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PARTICLE DYNAMICS IN MAGNETIC TRAPS

" B. V. Chirikov

1. Introduction. Budker's Problem [1]

The investigation of the dynamics of individual (nonin-
teracting) charged particles in a magnetic trap is probably
the simplest of the problems of prolonged plasma containment
for controlled thermonuclear fusion. Nonetheless, even this
"simple" problem is quite rich in content and is far from com-
pletely solved, notwithstanding many years' efforts in this
direction (see, e.g., [2-4]). In addition, the dynamics of
an individual particle is an integral part of the more compli-
cated problem of collective processes in a plasma. Finally,
the problem of containing a single particle in a magnetic
trap must be faced every time when a new scheme or a sub-
stantial modification of an old method of magnetic confine-
ment of a plasma appears.* An example is Dimov's ambipolar
(tandem mirror) trap [7]. It is one of the so-called open
systems”of plasma confinement, or traps with "magnetic mir-
rors," which will be discussed below. We shall refer to
them for brevity simply as traps.

The dynamics of a particle in a trap can be regarded
as a problem of nonlinear oscillations induced possibly by
some external perturbation in a system having, generally

*Certain very simple particle-interaction effects can be ac-
counted for also within the scope of the single-particle prob-
lem, for example the change of the magnetic-field configura-
tion on account of plasma diamagnetism or particle scatter-
ing in a plasma.
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speaking, three degrees of freedom. The term "oscillations"
is used here in a broad sense as a synonym for finite mo-
tion of a particle in a bounded region of space (particle con-
tainment). In other words, we assume here that the con-
struction of the trap (the magnetic-field configuration) en-
sures "locking" of the particle for a time equal at least to
several passes of the particle through the trap. Under these
conditions, the main factor that determines the character of
a prolonged evolution of the oscillations are the resonances,
or the commensurability of the periods of various degrees

of freedom of the oscillations, as well as commensurability
with the external perturbation. The mechanism whereby the
resonances act is particularly clear (and well known) in the
simplest case of linear oscillations. Nonlinear dynamics is
much more complicated, but in this case resonant processes
are unique for the very same reason: small resonant per-
turbations repeat in time and accumulate, leading to a great--
er long-time effect than nonresonant perturbations. This
important property can be used to define resonant processes
in a broad sense.

Such a "resonant" approach means, figuratively speak-
ing, that before some dynamic problem is solved it must be
checked for the presence of resonances, even if it seems ob-
vious at first €lance that none exist here. A splendid ex-
ample of such a situation is the action exerted on a system
by an adiabatic (i.e., a very-low-frequency) perturbation,
and is in fact the subject of this article.

We shall accordingly pay principal attention below to a
fullest possible analysis of various resonances and to the in-
teraction between them. The latter means the effect of the
joint action of several resonances, which does not add up
simply to the sum of the effects due to individual resonances,
since the equations of motion are nonhnear and the superpo-
sition rule is thus invalid.

It turns out that, under certain conditions, the interaction
of the resonances alters radically the character of the motion
and transforms it from the well-known regular or quasiperio-
dic oscillations into the relatively little-known "random
(stochastic) walk" of the particle in its phase space (see,
e.g., [8, 9]). The latter is very similar to (and in some
cases indistinguishable from) random oscillations, i.e., oscil-
lations caused by some external (relative to the dynamic sys-
tem) random perturbation or "noise," although such a per-
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turbation need not necessarily be present. Strange as it
may seem, this unusual motion regime is quite widespread
for nonlinear oscillations in general, and for a particle in a
magnetic field in particular. From the standpoint of pro-
longed containment of particles in a trap, the onset of ran-
dom oscillations is harmful, since it leads as a rule to par-
ticle loss through diffusion in phase space.

We confine ourselves in this review to a discussion of
the simplest case of nonlinear oscillations with two degrees
of freedom, when a random regime of motion in a conserva-
tive system is. still possible. For particle motion in a trap
this presupposes some symmetry of the magnetic field, mean-
ing an additional integral of motion (besides the energy).
In the case of axial symmetry, for example, the additional
integral is the component of the particle's canonical momen-
tum along the symmetry axis. The motion is then over the
intersection, in phase space, of the constant-energy sur-
face and the constant-value surface of the additional inte-

gral.

We actually consider below a certain quite special case,
when the connection between the two degrees of freedom is
adiabatic, i.e., the ratio of the fundamental unperturbed
frequencies is very large (or small). This special problem,
which stems from an analysis of the op&ration of a trap with
magnetic mirrors (the Budker problem), is nonetheless con-
nected with one classical problem of mechanics, viz., adia-
batic invariance of the action variables. It is worthwhile
noticing that it is precisely research into particle contain-
ment in traps which made possible considerable progress to-
ward the solution of this general problem, too. It became
clear, in particular, that, under certain conditions, an adia-
batic invariant becomes an exact integral of the motion [10].

These and other results are discussed below using as
an example particle dynamics in several quite simple yet
typical modifications of a magnetic trap. The problem can
be solved in some cases completely; i.e., it is possible to
obtain in explicit form the particle containment conditions,
on the one hand, and the statistical properties of the mo-
tion in the unstable region, on the other [2].

The author is indebted to G. I. Dimov, D. D. Ryutov,
and D. L. Shepelyanskii for interesting discussions of the
questions touched upon in the article, and to G. B. Minchen-
kov for help with the numerical simulation.
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2. Choice of Unperturbed System

As a rule, an analytic investigation is possible only by
using some approximate methods or perturbation theory. The
first step is therefore to divide the investigated system into
an unperturbed part and a perturbed one. This division is
not unique and is dictated by the type of physical problem.

In the present case we might, for example, choose as
the unperturbed system a particle in a uniform magnetic
field, and include the spatial inhomogeneity of the field as a
whole in the perturbation. Although the unperturbed motion
is in this case extremely simple, this is not the best choice.
The point is that such an unperturbed motion is infinite and,
therefore, differs qualitatively from the actual (perturbed)
motion. The unperturbed motion is said in this case to be
degenerate (one of the fundamental frequencies of the sys-
tem is zero), and an arbitrarily small perturbation (field in-
homogeneity of suitable configuration) leads to bifurcation.

To choose an unperturbed system more suitable for in-
vestigation we recall that particle containment in an open
trap is the result of approximate conservation of the par-
ticles' magnetic moment u = mv;2/2B, which is proportional
to an adiabatic invariant (the action variable J, of the Lar-
mor rotation). Taking as the basic units the speed of light,
the charge, and the particle mass (c = e = m = 1), we get

1 .
J_L=2—n<ﬁ(p_l_+ A)dr:vzl/2m=p. (2.1)

The subscript ) labels here quantities that characterize mo-
tion in a plane perpendicular to the magnetic field B = rot A';
w = B is the Larmor frequency. We shall be interested be-
low in the nonrelativistic case (v « 1), but all the relations
remain in force at arbitrary velocities if the substitution
m->ym, y= (1 -v2)~*/2 ijs made. Expression (2.1) for

the action J is exact only in a uniform field. We can, how-
ever, define the unperturbed system by stipulating just this
quantity to be an exact integral:

i = const. %2.2)

The identity sign indicates that the last condition is an arbi-
trary choice of the unperturbed system rather than the prop-
erty of the quantity u. We refer all the changes of u to the
perturbation, which we assume to be small enough. The last
condition is known to be met for a sufficiently strong mag-
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netic field or, equivalently, for a sufficiently small Larmor
radius of the particle (see Section 4 below).

For an axisymmetric magnetic trap, neglecting the par-
ticle drift velocity, the unperturbed Hamiltonian is

H® (p, 5) =v¥2 = p¥2 + po (s), (2.3)

where s is the coordinate along the magnetic line, and p =
V), = § is the conjugate momentum (and the longitudinal ve-
locity) of the particle. It can be seen that an unperturbed
system defined with the aid of (2.2) is convenient also be-
cause the effective potential energy of the longitudinal mo-
tion turns out, in this case, to be simply proportional to
the specified magnetic field strength. Knowing the Hamil-
tonian (2.3), we can, in principle, obtain the unperturbed
longitudinal motion of the particle.

3. A Few Examples

1. Auxiliary System. To demonstrate most simply the
main features of particle dynamics in a magnetic trap, we
consider, besides different trap variants, also an auxiliary
model with two degrees of freedom, specified by the Hamil-
tonian

2 7
+ p? 1+ 2\2 4,2
H(x, y, p, py)=p" p”+(2 Y (3.1)

where px = % Py = y. The equipotentials of this system
[(1 + x?)y = const] are not closed, so that the energy con-
servation law does not by itself ensure as yet that the mo-
tion is finite. Nonetheless, as will be shown below (Section
10), the oscillations of this system turn out under certain
conditions to be rigorously bounded. If the frequency of
the oscillations along x (the x oscillations) is much lower
than that of the y oscillations, the system (3.1) gimulates
approximately the motion of a particle in an axisymmetric
magnetic trap. Indeed, y oscillations with variable frequen-
cy wy =1 + x? correspond to Larmor rotation in an inhomo-
geneous magnetic field B = 1 + s?. The action variable for
these oscillations is

Jy = 0,ay/2 = (1 4 x% a%/2 = const, (3.2)
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where a, is the amplitude of the y oscillations. The last
condition, just as (2.2), defines an unperturbed system
whose Hamiltonian we obtain with the aid of the condition

w2 y2

P2
Yy R

which is equivalent to (3.2). From (3.1) we get
HO = g2 4+ J,(1+ 28 = I, + . V2, (3.4) -

The unperturbed Hamiltonian depends only on the action
variables, which are therefore integrals of the motion, and
describes independent oscillations in two degrees of freedom,
with frequencies

o, = OHYOI, = Vo, () =0HYdl,=1+JJV2,. (3.3)

The quantity <wy> has the meaning of the time-averaged fre-
quency of the y oscillations and can, of course, be obtained
also by directly averaging the quantity (1 + x?).

An important property of the considered unperturbed
oscillations is that they are not isochronous — the oscillation
frequencies depend on the actions (or amplitudes), although
both the x and the y oscillations are almost harmonic (the
frequency of the y harmonics varies slowly with time).

2. Short Magnetic Trap. Assume that the trap field
has not only a symmetry axis (r = 0 in the cylindrical co-
ordinates z, r, ¢) but also a symmetry plane (z = 0). Let
the field on the trap axis be given as

B,z 0)=Byf(2), fO) =1 [f=a=F@ B/ 0)=0, (3.6)

where B,, is the field at the trap (z =r =0). The field
configuration f(z) on the axis depends generally speaking
both on the external currents in the trap windings and on
the currents in the plasma. In a sufficiently close vicinity
of the axis, the vector potential of the field (3.6) can be
written in the form -

Aoe, N~ Bo[ T +rg @] (3.7)

There is no term proportional to the r? because of the axial
symmetry of the field. Given f(z), the function g(z) can be
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arbitrary, depending on the currents in the plasma. In the
absence of the latter ("vacuum" field) we have g(z) = —f"/16
from AA = 0 or rot B= 0. At the accuracy assumed, the
field next to the axis is

B,(2, 1)~ By [f (2) + 4r%g ()],

’ ' .8
B, (, r)z-Boo[-%—krsg]. (3.8)

It is important that, given the field on the axis, the currents
in the plasma add only small corrections of order r?. Ne-
glecting these, we can write for the dependence of the field
strength along a magnetic line

B Bif()  Bom Byl (0) + 432 (0)] ~ B (3.9)

The zero subscripts denote here and elsewhere the values of
the corresponding quantities in the symmetry plane z = 0.

An example of a short trap is a field configuration cor-
responding to

f(s) =14 (s/L)?, (3.10)

where L is the longitudinal scale of the trap. This configura-
tion is a good approximation of the central part of a classi-
cal trap with magnetic mirrors. The meaning of the term
"short trap" will be explained below (see Subsection 3).

Using the results of Subsection 1 of the present sec-

tion, we can write right away the unperturbed Hamiltonian
for the field (3.10):

H°=p2/2—l—p0)o(1+'Z—“;»:M@o‘I‘JVQWDO /L (3.11)

and the frequencies

J Vo
Q) = 0H%Y0J = V2 L, , = @, - o_
m / nw, / (o, ))) =0, LV

=0)0(1-]—2a—;>:%(1+ sin1350>' 12

Here a is the amplitude of the longitudinal oscillations
of the particle; J = Qa?/2 is the longitudinal action; g, is
the angle between the particle-velocity vector and the mag-
netic line (at s = 0).
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The foregoing example (3.10) could be called also a
harmonic trap (in view of the waveform of the longitudinal
oscillations).

3. Long Magnetic Trap. This configuration is differ-
ent in that the field is almost constant over most of the
trap, whose mirrors are relatively short and steep. Such a
field is a feature of Dimov's ambipolar trap [7]. We de-
scribe it by the relation [4]

f(s)= 14 (s/L)", (3.13)

where n is some even number. As before, L is the length
of the entire trap, whereas the length of the mirror is of
the order of

l=Ln (3.14)

(a short trap corresponds to n = 2 and £ ~ L, while for a

long one we have n » 1 and ¢ « L); i.e., the mirrors are
much shorter than the entire trap. This is the distinction
between "short" and "long" traps.

At n » 1, the effective potential energy of the longi-
tudinal motion can be approximately represented by a rec-
tangular well of length 2L. The unperturbed Hamiltonian
(2.3) takes then the form

H® = p%2 + poyf (s) = J*/2M + pa,. (3.15)
Recall that w, does not depend on s on the given magnetic
line. We have M = (2L/7)?, and the longitudinal action is
. ~ 2L
J = gﬁpdsA, — p. (3.16)
The fundamental unperturbed frequencies are

=—p, (@)= o0, (3.17)

4. Multimirror Trap [11]. Such a trap is a chain of
ordinary traps; in other words, a long trap with a corru-
gated magnetic field whose strength varies along the trap
periodically (in the simplest case). We specify the field con-
figuration in such a trap in the form
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F&) =5 [A+ D= —Deos ()], (3.18)

where A = fpax/fmin is the mirror ratio. The unperturbed
Hamiltonian (2.3) now becomes

Ho=.’_;i+_&;_°°_[(x+l)—(k—l)cos.(%s-)]. (3.19)

The equations of motion of such a system are known to be
fully integrable in terms of elliptic functions (see, e.g., [8,
12-14]). The modulus k of the elliptic integrals is given in
terms of the system parameters in the form

v 0
X po, (A—1) 2 < Aoy ( )
= ' 3.20
__p_m_ol‘%_’_"_-l , Ho > }",“'0)0’

where W = H° - jw, is the unperturbed energy reckoned
from the minimum of the potential (uw,). The first regime
of the motion corresponds to trapped particles that execute
oscillations limited in s, and the second to untrapped par-
ticles. The limiting trajectory that separates the two re-
gimes (H° = Auw,) is called the separatrix. A diagram of
the phase trajectories of the system (3.19) is shown in Fig.
1. '

For trapped particles, the longitudinal-oscillation fre-
quency is

HO = TIZQO
(119 ATk (3.21)

where % is a complete elliptic integral of the first kind, and

___J_t_ B, (A —1)
Qy = 7 ‘/-———2 (3.22)

is the frequency of the small oscillations. For untrapped

(denoted by subscript "un") particles the fundamental fre-
quency of the longitudinal motion can be represented in a

form similar to (3.21):

Qun=27/T ,,, = nQ,/2% (k), (3.23)
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Fig. 1. Diagram of unper-
turbed phase trajectories
in a multimirror trap: 1)
trapped particles; 2) un-
trapped particles; the sep-
aratrix is shown dashed.

7
\
\
/ \
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where Typ is the time to travel over one period of the field
(3.18), and

9,=—:-1/§\7 (3.24)

is the free motion frequency (at A = 1). Note that, in the
case considered, we have k = 2Q,/Qr (3.20).

We shall hereafter be particularly interested in motion
near the separatrix, the energy distance to which will be
characterized by the dimensionless quantity

w:(Ho_mmo)_(r_f_mT. (3.25)
0

A close proximity to the separatrix corresponds to |w| « 1,
with w < 0and w > 0 for trapped and untrapped particles,
respectively. In both regimes we have k? > 1 - |w|/2,

Qr > 2Q,, and

(3.26)

Although the frequencies in the two regimes differ by a fac-
tor of 2 [the period of the untrapped particle is exactly

half that of the trapped (see Fig. 1)], the motions in both
cases are close to each other and to the motion along the
separatrix, the latter expressed in terms of elementary func-
tions:
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. 2 7S
Sc — pc (S) = i ——n LQO COos (—2[, ) ?
(3.27)

Sl _ 4 arctan (e%f) — 1.
L n

The phase trajectory on the separatrix (the first expression)
is shown in Fig. 1. In the second expression, the time ori-
gin (t = 0) corresponds to the minimum of the field (s = 0).
The significant difference between the motion along the sep-
aratrix from that along neighboring trajectories reduces only
to the frequency, which is exactly zero on the separatrix
[ef. (3.21) and (3.23)].

The action is easiest to determine by integrating expres-
sion (3.21) for the frequency. In the case of trapped par-
ticles

T dw 8
0 - _— e — _— l'—‘ 2 K .
TH, W= | 5= PUER — (=% @), (3.28)

where we have transformed to integration with respect to dk
with the aid of (3.20); E(k) is a complete elliptic integral of
the second kind. This expression defines implicitly the func-
tion H°(J, u). As W > 0 (small oscillations), we have J» W/Q.
[ef. (3.11)]. The derivative 3H°(J, u)/3d = [3J(H®, n)/sH°]™?
yields, of course, again the frequency (3.21). To calcu-
late the average Larmor-rotation frequency <w> = 3gH°(J, u) /oy,

we write the differential '

0 ) =9 4o % 4.0
dJ (H°, p) = aHOdH+apd" :
Hence
_ e o1 E(k)'l ro [1 20—/ 5
(0) = aJ JOH® _m"[k *=1 xw ] m“[ 1n(32/|w|)]' (3.29)

The later expression gives the asymptote of <w> near the sep-
aratrix (|w| « 1). For small oscillations we have <w> > w, +

W/2u [ef. (3.12)]. When calculating (3.29) it must be recog-
nized that aW(H?, u)/3u = —w,.

For the untrapped particles we obtain analogously the
action in the form



12 CHIRIKOV

W
Jun(H° 1) =me+ y

4

v 4L, E(k)
QunW, ) @ &

(3.30)

Here Wc = pwo(A — 1) and Jyn = 4L2Q,/7® are the energy
and action on the separatrix. We note that the second of
these quantities is half the value (3.28) for trapped par-
ticles. The action as a function of the energy has thus a
discontinuity on the separatrix, for the same reason as the
frequency [see (3.26)]. The mean value of the Larmor fre-
quency is

_ A1y E(R) ] 2d—=1A)
(m)_mo[l—}— = (1 gf(k)ﬂ‘*x%ll eyl (33D

We point out that the asymptote of <w> as w » 0 is the same
on both sides of the separatrix [cf. (3.29)]. At W >» W, we
have <w> = wo(1l + X)/2; i.e., it is simply equal to the
average over S.

