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Chaotic dynamics of comet Halley
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Summary. A simple model of the dynamics of Halley’s comet is
developed, and its motion is shown to be chaotic due to the
perturbations by Jupiter. Estimates for the error growth in the
extrapolation of the comet’s trajectory are obtained which par-
ticularly explain a sharp divergence of different extrapolations of
comet Halley’s orbit previously obtained. Various mechanisms
limiting the full sojourn time of the comet in the solar system are
considered. These include the orbit diffusion under the pertur-
bations by Jupiter and by Saturn, the orbit drift due to weak
nongravitational forces as well as the prompt ejection of the
comet from the solar system upon its very close encounter with
Jupiter. The estimated sojourn time of comet Halley in the solar
system (¢t~ 10 Myr) is compared to the period of hypothetical
comet showers from the Oort cloud which is about 30 Myr.
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1. Introduction

Celestial mechanics, i.e. the dynamics of the solar system, has
been always a perfect example of the regular, deterministic,
motion which allows a long-term prediction to a fairly high
accuracy. Yet, as in almost any other many-dimensional non-
linear oscillator system, the motion of a qualitatively different
nature is possible here. We mean the so called dynamical chaos
when a trajectory becomes random, i.e. highly irregular and
unpredictable, irrespective of any noise (see, €.g., Lichtenberg and
Lieberman, 1983; Zaslavsky, 1985). Moreover, according to
Arnold’s conjecture (Arnold, 1964), which has been well con-
firmed in numerical experiments (Lichtenberg and Lieberman,
1983; Chirikov, 1979), the chaotic components of motion for the
special initial conditions of a positive measure is a generic
phenomenon in nonlinear oscillations. The origin of chaos lies in
a neighborhood of any separatrix, the trajectory with zero
frequency of the unperturbed motion.

In celestial mechanics the simplest example of separatrix is the
parabolic trajectory in the two-body problem which separates the
bounded and unbounded motions. As is well known by now
(Lichtenberg and Lieberman, 1983; Zaslavsky, 1985; Chirikov,
1979), in this case any perturbation, particularly, a regular one, by
a uniformly rotating third body, for instance, produces a finite
chaotic layer at the side of unperturbed elliptic trajectories. This
has been explicitly shown in a recent paper of Petrosky (1986) for
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a particular case of the plane circular restricted three-body
problem.

The orbits close to parabolic, i.e. ones of a large eccentricity
e—1(0<1—e<1), are typical for comets, those “test particles” in
celestial mechanics. The most detailed observational data exist
for comet Halley due to the various historical records dating back
to the year — 239 (240 B.C.). The analysis of these data allowed us
to conclude that the motion of Halley’s comet is chaotic. We
present some of its statistical characteristics, particularly, the
diffusion rate in energy, the estimates for the comet’s life time in
the solar system, and the increment of its motion local instability
which sets the limit for the extrapolation of comet’s trajectory in
both directions of time.

Our analysis is based upon the construction of a simple 2-dim.
model (a map) for the comet’s dynamics, and on the subsequent
study of this model by means of the modern theory of dynamical
systems.

The motion of comet Halley is a new example of dynamical
chaos in celestial mechanics. For earlier studies of chaos in
celestial mechanics see, e.g. Everhart, 1979; Wisdom, 1980;
Froeschle and Scholl, 1981; Wisdom et al., 1983. A general
discussion of the dynamics of comets, chaos included, is presented
in a recent paper by Sagdeev and Zaslavsky (1987). Interesting
data on unusual motion of the third Soviet spacecraft are given by
Gontkovskaja and Chebotarev (1964); they look very irregular
and were, apparently, also chaotic.

Extensive numerical simulations of the dynamics of Halley’s
comet (Yeomans and Kiang, 1981; Kalyuka et al., 1985; Landgraf,
1986) are a striking illustration of the difficulties and limitations
in predicting chaotic motion (see Sect. 4 below).

2. The model

The strong instability of a chaotic trajectory restricts its extrapol-
ation to a relatively short time interval irrespective of the
modelling accuracy. On the other hand, for studying statistical
properties of the motion, one can use a relatively simple model
which includes the essential part of dynamics of the real system. In
the problem under consideration, we assume it to be the dynamics
of the phase of perturbations of the comet by Jupiter. As a
conjugate variable it is convenient to choose some quantity
proportional to the comet’s energy which determines the period
of its motion and, hence, a change in the perturbation phase.
In constructing the model we have used, as the original input
data, 46 values of t,, the comet’s perihelion passage time, as
presented by Yeomans and Kiang (1981) and repeated in Table 1
(t, value after Kalyuka et al., 1985). The values for t, cover a fairly
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Table 1. Comet Halley’s dynamics: perihelion passage times (after Yeomans
and Kiang, 1981)

