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1. Introduction: a personal view of dynamical chaos
1.1. Philosophy

In this course I am going to discuss in some detail a fascinating topic, dy-
namical chaos as it is often called. I wouldn’t say this exciting phenomenon
_is brand-new (it is a century old already!), yet it is still not widely known.
What actually is it? We start with a purely dynamical system, specified,
say, by an ordinary differential equation, e.g.,

z = v(x), (1.1)

where z and v are generally some vectors. The time evolution of this sys-
tem is described by a trajectory z (t,zo) where xo are the so-called initial
conditions, i.e., the system’s exact position at some fixed time, e.g., t = 0.
The function z (¢, o) is sometimes called the motion law. Isn’t it a sur-
prise that this law is always conditional? That nature never tells us what
the motion will be? That instead, it asks first what are the initial condi-
tions? Nevertheless, it has long been assumed that the dynamical evolution
is completely deterministic (apparently just by those initial conditions). I
am afraid some people still believe that it is always possible actually to
determine the system’s future or to reconstruct its past. A great discovery
of recent time (or elucidation, if you like) was that this is not always the
case. And when it is not, we speak of dynamical chaos, or, more formally,
of a random solution to the deterministic equation. Random, in which
sense? In some, rigorous mathematically, and acceptable physically sense
(see refs. [1,2] and some selected comments scattered over this course be-
low). This is an exciting problem as well, but I have to restrict myself to
the prescribed topic. The rest is left for late-night discussions!

But this is not yet the whole story. What is even more important, in
my opinion, is that the theory of dynamical chaos has solved (in passing!)
the great mystery of the statistical laws, the mystery that even affected
most of the philosophical systems. Indeed, one of the philosophical beliefs
is that the statistical laws are a sort of “superphysics” which would never
be completely reduced to (or derived from) dynamical laws. The belief was
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448 B.V. Charikov

Fig. 1. Galton’s Board or Lorentz’s gas, the first model of dynamical chaos [3].

(and still is for many) that you always have to add something mysterious (a
hypothesis or some conceptions or whatever) to the dynamics to “prepare”
the statistics. But we know now that it is no longer true! All physicists
should know this.

The statistical laws are a part of the dynamics, very special, unusual,
even surprising, I would say, but not at all uncommon. So now, the main
problem is not to formulate the additional statistical hypotheses but, on
the contrary, to find out the particular conditions that give rise to those
secondary (with respect to dynamics) laws in Nature as well as to find the
particular statistical properties of the dynamical motion under the condi-
tions in question.

1.2. A simple example, and the origin of chaos

Now it’s a high time I gave a few examples of dynamical chaos. Of course,
it is well known that chaos is all around us. What is apparently less known
is that the structure of the dynamical laws, the special role of the initial
conditions therein, and their arbitrariness as mentioned above, is also a
tricky corollary of the chaos as I hope to discuss at the end of this course.

But now I want to discuss very simple models which exhibit extremely
complicated behaviour characteristic of dynamical chaos. Apparently the
first of such models was constructed and described by the English psychol-
ogist and anthropologist Galton [3], in 1889, a century ago! The model
is known as the Galton Board or (the later name for a similar model) as
the Lorentz gas. In this “gas”, all (classical) “molecules” are at rest and
scatter only a single one moving through the system (fig. 1). Ref. [3] is
the earliest one in my list, I leave the ancient philosophical (rather than
scientific) views also for discussion.

Galton himself did use his model to demonstrate statistical laws as well
as statistical methods in studying mass phenomena, the methods he first



Time-dependent quantum systems 449

— —— —
—

—

\ -
X

Fig. 2. Sinai’s billiards (dashed lines) as slightly deformed ordinary (American) billiards
(solid line).

introduced into psychology. Apparently, he had no interest in the model’s
dynamics which was conjectured 17 years later by Poincaré, who related
chaos to a strong local instability (scattering) of trajectories.

Galton’s Board is a particular type of the billiard models studied exten-
sively by the Soviet mathematician Sinai and his disciples. In a rectangular
billiard table (fig. 2, solid line), the ball’s motion is regular in the sense that
the Fourier spectrum of the motion is discrete with two basic frequencies:
wz = (mv/a) cos @ and w, = (mv/b)sina. Such motion is called quasiperi-
odic. Note that if the ratio w; /w, is irrational, the motion is ergodic in the
configurational space (z,y), but not in the phase space (x,vs,y,vy), nor
on the energy surface |v| = const., because there are two exact isolating
motion integrals in involution: v;,v, = const. (good texts in dynamical
systems can be found in refs. [4-6,50]).

Now, if we impose arbitrarily small (but not arbitrary!) deformations of
the billiard contour (fig. 2, dashed lines), the ball motion becomes chaotic.
What does this really mean?