9. Field-Reversed Mirrors, Planar Geometry. A dia-
gram of the magnetic lines of such a field is shown in Fig.
2a. The vector B is in the (x, y) plane (B, = 0) and does
not depend on z. We note that owing to this symmetry we
have here, as in an axisymmetric trap, an additional exact
integral of motion (z component of the canonical momentum
of the particle), and the problem reduces to two degrees of
freedom. The configuration of the considered field is the
same in all four quadrants of the (x, y) plane, so that it
suffices to consider one of them, say the first (x, y > 0).
In addition, the field is symmetric about the bisector of the
angles between the coordinate axes (y = *x). We specify
the magnetic line in terms of the minimum distance r, to the
origin (Fig. 2a). The vector potential of this field can be
chosen in the form (see, e.g., [15])

A, (x, y) = Cxy, (3.32)
where C is a certain constant to be determined below. Then
B,=Cx, B,=—Cy, B=Cr; r*=x*1 g (3.33)

We denote by B, the minimum field along the magnetic
line at the point ry; then C = B,/r,; i.e., the minimum field
is proportional to r,. In the case considered, the paraxial
approximation used in the preceding magnetic-trap examples
is quite unsuitable, since the field on the trap axis (x, v =
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A A /

P z 2z
7
7/
, (

Fig. 2. Diagram of magnetic lines of
field-reversed mirrors: a) planar geom-
etry (the field is independent of z); b)
cylindrical (axisymmetric) geometry r? =
x?+ y?, tano, = v2 (a, = 55°). The
field-maximum line is shown dashed. The
vectors r, and lo. specify the magnetic
line.

0) is zero. To find the function B(s) along the magnetic
line we determine first the length of the line s, measured
from the point r,. The equation of the line is A, = const

or 2xy = ry%, or else r,2 = r?sin2¢ (in the polar coordinates
r, ). The coordinate along the line is

s rdr ll’fo(r‘—ro)’ r—ro< 1o

3.34
r-l—%"::r, r>r,. ( )

Ta

This integral can be expressed in terms of elliptic functions,
but we confine ourselves to the two indicated extreme situa-
tions. The first corresponds to the central section of the
magnetic line near the field minimum. Taking (3.33) into
account, we get in this region

f(s>z1+§, 0(s) = wf (s, @ = B, (3.35)

0

i.e., the field of the short trap (3.10) with characteristic
length L = r,. The second expression in (3.34) describes
the edges of the magnetic linés. Here

f(8)= | s |/re (3.36)

This configuration is new to us, and we shall examine it in
greater detail. The unperturbed Hamiltonian is of the form
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0 _ p? ptd)olsl= 3n_ @ )”/s
Ho = B . Bl (41/2_ =) (3.37)

where J is the longitudinal action. The unperturbed frequen-

cies are
sz=_2_< 3n__ay )’/s wh S uey
3\4V2 r J'/s 2 l 2rya

2 3n o, \¥s Js 2 a
@=3(Fr ) e
3 \4V2 r, e 3 1,

(3.38)

where a is the amplitude of the longitudinal oscillations.

6. Field-Reversed Mirrors, Cylindrical Geometry. We
consider now the magnetic-field configuration produced by
axisymmetric field-reversed mirrors, say by two identical
cylindrical coils with oppositely directed currents and mag-
netic fields (Fig. 2b). The vector potential of such a field
can be chosen in the form (see, e.g., [15])

Ay = Cer,
whence
B,=C22, B,=—Cr, B=UCl, (3.39)

where the vector 1 with components (2z, r) characterizes the
position of the point on the (2z, r) plane (see Fig. 2b).

The main difference between this trap and the preceding
one is that the magnetic lines are not symmetric about the
field on the line. The minimum-field line is, as before, a
straight line, but it makes now an angle a, = 55° [tan o, =
V2 with the z axis on the (2z, r) plane]. The equation of
the magnetic line is obtained from rA, = const, or

zrr = (1,/V'3)°, (3.40)

where the vector 1, defines the position of the field minimum
on this line. Accordingly, the constant is C = B,/%,.
S
The coordinate s along the magnetic line is reckoned as
before from the point 1,:
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2 - [ Z<<2'0,
=§’dz 142 1 Ve (3.41)
) 428 V3 (z—2z), 2=z,
’ 2, 2> z,.

Here z, = b/2; b = ¢,v/3. Combining this with the expres-
sion B = w = C2 (3.39), we get

| s|tly, 20,
1 4 28403, 2= 2, (3.42)
2| sy 2> .

fs) =~

As in the preceding case, near the minimum of the field

(z = 2,) we can use the short-trap approximation with scale
L = 2, /V2, while far from the minimum the effective potential
is linear in s. It is significant, however, that in contrast

to the preceding example the slope of the potential curve
(i.e., the effective longitudinal force) is different on the
two sides of the minimum of the potential. This is the result
of the aforementioned asymmetry of the trap's cylindrical
geometry. The cause of the symmetry can be illustratively
explained in the following manner: as z »> = the bundle of
magnetic lines is compressed in two directions (x, y), where-
as as r > » the compression is only along one direction (z).

To calculate the frequencies <w> and ¢, we can use ex-
pressions (3.38), taking the arithmetic means of <w> and 1/Q
for both slopes of the potential at one and the same en-
ergy HO.

4. Adiabatic Perturbation

Our principal task is to investigate the effect of the
perturbation, i.e., of the change of the particle's magnetic
moment p, which was assumed in the unperturbed system to
be constant [Eq. (2.2)]. In this section we obtain an equa-
tion for 1.

We begin with the simple model system (3.1). We ob-
tain an expression for Jy by differentiating (3.3) and using
the exact equations of motion from the Hamiltonian (3.1):

..Iy=,éx(y —-—:)—QJ ——— 05 (20). (4.1)
wy 1+ x
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Here wy =.1 + x?, and we have put

y=a,cosb, y—co a, sin6, (4.2)

defining by the same token new variables ay and 6 (the am-
plitude and phase of the y oscillations), in terms of which
Jdy = W ydy 2/2 [see (3.2) and (3.3)]. Expression (4.1) is in-
deed the’ sought -for equation for Jy(t). It will be integrated
in Sec. 7. It is useful, however, to note right away some
of its properties. The right-hand side of the equation is
the product of functions that vary with time at different fre-
quencies: low [the factor S(t) = %x/(1 + x?) has the

same frequency Q as the longitudinal oscillations] and high
[the factor F(t) = cos (26) has double the frequency of the
Larmor rotation, viz., 2<w>]}. In first-order approximation
Jy will therefore execute bounded and small (if the ratio

97 2 <w> is small) oscillations. The cumulative changes of J
all that interests us here, are made possible only by the
resonance between the two motions, i.e., by the sufficient-
ly high harmonics of the low frequency @. The smaller the
frequency ratio Q/2<w>, the higher the harmonics needed for
the resonance and the smaller their amplitudes and, conse-
quently, a certain average rate of change of Jy. It is na-
tural, therefore, to choose in this problem as the parameter
characterlzmg the smallness of perturbation simply the fre-
quency ratio:

e = Q/{w). (4.3)

This quantity is usually called the adiabaticity parameter,
since its smallness is in fact the main condition for adiabatic
invariance of the action variables, i.e., the condition for
their approximate conservation with time. This question will
be discussed in greater detail below (see Section 10).

Proceeding to the discussion of the magnetic traps them-
selves, we note first that the small adiabaticity parameter
(4.3) is determined by the second derivative of the magnetic
field with respect to the coordinates; this derivative deter-
mines the frequency @ of the longitudinal oscillations. The
first derivative (field gradient) used sometimes for estimates
has by itself no physical meaning as an adiabaticity param-
eter. Thus, for example, in the case of converging or di-
verging straight magnetic lines, the magnetic moment of the
particle is exactly conserved, although the field gradient
differs from zero. What is essential is the bending of the
magnetic lines, their curvature. It turns out that in a mag-
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Fig. 3. Geometry of planar
magnetic line: €p, €g are
the tangential and normal
unit vectors; O is the cen-
ter of the trap; 0 is the
curvature center correspond-
ing to the given point of the
magnetic line; R is the cur-
vature radius at this point
(negative in this case; see
the text).

netic trap it is precisely the curvature of the magnetic line
that makes the main contribution to the change of u, as was
first elucidated in [16].

Let us examine this mechanism in greater detail. Bend-
ing (turning) of the magnetic line alters u even if the ve-
locity vector v remains constant, since u depends only on
the projection of v on a plane perpendicular to the vector
B, and this plane rotates independently of v. Let us find
the derivative ¥,? due to this effect. Assume that the
magnetic line is a planar curve (has no torsion), and let
e = B/B be a unit tangent vector and egr a unit outward
normal (relative to the trap center) to the magnetic line
(Fig. 3). We then have, from the expression vi?=v? -

2
(V: eB) ’
03_ - — 20" (V, eB) = —202|]Un/R,

where we have assumed v = const; V|=V,€B; Vh = V, €R =
V1,eR, and R is the curvature radius of the magnetic line
and is assumed positive if the line is convex relative to the
trap center. The instantaneous angular velocity eg of the
rotation as the particle moves along the magnetic line is

Y

Q=e3><eR-R—-
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At a sufficiently small Larmor radius, the projection of the
particle velocity is vn = —v| sin6, where 6 is the Larmor
phase reckoned from the direction of the vector er (a more
accurate expression for vp is given in [8]). We ultimately
get

dl
RVoe
The arrow indicates here that the equation given here for j
contains only the principal term that determines the cumula-
tive resonance changes of u. The complete equation for ! is
given in [5]. It includes, in particular, also terms of form
(4.1), which are proportional to cos (26). It will be shown
below, however (see Section 7), that they make only exponen-
tially small additions, since the adiabaticity parameter (4.3)
is only half as large. A detailed discussion of the separation

of the principal term of the perturbation (4.4) is contained
in [8]. We shall return to this question in Section 7.

k- V2

sin . (4.4)

5. Insignificant Effect of Perturbation

Our principal task is to integrate a perturbed equation
such as (4.4) or (4.1), i.e., to determine the effect of the
perturbation, meaning the change of the unperturbed inte-
gral of motion u (or Jy). Such equations are quite frequent-
ly integrated by some asymptotic method [12], i.e., by con-
structing the solution in the form of an asymptotic series in
powers of a small parameter of the problem, which in our
case is- the adiabaticity parameter (4.3). The term "asymp-
totic" means that the remainder term of such a series does
not decrease in general with increasing number of its terms,
and decreases only together with the smallness parameter.
This approach was used in many studies also to investigate
the dynamics of a particle in a magnetic trap (see, e.g.,
[17, 18]). As applied to equations such as (4.4) or (4.1),
it means, roughly speaking, integration by parts. During
each step the high-frequency factor F(t) of the right-hand
side is integrated and the low-frequency side S(t) is differ-
entiated. As a result, each step increases the degree of
the small parameter (4.3) by unity. For Eq. (4.1), for ex-.
ample, the first step yields

Wy
2
2coy

87, =1J,

sin (20). (5.1)
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As soon as the unperturbed solution, which is substituted
in the right-hand side of (4.1), becomes quasiperiodic, the
variations of Jy(t) given by the asymptotic series also be-
come quasiperiodic, with fundamental frequencies @ and <w>
that are close the unperturbed ones. These variations are
consequently bounded and small at a sufficiently small adia-
baticity parameter. In this sense, such quasiperiodic vari-
ations of the unperturbed action are an insignificant effect
of the perturbation. What is meant by insignificant? In
the language of asymptotic expansions what is significant is
the remainder term of such an expansion, and we shall pro-
ceed to determine it.

To conclude this section, we note that quasiperiodic
oscillations of the unperturbed action (5.1) can be used to
introduce a "more precise" action J (n ) whose nonresonant
changes will be smaller than for Jy'(n is the order of the
precision). In first order, for example we obtain from (5.1)

I =, 80, =0, [1— "’”2 sin (20) |
2coy

=7 (1:;:]/— xVHZI—'+JZ,()Iz+xz) in(26)). (5.2)

In_the last expression we used the unperturbed relation x =
+/2(H° — Jy ywy) [see (3.4)]. The derivative is J (1) . g2 ,
i.e., it is already of second order in the ad1aba€101ty param-
eter (4.3). Introduction of a more precise action is equiv-
alent to the canonical transformation of variables, which is
widely used in nonlinear mechanics and eliminates the non-
resonant terms of a perturbation. This procedure was first
used for magnetic traps in [19] for a model of type (3.1)
and in [17] for an arbitrary magnetic field (see also [18,
20]). A more precise p is useful for a comparison of the
theory with results of numerical simulation (see [20] and
Section 7 below).

6. Nonlinear Resonances

As already noted, nonperiodic changes of u, which can
be cumulative, are due to resonances between the Larmor
precession of the particle and the higher harmonics of the
longitudinal oscillations. To analyze these resonances we
transform in the right-hand side of Eq. (4.4) for p to the
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unperturbed action variables y and J and to their canonical-
ly conjugate phases ¢, . Taking the Fourier transforms
with respect to the phases, we get

p= - D, DM tc e, (6.1)
n

where ¢ = <w>; § = @, and n is an arbitrary integer. Gen-
erally speaking, this is a double Fourier series; i.e., it in-
cludes also harmonics of the phase ¢. Since, however, <w>/
Q » 1, the amplitudes of the resonance harmonics mg¢ become
quite small compared with f;,, and we neglect them. The
resonance conditions are (n is a positive integer)

{®) =nQ. (6.2)

Generally speaking, this condition is not met. Since, how-
ever, the unperturbed oscillations are not isochronous, i.e.,
their frequencies (<w>, Q) depend on the actions u, J (see
Section 3), there are always special (resonant) values py = u,..
d = J¢, for which the resonance condition (6.2) will be satis-
fied with some n = r.

If the amplitudes f, are small enough (a smallness con-
dition will be obtained below; see Section 10), we need retain
in (6.1) only the resonant term

B | fr (W J7) | COSYy, (6.3)

where we have introduced the resonant phase
Cr=o—rb+y, (6.4)

and ¥ .o(ur, Jr) is some constant: f, = |fr|exp (ip,.°). At
exact resonance (6.2) we have y r = const. However, in
view of the change of u and of the dependence of the fre-
quencies <w>, Q@ on p and J, the resonant phase also varies
with time. The equation for ¢y can be written as

P, N (0) —rQ. (6.5)

This equation is approximate, since Yy is altered not only by
the frequency change but also directly by the perturbation.
The latter effect, however, is small if the perturbation is
small, and we shall neglect it (this question is discussed in
greater detail in [8]).



CHIRIKOV 21

The perturbation alters not only u but also J. In a
purely magnetic field, however, the particle energy is con-
served and the change of J can be expressed in terms of
the change of u. We assume, therefore, that both the fre-
quencies <w> and 2, and the Fourier amplitudes f, depend
only on y. Equations (6.3) and (6.5) constitute then a com-
plete system that describes the dynamics of one resonance.
Equation (6.5) can be simplified by expanding the right-hand
side near the resonance:

do,
dp  |(u=n,

TRES b —n), @ (1) = (o) —rQ. (6.6)

. Introducing the quantity v =y — pr, and noting that
vV = u, we obtain a pair of canonical equations

v=|fp () | cosy,
. ’ ’ d(Or ] (6 ) 7)
Yr=0y, 0,=——
dp  |mw=n,
with a Hamiltonian
cso;v2 :
Hy (Pr, v) = _lfrlsmlpr- (6'8)

2

It can be easily seen that this is the Hamiltonian of a pen-
dulum, say of unit length with mass 1/wy'in a gravitational
field mg = |fr|, where v is the angular momentum of the
pendulum and vy, is the angle of its inclination from the
horizontal. The Hamiltonian (6.8) is therefore said to de-
scribe a nonlinear resonance in the pendulum approximation
[8]. The conditions of this simple approximation are dis-
cussed in detail in [8]. What matters is just that the per-
turbed oscillations are not isochronous: wr' # 0. The oscil-
lations of v are therefore bounded near resonance (|Av| <
2/|fr|/ |wr']) , and are small at small |fr|, so that one can
use for yr the expansion (6.6) in terms of v.

The limited size of the oscillations of v (hence of u),
and the ensuing limited (and insignificant) energy exchange
between the degrees of freedom of the system in question,
constitute the essential difference between a nonlinear and
a linear resonance. In the latter case, the exchange would
be complete. The nonlinearity (nonisochronism) of the
oscillations is said to stabilize the resonant perturbation. A
transition to linear resonance in the Hamiltonian (6.8) cor-
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responds to wr -+ 0 and Av » «» (the pendulum approximation,
naturally, then becomes invalid). We note also that the
dynamics of a nonlinear resonance are similar to unperturbed
motion of a particle in the periodic field of a multimirror
trap [cf. (6.8) and (3.19)]. We shall need this analogy
later (see Section 10).

Returning to our problem, we see that one nonlinear
resonance cannot inhibit particle containment in a magnetic
trap, since the oscillations of u on it are bounded. In fact,
" however, there are many resonances (6.1). If the remain-
ing terms in (6.1) are not neglected, the Hamiltonian (6.8)
takes the more complicated form

’
2
@ r'V .

2

H, (b, v) =

Nl psin (b ——n Q¥ —),  (6.9)

where we have put approximately ¢ = Qt. Although differ-
ent terms of the last sum cause resonances under different
initial conditions (different u), is it always possible to ne-
glect the nonresonant perturbation, as was done in (6.8)?
We shall consider this important and, in essence, central
question somewhat later (see Section 10), and proceed now to
calculate the resonant amplitudes f;. We can use for this
purpose the relation -

Ap=T | f. | cos ¥y, (6.10)

which is obtained by integrating (6.1) over the period T =
21/9 of the longitudinal oscillations. On the other hand, we
can obtain ap by directly integrating Eq. (4.4) for p. We
shall' name the quantity (6.10) the resonance Au.

7. Resonant Au

Thus, our next task is to calculate the total change of
the unperturbed action (Ap) within the period of the low-
frequency (longitudinal) oscillations. We shall do this below
for the set of typical examples described in Section 3. We be-
gin, as usual, with the simple auxiliary system (3.1). In
this case we must calculate the integral [see (4.1)]

Al,

zAann=2Sdt X coszezzReydee“’“’ ¥ __ o (7.1)

y 14 a8 (1+ 232




TP IS

CHIRIKOV 23

R (N

Reep <ed>T Reo

Fig. 4. Integration contour
in the complex 6 plane when
calculating AJy and Ap; C —
bypass of the singularity
along the cut; 6p — location
of singularity.

furthermore not asymptotically in terms of the small adiabat-
icity parameter ¢ = Q/<w> (4.3), but in a certain sense "ex-—
actly." Let us formulate the problem more accurately. Since

- we do know the integrand as a function of time, the use of

some successive-approximation method is unavoidable. We
therefore replace the integrand by an unperturbed solution,
in particular Jy = const, something already taken into ac-
count in the relation d6 = (1 + x?)dt for the last representa-
tion of the integral (7.1). In the integration by parts in
Section 5 we have integrated in essence only the high-frequen-
cy factor, "lumping" all the effects of the low-frequency
part (including its high harmonics) in the remainder term
which was left undetermined. Now, however, we integrate
the unperturbed integrand exactly (with all its harmonics).
This can be done in a number of cases by analytically con-
tinuing the integrand into the complex plane of the integra-
tion variable. If the latter is chosen to be the phase 6,

as was done, e.g., in [5], we can close the integration con-
tour in the upper half-plane of 6 and neglect the contribu-
tion made to the integral by the infinitely remote part of
this contour (Im6 »> +~). The value of the integral is then
determined by the singularities of the integrand, which are
bypassed by branch cuts (Fig. 4).

