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QUANTUM LIMITATIONS OF CLASSICAL DYNAMICS
IN QUASICLASSICAL REGION

Boris V.Chirikov
Institute of Nuclear Physics
630090 Novosibirsk , USSR

ABSTRACT

Quantum limitations of a classical-like chao-
tic motion in simple few-dimensional models
are discussed with special emphasis on the
phenomenon of diffusion localization.Discus-
gion includes the spectral properties of quan-
tum chaos , the role of external noise and of
the measurement as well as a classical model
for quantum dynamics .

1. THE CORRESPONDENCE PRINCIPLE

In the discussion of applications of the classical
dynamics in atomic and molecular physics I will relay upon
the fundamental correspondence principle .In a narrow
gsense this principle had been formulated by Niels Bohr at
the dawn of quantum mechanics as a practical method for
solving quantum problems before the complete quantum the-
ory was built . However, in the broad sense the correspon-
dence principle must hold in any new fundamental theory
which simply means immutability of all firmly established
previously scientific laws., Puture development of the
gcience may only restrict, as a rule, or sometimes even
broaden, the domain of their validity but would never re-
fute them alltogether.

Unlike , say , the theory of relativity in quantum
mechanics the transition to the old, classical, theory is
rather singular and complicated . Whence the problem of
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quantum behaviour in the quasiclassical region which be -
comes especially difficult if the so-called dynamical
chaos occurs in the classical limit. The chaos means that
the motion of a purely dynamical system without any ran -
dom parameters or any noise becomes, under certain condi-
tions, very irregular and unpredictable .Three peculiari-~
ties of dynamical chaos are essential for what follows :
i) a continuous component in the motion spectrum;

ii) exponential local instability of trajectories as
the principal condition for chaos;

iii) continuety of the phase space as the chaos ulti-
mate origin.

It is well known by now that none of these proper-
ties persists in quantum mechanics . Then,how does the
correspondence principle "work"? And what is going on in
the quasiclassical region? Presently, those questions are
widely discussed using a number of fairly simple quantum
models as particular examples (see, e.g., Ref.1). Below I
am going to dwell on some recent results as well as on
moot points in this field .

The principal conclusion is that in quantum mecha -
nics the so-called pseudochaos is only possible which mi-
mice some (important) features of the true chaos (random-
ness) in classical mechanics. Ford's principal questioﬁ?g
"Quantum chaos, is there any?" I would answer:"A lot but
pseudochaos !"

One may put the question another way37): are there
two diffgrent mechanics, classical and quantum ones, or
we need only to understand the quasiclassical transition?
I certainly tend to the second possibility.

The ideas presented below have been developed in the
process of a long and close international collaboration
among a group of physicists including , at different
stages, G,Casati and I,Guarneri (Italy); J.Ford (USA) ;
F.Vivaldi (England) ; B.V.Chirikov, F.M.Izrailev asnd D.L.
Shepelyansky (USSR) . I has greatly benefited from this co-




309

llaboration as, I hope, my colleagues also did.

2e NODELS

One of the simplest models is specified in the clas-
sical limit by the so-called standard map (SM): (},8)~> (76)
where

—

j::;-f- k-Sémé’; ¢9=(9+7~';7_ (1)

Here ;) G are the action-phase variables; »é is the pa-
rameter of perturbation, and / its period3’4). This map
has been studied thoroughly but still not yet completely .
Physically, SM may be interpreted either as a rotator dri-
ven by the external periodic perturbation ("kicks") or as
a local (in é? ) description of the dynamics in a conser-
vative system of two freedoms on an energy surface,using
Poincare's section method . In quantum case the second in-
terpretation is questionable. To the best of my knowledge,
it has been never studied in any detail. Nevertheless , I
am going to consider such an interpretation as well relay-
ing upon the correspondence principle.

Particularly, to study global motion properties on
the energy surface one may transform the unbounded (iné?)
phase cylinder of model (1) to a finite torus by "closur-
ing-up" the former: g-—> 9’ mod Z with L=L7m/T
and m integer5’6).