n Year  Perihelion Jupiter’s Saturn’s
passage, t, (JD) phase X, phase Y,
1 1986  2446470.9518* 0. 0.
2 1910  2418781.6777 6.39083584 2.57350511
3 1835  2391598.9387 12.6647606 5.09993167
4 1759  2363592.5608 19.1287858 7.70290915
5 1682  2335655.7807 25.5767473 10.2994180
6 1607  2308304.0406 31.8896785 12.8415519
7 1531  2280492.7385 38.3086791 15.4263986
8 1456  2253022.1326 44.6490451 17.9795802
9 1378  2224686.1872 51.1891362 20.6131884
10 1301  2196546.0819 57.6840264 23.2285948
11 1222 2167664.3229 64.3500942 25.9129322
12 1145  2139377.0609 70.8789490 28.5420157
13 1066  2110493.4340 77.5454480 31.2265267
14 989  2082538.1876 83.9976717 33.8247519
15 912  2054365.1743 90.5001572 36.4432169
16 837  2026830.7700 96.8552482 39.0023280
17 760  1998788.1713 103.327633 41.6086720
18 684  1971164.2668 109.703382 44.1761014
19 607  1942837.9758 116.241244 46.8088124
20 530  1914909.6300 122.687259 49.4045374
21 451 1885963.7491 129.368127 52.0948344
22 374  1857707.8424 135.889745 54.7210039
23 295  1828915.8984 142.535083 57.3969935
24 218  1800819.2235 149.019949 60.0083634
25 141 1772638.9340 155.524114 62.6275046
26 66  1745189.4601 161.859602 65.1787221
27 —11 1717323.3485 168.291253 67.7686629
28 —86  1689863.9617 174.629030 70.3208017
29 —163  1661838.0660 181.097560 72.9255932
30 —239  1633907.6180 187.544060 75.5215136
31 —314  1606620.0237 193.842186 78.0576857
32 —390  1578866.8690 200.247766 80.6371280
33 —465  1551414.7388 206.583867 83.1885924
34 —539  1524318.3270 212.837867 85.7069955
35 —615  1496638.0035 219.226637 88.2796687
36 —689  1469421.7792 225.508291 90.8092075
37 —762  1442954.0301 231.617192 93.2691812
38 —835  1416202.8066 237.791521 95.7555018
39 —910  1388819.7203 244.111687 98.3005491
40 —985  1361622.0640 250.389054 100.828362
41 —1058  1334960.1638 256.542767 103.306381
42 —1128  1309149.3447 262.500045 105.705298
43 —1197  1283983.7325 268.308406 108.044248
44 —1265  1259263.8959 274.013879 110.341767
45 —1333  1234416.0059 279.748908 112.651187
46 —1403  1208900.1811 285.638100 115.022687

2 After Kalyuka et al., 1985.
Effective periods for Jupiter 4332.653; for Saturn 10759.362 (days).
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large interval in time from 1986 back to —1403 yr. Notice that
only 27 values (n=2—28) are reconciled with the observations
while the remaining 18 ones (n=29—46) have been predicted
from the numerical orbit simulations of the comet (Yeomans and
Kiang, 1981).

Define the global perturbation phase via Jupiter’s position,
with respect to the comet’s orbit, at a perihelion passage time:

Ly

X,=—=
PJ

(1)
and set X, =0 (Table 1). Jupiter is assumed to move uniformly in
a circular orbit with an effective period P,=4332.653 days. As a
matter of fact, P, includes various perturbations, particularly,
Jupiter’s and the comet’s orbit precession. The above P, value has
been empirically adjusted from the best intrinsic agreement of the
original ¢, data (see below). Measured in years, P, is close to the
ratio of the Earth’s and Jupiter’s mean motions.

The comet’s period is P,=t,—t,_,. Define a quantity

p\-23 ‘
Wy = <_"> =(Xn_Xn—l)—2/3z_2En (2)
P,

where E,, is the comet’s total energy, far from Jupiter, within the
interval (¢, , t,). We set Jupiter’s velocity and radius of the orbit
to be unity while its mass u;=9.54 x 10™* in solar units is the
small perturbation parameter. The time unit is then P,/2n
=689.563 days=1.888 years.

The change in w (per comet’s period) depends on the pertur-
bation phase x= X (mod 1). Together with Eq. (2) it leads to a
canonical map of the plane (w, x) (cf. Petrosky, 1986)

wn+l=wn+F(xn); xn+l=xn+wn_-3{2 (3)

Apparently, it is the simplest (very restricted though) model of the
dynamics of the comet (backwards in time).

The unknown perturbation function F(x) can be found di-
rectly from the original data ¢, (Table 1) using the same Eq. (3).
The result is depicted in Fig. 1. The scattering of points turned out
to be caused by the perturbation due to Saturn.