If the resonance condition (6.2) is satisfied, the sum.
of the integrals over the two vertical lines is also zero,
since the quasiperiodic time dependence of the unperturbed
solution (the two incommensurate frequencies <w> and Q) be-
comes at resonance periodic with a period T (<w>T = 2mn).
Off resonance, this sum is generally speaking not zero be-
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cause of the different values of the function exp (2i6) on
the two straight lines. This leads to a quasiperiodic incre-
ment to Au (see Section 5) which, however, is of no interest
to us.

For the integral (7.1), the only singularity in the up-
per 6 half-plane is a pole at xp = i. We note right away
that the frequency at this singularity is wy = 0, and the
singularity is also a saddle point (col) of the function
exp (2i9).

Since the singularity is bypassed twice during one pe-
riod of the x oscillations, it suffices to calculate the inte-
gral over the half-period T/2. Near the singularity we have
(.Uy(Xp) =1+ Xp2= 0 and 6 = ep:

0 1 /a2
0— 0, <%x—>p(x—xp)+-2—(d—ﬂ>p(x—xp)ﬂ= %;’—(x—x,,)z, (7.2)

since (do/dx)p = wy(xp)/Xp = 0, while (d2 /dx2)p
(dwy/dX)g/X and Xp = /2HO0 = v, [see (3.4)], where V02 =
Xo2 + yp? is the total velocity at the minimum of the poten-
tial energy (x = 0). Next,

(1 + P = (2xp)% (x — xp)? & 4x,0, (0 — 0,).

Substituting this expression in (7.1) and calculating
the residue at the pole, we obtain

216
Aany=:r|:Re(ie ?). (7.3)

Note that were we to calculate the integral in the com-
plex t or x plane, we would obtain the different (incorrect)
result:

AlnJ, = 2Re5 l:‘fx e’® — 97 Re (1e2ie”)

x2

The reason for the difference is that the function exp (2i6-
(x)), generally speaking, does not vanish as Imx~»> =, so
that the integral does not reduce to a residue at a pole.
Finally, we can proceed as follows. We assume that the

last integral is taken along a contour in the 6 plane, but we
simply replace the integration variable by x. As x - Xp «
v8 — 6p, when the singularity is bypassed in the 6 plane
[the complex vector (6 — 68p) is rotated through an angle
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2m], the vector (x — Xp) is rotated only through an angle
m. Therefore, the value of the integral over dx is equal to
half the residue at the pole, and this coincides exactly with
(7.3).

We now find 68, which we can represent in the form

t

6 —p A y @y dx
p=0+ [0, =0+ | ——, (7.4)
0 0

4

where 6, = Re 6p. To calculate this integral we use an un-
perturbed solution, for example in the form [see (3.4)]

s=Va,(@—» , (7.5)

where a x is the amplitude of the longitudinal oscillations.
Recognizing that wy = 1 + x? and xp = i, we obtain from (7.4)

0, =0+ AELB) )= (FEEmIEE 1), (7.6)

2v, u? 2u l—u

where sin g, = ¥,/v,. In this form, the expression for the
exponent that determines the order of the resonant pertur-
bation was obtained (for a magnetic trap) in [21] and later
in [5]. It is valid, of course, only for harmonic longitu-
dinal oscillations, a fact used explicitly in the integration of
(7.4). On the other hand, relation (7.6) is too complicated
and inconvenient for further use. A simple approximation
for 6p is obtained by putting X = X, = const in (7.4). Then

2i
3v, cos By,

0p =0, + (7.7)
The condition %X = %X, will be called the small g, approxima-
tion since it is valid only if %, = vycos By = Xp= v,. Hence
cosBy, = 1 or g, « 1. Expression (7.7) can, of course, be
obtained also directly from (7.6) as sin B, » 0. In a more
general case, however, the expression for 6p in the small ,
B, approximation depends on the form of the function wy(x)
(see below). For the harmonic oscillations considered here,
a comparison of (7.6) and (7.7) shows that the difference
between them does not exceed 10% at g, < 50°. We confine
ourselves hereafter, for simplicity, to the small-g, approxi-
mation.
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In this approximation we obtain from (7.3) for the con-
sidered model system

AlnJ, = —mexp [— }sin(290). (7.8)

3v, cos B,

If the singularity of the integrand is more complicated
than a pole, for example a branch point, the integration me-
thod described above cannot be used. A more general me-
thod, used in particular in [15], is to reduce the integral
along the cut (see Fig. 4) to a T function with the aid of
the relation (see, e.g., [22]):

e “du 2mi
= 1] 7.9
5 (—u)? T (p) ( )
where, in our case, u = —1(6 - 6p)s, P > 0, and the integra-

tion contour C is shown in Fig. 4 (it is drawn in the neg-
ative direction). Using (7.2), we reduce the integral (7.1)
(with respect to de) to the form (7.9) with p = 1, obtaining
again (7.3).

In the problem of particle motion in a magnetic trap we
must calculate the integral [see (4.4)]

Ap _ 02“7 0 O
7y ~A1/2‘p'_5dthm_sme~1m§dee o (1.10)

The singularities of the integrand are determined now not
only by the function w(s) but also by the function R(s). It
is therefore necessary first to find a sufficiently simple ex-
pression for the curvature radius of the magnetic line.

In the paraxial approximation, the vector potential of
the field is given by relation (3.7), and the equation of the
magnetic lines is rA, = const, or

r°f () = 73, (7.11)
where r, is the distance from the symmetry axis to the mag-
netic line at the minimum of the field [s = 0, f(0) = 1] .
Hence

o~ Bro 3 (P ro T 3r ()R | (7.12)

1
—I—Q"N 45 4 f”’ 2 fa/z 4 fli/z ’
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assuming that (dr/ds)? « 1 (paraxial approximation). We
note first that in this approximation the singularity of R co-
incides with the singularity of w, since both guantities are
proportional to fp. It is furthermore clear that the main
contribution is made by the term with the strongest singu-
larity (maximum p, see below). We have therefore retained
in (7.12) only the first term. Relation (7.2) near the singu-
larity now takes the form

0 1 /a0
0—0,~ (Z—s> (s— sp) +"'2— (d_sz>p(s_ Sp)?
_ ol e ¥~ D0 g2 (7.13)

D

since d6/ds = w/§ = 0 at s = sp; (d?6/ds?)p = (dw/ds)p /8p =
wof'p/v [see (2.3)]. In (7.13) we used the relation f(s) =
f(sp) + £)(s - sp) = f5/(s — s,). Note that the factor wo/ vEp' ~
woLi/v ~ Ii/a in (7.13;3 is > 1 [see (4.3)]. Therefore, each ex-
tra power of f in the denominator of the integral (7.10)
increases its value by -¢~!/2. This is why allowance for

only the principal singularity of the integrand is justified.

This explains also why the remainder term of the asymp-
totic series in € for §u (see Section 5) does not decrease with
increasing number of terms of such a series. On the one
hand, the time derivative of each succeeding more precise
u‘t’ decreases by a factor ¢, but, on the other hand, the
denominator of the expression for ji n) acquires thereby an
extra w?> [one w on account of integration of exp (i8), and
the other on account of the differential denominator]. As
a result, the integral of ﬁ(n) does not depend on the degree
of precision and it is simplest to calculate it with unper-
turbed u.

Gathering togethey all the relations, we reduce the in-
tegral (7.10) to the form (7.9) with p = 2 and obtain

AV =——2_ 1 Va, Im(e'%); |
V2 (7.14)
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Since p is an integer in this case, the integral can, of
course, be expressed also in terms of a residue at a pole.

Note that in the considered paraxial approximation the
magnetic-field configuration influences only the value of
6p (if f'p is finite; see below). A more general and corre-
spondingly more complex expression for Au, not restricted
to the paraxial region, was obtained in [5] [see Eq. (32)].
Its analysis shows that the main condition of the paraxial
approximation is the inequality

4
7o

e <1 (7.15)

where pp = v/w, is the maximum Larmor radius of the par-
ticle (at B, = 7/2) and L is the longitudinal scale of the
trap (see Section 3). Expression (4.4), on which the deriva-
tion of (7.14) is based, was obtained under the additional
simplifying assumption that py <« r, (see Section4). A more
detailed analysis [8] shows, however, that in the paraxial
approximation all the relations remain unchanged also for
ry < pm. In particular, at r, = 0, when the center of the
Larmor circle moves along the symmetry axis of the field,
we have Ap = 0, for in this case p coincides with an exact
integral, viz., the canonical angular momentum conjugate to
the azimuthal angle ¢ [see (2.1)]:

| 2
X (0+A), =r(p,+A), = =p

Note alse that expressions (7.14) are equally valid dur-
ing both half-cycles of the longitudinal oscillations.

The calculation of 6p in (7.14) is in accordance with
an equation similar to (7.4):

i f(s) ds

o s(9)

0, =6, + o, (7.186)

where 6, = 6(s,) and s, = Re (sp). In the general case we
have s, # 0 (see below). '

For a short trap (see Subsection 2 of Section 3),
f(s) =1+ s?/L? and sp = iL; s, = 0; 6, = 0,. In the small-
B, approximation [§(s) = §,] we obtain, in analogy with
(7.7),
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2L

0, ~
p = B0+ 3 pmcosB, (7.17)

The same expression is valid (with a certain effect Lef) also
in the case of a multimirror trap (see Subsection 4 of Sec-
tion 3). The value of Lef is obtained by expanding f(s) in
the vicinity of s = 0. From (3.18) we have

f(s) =14 (ns/2L2 (A — 1), (7.18)
whence
[ .= oL
ef—n—v—'—x__——‘- (7.19)

Since the singularity is located at the point sp = iLef, at a
larger mirror ratio A > 1 we have |sp| << L and the expansion
(7.18) can actually be used. The same condition (A > 1) en-
sures smallness of g, for particles near the separatrix of a
multimirror trap, for which sing, = 1/VX « 1 (see Section 3).
It is important that, in this case, there are no singularities
other than sp = iLef. This can be seen from the exact ex-
pression for sp: :

cos (is,/L) = (A + 1)/(h—1) [see (3.18)].

The situation is different for a long trap in the model
(3.13). The upper s plane has in this case n/2 singulari-
ties (n is even) at the points

sk=Lexp[i—:—(l +2k)], (7.20)

where k takes on integer values from 0 to (n/2 — 1). The
largest contribution to Ay is made by the two singularities
closest to the real axis and corresponding to k = n/2 — 1
and k = 0:

s, = F Leos(mn) + iL sin (w/n) ~ F L + inL/n. (7.21)

The last approximate expression is valid at n » 7, i.e.,
precisely for a long trap.

From the connection (7.16) between 6 and s in the
small-g, approximation (8 = v),

e=$[1+nil(_})”}+const (7.22)
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it can be seen that the singularities 6x in the 6 plane also
lie on the circle (s ™ = -L1), and the singularities closest

to the real axis are well separated from one another. Thus,
for the singularity (7.21) which neighbors on sp, the value
of Imek is three times larger than for sp. This justifies the
neglect of all singularities except sp (7.21). The constant
in (7.22) is determined by the values of 6, and s, ~ +L. We
ultimately get

2n ‘l 2/ . l
—_ =0+ —Fin—. (7.23
n+1 pm n+1 Pm ! Pm Pm ( )

0,~0, +

We see that the order of Ay is determined now by the size

= L/n of the mirror, and not by that of the whole trap.
In addition, the phase on which Ay depends is no longer
equal to the Larmor phase 6, at s = s,, but is shifted by
the large value 22/py » 1, and furthermore to opposite sides
for the two singularities. Expression (7.14) for Ap remains
valid also in this case for each of the two main singularities.
In contrast to the preceding examples, however, the changes
of 1 on two half-cycles of longitudinal oscillations (i.e.,
after a round trip of the partlcle over the trap) are not
fully symmetric. Namely, the sign of the additional phase
shift 2 &/ ppm is reversed.

In place of a phase shift by +2¢/py at the point s = s,
one can shift by a distance s the point at which the phase
6, is chosen:

81 (Sl) i 21/pm -> el (31+AS]_), } (7.24)
As, ~ + (2Ufp,)/(d0jds) =~ + 2 A | s | A —2L.

The point of each mirror shifts toward the center of the trap.
The field at the shifted points

ool +(1—2n)'~ 14+ e’ =1 (7.25)

differs little from the field at the center of the trap. It
can be stated that the shifted points are located at the in-
ner edges of the mirrors.

For traps with field-reversed mirrors (see Subsections
5 and 6 of Section 3), there is no paraxial approximation,
and Ap must be calculated anew. This problem was solved
in [15].
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We consider initially a planar geometry of opposing mir-
rors (see Subsection 5 of Section 3). In contrast to a multi-
mirror trap (see Subsection 4), the quadratic expansion of
the field (3.35) near the minimum is not suitable in this case,
since its singularity is too far away, at |sy| = r,, where the
expansion is no longer valid [see (3.34)]. To get around
this difficulty, we note that although the integration contour
(7.10) should be taken in the 6 plane, the integration vari-
able and (or) the argument of the integrand can be arbitrary.
To choose the most suitable variable, we express the Larmor
frequency in the form [see (3.33)]

® WyTp 4 x4 |
0= Rty = 14 e (7.28)

where we use the magnetic-line equation 2xy= r,%. If we
now choose the argument of the function w(¢) to be, for ex-
ample,

E=2x%r5, o) = o V(1 + 8%, (7.27)

the position of the singularity in the complex £ plane will be
Ep =1, and £, = 1 [at the minimum of w({) on the given mag-
netic line].

We find first the connection between the new variable
¢ and the phase 8. We have

9=§mdt=5%%2—d§z%(§—é—). (7.28)

The last expression is valid in the approximation of small
Bos» When s$(g) = $, = v, and we have used the relation

ds __ds dx _ Y 1+4+8
& dx & 22 s

’ (7.29)

while q, = wery/2v = r,/2pp is the large parameter of the
problem. In the same approximation we have

0p = 0y + ig.. | (7.30)

The curvature of the magnetic line is obtained from the
equation 2xy = r,? of the line:
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Lyt % 9% (g
RO [ ()] @ T e @
dx |

Just as in the preceding examples, the curvature is expressed
in terms of the field, and has a singularity at the very
same point £ = gp = i. At the minimum of the field the cur-
vature radius is R, = r,; i.e., it is equal to the minimum
distance from the line to the center x = y = 0 of the trap
(see Fig. 2a).

We choose the same integration variable as before:

H=—i(0—0,)~ 2‘;’; E—En (7.32)

P

The last expression is obtained by expanding the function

8(£) (7.28) near the singularity. In the same region we
have

mzmo(g—ﬁp)”’z(—ﬂ)’/‘ (7.33)

qs

[see (7.27)]. Substituting all these expressions in the in-
tegral (7.10) for Ap, we reduce it to the form (7.9) with
p = 9/8. We obtain ultimately

AViE = gy ”'smeo~ 1.08 —2—

u/sr (9/8) m W q2 Sln 60- (7. 34)

This is exactly the result of [15] (at B, « 1) corrected for
the misprints there. We note that Howard [15] used a some-
what different method in which the integration variable was
the scalar potential of the magnetic field.

In the case of cylindrical geometry of the field-reversed
mirrors (Subsection 6), the procedure for calculating Au re-
mains the same. We choose as the argument of the integrand
the quantity £ = r3/2b3, where b is a parameter of the mag-
netic line zr?2 = b3 = (%,/v3)® (see Fig. 2b). Then

2 YT
V3_ g’/:

@ (§) = o, (7.35)
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and | _
e(§)=2""’q3§”’(1——2-§—2). (7.36)

and g3 = wele/3V = 24/3pm > 1. Using the same integration
variable u = —i(6 — 8p), we arrive at a singularity of the
same order p = 9/8 and get

.3's 1/, —
AVn = n-3 5 z()ﬂ g5''e ™% sin (6, — A)
wp (2] Y
2 F( 3 )
v 1, — .
= 1.07 _VEOT qsl'e s Sin (90 -— A)’ (7 . 37)

A—Tn+0155q3, a=1.031~1.

We note first of all that, at a suitable choice of the param-
eters q, the expressions for Ay are very close to each other
for field-reversed mirrors of both types. The strongest dif-
ference is due to the phase shift A in the last case. Its
cause is the same as for a long trap, viz., the asymmetric
configuration of the field relative to the singularity. Here,
too, one can introduce an equivalent shift of the point at
which one takes the Larmor phase that determines Au: 8,(s =
0) > 64,s = s,), where

8 = — vAfwy =~ — y/19. (7.38)
Note that in both cases the shift is toward a smaller field
gradient.

Expression (7.37) agrees with the results of [15], ex-
cept for a constant phase shift 117/48, which differs in [15]
by +7n/4. This difference is possibly due to the fact that in
[15] the integration is over a contour in the complex plane
of z and not 6.

In all the cases considered, the change of Ap turns out
to be exponentially small relative to the adiabaticity param-
eter € = O/ <w> ~ Q/wy ~ pm/L. This raises the serious ques-
tion of how reliable are estimates of so small a quantity,
especially in view of the neglect of the much larger (~¢)
quasiperiodic variations of u. Similar misgivings were raised
many times in the literature concerning this problem and
similar ones. This is seemingly confirmed by the fact that
different preexponential factors in the expression for reso-
nant Au were obtained by different workers. Some differ
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greatly enough to doubt the validity of the power-law (in )
correction to Au. The latter, however, is excluded complete-
ly for the following reasons. It is shown in [17] that asymp-
totic corrections to u, in any order in €, are quasiperiodic.
Consequently, the nonperiodic (resonant) change of u de-
creases with € more rapidly than any power of €, i.e., ex-
ponentially. The same conclusion can also be reached in
much simpler fashion, by starting from the exact expression
(4.4) for Ap. Indeed, in the case of an analytic time depen-
dence of the right-hand side on the time or on the phase 6
(and this is always the case for real field), we can shift the
integration contour (with respect to 6) along the imaginary
axis (Im6 =0 > TIm6 = 6s = const), and this leads to the ap-
pearance of a constant factor exp (—6s) [after making the sub-
stitution sin 6 > Imexp (i6)]. But since 65 « w « 1/¢, we
have Au «exp (—A/g); i.e., it decreases exponentially as

e » 0.