Below I will consider also a more physical, and
much more complicated, model for the photoeffect in a Rid-
berg atom 8). In one-dimensional (1D) approximation the
Hamiltonian of this model has the form :

* 4

He £

= 5 -E+£Z'(’05/wtj; Z>0 (2)

where & is the strength of homogeneous electric field ,
and whare W is its frequency in atomic units:lel=m=% = 1.
For W2> 1/r03 (the Kepler frequency) the problem can be
approximately reduced to SM (1) with the parameters 9):
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£
/wz.s 'ws-/g,' T =~ 67#@21@5 (3)

Here /->>1 is the principal quantum number of Hydrogen
atom, while now j in Eq. (1) enumerates the "photonic
states" of period w in energy. Such states present a good
approximstion 5 as soon as the group A of atomic le -
vels, corresponding to each photonic state, becomes rela-
tively narrow: Anfv/(«w_wn? The latter inequality great-
ly improves with s , and the excitation spectrum takes
the characteristic shape of a sequence of narrow peaks .
The quasiclassical transition corresponds to #->o while
the reduced frequency ¢J,= waB and reduced field &,=
E,n,q are fixed .

In Ref.10 the question was raised if 1D-approxima=
tion was really valid since the motion in the second

freedom proved to be unstable . However, a more detailed
analysis 1) revealed that in case of chaotlcj' motion
the instability is too slow to influence any appriciable
change in ; dynamicg,

Quantization of SM (1) is determined by a simple
condition that ; is to be integer (% = 1) . Literally,
it would imply periodicity of 5//[5] ag in the rotator mo-
del, for instance. However, this is not necessarily the
case . SM describes also a particle in spatially periodic
field., Then J may take on any value . Yet, the fraction-
al part/';_:{a’(} y the quasimomentum, is strictly conserved
and, hence , can be removed .As the states with different
‘/' evolve independently of each other, the excitation
dynamics remains essentially unchanged (c¢f. Ref.7) . A si-
milar situation takes place for the photonic states in
Hydrogen where J- -- - ) /2w, /’bo being the quen -
tum number of the 1n1t1a1 state ,and J is now determin-
ed approximately only due to discreteness of 2 . In
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what follows I consider 67 to be integer, then operator
g =-c D/Dﬁ , and the quantized standard map (‘QSM)
has a form 12):

_QXP(T%) exp(cik- Gs8) y (4

Notice that QSM depends on both parameters k and T,
while in the classical limit (k- co, 7> 0) SM dynemics
is completely determined by the only parameter ;(='157_ o
This is achieved by introducing a new var1akle)f> 37
The same can be done in quantum case as well , yet the
second parameter T persists owing to éZ quantization.
Parameter / may be also considered as an effective quantum
constant 13), the map (4) remaining unchanged, of course.
Thus, the motion structure is more rich in quantum case
while (chaotic) trajectories prove to be richer in clas -
gical case (see Sections 3 and 4).

In case of the rotator model the map (4) is exact ,
and it completely describes the evolution of the former .
However, this is not the cagse at all for the model of pho-
toeffect in Hydrogen . Here the corresponding map is much
gsimpler as compared to the exact Schrodinger equation for
Hamiltonian (2) . Yet, the map is applicable only locally
in ; as parameter 7 () depends on J(n/)(see Eq.(3)) .
In Ref.9 the global map has been constructed :

)” ex/’( /")QXP(°/<5059)$” (5)
— 1
+7“»""(j J) . (Z,—-anoz

Even though , V’(}f} provides a very abbreviated
description for the Hydrogen quentum state, being a ra-
ther peculiar projection of the latter on the photonic

states . Roughly, the description is cut by a factor of
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OOPLB which rapidly grows with /o . One may conclude
from the results in Ref.9 that each photonic state repre -
sents the total probability (//¢/c7)/) in its energy
range ( & ). Yet, this question has to be studied further.

Another difficulty is in that the map for y/é]) is
determined over the Kepler period which depends on éz .
Hence |, 5V(27) in Eq. (5) represents system's state at
various moments of time . This question also requires the
additional analysis. Nevertheless , numerical experiment39
do verify that abbreviated description (5), at least time
averaged, satisfactorily agrees with the direct solution
of Schrodinger's equation .