The two perturbations can be separated as follows: let us
approximate the dependence in Fig. 1 by a Fourier series F,(x)
and plot the difference F(x,)— F,(x,) vs. Saturn’s phase y

Table 2. Perturbation Fourier spectrum in model (3)

0.0

Flz) '

JUPITER

-001

Fig. 1. The full perturbation of comet Halley vs. Jupiter’s phase

=Y(mod1) where Y=rgX (Table 1), and ry=0.4026868 is
Saturn’s revolution frequency. The latter has been also empiri-
cally adjusted and it turned out to be equal to the ratio of Saturn’s
and Jupiter’s mean motions. The difference F — F, as a function of
y was again approximated by another Fourier series Fg(y), and
the whole procedure repeated for the function F(x,)— Fs(y,)
instead of the initial F(x,). After about 10 such successive
approximations the following decomposition of the total pertur-
bation into that by Jupiter, and by Saturn has been obtained
(Fig. 2):

F(x)=F;(x)+ Fs(y)+ F(2). @

The final Fourier spectrum of the perturbation is shown in
Table 2 where

F;(x) = Y [a,,cos(2nmx) + b, sin 2nmx)]
for Jupiter, and similarly for Saturn. The mean values
{F)=a,=0 were put equal to zero for both planets because the

Jupiter Saturn
m  a,x10? b,, x 10? Jai+bix 10> a,x103 b, x 103 Jai+bix 103
0 0 0 0 0 0 0
1 —0.240980 0.390305  0.458704 0.539282 0.402058  0.672663
2 0.182350 —0.060684 0.192182 —0.365971 0.094560 0.377990
3 —0.120144 —0.025157  0.122749 0.055456 —0.195876  0.203575
4 0.053170 0.062750 0.082247 0.087232 0.145022 0.169236
5 —0.002350 —0.051279 0.051333 —0.076651 0.043299 0.088035
6 —0.019543 0.033955  0.039178 —0.019011 —0.032018  0.037237
7 0.019810 —0.006757 0.020931 —0.010290 0.049478 0.050537
8 —0.016521 —0.005454 0.017398 —0.067932 0.063112 0.092724
9 0.003908 0.009710  0.010467 —0.000503 0.012022  0.012033
10 —0.001400  —0.005662  0.005833 0.013116 0.013741  0.018996
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Fig. 2a—c. Comet Halley’s perturbation by Jupiter (a), by Saturn (b), and
residual perturbation (c). Curves are Fourier approximation (FA),
straight lines are “saw-tooth” approximation (STA)

Hamiltonian of the system is periodic in all phases. Notice that in
the presence of Saturn’s perturbation one should either use the
global phase X,(Y,=rgX,) in map (3), as we did, or add the
equation y,, ; =y, +rsw, 1.

In Fig. 2c the residual perturbation Fg(z) is also plotted vs.
phase of the Earth z=Z(mod 1) where Z=r;X, and ry;=P,
(years)=11.86241 is the Earth’s frequency in the units adopted.
We failed to find any simple dynamical interpretation for Fg
which, therefore, characterizes the accuracy of our model (3):

2\\1/2 2\1
<<F‘2‘> > ~0.030; '
<F3> w

~35107% {(At)*>'?x14 days

®

Here At is the error in “prediction” of the next (or preceding)
perihelion passage time.

149
00025
fs9) .
[ . - y
0 | 1o
-00025 SATURN

In the process of successive approximations of F,, Fg the
parameters P; and rg as well as the number of Fourier harmonics
have been also optimized by minimizing residual {( F2). Inter-
estingly, the optimizing proved to be very sensitive to the value of
P, so that the empirical uncertainty in this model parameter is
only 0.01 days ~15 min! Similarly, the relative uncertainty of
effective frequency of Saturn rgis ~107°.

The developed model (3), together with the empirical pertur-
bation (Table 2), is of course nothing more than a physically
meaningful interpolation of the original data ¢,.

Besides the Fourier approximation (FA) of the perturbations
we made also use of a simpler “saw-tooth” approximation (STA)
where each of the functions F,(x), Fs(y) was represented by the
two straight lines as shown in Fig. 2. The amplitudes and vertex
positions have been assumed as follows

A,=63510"% x,=0.552; x_=0.640;
As=10510"3% y,=0305 y_=0.385;
2d,=x_—x,=0088; 2dg=y_—y,=0080 (6)

Naturally, the accuracy of the latter approximation is much
worse [cf. Eq. (5)]:

2 1/2
(<FR>> ~0.10;
<F3>

We mention that the dynamics of 2-dim maps with a “saw-
tooth” perturbation, similar to map (3), was studied before by
Chirikov et al. (1971), and Chirikov and Izrailev (1976); see also
Lichtenberg and Lieberman (1983) and Chirikov (1979).

A surprisingly sharp phase dependence of the perturbation
(Fig. 2) is explained by relatively close encounters of the comet
and planets due to a small inclination angle i of the orbit of the
comet (sini=0.3). Indeed, two encounters per turn are possible,
both corresponding to approximately the same phases x and y.
Recall that we define the perturbation phase at the perihelion
passage time while the perturbation actually takes place at a
different instant. The closest encounter corresponds to some
“encounter phase” x,~0.60. Due to approximate symmetry of the
encounter the value F,(x.)=0. Saturn’s encounter phase is
y.~0.35.

F2 1/2
<—L ~121073
w

{(At)?* Y12 250 days
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Assuming the straight and uniform motion of both Jupiter
and the comet at right angle to each other for a very close
encounter (sini< 1, d; <1), the following simple analytical rela-
tion for the perturbation

24,(x—x.)d, .