A more complicated problem is that of the accuracy of
the expressions obtained above for resonant Aun. The diffi-
culty lies here in the fact that in the higher approximations
the harmonics of the low frequency @ are, generally speaking,
enhanced, and can in principle alter somehow the argument
of the exponential and (or) the preexponential factor. None-
theless, it can apparently be stated that the relative correc-
tion to Ap is small as € »+ 0. This is due to the specific
structure of the integral for Au in (7.10). Although we do
not know the integrand as a function of t, we can express
it in terms of the exactly known functions w(s) and R(s)
(the specified configuration of the magnetic field) and, gen-
erally speaking, the (exactly) unknown function v(s). But
the latter is needed only in the singularities, where w =
w(sp) = 0 and v (sp) = v; v} (sp) = 0 in view of vi?= 2uo.
It is important that this result [v](sp) = 0] does not de-
pend on the corrections to u, provided they are small, i.e.,
at sufficiently low . In this way all the complexities of
the v(s) dependence in the higher approximations do not af-
fect the integral value of Ap. This means physically that
the contributions of the higher approximation to the u(t)
dependence cancel out over the half-period T/2. We note in-
cidentally that, owing to vj(sp) = 0, we can discard in the
equation for {1 not only the terms with sin (26), but also the
terms of form v, sin 6, as was done in (4.4) (cf. the total
expression in [5]).
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It remains to discuss the calculation of 6p by means of
(7.16). In the small-8, approximation, the corrections to §
are immaterial. In the general case [see, e.g., (7.6)], the
correction to 6p is proportional to the integral of éu. The
latter is described by an expression such as (5.1), so that
|su| ~ € and is proportional to the rapidly oscillating func-
tion cos 6 (for a particle in a trap). The integral of &y is
therefore of the order of €2, and the correction to 6,, notwith-
standing the large factorl/ < in (7.16), turns out to be small (s¢).

Results of numerical simulation show that the typical
first-approximation error of Au is of order 10% (see, e.g.,
[5]). In some special cases the accuracy can be even
higher [15]. These figures include also the errors in the
separation of the resonant Ay against the background of
much larger, generally speaking, quasiperiodic, oscillations
éu (see Section 5). As already noted above, the use of expli-
cit expressions for a more precise u greatly facilitates this
task (see [15, 20]). An even more effective method can be
the use of resonant trajectories for numerical simulation. In
this case, the quasiperiodic variations cancel out at both re-
flection points.

Note that an exponentially small resonant Ay was first
obtained in [16] from the solution of the corresponding quan-
tum-mechanical problem. The relatively simple classical-
mechanics technique described above was proposed in [20]
and then developed in a number of papers (see, e.g., [5,
15, 21]). The most extensive calculations were carried out
in [D].

8. Mapping

Taken by itself, the quantity Au obtained in the preced-
ing section not only fails to solve the problem of prolonged
particle confinement in a trap, but is meaningless, for in
typical cases it is much smaller than the quasiperiodic oscil-
lations &u of u. The central question in the problem of pro-
longed containment of particles in a trap is the accumulation
of successive changes of u. This problem can be answered
in two ways. The first is to analyze the Hamiltonian (6.9)
that describes a system of interacting resonances with amp-
litudes determined by the quantity Au(6.10). The second is to
describe the particle motion by mapping or transforms, i.e.,
not continuously but at certain finite time intervals. We use
below the second way, which turned out to be simpler and
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more convenient (see [2]). It is convenient to choose as
the characteristic time interval the longitudinal-oscillation
half-period T/2 to which the quantity Au pertains. This
very quantity characterizes the variation of one of the dyna-
mic variables of the system, that of the action u in this in-
terval. This, however, is not enough for a complete de-
scription of the motion since Ay depends on another dynamic
variable, the Larmor phase 6 at a certain point of the mag-
netic line (in the simplest case — at the minimum of the
field). We must therefore first find the change of 6 between
successive passes through this point. This problem is gen-
erally solved in various ways, depending on the actual mag-
netic-field configuration.

We begin with the model (3.1). According to the re-
sults of Section 7, the quantity Ady is determined in this case
by the value of the phase 6 at the minimum of the potential
(x = 0). The change of 6 between successive passes through
this minimum, during the half-period of the x oscillations,
can therefore be written in the form

n 1 Iy
AGO~—m-x—(coy)=n< Vs 21,,)' (8.1)

In the last expression we used the connection between the
frequencies wy, <wy> and the actions J, Jy (3.9).

In this form, however, relation (8.1) still does not
solve our problem, since a new dynamic variable appears
(Jo, and calls for one more equation. Instead of finding
an equation for AJy, however, we can express J, in terms
of Jy by using the energy conservation law H°(J,, J y) =
const. From (3.4) we get

Je = (HO— T )[V2T, = (v —27,)/2 21,,, (8.2)
whence
Y - % 8.3
A= ( 2, T @7,)": ) (8.3)

Now let J, and 6, be the values of the dynamic vari-
ables_at some pass through the minimum of the potential,
and Jy, 8, the values of the same variables during the next
pass. Mapping is defined as the connection between these
two pairs: Jy , 8g > :I';, 8,. Introducing for convenience a
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new phase ¢ = 26, we can write this connection, in our case,
in the form

o =% + G(T), (8.4)
(AJy)m = —nJy exp [—4/3v, cos Bol,

el

[see (7.8)], and take the function G(dy) = 2408,(dy) at Jy =
Jy, i.e., for the value of Jy after the First pass, the very
thing that determines the difference between two successive
values of the phase ¢ ,.

Mapping should describe completely the evolution of
the considered model in its phase space (J ys %¢). This
space is, in this case, a semicylinder, since Jy 2 0, while
the phase ¢, is defined accurate to an integer multiple of
2r. Given the energy H° = v 2/2, the motion is confined
to the region Jy < H° (8.2). The term mapping stems from
the fact that the difference equations (8.4) transform (or
map) the phase semicylinder on itself; i.e., each point of
this semicylinder goes over into one of the points of the
very same surface.

The mapping (8.4) is not canonical; i.e., it does not
conserve the measure (area) of the phase surface. Indeed,
if we put for simplicity cos R, = 1( B < 1), the Jacobian of
the mapping is

0Ty, %) . A m . 8.5
_a(-]y’ %) _1—}-—‘-—6‘]1/ sin§, == 1. (8.5)

Since the initial system (3.1) is canonical, or Hamiltonian,
the result (8.5) means simply that the mapping (8.4) is not
exact. In fact, relation (7.8) defines the change not of Jy
but of Indy. If we assume as before that cosg, = 1 and
introduce a new variable P = In Jy, the mapping

P=P 4 (AP)psindy,, §,=%8,4G(P) (8.6)

now becomes canonical, since (AP)p = mexp(—4.3v,) is inde-
pendent of P.

‘Note that were we to retain the dependence of the argu-
ment of the exponential in (AP)p on g, [cos By or, in the gen-
eral case, the dependence (7.6)] and, consequently, also on
Jy, the last mapping would again become noncanonical,
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since 3(AP)m/3J, # 0. This is one more advantage of the
small-g, approximation. In this approximation it is possible
to choose, in all the examples considered above, the vari-
able P such that 3(AP)n/3P = 0, and the mapping of form
(8.6) (see below) turns out to be canonical.

Canonicity of the mapping is essential for the use of
certain general ergodic-theory theorems and is necessary in
numerical simulation, for otherwise the errors can accumu-
late rapidly because the phase area is not conserved.

For certain magnetic-field configurations, the mapping
that describes particle motion in a trap turns out to be the
same as (8.6). For example, for a certain trap (see Subsec-
tion 2 of Section 3), we introduce the variable P = /u [see
(7.14) and (7.17)] and obtain

P =P 4 (AP)p,sin 6y; 6, = 6, + G (P), (8.7)
where |
3
(AP)m=—8-l/ﬂ2— oV woe™? (8.8)
and
— /1 3
EICE o L'[/o)(,(—ﬁ—l—%:zps)- (8.9)

The last expression can be obtained directly from (8.3) in
view of the complete analogy between (3.4), (3.11) and
(3.5), (3.12).~ The adiabaticity parameter is, in this case,
E ~ 1/q = 3pm/2L.

The mapping takes the same form as well for a multi-
mirror trap (see Subsection 4), and also for planar geometry
of field-reversed mirrors (Subsection 5). In all these cases
there is only one singularity on a half-period of the longi-
tudinal oscillations (in one pass of the particle through the
trap), and the motion is symmetric about the field minimum.
The mapping for the remaining examples of Section 3 will be
constructed later (see Section14). We note right away that
in all the magnetic-trap examples the variable is P = vy,
since we have always used Eq. (4.4) in the calculation of

Au.

In the case of a multimirror trap, we confine ourselves
to the region near the separatrix (see Subsection 4 of Sec-
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tion 3). The frequencies <w> and @ are specified here as
functions of the parameter w [Egs. (3.26), (3.29), (3.31)]
that depends only on u [see (3.25), H? = const]. As a re-
sult we obtain for the function G(P) in the mapping (8.7):

G (P) — V2 A L Vo, (ln 32 .y K—l);
n Vm P | w | A (8.10)
. v? 2A ’
TR Dot A—1

The expression for (AP),, however, remains (8.8) as before, |
with the parameter

1 _ 8

q—4l/7» = (8.11)
where 2L is the distance between neighboring mirrors [see
(3.18) and (7.19)].

In the case of field-reversed mirrors we use for the
field the asymptotic expression (3.36), which corresponds
to large amplitudes of the longitudinal oscillations, since we
assume, as before, thatpg, is small. In our case, the fre-
quencies are given by relations (3.38) and we get

2 3
G(P) m— ;‘(’)’1’34 . (8.12)

The quantity (AP)p, on the other hand, is given by (7.34).

The mappings obtained in this section can be used
directly for numerical simulation of prolonged motion of a
particle -in a magnetic trap of suitable configuration. These
mappings are quite simple, and each iteration of a mapping
corresponds to one complete pass of the particle through
the trap between reflection points in the mirrors.

For analytic study, the mappings obtained can be fur-
ther simplified and "standardized."

9. Standard Mapping

The mapping (8.7) obtained in the preceding section
is equivalent to the Hamiltonian (6.9) in the sense that it
describes the same system of nonlinear resonances. The
resonance condition (in first approximation — see.Section 10
below) for the mapping can be written as
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G (P,) = 2ur, (9.1)

where r is an arbitrary integer. This condition determines
the resonance values P = Pr and, accordingly,u = ur = P2,
for which the successive values of the phase 6, remain un-
changed. The latter is correct, of course, if py also remains
unchanged, i.e., if 8, = 0 or . It can be easily seen that
one of these phase values is unstable, depending on the sign
of (AP)m [at (AP)p > 0, for example, the unstable point is

8, = 0].

Since G(P) = w<w>/Q (see Section 8), the resonance condi-
tion can also be written in the form <w> = 2prQ. It differs
from the condition (6.2) by a factor of two which is connec-
ted with the symmetry of the motion described by the map-
ping (8.7) about the minimum of the field. In this case,
the amplitudes of all the odd harmonics of the longitudinal
oscillations vanish in the Fourier expansion (6.1).

We linearize the function G(P) near one of the resonant
values of P and introduce a new variable p:

dG ,
G(P) ~ G (P +— |, _p (P—P)—>GC (P —Py) = p. (9.2)

Here G.'= (dG/dP)p=p,, and we have discarded the term
G(Pr) = 2wr, which does not change the mapping. In terms
of the variables p and 6 (we drop the zero subscript of the
phase), the mapping (8.7) takes the form

p=p-+Ksin,

0=04p=0+4p-+ Ksin6. (3.3)
It was introduced similarly in [8] and named the standard
mapping, since many (although by far not all) actual prob-
lems of nonlinear dynamics of Hamiltonian systems are re-
ducible to it. In particular, all the magnetic trap types
considered in the preceding section reduce to this mapping.
Any actual system is distinguished only by a single stan-
dard-mapping parameter that can be represented in the form

K =G, (AP)m. (9.4)

Note that if even the quantity (AP)yp depended on P, it
would have to be taken in (9.4) at P = Pr (just as G'). Con-
sequently, K is simply a constant, and the standard map-
ping turns out to be canonical. The canonicity of the ini-
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tial mapping (8.7) is therefore immaterial if this mapping is
to be analytically investigated by changing to a standard

mapping.

The first-approximation resonances for a standard me-
thod are defined by the conditions

. p=pr=gﬂf, (9.5)

i.e., they are infinite in number, and all are located at
equal distances §p = 2v from one another. From a compar-
ison of the last expression with (9.1) it can be seen that
the standard mapping describes the initial system (in par-
ticular, its resonant structure) locally with respect to P
(and p). Indeed, the initial system is a particle in a trap,
and the mapping (8.7) that describes it has, generally
speaking, a finite number of resonances (in view of the lim-
ited range of u < v2/2w,), which are not uniformly dis-
tributed with respect to u (or P). A standard mapping
transforms this section of the resonant structure and makes
it homogeneous and infinite. For this reason, the standard
mapping is also called the homogeneous model of a resonant
structure. |

For the local model to have meaning, it is necessary
that the number of resonances be large, and that their char-
acteristics, particularly K, differ little from neighboring
resonances. This is in fact the condition under which linear-
ization of (8.7) with respect to P is admissible. This condi-
tion can be written in the form

8p 2 2n
> ~ A ~ G| ~eLl, (9.6)
where 6P = [P,y — P,| is the distance in P between neigh-

boring resonances.

- 10.  Limit of Global Stability

As already noted, the central question of prolonged
confinement of a particle in a magnetic trap is whether or
not successive resonant changes Au of the particle magnetic
moment are cumulative. In the language of standard map-
ping, the same question reads: Is the motion of this sys-
tem finite, limited in p, or infinite?
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The only parameter K of the standard mapping has the
meaning of a perturbation parameter. In fact, at K = 0 we
have p = const and hence also p = const. Since we are
dealing in this case with an adiabatic perturbation, K can
be regarded as a new adiabaticity parameter. More accu-
rately speaking, the dimensionless adiabaticity parameter
should be taken to be |K|/(2w)2?, the square of the ratio of
the perturbation-induced oscillation frequency [~/| K|; see
Eq. (10.2) below] to the perturbation frequency (equal to
2m, with the period of the perturbation equal to 1). The
new parameter is connected with the old (e) by the estimate

K| e
k=g ~— - (10.1)

" The exponential factor stems here from the expression for
(AP)p (or Ap), and the preexponential one from G,'-~ G/P -
1/eP. For understandable reasons we shall call k the res-
onant adiabaticity parameter.

Since the function k(¢) has a singularity at ¢ = 0, the
new parameter k cannot be obtained, as we have verified
also directly, from the asymptotic expansion ine. Once,
however, we have found it by exact integration of the per-
turbation and have arrived thus ultimately at the standard
mapping, we can now use for the analysis an asymptotic ex-
pansion in k and, in particular, a very simple averaging
method (see, e.g., [12]). Thus, for sufficiently small k »
0 and nonresonant p # 27r we can expect the variation of p
to be quasiperiodic and bounded. In exactly the same man-
ner, for k > 0 and resonant p (for example, p~ 0) we can
neglect all the resonances except the given one (r = 0). The
standard-mapping difference equations can then be replaced
by differential ones:

Py N_d_E_z i : 0 — N._q_e_.—
p—pr— Ksin®, f—6=~ = =P (10.2)

which turn out to be canonical with a Hamiltonian
H.®, p)=—”22—+1<cose. (10.3)

The time t is measured here in numbers of iterations of the
mapping, or in units of T/2.

The resonant Hamiltonian (10.3) is equivalent to the
Hamiltonian (6.8) — both describe one nonlinear resonance.
As already noted in Section 6, motion in this case is finite
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under all initial conditions. The maximum amplitude of the
p oscillations corresponds to motion near the separatrix
(Hr = |K|). The separatrix has two branches:

pe= i-Q'l/Ksin—g—. (10.4)

This expression is valid at K > 0: reversal of the sign of
K is equivalent to a shift of the phase 6 by n: 6 > 08 +
[see (10.3)]. The maximum change (A p)m of p is equal to
the width of the separatrix, i.e., to the largest distance
between the branches of the separatrix (at 6 = w):

Ap), =4V K] =8aVEF. (10.5)

The dynamics of one nonlinear resonance (10.3) is per-
fectly similar to the motion of an ordinary pendulum or of a
particle in a field with a harmonic potential, particularly in
a multimirror trap of type (3.19). The picture of the phase
trajectories in all these cases has the form shown schemati-
cally in Fig. 1. Consequently, as already noted in Section 6,
the oscillations of p, meaning also of y, are bounded in the
case of one resonance. Up to which K is this simple pic-
ture of the motion preserved? The usual condition of asymp
totic theory requires that the frequency (~|K|!/ ?) of the
averaged (smoothed) system (10.2) be much lower than the
frequency of discarded perturbation in the initial system
(9.3), which is equal to 27 (one iteration is taken as the
unit of time), i.e., that |K|<« (2m) or k « 1 (10.1). The
critical value of the perturbation is therefore

k‘crN I, | K |cr~ (2:!1:)2%40. (10.6)

A much better estimate can be obtained by using the
criterion called the overlap of nonlinear resonances [8]. The
simplest variant of this criterion is obtained in the following
manner. All integer [pr/27 = r] resonances of the standard
mapping. are identical and are described by the same Hamil-
tonian (10.3) with shifted momentum p - p — pr. In par-
ticular, each of them has the same width (10.5). The sim-
plest resonance-overlap criterion is determined from the con-
dition that the separatrices of neighboring resonances be
tangent. Since the distance between them is §p = 2w (9.5),
the tangency condition is ép = (Ap)m, Whence

bep=1/16, | K |op= ¥4~ 2.5. (10.7)

This is already much closer to the numerical simulation of
the standard mapping [8], which yields
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| K |opms 1, kopar 1/40 (10.8)

accurate to several percent. Note that at the stability limit
the adiabaticity parameter is k = kcr « 1, thereby justify-
ing the use of an asymptotic expansion in this region.

A very simple criterion thus permits a correct estimate
of the order of a critical perturbation. Moreover, the pic-
ture of the overlap of the resonance is clear enough to gain
a qualitative idea of what happens when the perturbation is
larger. Clearly, when the resonances overlap, the trajec-
tory of the system can move over from the region of one
resonance to that of a neighboring and the motion becomes
infinite, at least for certain initial conditions. The charac-
ter of this motion will be considered below (Section11l). We
note here merely that the overestimate of the critical value
by the simple resonance-overlap criterion is due mainly to
the fact that in this form the criterion takes into account
only resonance of first-order approximation in the adiabatic-
ity parameter k. In the second order in this parameter
there appear half-integer resonances pr/2m = r/2; in third
order we get resonances pr/27m = r/3, etc. The complete
system of resonances turns out to be everywhere dense in p:

Prq = 2mr]q, (10.9)

where r and q are arbitrary integers. This does not mean,
of course, that the resonances always overlap (for any k -
0), since their widths decrease rapidly with increasing de-
nominator gq. Indeed, resonances with a denominator q ap-
pear only in the g-th (and higher) approximations, i.e., in
perturbation terms whose amplitudes are of order of k49, and
the resonance width is ~-kq/2. Recognizing that the number
of g-resonances in a given p interval (for example 27 be-
tween neighboring integer resonances) is proportional to q,
we find that the overlap of resonances in all approximations
is estimated by the sum

S=2cmq=n—d—2n4=——'1——=%- (10.10)

Here n = vk, and the overlap condition S = 1/4 is obtained
from the critical value n, = 1/4 (10.7) with account taken of
only integer resonances. The higher-approximation resonances
increase S (at a given n) and accordingly decrease ncr to
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Ner=3—VB 017, kym—o, |Klpm 116 (10.11)

This is already quite close to the stability limit (10.8), al-
though the estimate (10.10) cannot, of course, be regarded
beforehand as reliable, since the terms of the sum in (10.10)
contain unknown numerical coefficients. According to the
data of [8], the coefficients of the second and third powers
of n are equal to n/2 =1.57 and (2.2)2, respectively. At
any rate, expression (10.10) demonstrates that a system of
resonances that is everywhere dense does not necessarily
lead to overlap and instability.