3. CLASSICAL DYNAMICAL CHAOS

The classical dynamics of the models described in
Section 2 has been studied in detail and, basically, is
understood 3’8’18). In model (1) an unbounded diffusion in
9 sets in under K= k7= { whose rate is

2 2
%=<(‘%>:—§—C(K) (6)

where '€~ 1is the number of SM iterations . Dependence C:ﬂkj
characterizes the correlation between successive & values
which decays as K grows : C(K)Z_f"‘ O(K— 4/2}. For K~ 1
the diffusion rate falls down with ((K)=2( 6(7(-1)3.

In case of SM on a torus the exponential relaxation
to homogeneous distribution occurs with a characteristic

time
Lﬁél
T =
R 27#2'2;
where L is torus circumference in J .

Notice that for K% 1 not too big a chaos border
is present which drastically changes the motion

(7)
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gtatistical properties 15). Particulary, the relaxation
proceeds according to some power law rather that to expo-
nentisl one .

The ultimate origin of dynamical chaos lies in con -~
tinuety of phase space while the chaos mechanism is relat-
ed to the exponential instability of close trajectories
whose rate for model (1) is

Azén% ) k>£/ (8)

The quantity ,/\ is called Lyapunov's exponent . The ex-
ponential instability is a simple and ,perhaps, the most
convenient criterion for dynamicel chaos in numerical ex -
periments. Notice that /A is determined by the behaviour
of close trajectories, i.e. by the linearized equations of
motion . \

Comparing Eqs. (6-8) one can conclude that, generally,
there is no direct relation between the local instability
and relexation as was assumed in Ref.16. Partly, it is due
to specific perturbation in SM (kicks). In case of a ra -
ther general continuous perturbation the mean diffusion
rate does relate to /\ , indeed 17,18)

D, ~ 40 A° (9)

However, the question if a similar relation would hold in
many-dimensional systems with several Lyapunov's exponents
is still open. The same remark is true for the relaxation
in phase € which preceeds the diffusion process , and
which is but the initial packet spreading with a charac-
teristic time /1—1 .

4. QUANTUM LOCALIZATION OF DYNAMICAL CHAOS
The correspondence principle suggests that QSM (4)
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should also reveal the diffusion, in quasiclassical re -
gion, provided the global chaos occurs in the classical
limit (K21). To begin with, what is the quasiclassical
region for QSM? The common belief is that quantum numbers
(here‘? ) must be big. However, the dynamics of model (4)
does not depend on éz in that each kick drives transitions
within the same intervaﬂ.Q;&yi:k'for any o It is ageain
related to homogeneity of model (4) in é} . Instead, the
quasiclassical parameters here are quantities k and 1/‘7"
which both must be big in quasiclassical region.

In this region a quantum diffusion,close to classi-
cal one, is observed, indeed, as had been first discovered
in Ref.12 and then repeatedly confirmed.Particularly, the
rate of quantum diffusion follows gll the detaills of de-
pendence (6)14). However, it continues within a certain
finite time interval ¢°< 27 only.Afterwards, the diffusion
gradually slows down, and flnally stops completely. 4 quan-
tum steady-state, or stationary oscillation, builds up
which is totally different from the classical umbounded
diffusion.

The latter phenomenon had been discovered also in
Ref.12, and was explained actually from the uncertainty
principle alone18). The basic idea was in that the diffu-
sion time scale ‘25, of quantum evolution is determined
by mean density ¢ of quasienergy (QE) levels:

s

S~ ¢~ Dy (10)
The latter estimate is a result of the self-consistent ca-
lculetion for © based upon the number of unperturbed
states involved in the diffusion during the time (o

The cease of diffusion implies localization of the
quasienergy eigenfunctions (QEEs) . According to nu -
merical experiments 14 the localization
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is ‘exponential owing to homogeneity of QSM in ¢;Z . The
localization length is

Z’«‘? %Z (11)

This remarkable law relates the essentially quantum cha-
racteristic Z to system's properties in the classical
limit (6) .