_F.(x)= ;
s (x—x.)?+d2

4./2
A= N2 R 0.0060;
3 sini

d \/3Si"i 0.059 ™
N2 T

T

can be shown to hold within some interval around x, including
both | F,;| maxima. Numerical values are given for comet Halley.
They agree quite well with Egs. (6), and do so still better with a
more accurate FA presented in Fig. 2a which gives 4;~0.0059
and d; ~0.062. Notice, however, that the empirical function F,(x)
is slightly asymmetric with respect to phase x,=20.60.

For Saturn’s perturbation only the values of phase y. and of
amplitude Ag in Eq. (7) change, namely

ﬁ _ Us
A, was

where g, ag are the mass and radius of the orbit of Saturn. The
data in Fig. 2 give Ag/4,~0.175.

Other planets as well as the nongravitational forces (see
Yeomans and Kiang, 1981; Landgraf, 1986) yield a perturbation
comparable with the residual one (5): ((F2)|{F2))"2x0.025
(Chirikov and Vecheslavov, 1986). The latter includes, of course,
the effect of some other model approximations, particularly, the
assumed circular orbits of Jupiter and Saturn.

At small w the perturbation F(x) is nearly independent of w
[see Eq. (7)] as the energy exchange with Jupiter is determined by
the “local” (osculating) speed of the comet v2 ~2 > w. This was the
reason to choose the quantity w as a dynamical variable of our
model.

=0.163 (®)

3. Local instability of motion

A strong local instability of motion — the exponential divergence
of close trajectories — is commonly accepted by now as the
simplest and most reliable criterion for dynamical chaos, at least,
in numerical experiments (Lichtenberg and Lieberman, 1983;
Zaslavsky, 1985; Chirikov, 1979). We studied this instability via
the linearized equations of model (3) (for Jupiter’s perturbation
only):

W,y =0w,+F'(x2)dx,,
5xn+1=5xn*%(W2+1)_5/25W..+1, ©)

where (x?, w?) is a reference trajectory, and (dx,, w,) the tangent
vector I. The nature of the dynamics of vector / is determined by
the Lyapunov exponent

1.1

Ax -In2

, h—00
n lo

(10)

For a 2-dim. map A = h, the Kolmogorov-Sinai entropy. Dynami-
cal chaos occurs under the conditions >0, or A>0.

The eigenvalues of matrix (9) satisfy the condition 1,;4,=1.
Denote the largest eigenvalue modulus by 4,; it depends on the
iteration serial number n. Then:

InA,=In|l —k,+ /kZ —2k,||;
k=3 w, 2P F'(x,), (11

where we drop the superscript zero for the reference trajectory. In
the STA (6)

0.108
-5 3 0.552 < x,<0.640
w
k,= ! (12)
0.0104 .
—5 otherwise
W}l

At the present value w,=w,;=0.3, the instability occurs only
within the phase interval given in the first line of Eq. (12) around
encounter phase X ,x0.60 where 1,~62. We shall call these
phases unstable. For other x values A,=1. Using Egs. (11) and
(12) we conclude that for

W, <w,~0.12 (13)

all the phases become unstable as |k,|>2. In this domain there is
a single solid chaotic component of motion. By contrast, at
w>w,, large regions of stable motion arise around the fixed
points of map (3):

w=w,xm 3 x=x, F;(x;)=0, Fj(x;)>0,

with m any integer (Fig. 3a). The oscillation period about a fixed
point P,,~2nm" /5[ (1 —2d,)/34,]1*>~700 yr (in STA). Remnants
of this periodicity persist in the chaotic component. Apparently,
they were noticed and discussed in Yeomans and Kiang (1981),

0.35 035

HALLEY MAP HALLEY MAP

(@) (8)

0.20 0.20

7 L0

va

Fig. 3a and b. Phase trajectory of map (3) in the STA (6). Initial
conditions (crosses) w, =0.29164; x, =0 (in 1986, see Table 1): a Jupiter’s
perturbation only, N =1.5 10° iterations; b perturbation by both Jupiter
and Saturn, N =4000
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Kiang (1979). There are fixed points at phase x, (7) as well, yet all
the latter are unstable since F(x,)<O0.

In region w>w, the motion instability grows only within the
narrow interval of unstable phases (12). Let p(w) be the prob-
ability for a trajectory to enter this unstable phase interval.
Numerical simulation at wx0.3 gives: h=0.26 and p=0.19.
Notice that the probability p considerably exceeds the interval
width 2d; =0.088 (6). This is explained by a decrease in the area of
the chaotic component outside of the unstable phase interval due
to large stable regions there (Fig. 3a).

The motion of the comet changes substantially if Saturn’s
perturbation is “switched on” (Fig. 3b). Notice that upon includ-
ing Saturn’s perturbation the phase plane point (x, w) does no
longer completely determine the trajectory which now also
depends on Saturn’s phase y. In other words, the plane in Fig. 3b
is a 2-dim. projection of the 3-dim. phase space of map (3) (see
Sect. 2). With Saturn’s perturbation included, the stability do-
mains decrease noticeably but persist. This leads to a reduction of
the probability to px0.13 and, consequently, of the entropy to
h=~0.16 while the unstable eigenvalue 1=x6.2 remains nearly
constant. The latter is explained by a weak influence of Saturn
upon parameter k in Eq. (11).

