ¢ is defined by the (V,0) dynamics, the real-
time (¥,J) dynamics has a different character according
to whether the (/V,0) motion is regular or chaotic.

To see this we first consider a case in which a regular
motion in (/V,0) is taking place with A =<{(cos6)=0.
(This may happen also above the chaotic threshold, be-
cause of the presence of stable regions.>) Then o= k.
For nearly one-dimensional states and y <1, the Hamil-
tonian H can be approximately written as

H=1+%U?%n*—y?), 7

with n constant. The (/,y) motion described by (7) is
unstable, with a characteristic instability time o;=n or
t;=n/k\, as was pointed out in Ref. 6. [Nevertheless,
the long-term motion is certainly periodic, with a period
T;~21;A, where A~In(n/n3).1 Thus one condition for
the continuous-time approximation (i) to hold is ¢;
=~ 03*/(2.6€00) > 1.

In the opposite case of completely chaotic (NV,6)
motion, o(¢z) is a random function with (o(z))=0,
(62(1))=k?t/2. Then the average of the exponent o/n
in the solution of (7) is given by ((c/n)? =k?t/(2n?),
whence we see that the characteristic time of the motion
is now tq,=2(n/k)?>1t;. This time can be compared
with the ionization time ;= 2N§/k?2, with No=—1/
2ndw, with the result that rc,/t; = 403> 1. Therefore
the chaotic precession is completely unimportant for the
N motion. Notice that the (¥,J) motion can be depicted
as a random walk taking place along an invariant curve
H =const.

If the Hamiltonian (7) is written in the variables V,y
(N =—1/2n2w), the approximate equation §H ~ w! 26N
is obtained, and a condition under which the N depen-

dence of H can be neglected takes the form
wl?8N <1%*/n$ < 1. Even though the latter condition is
formally necessary for the above theory to hold, the
strong inequality /2/n¢ <1 is not crucial. Indeed our nu-
merical results (Figs. 1 and 2) indicate that, even when
!/ ~n, the main qualitative result of our analysis remains
valid, i.e., the slow precession taking place in the 7,
motion does not affect the n motion, which remains ap-
proximately one dimensional. For this reason the 1D es-
timates still hold, except when H assumes values < 1.
Details will be given in a forthcoming paper.” Then,
turning to the quantum case, we get the usual one-
dimensional localization for the N motion, with the local-
ization length L = (k?/2)H?*= k?/2, independently of
the (/,y) dynamics. This explains the behavior observed
in our numerical computations (Figs. 1 and 2).

On the other hand, the n, motion exhibits a regular
quadratic increase in spite of the classical chaotic (IV,0)
motion. This can be explained by the above theory.
Indeed, using the explicit solution for the motion de-
scribed by (7), and using the relation (n,—n3)/n
=(—1%n?)"2cosy which approximately gives n,
=~ ¢ (I*/n+ny?), we get

ny == nylcosh(2a/n) + (sin21n¢)sinh (2o/n)], 8)

where 7o is the initial value of the phase conjugate to n,,
that must be assumed to be uniformly distributed in
(0,27) in order to reproduce the initial quantum state.
From (8), by phase averaging, we find the dependence of
the first two moments of n;, on the time o:
p2=((ny—<(n))? =(n3/2)sinh*Q2o/n); ©)

J75 =<n2—n20>=n20[cosh(20/n) -1l

For 20/n <1, the ratio p,/u; == nyo, which reasonably
agrees with numerical data [Fig. 1(b)]. From the com-
parison of (9) with numerical data we can calculate the
regular characteristic time: 7;= 750. Then we can also
find the corresponding values of the factor A which re-
lates the times 7 and o: A=0.14. The fact that A is
nonzero is due to the presence of stable regions in the
(N,0) motion. On the other hand, its relatively small
value may be related to the fact that the frequency
wo=2.5 lies just between two main resonances, so that
the stable region is small for the chosen initial condi-
tions. Then the instability in the n, motion is a very slow
one.?

The next important question is what the impact of a
change in H on the (V,8) dynamics would be, and
whether, in particular, it could lead to two-dimensional
delocalization. In our opinion this could not happen, un-
less ¢, becomes comparable with the localization time
~L. Indeed, the (/,y) motion would just broaden the
lines in the discrete spectrum of the (V,8) motion, up to
a width ~1/t¢,. In order to provide delocalization, it is
at least necessary (but perhaps not yet sufficient) that
tn! > L 7! (the average spacing in the discrete spec-
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trum) or L >ty. This cannot happen below the one-
dimensional delocalization border, because the ratio
tch/L~(eq(')/eo)4w3 > 1. In other words, the slow (/,y)
motion acts as an adiabatic perturbation on the (V,8)
motion, and cannot produce any additional transition in
the latter. The ultimate reason for this adiabaticity is
Coulomb degeneracy.

Therefore it appears that in order for any truly two-
dimensional delocalization to occur, the approximate
conservation of H must be destroyed, and a sufficiently
short time scale for the (/,y) motion must be provided.
Our previous estimate (2) failed because, in deriving it,
both these conditions were implicitly assumed. We con-
jecture, and are currently investigating, that both these
conditions can be satisfied by introduction of a relatively
strong static field.® Without static field the localization
of diffusive excitation appears to be as typical a phe-
nomenon in the two-dimensional case as it was found to
be in the 1D one.

This work was performed with the support of Consi-
glio Nazionale delle Ricerche (Italy).
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