This fundamentally and practically important conclusion
can nevertheless not be regarded as sufficiently convincing,
since it is based in final analysis on an asymptotic expan-
sion in the parameter k. The result of numerical simulation
is also limited, in view of the finite computation time (up to
~107 iterations of the standard mapping). A rigorous proof
of existence of a critical perturbation below which the par-
ticle remains perpetually (i.e., at —«= < t < ») in a magnetic
trap was obtained in [10] by constructing converging (and
not asymptotic) perturbation-theory series. Unfortunately,
technical difficulties prevent us from obtaining, in this man-
ner, an effective estimate of the magnitude (and even of the
order) of the critical perturbation. With allowance for se-
cond- and third-order perturbation-theory approximations,
as well as for higher approximation effects, a value |K|cr =
1.1 was obtained in [8]. An entirely different method [23]
leads to |K|cr = 0.97 (this method is discussed in [24]).

In sum, it can be concluded that the values (10.8) for the
critical perturbation are reliable enough and can be used to
solve specific nonlinear-dynamics problems that are redu-
cible to standard mapping.

Bounded oscillations of the action u for subcritical per-
turbation are sometimes called superadiabaticity (see [25],
where a related problem was solved). In essence, in this
case the adiabatic invariant becomes an exact integral of the
motion, albeit nonanalytic and even singular in the dynamic
variable and in the initial small parameter € [10]. It should
be noted in this connection that the famous Poincaré theorem
that a Hamiltonian system has in the general case no ana-
lytic integrals of motion other than the energy is not as sig-
nificant as heretofore assumed.
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The onset of instability of motion for overlapping reso-
nances can be regarded as an interaction of resonances,
i.e., as joint action of several resonances; the result of
this action differs (radically in this case) from the sum of
actions of individual resonances. This situation might be
described as interference of resonances, an interference
with catastrophic aftereffects. At any rate, resonance over-
lap is a clear example of the profound difference between
linear and nonlinear mechanics.

Since standard mapping describes the initial system
locally, the critical value of the parameter K determines the
stability boundary in the phase space of the system. We ex-
press the position of this boundary in terms of the param-
eters of the initial system.

For the model (3.1) the standard-mapping parameter is
[see (7.8), (8.3), (9.4)]:

|
K~ 2 ( 3 1 > exp[— 3v, cos By
9 sin3 B, sin B, Y
exp/—— : )
~ 2 \" %/ gl (10.12)
2 K

The critical value |K| = 1 (10.8) determines the stability
boundary on the plane of the dynamic variables B, and v, =
v2H %, which is a two-dimensional projection of the four-
dimensional phase space of the model under consideration.

This boundary can also be represented in the form
Bo =~ 2.50p exp(— 4/9v,). (10.13)

On the velocity plane (%X,, V,) the quantity g,°f defines an
unstable-motion sector g, < B,¢Y, in which the amplitude of
the longitudinal oscillations increases without limit. The
adiabatic regime corresponds here to small v, « 1, since the
frequency ratio is wx/<wy> ~V4B* ~ exp (—4/3v,) [the last
estimate is valid at the stability boundary (10.13)].

For a short magnetic trap, using (8.8) and (8.9), we
obtain in analogy with the preceding case ‘
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Kx Bl n g (10.14)
64 L Bg

where q = 2L/3pm > 1 and B, « 1. The critical angle is
therefore

. 3 1/4
B #‘_— (—’L— Vq et (10.15)

It defines in the trap an instability cone in the particle-
velocity space at the magnetic-field minimum. In the assumed
short-trap model (3.10), the field increases along the mag-
netic line without limit, and an instability cone exists for
all g » =, although its width does decrease very rapidly
with increasing q. In real traps the field is bounded by
some maximum value wm = Aw, , Where X is the mirror ratio.
There therefore exists the known adiabatic particle-depar-
ture cone 50(“) = A"1/2 (at A » 1), even if u = const. The
instability of the particle motion in a magnetic trap is sig-
nificant only if g,(cr) > g (a), or

L 1/2 eq/2

x>% _>

Ty

(10.16)
q

This estimate can also have another meaning — an upper
bound on the amplitude of the stable longitudinal oscillations
(a < a.p). Actually, the minimum stable B,¢F («<1) occurs
when the particle reaches a field wcr = woAcr =wo(BCT,) 2.
Consequently, Acr= 1 + ac?/L? (for our short-trap model)
and is equal to the right-hand side of inequality (10.16).

.An estimate of the stability is obtained quite similarly
as well for ‘opposing mirrors (in planar geometry). From
(8.12) and (7.34) we obtain, with the aid of (9.4),

9/8 .—q
K~ — 64;/2_ T (10.17)
Bo

Here g = rowy/2v = ry/2pm and B, <« 1. The width of the
unstable sector is

BLCT) 21406715,
. (10.18)

0,4
Aoy —2 qz[slcrzxmax,vymax

~

cr~
4¢°1%0 To To Ty

b4
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where Xmax = Ymax = | S |max >» r, is the maximum deflection
of the particle along the coordinate axes (see Fig. 2a), at
which its oscillations are still stable.

The location of the stability boundary on the (x, y)
intersection plane of the magnetic field can be obtained in
the following manner. Since w,(r,) = Cr,, where C is a
certain constant (see Subsection 5 of Section 3), we have

T v
—— =IPm = —
ON C

Fo@Wo __ rg

=L?=const, ¢q=
20 212

(10.19)

and the length L is a certain physical parameter of the
given trap. Substituting these expressions in the second
relation ot (10.18) and using the magnetic-line equation
2xy = ro,?, we obtain the equation of the stability boundary
in the form

0.4x
e oY

2V?

g'/20e0.4

Yo = 2]

or

5 l+lnx (10.20)

yb~_2— Xy

Here Xy and yb are measured in units of L. This expres-
sion is valid only at xp >» 1, since the asymptotic form
(3.36) of the field was used in (10.18). Curve (10.20) sym-
metrized relative to the line x = y is shown in Fig. 5 (the
lower hatched line) together with one of the magnetic lines
it intersects Formally, curve (10.20) intersects the line

= y at the pomt Xb = yb= 2.08, where r,0Mn = 2.9 and
qmln = 4.3. The unstable region is located below the curve.

In a multimirror trap we take explici 8},7 into account an
adiabatic loss cone with aperture angle B, A2« 1,
Therefore, the unstable region takes the form of a conical
layer adjacent to the loss cone. We characterize this layer
by its width, which we assume to be small (see below):

ABy = BET— BS? & B < 1. (10.21)

The main parameter of the function G(P) [Eq. (8.10)] is
then equal to

wa —4 VA AP, (10.22)
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Fig. 5. Motion-stability bound-
ary (lower hatched curve)

for planar geometry of oppos-
ing mirrors; the instability re-
gion is below this curve. Up-
per curve — one of the magne-
tic lines. The unit of length
is defined by the condition
roem(r,) =1 (see text).

Since |w| « 1, it suffices to differentiate in the expression
for G'(p) only w:

,  eyT  Lh}l
G~ — Bt (10.23)

b1 4

Using for (AP)p the relation (8.8) with the parameter
q from (8.11), we get

27n2 A2 _
K= g e (10.24)

The stable-motion layer therefore is
| ARy | ~4.2 LLO_ (Ag)2e—s. (10.25)

In a multimirror trap the layer consists of two halves,
each of width |AR,|: "upper," in which the particles are
untrapped (w > 0; AR, < 0), and "lower," with trapped par-
ticles (w< 0; AB, > 0). '

A similar layer is produced, of course, in any other
real trap, since the field has maxima in the mirrors. A
model of such a "real" trap can be one section of a multi-
mirror trap (two mirrors). In this case the upper half of
the layer plays no role, since a particle landing there will
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leave the trap in one pass. In the lower half, however, the
particle can stay for an arbitrarily long time (see Section 11),
so that the existence of a layer is perfectly observable. Of
course, the presence of this layer is of no importance what-
ever for prolonged confinement of the particles in a trap,
since it hardly increases the adiabatic loss cone.

11. Local Diffusion

We consider the character of the motion in the unstable
region defined by the condition |K| > 1 (see Section10). We
start from the standard mapping (9.3), which describes the
motion of the particle at relatively small changes of u. A
characteristic feature of the standard-mapping dynamics is
local instability of the motion, i.e., the rapid "scatter" of
almost all very close trajectories. This instability must not
be confused with the global instability considered in Section 10,
which means simply unrestricted motion, i.e., an unbounded
variation of p over a sufficiently long time. To investigate
the behavior of close standard-mapping trajectories we con-
sider the derivatives [see (9.3)]

Z—g.—_l—}-KcosBchosB. (11.1)
The last expression is valid at |K| » 1, i.e., deep in the
region of global instability. Exactly the same expression is
obtained also for the derivative (dp/dp) if it is recognized
that the phase 6 in the first equation of (9.3) is connected
with the preceding value of 6 by the relation 6 = 8 + p. It
is clear, therefore, that the average distance between very
close’ trajectories (in the linear approximation) will increase
exponentially with time:

| 80(t) | = | 66 e, (11.2)

where the velocity h of the local instability is (per itera-
tion)

h=(ln | Kcos® 1)=1n'—’§—'. (11.3)
The last expression is obtained by simply averaging over 6
and assuming a uniform distribution. This simplifying as-
sumption is actually well satisfied at sufficiently large |K|
(see [8]). At smaller K, even in the region of global in-
stability, i.e., at |K| > 1, considerable regions of stable
motion, i.e., of bounded quasiperiodic p oscillations, are
preserved on the standard-mapping cylinder (Fig. 6). The
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Fig. 6. Section of developed
phase cylinder of standard
mapping (9.3) at K = 1.13 (ac-
cording to the data of [8]).
The region of unrestricted mo-
tion in p (the stochastic com-
ponent) is shaded. The circle
marks a stable immobile point
at the center of one of the in-
teger resonances py = 2m.

largest regions surround stable periodic trajectories of the
standard mapping with a period 1 (immobile points): p,/ 27
= r, 8, = 7 (r is an arbitrary integer; K > 0). These
points correspond to centers of integer resonances. An ele-
mentary analysis of the linear stability of these points (see,
e.g., [8]) shows that the stable regions around them are
preserved up to K = 4. At larger K there can also exist
several other stable regions, but their area is small and we
shall neglect them. This question was investigated in
greater detail in [8] (at K = 5, for example, the relative
area of stable regions is less than 2%). Accordingly, numer-
ical simulation of the standard mapping shows [8] that the

last expression in (11.3) for h is correct to within no more
than 5% for K > 6.

The quantity h plays a major role in modern theory of
dynamic systems and is called metric entropy (see, e.g.,
[26]) or sometimes KS entropy (the Krylov—Kolmogorov—Sinai
entropy) [8]. It turns out that at h > 0, i.e., if local in-
stability evolves exponentially, almost all the trajectories of
a dynamic system, more accurately of the ergodic (stochas-
tic) component of the motion, are random [27]. In the case
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considered, at K > 1 the stochastic component coincides with
the region of global instability.

A more detailed discussion of the extremely interesting
question of the physical meaning of such a dynamic fortuity,
i.e., random motion of a deterministic dynamic system, is
beyond the scope of this article. We confine ourselves only
to brief remarks, referring the interested readers to the
original papers [27] (a brief popular discussion of these
questions can also be found in [28]).

In modern theory of dynamic systems, randomness of
trajectories is associated with maximum complexity of the sys-
tem. The latter means, roughly speaking, that there exists
no (simpler) method of describing a given random trajectory
other than specifying the trajectory itself. In other words,
the equations of motion are utterly useless for the calcula-
tion of the trajectory over a sufficiently long time interval,
since the entire complexity of the trajectory is contained in
its initial conditions. It can be easily seen that this is
directly connected with the exponential local instability of
the motion, owing to which the trajectory is determined in
the course of time by arbitrarily minute details of the ini-
tial conditions. A nontrivial fact here is the rigorous result
that almost all the initial conditions of the motion correspond
here precisely to random trajectories. The dynamic random-
ness is thus due in the final analysis to the continuity of
the phase space, while the role of the dynamic system (of
the equations of motion) reduces only to ensuring local sta-
bility of motion, which reveals the microscopic structure of
the phase space [28].

It is important, within the scope of the considered prob-
lem of particle motion in a magnetic trap, that strong local
instability makes it impossible to represent the motion in
terms of trajectories and forces the use of a statistical de-
scription. The basis of the statistical description is the
ergodicity of motion in the entire phase space or in part of
it. In the latter case one speaks of the ergodic component
of the motion. A sufficient albeit not necessary condition
of ergodicity of motion is the local instability described
above. The average time that an ergodic trajectory stays
in any region of phase space is proportional to the invari-
ant measure of this region. For Hamiltonian (canonical)
dynamic system such an invariant (i.e., conserved in the
course of motion) measure is known to be the phase volume
(the Liouville theorem). This permits a quantitative deter-

R R o i 8 1
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mination of the probability of a state (more accurately, of a
region of states) of the dynamic system as a quantity pro-
portional to the phase volume of this region (the proportion-
ality coefficient depends on the normalization used). This

is one of the advantages of the canonical (Hamiltonian) equa-
tions of motion or of mappings. For the standard mapping,
for example, the probability density is dw = dpds.

All other statistical properties of a dynamic system de-
pend substantially on the behavior of the correlations. Con-
sider, for example, the correlations of the phase 6 in stan-
dard mapping or, more accurately, consider the correlation
function

C (x) = ¢sin 6 () sin O (¢ + 7)), (11.4)

where the averaging is either over t on one almost arbitrary
(random) trajectory, or else, since the motion is ergodic,
directly over 6. At h > 0 all the correlations are damped
irreversibly, i.e., C(t) - 0 as t » », although not necessar-
ily exponentially (see below).

If this damping is fast enough, a simple diffusive de-
scription of the motion is possible. Indeed, using the first
equation of (9.3), we can write .

(Ap) =K 3) sin6(?),

t'=l1

where the time t is an integer (the number of the iteration)
and (Ap)t is the change of p after t iterations. Neglecting
the stable component of the motion (see above), it follows
from the ergodicity that <sin 6> = 0, meaning also that

{(Ap);> =0. (11.5)
Let us find <(Ap)?t>. We have

t

(AR = K? f} 31 (sin0 (¢) sin0 ().

=1 t"=1

Recognizing that <sin?6> = 1/2, we can represent the last
expression as t » « in the form

<(Ap)¥>—>t1<’|%+ 22 C('r)]. (11.6)
T=1
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If the last sum is finite, we have a simple statistical diffu-
sion with respect to p at a rate

A 2
D, = lim 2’?” =X r), (11.7)

{-+00

where R(K) is a correlation factor that can depend only on
K, the only standard mapping parameter that determines all
its dynamic and static properties. As K > «, the KS entropy
h > « and the correlations vanish even for neighboring
values of the phase 6. In this limit we have R > 1, and ob-
tain

DY = K¥4. (11.8)

Since K is constant for the standard mapping, the diffusion
equation for the distribution function f(p, t) takes the
simple form

0f/0t = D,0%/0p. (11.9)

Its particular solution corresponding to the initial conditions
f(p, 0) = 8§(p) is the Gaussian distribution

exp (— f; \,
fp, t) = 4Dpt  / . (11.10)
4nDyt

Numerical simulation confirms well these simple considerations

[8].

Note that for validity of any kinetic equation in general
‘and of the simple diffusion equation (11.9) in particular, it
is necessary that the diffusion time scale Tp ~ p?/Dp, i.e.,
the characteristic evolution time of the distribution function
f, be much longer than the dynamic scale Th = 1/h, i.e.,
the correlation damping time [29]. This is necessary be-
cause Dp is simultaneously also a local (in time) parameter
of the diffusion equation, i.e., in the scale of Tp, and
asymptotic in the scale of Th (11.7).* For standard mapping
we have

*If sight is lost of this important physmal condition, it is
easy to arrive at a contradiction (see [30-32] and below).
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Tp p \2 p \2
7o~ (&) [ K~ () >
We now turn from the standard mapping to a mapping
of type (8.7), which describes the initial problem more ac-
curately. Since the latter mapping contains the same phase,

the correlation properties of the motion remain unchanged,
and we can write down right away the rate of diffusion in P:

(AP

2
4)’" R(K) (11.11)

with the same correlation factor R(K) (11.7). The last ex~
pression is obtained, of course, also from the general relation

Dp =

Dp =D, (“3%)2’ (11.12)

since K + G,/ (AP) 4% and dP/dp = 1/G,'. In particular, the
rate of diffusion in p, which is exactly the one we need, is

Dy = (AP)n R (K), (11.13)

where (AP)p depends on the type of magnetic trap (see Sec-
tion 8).

We write finally the diffusion rate in ordinary continu-
ous time (and not in terms of the number of iterations of
the mapping). Obviously, it suffices for this purpose to
divide the expressions derived above by T/2 = n/Q. For ex-
ample,

D, =% (AP, R(K). (11.14)

In contrast to the standard mapping, however, the
quantity D no longer suffices to set up a diffusion equation
for the distribution function f(u, t). The reason is that
the Fokker—Planck—Kolmogorov (FPK) equation that describes
the diffusion process at small changes of the diffusing quan-
tity (|Au| « p in our case) contains, besides Dy, also an-
other function

U, = lim ﬁ‘\—?—’i (11.15)
t-+00
called "drift." This quantity is sometimes called also "fric-

tion," but generally without justification, and can be called
more readily the average rate (in terms of u).
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With the aid of the quantities Uy and Dy, we can write
the FPK equation in the form (see, e.g., [33])
o _ 9
ot ap ’
(11.16)

Q=——— (D) + U,
n

where Q is the probability flux. In the general case Uy # 0.
Consider, for example, the mapping (8.7). As shown in Sec-
tion 8, it is canonical just in the variables P and 6,, but
not p and 6,; i.e.,at |K| » 1 the stochastic trajectory is
uniformly distributed just on the P, 6, surface. Since u =
P?, we have Ay = 2PAP + (AP)2. Hence,

Uy = SO0 <(AtP>3> _ 9D,

(11.17)

Comparing this expression with the diffusion rate Dy (11.13)
we arrive at the relation (R =1):

dD,,

1
U=~ (11.18)

which in fact solves the problem of finding the function U,
and with it the complete FPK diffusion equation for the map-
ping (8.7). The question is, however, how accurately does
this mapping describe the initial problem of particle motion
in a trap? It is undoubtedly correct in first-order pertur-
bation theory in the adiabaticity parameter k ~ (AP)y (10.1).
But pUy ~ Dy~ (AP)n” ~ k?; i.e., the velocity Uy is of se-
cond order of smallness. As we shall see later (see Section
13), the mapping (8.7) does not ensure such an accuracy,
so that relation (11.18) is not correct.