To begin with, the motion’s Fourier spectrum becomes continuous which
is, of course, qualitatively different from the discrete spectrum of regular
motion. But why is it related to chaos? And how? To answer this, recall
that a Fourier amplitude of any stationary (oscillatory) process with con-
tinuous spectrum grows like t'/2, which is typical of diffusive behaviour,
characteristic of a random process. This follows directly from Parseval’s
equality. Physically, it means that the bouncing ball is a source of random
noise. Coupled to another system, for example to a harmonic oscillator, the
ball would make it diffuse in energy provided that the oscillator frequency
is within the noise frequency band.
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But how do we know that the ball motion in Sinai’s billiard has a con-
tinuous spectrum? To be sure, it is a, rigorous mathematical result. A
simple explanation relates to the fact that the motion in question is locally
unstable, which means the following. In addition to the main equation of
motion (1.1), consider an auxiliary linearized equation,

£= -0 (s°(1). (12)

where z0(t) is some reference trajectory. We call the motion locally unsta-
ble if asymptotically, as t — oo, the vector § ~ exp(At) grows exponentially,
that is if the limit,

lim — In|é(t)] = A > 0, (1.3)

[t|— o0 Itl

i.e., Is positive (non-zero). The quantity A is called (maximal) Lyapunov’s
exponent after a Russian mathematician who many years ago studied the
stability of motion (but not yet chaos!). Now we only need to solve a
“simple” problem.

Problem. Show that the Fourier spectrum of the unstable motion has, at
least, a continuous component.

The answer is quite obvious but I am not sure that the rigorous proof is
that trivial.

The exponential instability implies that the function z (t,z0) has a pole
at some ¢t = t, = t; +iA in the complex ¢ plane. There is an interesting
connection to the so-called Painlevé property [7], a criterion for integrability
of a dynamical system, which can be traced back to work by the Russian
mathematician Kowalevskaya (in 1890!). According to her criterion, the
system is integrable if all singularities of z (t,zo) are movable poles, that
is if every t, depends on zo. As the chaotic motion is nonintegrable by
definition, its poles tp , particularly A do not depend on zg, at least on
some set of initial conditions with dimensionality larger than one. This is
an additional (to local instability) condition for chaos which is necessary
to exclude an isolated unstable periodic trajectory, obviously nonchaotic.
Another condition is that the motion must be oscillatory, i.e., bounded in
the phase space, to exclude the trivial case of the unstable linear equation.
The latter implies in particular that chaotic motion is always described by
nonlinear equations even though the criterion for chaos relates to a linear
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equation (1.2) but with time-dependent coefficients. Moreover, for chaotic
motion of the main system (1.1), this time-dependence is also chaotic.

Problem (unsolved). Formulate necessary and sufficient conditions for a
motion to be chaotic.

Problem. List all distortion types of the rectangular billiard table that
produce chaotic motion.

Notice that whatever the system (1.1) may be, Hamiltonian or dissipa-
tive, we can always formally construct a new Hamiltonian system in the
combined phase space related to eqs. (1.1) and (1.2). To this end, consider
the Hamiltonian

H(z,n) = nv(z), (1.4)

which generates the main equation (1.1) if we assume all z’s to be “coor-
dinates” while the dynamics of conjugate “momenta” 7 is that for £ (eq.
(1.2)) in the reversed time (t — —t). If, moreover, the main system (1.1)
is time-reversible, the artificial model (1.4) is completely equivalent to the
pair (1.1) and (1.2).

You may say that if the motion is unstable it is not surprising that there
is statistical behaviour, random properties, etc., as the system is extremely
sensitive to any external noise or perturbation. This is certainly true but,
logically, the reference to any external effect does not solve the problem of
the nature and mechanism of the statistical laws. Instead, this pushes it
aside. In contrast to this approach, the modern theory of dynamical chaos
has proven:

(i) principally, no external noise is necessary or required to explain chaos,
which is a purely dynamical (deterministic) phenomenon;

(ii) a sufficiently weak external perturbation doesn’t affect either the
statistical properties of the motion or even the trajectories (with suitably
modified zg, of course); this is called the structural stability, or robustness;

(iii) for the motion of a dynamical system to be truly random, the local
instability must be exponential, which is the strongest one in a smooth
(nonsingular) system; a power-law instability is insufficient for the dynam-
ical chaos.

The latter result is far from trivial, and it corrects an old (and very in-
structive!) mistake due to Born [8] who thought that quasiperiodic motion
with a linear instability, e.g., in rectangular billiards, is unpredictable and,
in this sense, indeterministic. Born’s idea was certainly correct regard-
ing the prediction of a future trajectory solely from the initial conditions.
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Yet, it proved to be wrong if one records a sufficiently long trajectory seg-
ment. On the contrary, if the instability is exponential, even observation
of the whole past trajectory (back to t = —o0) to any finite accuracy does
not allow to predict a finite future segment of the trajectory. This is the
strongest chaotic property which many (but not yet all!) researchers mean
when speaking of “true dynamical chaos”, or of “true randomness”. Notice
that the continuous spectrum is a much weaker statistical property which
only implies some diffusion and a sort of statistical relaxation.

A linguistic remark. Some people understand the terms “stochastic” and
“chaotic” as synonyms. I make the distinction that, while the latter term
refers to purely dynamical motion, the former is traditionally related to a
noise-driven system, e.g., “stochastic differential equations”.