Moreover, it was found that the localization length

Zi for the stationary oscillation is different from 27,

nemely : f X ZZ according to Refs. 4 and 14, Even
though in the latter papers a certain explanation is gi-
ven for this surprise fact, based upon very big QEE fluc-
tuations, the quantitative theory is still to be developed.

There is a completely different type of localization
under condition, in QSM model, as follows

k< { (12)

In this case any transitions between unperturbed states
are suppressed, so that the QEEs are close to unperturb-
ed ones . This is the domain of applicability for the
quantum perturbation theory, hence a graphic term due to
Smilangky - the perturbative localization. Condition (12)
is well known and, in a sense, trivial. In the problem of
quantum chaos it was , apparently, first analyzed in Ref.
19 end is usually called the quantum stability border.
The inequality opposite to Eq.(12) is a necessary
condition for quantum diffusion whose localization mecha-
nism is completely different. The latter localization is
e direct consequence of the discreteness of QE spectrum
with a finite density © . This density is determined
by those QEEs only which are actually excited in a given
initial state. I shall call them the operative QEEs .
Notice that the spectrum of all QEEs is generally every-
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where dense as QE is usually defined mod ibt/ﬁ“ . Whence,
the notion of quasicontinuum which is sometimes believed
to provide an irreversible relaxation. Generally, such a
conclusion is wrong just because the time evolution de-
pends on the operative QEEs only which leads to the dif-
fusion localization.

The discreteness of QE spectrum is inferred, by de-
rivation in Refs.4 and 18, from the fundamental principle
of the discreteness of phase space in quantum mechanics
or, equivalently, from quantization of the action. How-
ever, this conclusion is not rigorous. Moreover, QSM does
have a continuous spectrum for rational 73/4$T' . That
corresponds to the so-called quantum resonance 12'20)
again due to QSM homogeneity in (?’ . Clearly, it is not
a generic phenomenon even in QSM .

Estimate (10) for the diffusion scale Q:b is still
e point of disagreement among researchers. In Ref.21, for
example, this scale is apparently confused with another

one N /2247»/

¢ ~r
E ZA (13)

The latter, indeed, has been discovered in Ref.22 and
explained by a rapid spreading of the initial wave packet
(see also Ref.18). This process precedes quantum diffusion
which persists on a much longer scale ?%5 . At ?Y:E'ZE?
an initially narrow packet moves along the classical tra-
Jectory in accordance with the Ehrenfest theorem,whence
the term Ehrenfest's scale. In first paper 21) the authors
reported on the observation, in a numerical experiment ,
of this interesting process in a satisfactory agreement
with the classical prediction .

In any event, the quantum dynamics turns out to be
stable for ¢ 2 'C- . This is clearly demonstrated by

the numerical experiment with velocity reversal 23,24) .
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In the classical limit the reversal causes a little im -
pact on the diffusion owing to a rapid growth of computa-
tional errors while in a quantum system the "antidiffu-
gion" sets in, up to the complete restoration of the ini-
tial state. It is especially striking in case of the pho-
toeffect in Hydrogen 24 where the recurrence even from
the continuous spectrum does occur as well .

In Ref. 25 one more estimate for the diffusion scale
was obtained : ?,‘_,’D oC 7"'{/3( K = 1.5) . It is interme-
diate between Eq.(10) (2, o< T "?and Eq. (13). The au-
thors proceeded from the properties of the critical struc-
ture near K =1. However, the anelysis in Ref.14 shows
that critical phenomena are insignificant for all values
of T paremeter in Ref. 25 (see Eq.(20)below). Apparently,
the above contradictions are related to some gpecific de~
finitions of 7}5 both in Ref.25 and 21 . In my opinion,
this question has been settled in a recent paper 26)
where the law of quantum diffusion decay was found:

ey Do)

) = R (14)

@+ %)

Here D(0) = JQ? is the ratelzf classical diffusion (6L
and /3 ~ 0.2 depends on the fluctuations ("repulsion")
in QE spectrum (see Section 7 below) . The value of/B was
obtained by comparison of Eq.(14) with the data of numeri-
cal experiments. Relation (14) provides also an exact de-
finition for fﬁb o Using the expression for the energy of
stationary oscillation 4) E.= <32'>/Z = Igz/@
(initial EfﬂQ)=O), one arrives at the relation 26)