The general method of finding U, will be considered in
Section 13, and now we shall show that in the initial diffu-
sion state the rate Uy plays no role at all, and can be simply
neglected. In fact, the change of u consists of two parts:
first, the diffusion proper or the scatter (éu), ~ vDyt and,
second, the average displacement (éu), ~ Upyt. Their ratio
is [see (11.18)]

O, VOS  » (11.19)
(Op)q U,t (Op)y
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so long as (8p); < u, 1 e., so long as the diffusion has a
local character.

By way of example we consider diffusion in a thin sto-
chastic layer in a multimirror trap. In the expression for
the diffusion rate (11.13) (discrete t) we assume for simpli-
city that R(K) = 1. And since we have in a narrow layer
U = pe (the value of yu on the adiabatic loss cone), the dif-
fusion coefficient is Dy = const, and we arrive at the simple
diffusion equation (11.9). If the multimirror trap is long
enough and the particle flux along the trap can be neglected,
the diffusion in the layer leads simply to relaxation of the
initial distribution, f(u, 0) » const. To determine the re-
laxation time, we note that the diffusion flux is zero on both
boundaries of the layer, i.e., 3f/9u = 0. This yields the
eigenfunctions of the diffusion equation:

fnlp &) =
V=(p—pPc)Ap; Tp= Aﬁ/nznzDu,

t ) cos (mnv),
n

(11.20)

where ucr is one of the boundaries of the layer, and Ay is
its total width. The equilibrium distribution corresponds to
n = 0. The relaxation time is determined by the maximum
Tn = T;. Using the expressmns for D, and for the layer
width (Ap/u = 4|aB,|/ B, ")), we obtain for the relaxation
time

64 / AL \2
len—“(p—m) (11.21)

by iterating the mapping (8.7), i.e., of the passes of the
particle between neighboring mirrors. We note that the next
eigenfunction with n = 2 in (11.20) relaxes at a rate four
times faster.

Let us digress somewhat. At equilibrium (t > « f -
const) we have <(Ap)?> = const. Since Eq. (11.6) remains
valid also in this limit, we get R(K) > 0 as t » «». Clearly,
this is due to the onset of long-range correlations on reflec-
tion of the particle from the layer boundaries. But it does
not follow at all that the diffusion coefficient (11.7) in Eq.
(11.9) is zero, as is sometimes assumed [30-32]. This would
be too formal and straightforward an interpretation of the
limit in (11.7). In fact, infinity in this limit is infinity in
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small, i.e., in a dynamic time scale Th « Tp. In other
words, the limit as t+ « in (11.7) means in fact the strong
double inequality Ty, « t « Tp.

We now consider one section of a multimirror trap. In
this case, the particles are confined only in the lower half
of the layer. In the solution of the diffusion equation, the
second boundary condition must therefore be f(u,, t) = 0,
i.e., the condition for absorption (emission) of the particles
on the adiabatic cone. It is easily seen that the first
eigenfunction of (11.20) satisfies this boundary condition (at
v = 1/2). Therefore, expression (11.21) yields also the
lifetime of the particles in the lower half of the layer. It is
interesting to note that this time increases like the square
of the magnetic field, whereas the layer width decreases ex-
ponentially with increasing field (10.25). Note also that the
next eigenfunction, which satisfies the absorption condition
at u = ug, corresponds now to n = 3 and is damped nine
times faster than the fundamental (n = 1).

12. Dynamic Correlations

Let us examine in greater detail the correlation factor
R(K) in the expression for the diffusion rate in the case of
standard mapping [see (11.7)]. We assume as before that
if |K| » 1 we can neglect the stable component of the mo-
tion. Since the standard mapping is canonical in the vari-
ables p and 6, in this case the trajectories will fill uniform-
ly the surface of the phase cylinder. Since the structure
of the standard mapping is periodic not only in 6 but also
in p (with the same period 27), it suffices in the calculation
of the correlations to average over the phase square 27 x
21 (developed part of the phase cylinder).

Let us find the first few correlations of the function
sin 6 for the standard mapping. The quantity C(1) in
(11.4) is obtained directly from the second mapping equa-
tion (9.3), and is equal to

C (1) ={sin0sinB) = (sin Osin [0 + Ksin® + p]) =0 (12.1)

upon averaging over p (for fixed 6). To find C(2), we ex-
press the succeeding (6) and preceding (6) phases in terms
of 6 and p in the present step:

0=0+Ksin6+p, 6=0—p.
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Hence

- 1 .
C (2) =(sinBsinb) = % {cos (2p +K sin 8)) Y {cos (20 + K sin 6))

L v Bz 12.2

In the last expression we used an improved asymptotic rep-
resentation of the Bessel functions of |K| > 1[22]. Theentire
derivation is apparently valid down to |K| = 4. At smaller
|K| there appears an appreciable stable region (see above)
and simple averaging over 6 and p is not valid.

Somewhat more cumbersome calculations yield for the fol-
lowing three correlations:

1
@)= [BOKN =R (KD] = T2 ~ KIS, (12.)

N

1
C@H~— LUK~ KT

The approximate equality means here retention of only the
principal term of the expansion in the small parameter |K|'1/ 2,
Starting with C(4), the exact expressions contain infinite
sums of Bessel functions, so that further progress by this
method is impossible. Since, however, the correlations are
rapidly damped at |K| > 1 (see below), the obtained values
of C(tr) already approximate sufficiently well the correlation
factor

R(K) 1 —2J,(1K|)+2/2(1K1), (12.4)

where we have neglected the contribution of C(3). The de-
cisive quantity here is the second term, which leads to char-
acteristic slowly damped oscillations of the diffusion rate
with increasing K. Such combinations were observed in nu-
merical simulation of the standard mapping in [8] and in
other papers. In [34] was calculated for the first time the
correction (12.4) for the asymptotic diffusion rate D;*° =
K2/4. The calculation was carried out by an entirely differ-
ent method (actually, even by two different methods). In
particular, ergodicity of the motion was not assumed. The
result of [34] can therefore be regarded also as independent
proof of the ergodicity of the standard mapping at |K| > 1.
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The numerical values of the factor R(K), taken from
[34], are compared in Fig. 7 with the theoretical relation
(12.4). The latter differs from the result of [34] (first
paper) in that the correlation C(4) is taken into account,
thereby improving somewhat the agreement with the numeri-
cal data. This correction was introduced in several papers,
including the second paper of [34], and also in [35], by a
method close to that described above (and postulating like-
wise ergodicity of the motion). .

Thus, the dependence of the first (short-range) cor-
relations on K is explained quite satisfactorily and simply
enough. Much less clear is the time dependence of the cor-
relations. Numerical experiments show that this dependence
is far from always the simply exponential

C (1) o exp (— AhT),

as was assumed at one time, even if the KS entropy h > 0.
Figure 8 shows an example of correlation damping for stan-
dard mapping at K = 7. It can be seen that the function
C(t) with even 1t can be fairly well fitted with the aid of
the function

C(r)z—;—exp(—-'[/r_). (12.5)

The nature of this correlation damping remains unclear, al-
though similar results were obtained analytically also for
other dynamic systems, at any rate, as an upper bound
estimate [36]. On the other hand, for similar mappings the
damping of the correlations can also differ significantly from
(12.5) (see [37]).

The behavior of the correlations becomes quite compli-
cated as |K| ~ 1. A major role is assumed here by the
boundary between the stochastic and stable regions with
very complicated structure (see, e.g., [38]). We have
seen in Section 10 that such a boundary is a distinguishing
feature of the phase space of a particle in a hole. The dif-
fusion rate falls off steeply near the boundary. This cor-
related with the dependence of the diffusion rate for the
mapping on K as K » 1. According to numerical data [8],
the correlation factor in this region is

R(K) o< (|K|—1)5, s=~2.6. (12.6)
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Fig. 7. Relative diffusion rate
R = 4Dp/K? for the standard
mapping vs. the mapping param-
eter K: points — numerical data
from [34]; curve — calculated
from Eq. (12.4).

By an entirely different method, numerical simulation of the
motion in the stochastic layer yielded in [39] s = 4. Owing
to the slow diffusion near the boundary, the trajectory re-
mains stuck in this region for a long time, and this leads,
in particular, to a slower decrease of the correlations. Ac-
cording to [39], the qualitative change of the character of
the motion near the boundary sets in at s > 2. The diffu-
sion to the boundary becomes, in this case, infinite; i.e.,
the stochastic trajectory does not reach the boundary of the
stochastic component. This can be obtained from the follow-
ing estimate [39]. Let x be the appropriately normalized
distance from the boundary of the stochastic component and
d < (Ax)? > /dt ~ Dx(x) ~ x3 [in a thin boundary layer we
have K(x) — 1 « x; K(0) =1 (12.6)]. Since the diffusion
rate increases rapidly with x, the time required to leave a
layer smaller than x will be determined by the time needed
to diffuse over a distance of order x, i.e., <(ax)?> ~x2.
Hence,

t> %27 (12.7)

and for s > 2 we have t > »as x > 0.

In the last case (s > 2) a qualitative change takes
place also in the behavior of the correlation function. In-
deed, x near the boundary is proportional to the relative
phase volume (area) w of the boundary layer, meaning also
to the probability of the trajectory landing in this region.
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Fig. 8. Damping of the correla-
tions C(t) in the standard map-
ping at K = 7: t — delay (num-
ber of iterations); the logarithm
is to base 10. For t = 1 and

T 2 4 the numerical values of
C(t) are determined by the fluc-
tuations of averaging of (11.4)
for one trajectory over 10° iter-
ations. Straight line — the func-
tion C(t) = 0.5exp (/7).

When expression (11.4) for the correlation function is aver-
aged over the stochastic component, the fraction of trajec-
tories remaining in the layer is less than x(t) ~ 1/(s=2) «
w(t), and determines the asymptotic behavior of the correla-
tion as T > o«

C(t)—>F(v)/t?, g=1/(s—2). (12.8)

This expression is valid only if s > 2 (q > 0), for otherwise
the correlation is no longer determined by the boundary
layer. The function F(1) depends, generally speaking, on
the behavior, in the boundary layer, of the functions f(6, p)
to which the correlations C(1) pertain [e.g., f = sinf in
(11.4)]. In particular, F(1) can oscillate, so that <F(t)> =
0 (the average over t).

As already noted (see Section11), for the standard map-
ping at |K| ~ 1 there exist sizable stability regions so that
a power-law correlation decrease of type (12.8) can be ex-
pected. Such a behavior was indeed observed in numerical
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simulation, and it turned out that q =1 (K = 2.1), corre-
sponding to s = 3 (12.8). For f = cos 6, the mean value
<F(1)> # 0, and the integral of C(1) diverges. In addition,
the average over the stochastic component is <cos6> # 0, in
view of the presence of stability. This, however, does not
influence greatly the diffusion in p, since the latter is deter-
mined by the correlations of the function f = sine (11.7),
i.e., of the very same function that determines Ap in the
mapping (9.3). In this case, <F(1)> = <sin 6> = 0 for any
form of the stability region around the immobile point 6f at
which sinéf = 0. Indeed, the average over the stochastic
component is

(sinB) g o == ¢sin 0)y — (sinB)stab »

where <sin 6>, = 0 is the average over the entire phase
square, and <sin 6>gtab is the average over the stable com-
component. The latter, however, is also zero, since it is
proportional to the average change of the momentum <Ap> =
0 in the stable region. It can be similarly shown that in
this case we also have <F(1)> = 0. At larger |K|, namely
at K = 2m (n # 0 an integer), there exist stable regions of
another type, called "accelerational," with (6,) at their cen-
ter, for which sin6, # 0, and for which <Ap> # 0 [8]. We then
have <sin6>gr, # 0; <F(1)> # 0, and the diffusion becomes
anomalously fast. Itis possible that just this explains the ap-
preciable spread of the points of Fig. 7 at the minimum of
R(K), which corresponds precisely to K = 27 In the suc-
ceeding maxima the areas of the accelerational regions de-
crease rapidly, and with them their contribution to the aver-
age diffusion rate.

An anomalously slow decrease of the correlations is pos-
sibly contained also in the experimental data, described in
[40], on electron confinement in a magnetic trap. Figure 9
shows a typical example of the experimental semilog plot of
the flux (-N) of the electrons leaving the trap versus time.
The authors expected an exponential decrease of the flux
(meaning also of the number N of the electrons remaining
in the trap) with time. Such a dependence was indeed ob-
served for some time (= 2.51e¢), but the subsequent decrease
of the flow slows down (circles in Fig. 9). The authors fit
the "tail" of the N(t) plot using a second exponential with
larger te.

Generally speaking, a relation in the form of a sum of
several exponentials is not surprising, and is, on the con-
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Fig. 9. Time dependence of electron
flow from a magnetic trap according

to the data of [40]: (-N) is the flow
of outgoing electrons (arbitrary scale).
The circles show a semilog N(t) depen-
dence (upper scale for t); curve 1 cor-
responds to the exponential relation

N = Aexp (—t/ 1e), Te = 0.36 msec. The
points show the same data (for t 2
0.6 msec) in log-log scale (lower

scale for t); curve 2 is the power-law
dependence N = Bt™Y; y =2.3.

trary, typical of the solution of the linear equation in gene-
ral and of the diffusion equation in particular (see Section11).
If, however, the data of [40] are plotted in log—log scale
(points of Fig. 9), the "tail" of the N(t) plot fits even bet-
ter a power law with exponent y = 2.3. This is already un-
usual for a diffusion equation and denotes the absence of
(nonsingular) eigenfunctions. The final choice between an
exponential and a power-law dependence calls for additional
experiments at longer t and in a better vacuum. The latter
is needed because electron scattering by the residual gas
assumes rapidly an increasing role with time, since the elec-
trons are confined to a boundary layer of ever-decreasing
thickness. The volume of this layer is approximately pro-
portional to its thickness and to the number of electrons re-
maining in the stochastic component, a number that decreases
with time like t~Y t1 = t~!.3, The same law also governs
the decrease of the correlations, i.e., q = 1.3 (12.8) and

s = 2.8.
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Although the exponents s and q given above differ no-
ticeably, the possibility of a universal description of the
asymptotic structure of the boundary layer as X > 0, t> =
is not excluded. This possibility is based in final analysis
on the hierarchic structure of the nonlinear resonances (see
[8], Section 4.4). The first successful attempts at a scale-
invariant description of several characteristics of the pres-
sure near the stochasticity boundary were undertaken in
[23, 41, 42].

13. Global Diffusion

To describe prolonged diffusion (in u or 8,) of a par-
ticle in a magnetic trap we must know the complete FPK
equation (11.16) rather than its local variant with Uy = 0,
Dy = const. It is necessary, therefore, first of all to find
an expression for the average velocity U. As already noted
above (see Section 11), direct calculation of U, in second-
order perturbation theory is difficult. More convenient is
the following simple procedure used in many papers (see,
e.g., [33]). Let the equilibrium distribution function
[fs(p) in our case] be known. For closed Hamiltonian sys-
tems it is easily obtained from a microcanonical distribution
such as

F,(u, J)dudd = 8 (HO (u, J)— E)dpdJ, (13.1)

where E is the given value of the energy. Note that we

are using here the unperturbed actions u and J and, accord-
ingly, an unperturbed Hamiltonian. The perturbation, on
the other hand, is assumed small enough to neglect the dis-
tortion .it produces in the energy surface. In other words,
we assume that the perturbation leads only to trajectory dis-
tribution over the entire unperturbed energy surface, with
ergodic measure (probability density) Fe(p, J). When neces-
sary, it is possible (at least in principle) to change to the
more precise actions u(n), J{n). the Hamiltonian is in gene-
ral also altered in this case (see Section 5). Note that one
more advantage of our choice of the unperturbed system

(see Section 2) is the possibility of obtaining an equilibrium
distribution function from the unperturbed Hamiltonian.

To obtain an equilibrium distribution in u only, we in-
tegrate (13.1) over J:



66 CHIRIKOV

[ () du = dp j 8 (H (u, J)— 5)( oJ )udHo

OH®
_ “S S(H'—E)dH® _ __ dp (13.2)
‘ Q(u, J) Q(n, E)

In the last expression we expressed J in terms of uy and H°
and assumed H®° = E.

If, for example, Q(p) « vu, as in the short trap (3.12),
the equilibrium density is dfs « du/vy « dg, (at g, « 1), i.e.,
proportional to a planar-angle element rather than a solid-
angle one as for a free particle. The reason is that as the
angle B, increases, the frequency Q@ of the longitudinal oscil-
lations increases, their amplitude (given the energy E)
decreases, and with it the "longitudinal part" of the phase
volume. If, however, the magnetic field is uniform, then,
J>p|=v), as well as Q »v| = veosp and dfg « dp/v| «
singdp, i.e., simply in proportion to the solid-angle element.

On the other hand, the equilibrium function fg(u) can
be obtained from the FPK equation by equating the flux Q
to zero. Hence,

1 d db,, d (In fs)
= ee— — - D .
Up = — == (Duf) = 2 +Du= (13.3)

This is in fact the general formula for the average velocity
Uy. We note that in its derivation it is quite immaterial
whether an equilibrium distribution actually exists or not in
this system. . An equilibrium distribution may also not be
reached for electrons in a trap, owing to their escape to the
loss cone or to the fact that the function fg is not normaliz-
able, i.e., the total measure on the energy surface is in-
finite (see below). None of this influences in any way the
limiting functionf (u). Relation (13.2) is simply an invari-
ant measure of an ergodic Hamiltonian system on the basis of
the Liouville theorem.

Returning to (13.3), we see that if fs = const we get
U, = dD,/dp. (13.4)

This simple relation between the coefficients of the FPK equa-
tion was (implicitly) obtained in [43] from the seemingly
rather general detailed balancing principle. Nonetheless, it
does not always hold [44, 45]. Nor does it hold for our
problem if only dQ/dp # 0.
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The detailed balancing principle is usually associated
with dynamic reversibility of motion. The probabilities of
direct and reverse transitions in reversible dynamics are,
of course, equal, but they must be calculated in full mea-
sure (i.e., with all the dimensions of phase space taken in-
to account) of the ergodic component. In the present prob-
lem this is not at all the case. First, we disregard com-
pletely the phases that are conjugate to the actions. It is
shown in [45] that this is permissible in the absence of
stable regions. Second, we have excluded one of the ac-
tions (J) and, finally and most importantly, the ergodic com-
ponent of the motion is bounded for a closed system by the
energy surface. As a result of all this the density fg of
the probability (of the invariant measure) for the remaining
variable u, whose change we wish to describe by the FPK
diffusion equation, is proportional to @~ !(p) and not to a
constant, and relation (13.4) does not hold, nor, therefore,
does the detailed balancing "principle" (for the same vari-
able p). The latter means simply that the transition proba-
bility is not proportional in this case to du, but dfg « du/Q(y).