By contrast, the perturbation caused by the Earth, being
relatively weak, completely dominates nevertheless, upon a close
encounter with the comet as the perturbation is concentrated
within a very narrow interval of Earth’s phase z. Destabilizing
effects of close encounters with the Earth are well known from
numerical simulation of cometary trajectories (Yeomans and
Kiang, 1981; Brady and Carpenter, 1971; Landgraf, 1986). How-
ever, the Earth’s contribution to the entropy is insignificant
(Chirikov and Vecheslavov, 1986).

Within stability domains the motion is quasiperiodic, i.e. of a
discrete spectrum, and the w variation is strictly bounded and
small, while entropy h=0. Interestingly, the present value of
comet Halley’s energy is only 3% above the nearest stability
region. However, the residual perturbation F; makes the exist-
ence of such regions questionable.

4. The error factor in numerical simulations
of a chaotic trajectory

The local instability of comet Halley’s motion is the cause of its
chaotic behaviour, particularly, of the diffusion in energy (Sects. 5,
6). Moreover, the instability sharply restricts any extrapolation of
the comet’s trajectory both forward and backward in time. The
most error-sensitive quantity is the perihelion passage time ¢, or
the perturbation phase x,,. Just those t, errors are given usually in
the papers on numerical simulations of the comet’s dynamics
(Yeomans and Kiang, 1981; Kalyuka et al,, 1985; Brady and
Carpenter, 1971; Landgraf, 1986). On the other hand, x, errors
significantly change the motion of the comet as the trajectory may
pass from stable to unstable phases and vice versa. Define the
error factor

Ox,,

Jn= (14)

dxo

which describes the growth of phase errors over m revolutions of
the comet.
For m> 1 the mean error factor relates to the entropy (Sect. 3):

foavehm, (15)

151

Assume the largest tolerable error |dx,| to be of the order of
d;~0.05, |dt,,|~200 days [a half-width of the unstable phase
interval, see Eq. (6)]. Then, the extrapolation is restricted to

1. d

X —In
ext"‘h IéxOl

It grows only logarithmically with the modelling accuracy |dx,|.
In Eq. (16) we use the value h=0.16. Assuming an effective initial
error [8x,|~ 51074, |8ty| ~ 2 days (see below) we obtain N, ~29
revolutions.

This estimate is rather crude, due to big fluctuations during
relatively short times, particularly, because of a narrow interval of
unstable phases. A more accurate evaluation of the error factor
can be performed as follows.

Consider the linearized map (9) on some interval (¢, t,,) using
the “true” orbit (Table 1) as reference trajectory. Then, the error
factor can be estimated, within this interval, as the biggest
eigenvalue modulus of the corresponding transfer matrix
Jom™~ An.m- The quantity (Ini, ,)/(m—n)=h, , describes a “cur-
rent” entropy on this interval (t,, t,,). For instance, h, ,=0.24,
which noticeably exceeds the mean value h=0.16. The latter is
reached in a longer time interval. The former value may be
compared to h=0.30 as measured by means of maps (3) and (9)
(Sect. 3) for 50 revolutions of the comet.

As the errors of the linearized map also grow exponentially,
the transfer matrix is better evaluated by multiplying the matrices
of each iteration rather than numerically iterating map (9).

As a particular example we estimate the extrapolation accu-
racy for comet Halley’s trajectory in Yeomans and Kiang (1981).
The main parameters of this trajectory were determined from
apparitions of the comet in 1759, 1682 and 1607. However, the
most error-sensitive quantity t, was set to the observational value
in 837 (n=16). So we assumed just the latter date as the beginning
of the extrapolation in evaluating 4, ,,. These values are depicted

N

~ —631In|dx,|— 19 (16)

80
39°
++;0‘ +
&f 39o°°
—1 O‘ +
4.0 &+
ooeg
O2 <>
+
o +
0*53&2%% &
o og <
o a
<& o
-4.0 l o ﬁ |
I [ I
20 | o | w0 m
837 ol -86¢ -615-

Fig. 4. Error factor fin extrapolation of comet Halley’s chaotic trajec-
tory (in 837 through —1403). Dependence of In(|dt,|/dt,,)=Inf vs.
m=17-46 is shown after Yeomans and Kiang, 1981 (squares); Landgraf,
1986 (diamonds); our model (3) (circles), and In 4,¢_,, (crosses), see text
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in Fig. 4 for m=17—46 (crosses) which correspond to the
extrapolation back to —1403 in Yeomans and Kiang (1981). A
peculiar feature of this dependence is a rather long interval of
stable motion (A=1, m=17—29 except 1,4 ,5=1.89) followed by
a fairly steep instability. It is important to note that the earliest
reliable observations of comet Halley fall just on the stable
interval (in —86, m=28, Yeomans and Kiang (1981)). The
previous apparition in — 163 (m=29) dated to some accuracy in
Stephenson et al. (1985), is located near the beginning of unstable
region (see Fig. 4). In other words, the proper extrapolation, in
absence of any observational data, gets actually into the unstable
part of the trajectory. At the end of the extrapolation the error
factor amounts to fi¢ 44~ 416,44~ 700.