N~ ' (15)
c, = /3 Dg

in accordance with estimate (10). In the absenee of QE-
level repulsion (‘f3= O, see Ref.27) the energy would
grow logarithmically but only up to about the same limit
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Es ~ zVCZ which apparently does not depend on
spectral fluctuations. Whence, AH:D‘/QQ o« Comparison
with Eq.(15) suggests that /6 may depend on 2%,, say,
/va-f,/Z&q . As a matter of fact 4Q4Z%l2 values
in Ref. 26 all lie inthe interval 0.15 - Q. 25 .

There is a far reaching correspondence (not yet com-
pletely comprehended) between the localization of excita-
tion in momentum space (in energy) driven by an external
periodic perturbation and the Anderson spatial localiza-
tion in an irregular static potential 28’29). One may say
that the former is a dynamical counterpart of Anderson's
statistical localization. In the latter theory the poten-
tial is agsumed to be random. In QSM model this would cor-
respond to randomness of unperturbed QE values l? 77%%@
mod <7~ . Yet, this sequence is known to be nonrandom.
Particularly, it would imply that Anderson's localization
requires a certain weak irregularity only, rather than
randomness, of the potential. Indeed,recent mathematical
studies revealed that the localization is possible even
in the quasiperiodic potential of two incommensurable pe-
riods only .

o DIFFUSIVE PHOTOEFFECT

The photoeffect in a Ridberg atom turned out to be
a very curious phenomenon. It had been discovered in la-
boratory experiments by Bayfield and Koch in 1974 but was
more or less comprehended only recently (see review83 The
most intensive ionization occurs around the classical Kep-
ler frequency (U~ 7/n° where the absorbtion of~_2:»1
photons is required. As this ionization has a diffusive na-
ture the total number of photonic transitions (absorbtlon
and emission) is still much bigger and amounts up to ~ #, ,

Nevertheless, the rate (inverse time) of ionizstion

1 2 %o

Z Yt T (16)
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is proportional to the square of electric field like for
a direct one-photon transition. Notice, however, that un-
like the latter the diffusive ionization lags by ~~ fi .

At high frequency (W,= wn -2 1) the photoeffect
dynamics is approximately described by QSM (4) with para-
meters (3). At low frequency (W, < 1) such a simple ap-
proximation is no longer valid . Yet, the classical des-
cription proves to be applicable 30) provided # > 1., On
the other hand, as is shown in Ref. 31 the ionization
‘border is well in agreement with a modified quantum cri-
terion (12). Coincidence of the classical and quantum io-
nization borders seems surprising and gives rise to some
doubts .

At high frequency , according to QSM model, the lo=-
calization occurs which generally suppresses the photoef-
fect. However, the total number of photonic states (/% /2u),
above the initial state) is finite. Therefore, the loca-
lization is decisive if it comprises the descrete spectrum
only, i.e. if its length (iny) [] =< %O/Zwo s OT
)

776
Wo
& < - = g‘l/ (17)

(o] /6-no’

The right-hand side of this inequality is called the de-
localization border . Remarkably, in Ref.8 the same con-
dition has been derived in a quite different way.At &£,%
Eq’ the photoeffect is described classically .
In any case , the diffusive ionization requires the
classical global chaos under condition

K= kT~ 50 €, 0 > 1 (18)
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and the quantum transitions to occur for

}(.2: 2.6 &, o
N > 1 (19)

The latter condition (see Eq.(12)) is decisive at a very
high frequency only ( &, >  #, ) which is apparently of
no interest.

In papersBz) g different mechanism of the quantum
localization is discussed which based upon the critical
phenomena in chaotic motion. True, those would change ma-

ny of the above estimates but only at K1 or ,more pre=
cisely, for14) 2/3
(RK)
AK=k-1 < L 173 (20)

Finally, a new conjecture was put forth in a receant
paper13) that the localization observed in numerical expe-
riments is related to a big value of parameter 7~ 1 which
violates the quasiclassical approximation (Section 4).Ac-
tually, this question was already studied in Ref.14 with
the conclusion that estimate (11,6)for the localization
length remairs valid upon substitution

K = 2k-Sen(F) €21)

Notice that parameter / is determined mod 47~ (see Eq.
(4)).