It is clear, therefore, that to use the reversibility of
the motion in the form of the detailed balancing principle,
the latter must be formulated in terms of adequate variables,
which could be called ergodic [45]. In the general case
they do not coincide with the unperturbed integrals of mo-
tion, as is sometimes assumed. In our problem, for example,
the ergodic variable is a quantity (we designate it by TI)
proportional to the equilibrium distribution function, i.e.,
to the probability on the ergodic component. The variable
I' can be defined, for example, via the relation

dl = dw/Q (). (13.5)

The probabilities of the direct and reverse transitions be-
tween any two regions with identical dr will then be equal
(the detailed-balancing principle), fg(I') = const and Ur =
dDr/dr (13.3). In the last equation we can now return to
the variable y with the aid of the equations

Dr = D, (dT'/dp)?,

U D (13.6)
Ur=Uu£+Du il =t -t dQ-
du dp? Q Q2 du

In the calculation of Ur we must expand AT in terms of Au
up to second order, inclusive. Hence,
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dD D aD D
Uy=Q—L p » @ _ T By do (13.7)
dr Q  du du Q dn

This relation can, of course, be obtained also directly from
(13.3).

Besides the dynamic variables, we can also transform
the time. In particular, a new time t can be chosen such
that the new frequency Q(u) = dy/dt = const, for example,
dt = Q(u)dt. According to (13.5), 1 becomes, in this case,
an ergodic variable, and the coefficients of the FPK equa-
tion for the function f(u, t) satisfy the relation (13.4).
This is precisely a property possessed by the discrete map-
ping time, which is measured in units of T/2 = 7/Q. The
same result can also be obtained in a more formal manner,
by using (13.7). Indeed, putting

Q | Q
Du=-—=Dy", Up=—=Uy", (13.8)

T

where the quantities Dy and Uy pertain to the continuous
time, and Du( °) and U“(O) to the discrete one, we get from
(13.7)

U 2 aD® L DY 4q Dy s o aD{?
W )7 dp b4 du Q dp )7 dp
or
U = dD /dy. (13.9)

We note that (13.9) differs from the relation (11.18)
obtained directly from the mapping (8.7). This mapping is
thus valid only in first order in the small parameter k. It
hence follows, in particular, that it is not suitable for nu-
merical simulation of prolonged (global) diffusion (éu 2 1,
when the effect of the average velocity U, becomes sig-
nificant (see Section 11).

The problem of an accurate diffusive description for
the analogous problem (the Fermi stochastic acceleratjon
model) was discussed from a variety of viewpoints in [46-
48] (see also [9]).

Since (13.9) is known to simplify the FPK equation, it
is expedient to solve the problem in discrete time. From

(11.16) we get
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oF 8 o
o = om W o’ (13.10)

where we have dropped the zero subscript of Dy, with the
latter given by (11.13).

By way of example we consider a magnetic trap in
which the resonant Apy and the stability parameter K can be
estimated in the short-trap approximation (10.14). If
g, (cr) » g (2) = A~1/2 « 1, we can neglect in first-order
approximation the oscillations of the diffusion rates as func-
tions of K and put R(K) = 1 in (11.13). Introducing a new
time (which is likewise discrete)

s = t (AP)m M4, (13.11)

where u, = v?/2w,, and a new variable x =BOIBO(“'), we write
the equation for the eigenfunctions in the form [see (13.10)]

;L(x&>+%2xfu=o (13.12)
dx dx
with boundary conditions
_o0 9 —0
f()y=0, — = _, =" (13.13)

The first condition corresponds to the particles going off to
the adiabatic cone B, = B,{(cr), and the second to the ab-
sense of a particle flux on the stochasticity boundary B, =
Bo(cr (10.15) (xcr = Bocrlso(“)). The smallest eigenvalue
®? 2 0 determines the lifetime of the particles in the trap
under conditions when the motion is stochastic:

f (4, ) — exp(— x). (13.14)

The solution of (13.12) is expressed in terms of Bessel func-
tions (see, e.g., [22])

Fr (x) = CJy (x) -+ Ny (%x). (13.15)

The eigenvalue and the constant C are determined from the
boundary conditions (13.13) -

CJq (%) + Ny (%) = 0, (13.16)
- CJy (mxg,) + Ny (xg,) = 0.
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At xcr » 1, the approximate solution of these equations can
be written in explicit form by using the asymptotic expres-
sions

No(z)z—z—Jo(z) In <%) 1

Nl(z)z——2_+f_]n(lz_>, > (13.17)
nz i 2

J; (2) = 2/2 j
at z <« 1; y = 1.78... is the Euler constant. The small

value of % for xX., > 1 follows directly from the fact that
the first eigenfunction (13.15) must be positive everywhere.
Therefore, nXcr 1 and ® S 1/Xcr. Substituting (13.17)
in (13.16), we get from the first of these equations

02_1111(&)
n 2

and, from the second,

1 %2
—_— gr In X p. (13.18)

“2

Gathering together all the relations, we obtain for the char-
acteristic lifetime of the particle (the number of passes
through the trap):

~ M 2y~ 16 [ L \/- exp(39/2) >
T, =~ (A;}n In (M?’cr)f\“ . (fo) 7 In (Mb’cr), (13.19)

where Ber = Bo(cr) . The last expression was written using
(8.8) and (10.15), i.e., for a short trap with addition of a
- narrow loss cone (A >» 1). With increasing mirror ratio A,
the lifetime of the particles increases slowly, just as, inci-
dentally, in multiple scattering by a gas [1]. A similar re-
lation is obtained also (in planar geometry) for field-re-
versed mirrors, likewise with addition of a finite loss cone.

The lifetimes of the particles in a trap can be estimated
also by a different procedure, used in Budker's first paper [1]
on adiabatic traps for multiple scattering of particles. Con-
sider stationary diffusion of particles having sources inside
the trap. From (13.10) we have
d

— ;ifi =
i u i + g =0, (13.20)
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where q(n) is the source density, which we choose in the
form

g (n) = p* (13.21)

with a constant o > —1. The particle flux in a trap is

L o1 a+1
—— jdfi: —_— p—— “Cr _H
Q(w) = D, i jqdu p— , (13.22)

Rer

where pcr = po X:r2/) corresponds to the stochasticity limit
and Q(ucr) = 0. The total stationary particle flux from the
trap is

MOL_H
Qo= Q(u,) ~ —SE_ — Berd (Rer) .

a+1 a4l

La = Ho/A is the value of u on the adiabatic loss cone, and
we assume that p« <« per. On the other hand, from (13.22)
we obtain the particle density in the trap

f Qdy 1 e
— ~ cr
fa (1) f D, PRt =, (13.23)
U, m

by putting, as before, Dy = p@ P)p?, f(ua) = 0.

The total number of the particles in the trap in the
stationary regime is

Her nat?
N = qu(u)dp,z 23 In Her (13.24)
(o -+ 1) (AP)2, Hq

”a
We can now introduce the average lifetime of the particle

(1) = N ~ _Mer In Her
Q, (AP) Ha

, (13.25)

which does not depend on the arbitrary parameter a (at o >
—1) and agrees exactly with te, (13.19), since
ter/ta= (Ber/Bo")" = My

This means that in the approximation considered (Ber >
Bo(”)) the average particle lifetime <t> is determined for a
large class of source distributions by the first diffusive mode
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(eigenfunction). Indeed, comparing expressions (13.23)
and (13.15) [with allowance for (13.17)] we see that in the
approximation considered the two distribution functions co-
incide:

fuox fyoc In L
Uq

For o < -2 we can obtain similarly

Ty~ Ber .
(1) T rel GPE (13.26)

The average lifetime now decreases with increasing |a|, owing
to the concentration of the sources on the adiabatic loss
cone. A major role is assumed in this case by diffusion
modes with constantly increasing numbers, since the station-
ary distribution function

fq @) oc 1— (uyfw) 114!

has at u » u, an abrupt break whose slope increases with
laf.

In the relations obtained above for 1¢ and <t>, the
particle lifetime unit is the number of passes through the
trap or the number of reflections (from the magnetic mir-
rors). To transform to ordinary (continuous) time, the ex-
pressions obtained must be multiplied by the average half-
period of the longitudinal oscillations of the particle

L\:/ﬂt>: _fwdp 13.927
<2/ New " e (13.27)

Here f(u) is a normalized distribution function corresponding
to the given motion regime, say a stationary regime with
courses, or the first diffusion mode.

Near the adiabatic loss cone (p = u,) we have

—Lme&_JL_)
Q [ W—pg |

[see (3.26)]. If f(u) « u — p«, this region makes no sig-
nificant contribution to the integral (13.27). We can there-
fore use Q(u) without allowance for the loss cone. Let, for
example,
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_ ]/ ®
Q(P‘) - ch Rer ’ (13.28)

where Qcr is the frequency on the stochasticity boundary
[see (3.12)]. Furthermore, let

_ In (u/pa) (13.29)
F Berln (Mer/Ma)

be the diffusion distribution function (13.23) normalized to
unity (uer » u,). The integral (13.27) then yields

< T \\ 2“ 2 Tcr -
_— v e s
2 /" Qcr 2

i.e., the average period of the longitudinal oscillations of
the particle is double the minimum value on the stochasticity
boundary.

Now let
Q) = Qerp/ier

[field-reversed mirrors; see (3.37) and (3.38)], and let the
distribution function be the same (13.29). In this case,

<§>z—%§ In (AB%e) (13.30)

and the average oscillation period diverges logarithmically
as A » », Note that the ergodic measure (13.2) also di-
verges here and no equilibrium is reached (at A = =, i.e.,
in the absence of a loss cone). More accurately speaking,
the relaxation is, in this case, nonexponential, and the
probability density (the distribution function) tends every-
where to zero. A simple example of such a relaxation is
longitudinal diffusion in infinite space. In the one-dimen-
sional case f(x, t) « t~ 1/2 50as t-> =,

14. Cohen's Mapping

We have considered all the trap examples described in
Section 3, except two: a long trap and opposing mirrors in
cylindrical geometry. Particle motion in these last traps
does not reduce to standard mapping. We consider below
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this new situation with cylindrical field-reversed mirrors as
the example. Particle dynamics in a long trap was investi-
gated in [49] (see also [4]).

A characteristic feature of particle dynamics in cylin-
drical field-reversed mirrors is the asymmetry, due to the
different asymptotic forms of the effective potential as s »
+o (3.42), of two half-periods of the longitudinal oscillations of
the particle. This leads to a difference in time between suc-
cessive transits through the field minimum, and hence to
two different functions G(P) that characterize the succes-
sive changes of the Larmor phaseat the field minimum. Com-
paring (3.36) with (3.42) and using (8.12), we can write

(14.1)

where G: describes the change of the Larmor phase for mo-
tion in the regions of positive and negative s, respectively.
These changes differ thus by a factor of two (at the same
value of P). There is actually also another difference, be-
cause we need the Larmor phase not exactly at the field
minimum, but at the point s = s, = —¢,/19 (7.38). At long-
itudinal-oscillation frequencies a » %,, however, this ef-
fect can be neglected (see the end of this section).

Since the resonance Ap is described in this case, as in
the others, by one and the same expression (7.37) during
both half-cycles of the longitudinal oscillations, we obtain,
in lieu of (8.7), the two-step mapping

P =P + (AP)psin®;, 6, =0, +G, (P). (14.2)

Here 8, includes in the general case the additional phase shifts
(7.37), and the functions G+ alternate in succession. Therefore,
(14.2) comprises in fact a system of four difference equa-
tions and describes the change of the dynamic variables dur-
ing the entire period of the longitudinal oscillations of the
particle. The functions G+(P) can be linearized in P, and
the result is a new two-step mapping that is similar but

does not fully conform to the standard mapping. It can be
expressed in the form

E:p—}—Kosinﬂ; é:9+vi;+“i' (14.3)

Here v+ are two different constants defined by the condition
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Gy (P,)
Y+

= Gy (P,). (14.4)

The resonant value Py is now obtained from the rela-
tion

G_F(P,.)—i—G__(P,.)::Q.TU, (14.5)

where r is an integer and the additional phase shifts are
equal to

a"‘ = G+ (Pf) mOd 2”7
o_ = G_ (P,) mod 2, (14.6)
a4+ a_ =0 mod2mn.

The parameter (no longer unique) of the mapping (14.3) is

Ky = (AP)y, Gy (P;) (14.7)

and the wvariable is
p=Gy(P;) (P —P,). (14.8)

In this form (with a+ = 0) the two-step mapping (14.3) was
first obtained by Cohen [49] in an analysis of particle mo-
tion in a long magnetic trap. Although this trap is symme-
tric about the z = 0 plane (see Section 3), the cause of the
asymmetry of the mapping is that the principal singularities
of the magnetic field are shifted from the trap center to the
inner edge of the mirrors (see Section 7). Two steps of the
mapping correspond in this case to transit of the particle
between the singularities and its return to each of them after
reflection from the corresponding mirror. Note that if such
a trap were also intrinsically asymmetric (e.g., had differ-
ent mirrors), the mapping would consist of three steps (six
difference equations).

In our problem of opposing mirrors we have

G, (P) = [ 3/3w, P4,
=1 1_=2 (14.9)
o, = 2”\’.,_/% o_=2ny_Jy, V= Yo+ v

and (AP)y is given by (7.37).
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Proceeding to the analysis of the dynamics of the Cohen
mapping (14.3), we consider first, following [49], the sim-
pler case when y4 « y_. This situation is typical of long
traps. In this case, the mapping (14.3) can lead approxi-
mately to a one-step mapping over the total period of the
perturbation. To this end, we express the variables_p and
8 in terms of p and 6, which precede the quantities p and
8 by one complete period of the mapping (14.3). Writing
the four difference equations in explicit form*

p=p-+K,sin6, 6=0-+1v_p, (14.10)
p=B+K0 sinQ, 0=§+Y+p’

we get
p=p+ K, [sin0sin (0 + v, p + 1K, sin 6)],

é=6 —’Y+K05ine+ﬁ(v++v—).

In the last equation we neglect the term -K;yv4+, and in the
first we rewrite the expression in the square brackets in
the form

2cos< p;h + v+2K° sin 9)cos(0+ Y; (p + K, sin 9)) ~ 2cos (i’;i) cos b .
The reason for retaining the term (py,/2) in the first co-
sine but dropping it from the second is the following. In
the first case the quantity py4 with large enough p can
greatly increase the perturbation K,, whereas in the second
it leads only to an insignificant phase shift. Of importance
in the dynamics of the phase is not the absolute value of
the term (py4+/2), but its change after one iteration of the
mapping. This change is of the order of K v+, i.e., the
same as of the remaining discarded terms. All these terms
lead to the appearance of a second harmonic -K;y4sin26 of
the perturbation. For the standard mapping this harmonic
appears in second-order perturbation theory, with relative
amplitude =K/16 (see [8, Section 5.1]). This yields a rough-
ly approximate condition for the validity of the considered
approximation, viz., y+ s 1/16 (for y_ ~ 1).

*If the phases a+ are proportional to v+, they can be elim-
inated by the momentum shift p » p + 2n/y.
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Introducing the new variable
J = v+ +v)p=1p, (14.11)
we get the mapping

TmJ+4Kpcosd, Bz0+7, (14.12)

which is outwardly similar to the standard mapping [cf.

(9.3)].

An essential property of the mapping (14.12) is, how-
ever, that its parameter

K, = 29K, cos (VT —;—) (14.13)

depends now on the dynamic variable J. This leads to a
qualitative change of the structure of the stochastic compo-
nent, namely, it is all cut up into isolated strips by narrow
gaps with stable motion. It follows from (14.13) that the
gaps are located in the vicinity of J = J, where

cos (Jnv,/27) =0, (14.14)

whence

Ey ¢

Y” (1 2n), (14.15)

+

Jn =

with n an integer. The width of the gap can be estimated
from the condition that |K,| = 1 on the gap boundary. Ex-
panding the cosine in (14.13) at J = J, we obtain for the
total width of the gap

N SR (14.16)

A ~
Koy, K

where Kp = 2yK; is the maximum value of |K,|. At K, » 1
the relative gap width becomes small.

Of greater interest is the question of the size of the
critical perturbation |K,| = Kg, at which the gaps vanish
and the isolated stochastic components of the motion merge
into one. In [49] was proposed the criterion

based on the following simple consideration. At |K,| ~ Kg
a gap of width AdJ ~ 1/Kgy; or Ap ~ 1/Kgyy+ is overlapped
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on one step of the mapping (14.10), i.e., (Ap)g ~ Kg; hence
the estimate (14.17). This estimate, as well as the remain-
ing simpler properties of the Cohen mapping, are well cor-
roborated by his numerical simulation [49], as well as by
our numerical data.

From the standpoint of the criterion for resonance over-
lap (see Section 10) the estimate (14.17) raises a definite prob-.
lem. The overlap of the resonances means, in this case,
that the gap width AJ (14.16) becomes smaller than the dis-
tance between the resonances (§J = 2m), or that the condi-
tion |K,| 2 1 holds for all resonances inside a gap. From
this we have Kgy+~ 1, which is larger than (14.17) by a
factor Y/vy+ (> 1).

The reason why the resonance-overlap criterion leads
in this case to a grossly incorrect result is apparently the
following. In the vicinity of the gap the amplitudes of the
resonances increase quite rapidly (linearly) with increasing
distance from the gap center. Under this condition, an im-
portant role is assumed by one curious manifestation of in-
teraction between resonances — their mutual repulsion. The
physical meaning of the effect and an estimate of its magni-
tude can be easily followed by means of a simple example.

Consider the motion in the vicinity of one resonance
in the pendulum approximation [see the Hamiltonian (10.3)].
Let p, » VYK be the unpertured (at K = 0) position of the
second resonance, which we consider to be weak enough to
neglect its influence on the first resonance. Yet the first
resonance distorts the second in such a way that its unper-
turbed straight phase line p = p, = const turns into the
curve p(8) = p, + §p(6). The distortion of the resonant
trajectory §p(6) is easily obtained in first order in K from
the equation

p? (0)/2 + K cos 0 = £2/2,
X (14.18)
Sp(0) =p(0) —p, = ——p—c-ose.

0

Since the maximum of the first-resonance separatrix is at
8 =« [K >0, see (10.4)], where § p(n) > 0, the resonance
is repelled by an amount $p(n) = K/p,.