As the initial error dt;, it is natural to assume the rms
deviation of the computed ¢, from their observational values
within the stable interval m= 17 — 28. Using the data of Table S in
Yeomans and Kiang (1981) we find ¢, =2.7 days. At the end of
extrapolation interval the error |0t44| & 0t fi6. 44~ 5 yr becomes
prohibitively large. The extrapolation holds, therefore, only up to
about m=35 (in —615) when |dt;5|~200 days.

As a check of these estimates we made a similar extrapolation
with our model (3) in the FA with the perturbation by Saturn
included. We have slightly corrected the value w,¢ in order to
decrease d¢, 5 (in 141) as well as it had been done in Yeomans and
Kiang (1981). Actually, the eccentricity was corrected there but,
curiously, both relative changes proved to be very close: |Ag|/
(1—e)~|Aw|/w~2.2 10~ *. The initial error for our model, calcu-
lated in the same way as above, dt,, &~ 19 days, is in a reasonable
agreement with the rms accuracy (5), and is only 7 times the error
in Yeomans and Kiang (1981). The model values of In (| dt,,|/0t;,)
are represented in Fig. 4 by circles, and they clearly demonstrate a
“sudden” burst of instability. Our analysis explains a surprise
strong divergence of different extrapolations of the orbit of comet
Halley prior to —86 presented recently by Stephenson et al.
(1985) (see their Fig. 2).

Finally, one may compare trajectory of the comet in Yeomans
and Kiang (1981) with the recent computation in Landgraf (1986),
Table 8, sample I, for instance. The result is shown in Fig. 4 by
diamonds. The rms difference between the two trajectories within
the stable section is 6t;, =0.9 day. At the end of the extrapolation
of the trajectory in Landgraf (1986) the error factor reaches the
value fi¢ 33~4;6,33230, and the separation of the trajectories
becomes |9t 33| ~ 27 days. Why in the final version of trajectory of
the comet as presented in Table 9 in Landgraf (1986) the same
separation lies within about one day remains a mystery for us.

In any event, all the above data definitely point out a rapid
growth of the extrapolation errors in the time interval under
consideration. This may explain some difficulties in reconciling
the observational data in —465 and —617 with extrapolated
trajectories of comet Halley as mentioned in Landgraf (1986).

We emphasize that the error growth in our model relates to
the perturbation by Jupiter (and Saturn) only, without any
contribution from the Earth, which would increase the errors still
more. We mention that the instability of the motion and the
growth of the error in a simple three-body model were noticed in
Kiang (1979) and certainly follow from the results of Petrosky
(1986).

For comparison we note that the computational accuracy for
the stable (quasiperiodic) motion of planets in the solar system on
the same time interval is equivalent to dt~1 day, and weakly
depends on time (see, e.g. Table 2 in Yeomans and Kiang, 1981).

Contrary to the extrapolation, the interpolation of a chaotic
trajectory gives much more accurate results. Particularly, it is
demonstrated by surprisingly small errors of our fairly simple
model (3). How strange it may seem at first glance, the inter-
polation is the simpler (requires the less changes in initial
conditions and/or system parameters) the stronger the local
instability of motion is. It is the property of structural stability
(robustness) of chaotic dynamics which also provides stability of
the statistical description.

Notice that big absolute errors of ¢, for the computed
trajectory of the comet in Yeomans and Kiang (1981) do not
prevent us from using this trajectory for the reconstruction of the
perturbation F(x) in Sect. 2. The point is that we need three
successive values ¢, only, and the reconstruction accuracy de-
pends on trajectory errors within two revolutions of the comet.

5. The local diffusion rate of a chaotic trajectory

Within a chaotic component of the motion of a comet, the
perturbation F(x) causes a diffusion in w. If perturbation phases
x, would not only be random (which they are due to the local
instability) but also statistically independent (which they gen-
erally are not in spite of randomness) then the diffusion rate
would be determined simply by the mean square of the perturba-
tion (see, e.g., Lichtenberg and Lieberman, 1983; Zaslavsky, 1985):

{(Aaw)*) A}
m

D =Dp=<(F2(x)>~ -L ~1.31075

3

17

That limiting case holds at w<w, when all the phases are
unstable (Sect. 3). Here Saturn’s contribution is negligibly small
(A%2/A%2~0.03).

As w grows, the entropy drops (11) which results in a time
correlation, and in diffusion deceleration. This becomes especially
significant for w>w,, due to the formation of domains with a
regular motion (Fig. 3). This is just the case for the present value
w, =0.3.