Another important question: if localization persists
in a many-dimensional case? Preliminary evaluations sug-
gested that generally it does not. Particularly, for the
photoeffect in the 2D-model +the delocalization border
(17) was expected to considerably fall offa). However ,
numerical experiments11) refuted this prediction. The lo-
calization in n proved to be practically independent

of the motion in the second freedom. In Ref.11 this result
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was explained by a low oscillation frequency in this se-
cond freedom,ultimately due to the Coulomb degeneration.
As a result the level dengity ¢ is enhanced in narrow
energy intervals only, so that the motion remains essenti-
ally one-dimensional .

This example shows that the phenomenon of quantum
localization may occur not only in 1D-case.Apparently, the
same is true for the Anderson localization as well. Also,
there exists a plausible, not yet checked though, conjec-
ture14) that the excitation of a many-dimensional internal-
ly cheotic system by a sufficiently weak external periodic
perturbation should be localized .

Ge DELOCALIZATION BY NOISE
Localization is caused by the discreteness of QE

spectrum. Therefore, any external perturbation of a conti-
nuous spectrun (noise) would destroy the complete localiza-
tion. This phenomenon was investigated in Ref.33 on model
(1,4) with en additional noise: k-Cos6— k- Cos 8+ K. ¢ (8)
where <p is some random function,and Zv« 1. The localiza-
tion breaks down completely under condition that the noise
provides transitions between unperturbed states within lo-
calization time ‘?5 , or for

~S
~ < ‘D&'.D’%’ 1 (22)
where D~ k& is the rate of noise-driven diffusion.Un-
Aer this condition the classical diffusion in quantum sys-
tem goes on indefinitely. In the quasiclassical transition
D., — 0o , hence an arbitrarily weak noise destroys

localization and restores the classical behaviour.However,
the question, if any noise could also provide the classi-
cal exponential instability of motion, remains as yet un-
clear.

A gimilar effect is caused by the intermediate mea-
surements, Till now, the evolution of a quantum system
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"by itself" has been only congsidered. In other words, the
two measurements only were presupposed: the first one
which fixes the initial state, and the final one which
records the result of evolution. Unlike classical mecha-
nics the intermediate measurements substantially change
the quantum evolution. It is not a weak noise at all !
Particularly, for restoration of clasgsical diffusion
the complete quantum measurement is to be done, loosely
speaking, at least once per time fﬁb » Even much more
often measurements are required to "keep" a quantum packet
on the classical trajectory - once per fﬁs (13). In the
latter case the special measurement, that of a coherent
state minimizing uncertainties tﬂéL'AéC,ﬂv 14 must be
provided under the additional condition
Aj <D (_/‘?m )4/2, D
P v
" J q;b ) i
Otherwise, the diffusion rate would be determined by the
noise, Here ?;w is the mean period between succegsive
measurements, and ]Qﬁ is the "measurement-induced"
diffusion rate. Particularly, for minimal '2;@ = 1 the mea-~
surement accuracy 4%7;4 «< 2.2 . On the other hand,
the second Eq.(1) implies that +the optimal accuracy is
reached for AB,, ~ TA/,,, , Whence AJMN 7/48,, ~
7”’%»1 .
One more interesting question: if such collapses of
\V wave would occur somehow in a natural way, without spe-

o 7

4%

(Aﬂf« D (23)
C

cial measurements?

Te SPECTRAL PROPERTIES OF QUANTUM CHAOS

At ‘@ >> 03 the evolution of a quantum system
free of noise does no longer resemble the classical dyna-
mical chaos in any way as the former is quagiperiodic and
has & discrete spectrum. In the classical limit such an
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evolution is called regular and considered to be the op-
posite»limiting case to the chaos. Are any remnants of the
classical chaos left nevertheless as T— oo ?It turns out
that some are, indeed, and they are in specific statisti-
cal properties of QE spectrum as well as of the QEEs. I
am going to dwell a while on the spectrum .