Returning to the gap problem, we rewrite the last
estimate in the form /
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8Jp ~ Fi/(Jp — 1), (14.19)

where Jk ~ k is the distance (in terms of J) from the center
of the gap to the displaced resonance number k, while Jg is
the same for the displacing resonance; Fy is the amplitude
of the displacing resonance in a scale such that the overlap
of the resonances correspond to F ~ 1, i.e., F ~ |K,|. But
the amplitude of the resonances near the gap is Fg-~ F,%,
where F, is the amplitude of the weakest resonance near the
gap center. According to (14.19), the displacement in each
pair is then 8Jkg ~ F,. Since the motion is stochastic, the
phases of the resonances are random and the total displace-
ment of each of the resonances for a given value of the phase
8 is 8Jk ~ Fov'N, where N is the total number of resonances
in the layer. The total displacement of the gap edge is dJ
§JxvN - F,N. But Fo;N ~ Kp are the amplitudes of the re-
sonances at the center of the layer. From the condition

§J ~ AJ [ad is the gap width (14.16)] we obtain the estimate
(14.17). Although the arguments presented above are ex-
cessively sketchy, it is quite likely that the resonance re-
pulsion plays a major role in the problem considered.

This beautiful phenomenon was first considered quali-
tatively in [50] and later accurately calculated by the same
author and others (see [41]). It should be noted that the
statement made by the author in his title, that "primary
(i.e., first-order-approximation) resonances do not over-
lap," has no bearing on this effect. This statement is, of
course, correct in the sense that rather strong higher-ap-
proximation resonances do set in and ensure overlap prior
(i.e., in weaker perturbation) to the tangencv of the sepa-
ratrices of the first-approximation resonances (see Section 10
and [8]). This, incidentally, is just the reason why the
repulsion effect is negligible, for example, for two resonances
of equal width. In fact, Eq. (14.18) leads, in this case,
to the estimate

( 20p ) ~ e o 055,

Po Jer  p

where the numerical values of Kcr for the two resonances

.~ were taken from Section 4.1 of [8]. The same is confirmed by
the results of [41], according to which 2Kc¢r/ p,? = 0.0612.
But the repulsion becomes substantial when the resonance
widths are unequal. Thus, at a resonance-width ratio 3

the repulsion offsets completely the higher-approximation ef-
fects, and the critical value of the perturbation agrees with
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the result obtained by the primary-resonance overlap cri-
terion [41]. For the maximum ratio 5 considered in that
paper, the critical perturbation exceeds the last value by
an approximate factor 1.7.

Note that in standard mapping there are no integer
and half-integer resonances at all, owing to the symmetry
of the mapping. The repulsion, however, shifts the reso-
nances of higher (particularly third) order, lowering some-
what Kcr in this case. From a comparison of the analytic
estimates of [8], where repulsion was not taken into ac-
count, with the actual value of K., it follows that the re-
pulsion effect is, in this case, in the 10% range.

We now turn to particular motion in a trap with field-
reversed mirrors. Since y+/y_ = 1/2 in this case, the ap-
proximation considered above is not valid. However, at
such a "round" ratio v+/y_ the problem can be differently
approached. We consider first the atandard mapping (9.3).
The action of the perturbation can be regarded in this case
as a periodic sequence of short "bumps" (Fig. 10a). This
convenient method was used many times in the analysis of
mappings (see, e.g., [8, 9]). In this approach the differ-
ence equations can be replaced by the exactly equivalent
differential ones

dp/dt = K sin 08, (f), db/dt=p (14.20)

with the Hamiltonian

oo

2
H(p, 9, t)='%+1<005931(t)= £ _,_L;_{ 2 exp [i (8 —2arf)] +-c.c.

2

F==—00

(14.21)

The time is measured here in numbers of mapping iterations;
the fundamental frequency of the perturbation is according-
ly 2w; §,(t) is a § function with period 1 (Fig. 10a) and
with a Fourier expansion that leads to the last expression of
(14.21). We already know (see Section 9) that the standard
mapping has a homogeneous system of resonances (pr/27) =
r (Fig. 10a). The overlap of these resonances (with account

of the higher approximations) determines in fact the critical
Kcr fad 1 .

Now consider the Cohen mapping (14.10) for y_/y+ =
2. In this case the perturbation takes the form of a perio-
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Fig. 10. The perturbatlon §(t) and its
spectrum Ay: a) for the standard map-
ping (9.3) — homogeneous system of re-
sonances r = p/2m; b) for the Cohen
mapping (14.10) for a particle in a mag-
netic trap with field-reversed mirrors.
Y_/v+=2, r = J/2m.

dic sequence of pairs of "bumps," and the four equations
of (14.10) can be replaced anew by a pair of differential

equations of form (14.20). If the unit of time is taken to
be the total period of the perturbation, Egs. (14.10) now
become

dp/dt = K, sin 06, (¢), db/dt=3p, (14.22)

since the phase changes after one full period by (y+/Y )p =
3p, and the function §,(t) is shown schematically in Fig.
10b. Introducing the new momentum J = 3p we arrlve at

the Hamiltonian
2
cos 00, (£) = —%—

3
+—2[&{ZA,exp[i(6-2mt)]+c.c.}. (14.23)

In contrast to the standard mapping, the resonance ampli-
tudes are now unequal (Fig. 10b):

|A,.]=‘l—[—exp<

. 2, 1/3 - integer,
2 ) |=[ (14.24)

3 VE_, r/3 — fractional.

In first-order approximation, the critical value of the per-
turbation is then determined by overlap of two neighboring
resonances of lower amplitude. Since the ratio of the ampli-
tudes of the different resonances (2/v3 = 1.15) differs little
from unity, the higher-approximation correction and the re-
sonance repulsion (both decrease somewhat the critical per-
turbation) are insignificant. But it follows hence that to
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determine the critical perturbation we can approximately re-
place the Cohen mapping (14.10) by the standard mapping

T=J74+3Y3K,sinf, 6=0-+17, (14.25)

which corresponds to equal amplitudes of all the resonances
(|Ar| = v¥3). Note that were we to use the directly map-
ping (14.12) with the parameter (14.13),

K,» r/3— integer,

K,, r/3 — fractional,

the results would not differ too much from (14.25). This
shows that the mapping (14.12) can be used for order-of-
magnitude estimates at an arbitrary ratio v+/y_.

One more difference between the standard mapping
(14.25) and the system (14.23) of interest to us should be
noted. In the former case the amplitudes as well as phases
of all resonances are equal, so that the overlap is deter-
mined by the maximum distance between the separatrix
branches (see Fig. 1). Now, however, neighboring reso-
nances are separated in phase by 6 on 46 = 60°. Since the
distance between the separatrix branches is proportional to
cos (6/2) (10.4), its relative decrease by this shift is cos 30° =
v3/2 = 0.87, which increases the critical perturbation by ap-
proximately 13% and offsets in part the aforementioned de-
crease of the critical perturbation.

Neglecting all these corrections, we get from (14.25)
for the critical perturbation in the Cohen mapping with
Y_/Y+ = 2 the value

1
| K, lex~ 5775 (14.26)
or, in terms of the parameters of a trap with opposing mir-
rors [see (14.1), (14.7), (7.37)]:

BLCT) ~ 2.6¢"/+0 exp (—q/5), (14.27)

where q = wo2,/3Vv = 24,/3pm . This expression differs only
by an insignificant numerical factor from relation (10.18)
for planar opposing mirrors if the parameter q is suitably
chosen (see Section 7).

In the estimate of the diffusion rate we confine our-
selves to the case when 3V3|K,| » 1 and the correlations
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determine the critical perturbation we can approximately re-
place the Cohen mapping (14.10) by the standard mapping

T=J43V3 K,sinf, 6 =0+17, (14.25)

which corresponds to equal amplitudes of all the resonances
(|Ar| = v3). Note that were we to use the directly map-
ping (14.12) with the parameter (14.13),

r ]i 6K,, r/3— integer,

K, = 6K, cos (—) =
3 1i 3K,, r/3 — fractional,

the results would not differ too much from (14.25). This
shows that the mapping (14.12) can be used for order-of-
magnitude estimates at an arbitrary ratio y+/v_.

One more difference between the standard mapping
(14.25) and the system (14.23) of interest to us should be
noted. In the former case the amplitudes as well as phases
of all resonances are equal, so that the overlap is deter-
mined by the maximum distance between the separatrix
branches (see Fig. 1). Now, however, neighboring reso-
nances are separated in phase by 6 on A6 = 60°. Since the
distance between the separatrix branches is proportional to
cos (6/2) (10.4), its relative decrease by this shift is cos 30° =
v3/2 = 0.87, which increases the critical perturbation by ap-
proximately 13% and offsets in part the aforementioned de-
crease of the critical perturbation.

Neglecting all these corrections, we get from (14.25)
for the critical perturbation in the Cohen mapping with
Y _/y+ = 2 the value

1
| K, Icrz'——?)ﬁ (14.26)
or, in terms of the parameters of a trap with opposing mir-
rors [see (14.1), (14.7), (7.37)]:

%cr) ~ 2.6(]’/"’ exp (—q/5), (14.27)

where q = w¢%2,/3v = 24/3pm . This expression differs only
by an insignificant numerical factor from relation (10.18)
for planar opposing mirrors if the parameter q is suitably
chosen (see Section 7).

In the estimate of the_ diffusion rate we confine our-
selves to the case when 3v/3|K,| > 1 and the correlations
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can be neglected, sothat R(K) = 1 (see Section12). In the
mapping (14.2) we can now assume that both "bumps" are
statistically independent. To describe diffusion in discrete
time, we choose as the time unit again the half-period of

the longitudinal oscillations. Expression (11.3) for Dy then
remains unchanged, and with it all other relations in Sec-
tions 11 and 13.

The correlation factor R(K) will, of course, be differ-
ent now. It can be obtained in analogy with the procedure
used in Section 12 for the standard mapping, but of course
with allowance for the correlation of the two "bumps" in the
mapping (14.2). We note, finally, that the period of the
longitudinal oscillations is given in our case by the relation
[see (3.37), (3.38), (3.42)]:

T

=T++T_= 3010 ’ Q= 2 = 2 ) . (14'28)
2 @, T 3 v

In the approximation assumed, no gaps whatever appear
in the stochastic component. The reason is that we have
considered only longitudinal oscillations with large amplitude
a » %,, for which y / y4+= 2. At lower amplitudes this ratio
decreases and the resonance amplitude requires a slow de-
pendence on p; this can lead to formation of gaps and to
isolation of individual stochastic components of the motion.
Generally speaking, gaps can exist also at very large oscil-
lation amplitudes because the ratio y /v+ is not exactly equal
to 2, but is somewhat smaller because of the additional phase
shift in (7.37). From (3.38) and (7.38) we get the estimate

T— 1 A

=92 — " w VT

Since this is a very small quantity, the number of reso-
nances in the isolated part of the stochastic component, i.e.,
between the gaps (~1/A), can be comparable with the total
number of resonances, and then the presence or absence of
gaps is immaterial.

In a purely dynamic system any gap stops the diffu-
sion completely and thus improves substantially the particle
containment in the trap. In a real situation, however, this
improvement is doubtful, since the gap is narrow and even
insignificant multiple scattering of the particles will cause
them to "infiltrate" through the gaps. This question de-
serves a more detailed investigation, all the more since the
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asymmetry needed for gap formation can be easily introduced
in any trap.

We conclude this section by noting that the effect of a

certain special perturbation in a tokamak is also described
by Cohen mapping [51].

15. Remarks on Adiabatic Invariance

The Budker problem considered in this article, concern-
ing the conditions and accuracy of conservation of the mag-
netic moment of a charged particle in an adiabatic magnetic
trap, is a particular case of a general and, in a certain
sense "perpetual," problem of classical mechanics — that of
the adiabatic invariance of the action variables. This, as
any other invariance, plays an important role in physics,
even though it is, generally speaking, approximate. Accord-
ing to the most widely held notions, the basic condition of
adiabatic invariance is associated with slowness of the per-
turbation. This notion dates back to the very beginning of
the study of this phenomenon and was subsequently related
to the averaging method used to establish adiabatic invari-
ance. It became clear later that slowness of the perturba-
tion does not by itself explain the mechanism whereby adia-
batic invariance is violated. A vague idea arose that this
mechanism is connected somehow with resonances between an
external parametric perturbation and the natural oscillations
of the system. During the burgeoning development of quan-
tum mechanics, for which the action variables in general,
and their adiabatic invariance in particular, play a special
role, Born wrote, for example (as cited in [52]): "We re-
gard as adiabatic such a system change which, first, is not
related in any way with the period of the unperturbed sys-
tem ..." This, however, was only intuition. The role of
resonances for adiabatic invariance was first precisely formu-
lated and solved in 1928 [52]. It was sufficient for this
purpose to examine attentively, from the standpoint of
- physics, the well-known Mathieu equation and its solutions.
Indeed, instability zone or regions of parametric resonance
exist in the vicinity of any half-integer frequency ratiow,/ 9 =
r/2, where w, is the unperturbed frequency of the
linear oscillator, @ is the frequency of the harmonic para-
metric perturbation, and r is a positive integer. But as
r > » we have @ - 0 and the perturbation becomes adiabatic
in accord with the slowness criterion. Nonetheless, once
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the oscillator becomes resonant, its energy (and action) can
vary arbitrarily strongly with time, i.e., adiabatic invari-
ance is violated no matter how slow the perturbation. This
leads to a different concept of adiabatic perturbation as a
nonresonant one (see Born's statement above). These two
seemingly different concepts are in fact closely related, in-
asmuch as slowness of the perturbation ensures exponential
smallness of the resonant harmonics (see Section 7). This
holds true, in particular, also for the Mathieu equation:

. Q 3232 r
J = Jyevt, yerQz?( 5 ): (15.1)

i.e., the rate of exponential growth in the resonance region
is itself decreased exponentially with increasing frequency
ratio r = 2w,/Q. The frequency-modulation depth is deter-
mined here by the relation w?(t) = w,%(1 — €2 cosQt). An
expression for the instability growth rate y and for the
total width AQ of the resonance zone is obtained from (7.1)
at r » 1 if wg =1 + x? is replaced by w(t), and takes the
form (15.1) at € « 1.

For a linear oscillator, the decisive of the two adia-
baticity conditions is the nonresonance. The resonance
zones in this case are very distinct and are determined only
by the parameters of the system.

For a nonlinear oscillator, the nonresonance is governed
by the initial conditions. Its role differs greatly with
the number of degrees of freedom of the system. For a
closed system with two degrees of freedom, and also for a
linear oscillator with one degree of freedom and an external
parametric perturbation, the decisive factor for the adia-
batic invariant is the slowness of the perturbation. A re-
sult new in principle and at the same time rigorous is here
the proof of existence of a finite critical slowness of the
perturbation, below which the adiabatic invariant becomes
an exact integral of the motion [10]. This result is strong-
ly connected with the special topology of the resonance sys-
tems, which can be called ordered or one-dimensional. In
this case the frequencies are in only one ratio that depends
on one action variable (the second action is excluded in a
closed system with the aid of the energy integral; see Section
8). Such an ordered topology is significant because an ex-
act integral exists not for all initial conditions, but only for
the "nonresonant" ones. This term has a special meaning
in a nonlinear system, since the region at the very center
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of the resonance, i.e., at an action-variable value for
which the resonance conditions are exactly satisfied (see
Fig. 6), is here also nonresonant. Moreover, the region in
question is as a rule even more stable in the sense that an
exact integral is preserved here also when resonance over-
lap leads to development of global instability. The most un-
stable, however, is the vicinity of the separatrix of the non-
linear resonance, where a stochastic layer is produced and
is preserved at arbitrarily small (and slow) perturbation
(see, e.g., [8]). In the case when the nonlinear resonance
can be described in the pendulum approximation, the sto-
chastic layer in the vicinity of its separatrix is quite sim-
ilar to the stochastic layer in a multimirror trap (see Section
10). The width of this layer, and accordingly the share of
the "resonant" initial conditions, is exponentially small in
terms of the slowness parameter of the perturbation. This
region is nonetheless finite and contains no exact integral.
Since the resonant structure is one-dimensional, however,
the stochastic trajectory is strictly confined to the interior
of the layer and collapse of the integral does not alter (with
exponential accuracy!) the trajectory of the motion.

The situation changes radically, however, in the case
of a multidimensional (even two-dimensional) or disordered
topology of the resonance. The trajectory can now go from
one stochastic layer to another (i.e., with different reso-
nance), bypassing the nonresonant region with the exact
integral of motion. This bypassing of the stable regions is
made possible by the intersection of the resonances (and of
their stochastic layers) in multidimensional space. In other
words, if the dimensionality of the phase space is increased
even by unity,* motion becomes possible not only across
the layer, whose width is rigorously bounded and small, but
also along the layer, which is in general bounded only by
the energy integral. This beautiful phenomenon was pre-
dicted by Arnol'd, who constructed the first example of
such a system [53]. A similar process was subsequently
named Arnol'd's diffusion and investigated in great detail
in [8] (see also [9, 54]).

*The dimensionality of the phase space of a closed Hamil-

tonian system is always even. If, however, the system is
acted upon by a periodic perturbation, it is said to have

one dimension (the phase of the perturbation) and a half-
integer number of degrees of freedom.
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From the standpoint of the adiabatic invariance dis-
cussed here (which is, of course, only a particular case of
the general dynamic problem of the stability of motion), in a
one-dimensional system the requirement that the initial con-
ditions be nonresonant, is at least just as important as the
requirement of slow perturbation. This last requirement,
just as in order topology, ensures absence of resonance
overlap and the existence of an exact integral for the over-
whelming majority of nonresonant initial conditions.

In this situation, however, the probability of the sta-
bility of motion in general and adiabatic invariance in par-
ticular becomes, in the language of the mathematicians, an
incorrect one, or simply physically meaningless. The point
is that although the total volume of the stochastic layers in
phase space is indeed exponentially small, they form every-
where a dense system. Of course, the same takes place in
one-dimensional topology. For example, for standard map-
ping, any rational value of p/2m is resonant (see Section 10).
However, in view of the already described ordered struc-
ture of the resonances, the system motion is not affected.
In the multidimensional case, however, unbounded Arnol'd
diffusion sets in.

There are several methods of so-called regularization
of the problem, i.e., of formulating it unambiguously and
independently of the infinitely small changes of the initial
conditions. Omne can, for example, pose the problem of
adiabatic invariance over an arbitrarily large but finite
time interval. Since the rate of the Arnol'd diffusion falls
off extremely rapidly with increasing order of the resonances,
any time limitation transforms right away the infinite and
everywhere-dense system of resonances (and of their sto-
chastic layers) into a finite one, and the problem acquires
physical meaning. In this case, the nonresonance condition
(with respect to the remaining "working" stochastic layers)
is essential for adiabatic invariance.

Another regularization method consists of introducing
in the problem an additional arbitrarily weak but finite ex-
ternal diffusion [8]. This again leaves a finite number of
stochastic layers in which the Arnol'd diffusion is faster
than the external diffusion. With the problem so formulated,
the initial conditions of the motion are immaterial, since the
external diffusion will continuously displace the dynamic
trajectory.
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