We numerically measured the local (a small change in w)
diffusion rate by averaging over 1024 trajectories of 46 iterations
each with slightly different initial conditions. In the FA the rate
D(w,)=5.610~°, while the STA gives 6.0 107, It is about two
times less than D, (17). “Switching-off” Saturn’s perturbation
somewhat decreases the diffusion (4.4 107°) due to a stronger
correlation. A residual perturbation Fyg (Sect. 2) in the form of a
random noise with the same rms magnitude does not change the
rate: 5.5107% (FA).

Finally, we directly used the data of Table 1 in Yeomans and
Kiang (1981), which is equivalent to one trajectory in the previous
method. It gives a close value of 7.4 1076,

We also mention that for larger w the diffusion rate drops, e.g.,
D(0.7)~2.710¢.

6. Global dynamics of comet Halley

The simple model (3) does not take any other orbit parameters
into account besides w, and therefore its straightforward appli-
cation is restricted by a relatively short time interval.

The most significant effect seems to be a periodic crossing of
Jupiter’s and the comet’s orbits due to the perihelion precession
with a period N, ~440 revolutions of the comet (see Yeomans and
Kiang, 1981). This leads to a considerable decrease of the minimal
Jupiter-comet distance s as compared to the present value
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. s, =sinix0.3. As a result, the prompt ejection of the comet out of

the solar system may happen in a single very close encounter with
Jupiter. A rough estimate for the ejection mean life time of the
comet

n [w)?
Ny~ —|— ) ~10°
7 2d, \A4,

turns out to be surprisingly long, well in excess of the diffusion life
time (see below). We mention that the probability for the comet to
drop on Jupiter is still about 100 times lower. On the other hand,
the diffusion rate remains of the same order in spite of the crossing
of the orbits (Chirikov and Vecheslavov, 1986).

Another omitted effect, which is important for the global
dynamics, is apparently the diffusion in inclination i, as perturba-
tion F(x) oc (sini)~ ! (7). A rough estimate, obtained from the data
in Yeomans and Kiang (1981), Table 4 (see Chirikov and Veches-
lavov, 1986) shows that even though the diffusion in i can hardly
be neglected completely it does not seem to change the order of
magnitude for life time of the comet in the solar system, especially
in view of big fluctuations of the latter (see below).

In the STA a connected chaotic component is unbounded in w
because of a slow decay of the Fourier harmonics of the perturba-
tion (Chirikov, 1979; Chirikov et al., 1971; Chirikov and Izrailev,
1976). For the true smooth perturbation, the chaotic component
is limited from above: w <w,. Yet, the limit is much higher than
w, 0.3, and therefore is unimportant here. Numerical simu-
lation shows that, at any rate, w,>0.6, P,<25.5yr. What is
important is that the chaotic component extends down to w=0,
i.e. the comet leaves eventually the solar system along a hyper-
bolic orbit.

In the independent-phase approximation (17) the diffusion life
time of the comet would be

(18)

N w2 3w? 19
> D, 43’
which is much shorter than the ejection life time:

Np/N;=2d;~0.1. Notice, that even though Eq. (18) for N; has a
“diffusion appearance” it is not necessarily related to any chaotic
motion, and it holds for regular trajectories as well provided the
phase x varies over the whole interval, i.e. is rotating.

The diffusion proceeds down to w,,;, ~A4;~0.006 which cor-
responds to the comet’s period P, ~2.610*yr, and to its
aphelion 2a,,,,~ 1700 AU.

We carried out numerical simulations of the global dynamics
using 40 trajectories of map (3) with initial conditions from
Table 1. Because of the local instability all these trajectories
rapidly diverge and show quite different values of the life time:

1374< N, <105 5.3 10°<tp(years)<2 107,

The scattering is due to big diffusion fluctuations, especially, at
w>w,. An example of the full phase trajectory, projected onto
plane (x, w), is depicted in Fig. Sa.

The mean diffusion life time of the comet is equal to
Np~1.810%
the average period being P, =t,,/N,~220 yr, and the mean rate
of global diffusion D; ~w?/Np~5107°. The latter is close to the
local diffusion rate (Sect. 5).

The global diffusion primarily proceeds downwards in w
because of the increase of D(w) in this direction.

The comet’s life time, unlike the local diffusion rate, crucially
depends on a relatively weak perturbation by Saturn. If it is

tp~3.9 10° years
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Fig. 5aand b. Two examples of comet Halley’s global dynamics in model
(3), Np=4.110% t,~4.510°%yr (a); with a variable nongravitational
acceleration (20), F=3 1075, N,, =103, Np,~3.1 105, t,,~2.1 107 yr (b)

“switched-off”, the life time jumps up to N~ 6 10° (¢, ~ 6 107 yr),
i.e. by a factor of 20, due to a long-time “sticking” of the trajectory
in some narrow w layers. Under these circumstances even a weak
additional perturbation may greatly change the life time. Notice
that the comet’s mean period P,~ 100 yr remains close to the
initial P, =76 yr.