As 1s well known the energy levels in a "complica-
ted" quantum system "repel " (see, e.g., Ref.34). Parti-
culary, the distribution of spacings S between neigh-
bouring levels has a specific form:

— Bc*
pEs)= Hslo ™ C° (24)

which is called the Wigner-Dyson (WD) distribution. Here

/9) 5 are normalizing constants; average <S> =1,and
repulsion parameter/6== 1:234 degends on system's symmet-
ry. It has been recently shown35 that in "simple" models
the distribution (24) corresponds to the dynamical chaos
in the classical limit while for the regular motion the
repulsion is absent,ﬁ =0, and p(s5)=exp(-s).Thus WD-dis-
tribution, and, particularly, the /3 value may serve as g
criterion for quantum chaos.

In Ref.5 all these statisticel properties of energy
levels were extended onto the quasienergy spectrum.However,
for the full spectrum of QSM parameter /6 =0 as was earlier
proved in the counterpart problem on Anderson's localize-
tion in an infinite 1D-lattice. It is explained by the
fact that most of localised QEEs do not overlap which is
precisely the mechanism of repulsion. The statistical pro-
perties drastically changeS) in QSM on a torus, i.e. with
a finite number of states Zﬁ (Section 2). Here a new pa~
rameter appears, namely

/
A = —Z" (25)
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where Z is QEE localization length (11)., If As>1 all
QEEs completely overlap, and under condition K >> 1 (clas~
sical chaos) and Kk »> 1 (12), it is natural to expect the
WD=distribution . Numerical experiments confirmed this con-
jecture., Neturally, Eq.(24) was called the limiting sta-
tisticsS). Another limiting statistics occurs as/>oo(A- 0).
Whet is the intermediate statistics at A~ 1? This
problem was studied in Ref,6 where the following one-pa-

rameter family of distributions has been proposed:

plsp)=AsPexp —-%&/35’”—(6"%)%5} (26)

Now ﬁ(ﬂ) and (’(ﬁ) are the functions of a continuous
parameter A (O S/S 2) determined by normalization and
by <5> = 1. Moreover, the dependence A¢{1) has been found
in Ref.6 or, better to say, the method for calculatingﬁ
from the QEEs. Particularly, /33 94 for A« 1. Numeri-
cal experiments6 satisfactorily agree with these depen~
dences,

The intermediate statistics allows also to qualita-
tively understand the mechanism of repulsion for the ope-
rative QEEs which determine the diffusion suppression (14).
Those QEEs do partially overlap, hence an intermediate va-
lue ﬁ»’t:O.E.However, it appears to be too small (A = 0.05).

8. CLASSICAL MODEL OF QUANTUM DYNAMICS

As peculiarities of quantum dynamics are ultimately
related to discreteness of the action variables one may
attempt to construct some classical model of the quantum

system18) o To this end we simply took the integer part of

|41 - k. Sen @[Tk Seno] (1), Surprisingly, such a
"little" change in classical model makes it to represent,
at least qualitatively, many QSM properties. First, the
"quantum" stability border k < 1 emerges (cf. Eq.(12)).
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Second, the "quantum" resonance occur336) at rational
T/27 = Y/q , although its condition differs from that in
QSM by a factor of 2: T/45 = rv/g, (4). Apparently, the
most important fact is in that the classical model descri-
bes qualitativly, up to a factor of ~ 2, the quantum loca-
lization of diffusion as well .

In QSM with finite number of states / the phase &
is also discrete and has zj different values only. This
is just the situation which always takes place in the di-
gital computer. It is tempting to use these computer roun-
ding-off "errors" for simulating quantum effects !'Un-
fortunately, that is generally impossible since any dyna-
mical trajectory in computer is going to be periodical af-
ter all while a generic quantum evolution is almost perio-
dic.Indeed, thorough investigations3®) revealed that the
full agreement with QSM requires an additional term in the
discrete model which the former is hardly simpler than the
exact quantum map (4). Nevertheless, further studies into
the discrete classical dynamics is certainly of interest,
I believe .
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