As the diffusion proceeds symmetrically in both directions of
time, the full sojourn time of the comet in the solar system is twice
as big, 2Np. Certainly, the comet’s actual life time may be
determined by totally different physical processes, for example,
simply by its evaporation. Recent data in Boyarchuk et al. (1986)
indicate that the evaporation time may be as short as N, ~4000
revolutions. However, there is no such limitation backwards in
time.

Another important effect is a systematic variation of w (a
drift). The physical cause of the drift is the so called transverse
nongravitational acceleration (force) related to evaporation of
cometary material near the Sun (Marsden et al., 1973). Using the
latest data on the parameters of non-gravitational forces
(Kalyuka et al., 1985; Landgraf, 1986) we find

dw ——
— =F(x)~+31073
dn

backward in time. Forward in time F <0 which would result in
the comet leaving the solar system after about Ny~ w,/F~10*
revolutions, that is somewhat faster than N,~1.810* The
combination of both diffusion and drift would decrease the life
time still further; numerically, N p,~ 6600.

We mention that the change of phase volume (dissipativity),
which is inevitably related to the drift, is, nevertheless, much
smaller, so that the corresponding time N ;, can be shown to have
the order Ny;,/Ny~(qw)~!~30 where q~0.6 AU~0.12 is the
comet’s perihelion distance. Hence, map (3) can be treated as a
canonical one even in the presence of drift.
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The effect of the drift is much stronger backward in time
(F >0). In this case the variation of w is eventually determined by
the drift only, that is w continuously grows after some time
because of a sharp decrease in the diffusion rate with w (Sect. 5).

Now, we take into account a possible time-variation of the
nongravitational forces. For example, evaporation would cause
the comet’s mass to decrease thereby increasing the nongravita-
tional acceleration. A natural time scale for that process would be
the evaporation time of N,,&~4000 revolutions of the comet
(Boyarchuk et al., 1986). Because of this we modified the drift
equation as follows (backward motion, F > 0):
dw F ~
—_—= = F(n).
dn - n

N
The decrease of the drift speed F with n leads eventually to a
purely diffusive motion. Yet, the life time of the comet increases
considerably as compared to that without drift. This is because
the drift, decreasing though, still leaves enough time for the comet
to move to a bigger w where the diffusion rate sharply drops
(Sect. 5).

According to numerical simulations, the life time for Eq. (20) is
Nps= 5105 Even upon reducing N., to 10, the mean life time
N pa~ 1.4 10° is still much longer than N, ~ 1.8 x 10*. An exam-
ple of the latter trajectory with N,,=3.1 10° is given in Fig. 5b.
Under these circumstances the variation of the inclination i as
well as the single ejection of the comet by Jupiter (18) may play an
important role. Even though the models of nongravitational
forces used above, especially Eq. (20), remain highly hypothetical,
it is completely clear from our numerical simulations that their
impact on the global dynamics and life time of comet Halley is
crucial.

(20)

ev

7. Conclusion

A fairly simple model for the comet Halley’s dynamics, developed
in the present paper, allows to study essential features of its short-
and long-term evolution in both directions of time. Numerical
simulations as well as the analytical calculations reveal that the
motion of the comet is chaotic, and allow to evaluate the error
growth in the extrapolation of its trajectory. We would like to
emphasize again that the mean error growth is determined
primarily by Jupiter’s perturbation, and not by the comet’s
encounters with the Earth which seems to be a common belief
(see, e.g. Yeomans and Kiang, 1981; Landgraf, 1986). Also, for any
chaotic trajectory the mean error growth in time is exponential
but not a power law one as is sometimes assumed. Increasing the
computational accuracy helps, therefore, only on a short time
interval as is easily verified by a slight change in initial conditions
or by the time reversal.

The chaotic (non-periodic) nature of the motion is one of its
important characteristics, and we propose to mark it by a special
letter C (e.g. C/Halley instead of P/Halley) as a warning against
underestimation of the errors in extrapolation of the chaotic
trajectory.

Since chaotic motion has a continuous temporal Fourier
spectrum, the so called “cyclic method”, i.e. the search of com-
mensurabilities in motions of the comet, Jupiter and Saturn
(Kamiensky, 1962) is totally inapplicable here. This highlights the
qualitative distinction of chaotic motion from a regular (quasi-
periodic) one, as the motion of the planets, for example, where this

method is successfully used. We remind the reader that the
perturbation in our model is a regular (quasiperiodic) function of
time. ’

Dynamical chaos results in the diffusion of the orbit of comet
in both directions of time, so that the comet is found eventually
outside of the solar system. Numerical simulations show that the
sojourn time of comet Halley within the solar system crucially
depends on weak nongravitational forces acting upon the comet
near the Sun. Interestingly, repeated crossings between the orbits
of the planets and the comet only insignificantly affect the life time
of the comet. The estimated sojourn time of comet Halley in the
solar system (N ~ 105; t ~ 107 years) turns out to be much smaller
then cosmological time scale which poses a serious problem
related to the origin of comets. In this connection we would like to
attract attention to the fact that the above time is of the same
order of magnitude as the period of hypothetical comet showers
from the Oort cloud conjectured recently in Hut et al. (1987).
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