Coming back to the effect of external perturbation upon an unstable
system, I would say that the physicist’s immediate response mentioned
above also makes some sense: we really need a stable description. The
unstable dynamical theory can only be used as an intermediate step in
the evaluation of the statistical properties which prove to be typically (but
not always!) stable. If the statistical description is also not stable, a new
“secondary” dynamics arises which is sometimes called synergetics. This
is also a very exciting problem, but, again, it is not part of the material I
have to discuss.

1.3. The basic model

Now let me come closer to my topic “Time-dependent quantum systems”.
It means in particular an explicit time-dependence, e.g., in the Hamilto-
nian H(z,p,t). Why was I given only this particular part of the chaos?
Apparently because the international team that I represent here — at dif-
ferent stages of research it included: G. Casati (Milano); J. Ford (Atlanta);
I. Guarneri (Pavia); F. Vivaldi (London), and B. Chirikov, F. Izrailev,
D. Shepelyansky, V. Vecheslavov (Novosibirsk) — has indeed studied time-
dependent chaos for many years. But why? Certainly, not because we
are specially interested in these particular phenomena but simply because
it is much simpler. Actually, we have chosen, from the very beginning,
to study the models described not by continuous differential but by dis-
crete difference equations, or by mappings, or more briefly, maps. They
are much simpler for analytical treatment, and even simpler for numeri-
cal simulations, or numerical experiments as we like to say, angering true
(laboratory) experimentalists.

At this point I must say that numerical experiments play a very profound
role in the studies of dynamical systems in general, and chaotic phenom-
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ena in particular. This “third way of cognition” (in addition to laboratory
experiments and analytical theory) is justified by definition for all the sec-
ondary laws (like statistical laws) which are completely contained within a
more fundamental theory (like classical or quantum mechanics).

Thus, we are interested not so much in time-dependent dynamical sys-
tems but rather in the models represented by maps for their simplicity. The
main problem for a physicist here is to choose the model to be as simple
as possible but not simpler, that is to choose one which is rich enough,
and which, at least, contains the desired phenomenon of dynamical chaos.
Also, in what follows we shall restrict ourselves to Hamiltonian systems
which are the most fundamental ones, even though less practical (another
interesting topic to discuss elsewhere!). Besides, the invariant measure of
any Hamiltonian system is known beforehand, it is simply the phase space
volume (in any canonically conjugated variables). This is a great simpli-
fication in theoretical analysis. Then, one of the simplest models can be
described by a two-dimensional canonical (area-preserving) map, which in
turn, it is convenient to specify by the generating function of the form,

G(z,p)=zp+ A-H(z,D). (1.5)

The map itself is given by the difference equations z = 0G/9p; p = 0G /0,
or,

pop-na Q@D A OHER) (1.6)
or 0p
Here z,p are old (initial) variables, and Z,p are new ones, that is after
some period of time A. In the limit A — 0 the differences p —p and 7 -«
vanish, and we have a continuous system with Hamiltonian H(z,p).
For any finite A, some time-dependent Hamiltonian can be also intro-

duced. This is especially simple if we assume

H (z,p) = Ho (p) + %V(x), (1.7)

where Hy describes the unperturbed system, and V is the perturbation
with parameter k. Then, the Hamiltonian we are seeking is,

H(a.p.t) = Holp) + = V()3 (1) (1.9

The explicit time dependence is introduced here via a periodic é-function,

Salt) =A-D 6t —mA). (1.9)



454 B. V. Chirikov

The continuous system (1.8), although singular, is completely equivalent
to the map (1.6) with the function H from eq. (1.7). The latter form
provides an explicit map which is also a great simplification, especially for
computation.

Thus, a map may be viewed as a time-dependent system driven by the
external periodic perturbation in the form of short “kicks” represented by
the é-function (1.9) (this is the origin of the topic of my course). Yet, this
is not necessarily the case. We may construct a map, the so-called Poincaré
map, for a conservative system as well. Consider, for example, a billiard
in a plane (fig. 2), and let us record the ball’s position in 4-dimensional
phase space each time when z = a has some prescribed value. Owing to
energy conservation, the remaining dynamical space is 2-dimensional and
it is called Poincaré’s surface of section. The equation of motion induces
the transformation of this surface onto itself which is described by some
map of type (1.5) but, of course, not always of a simpler form (1.7). This is
another view of the map. Notice that successive time intervals A; for the
map would be generally unequal and sometimes even chaotic. But we may
introduce a discrete time, the number of the map’s iterations, or change
the time variable in such a way to ensure that all A; = const., and then
construct a continuous “kicked” model like eq. (1.8).

The map (1.6) with Hamiltonian (1.7) will be our basic model in dis-
cussing the dynamical chaos. But it is a classical model, whereas my main
topic is quantum chaos. Why quantum? Because today quantum mechan-
ics is the most deep, fundamental and universal physical theory which seems
to comprise everything in the Universe. Everything but ... true dynamical
chaos! This is the most delicate point in the problem of quantum chaos we
are going to discuss. But first, in the next section I will briefly review the
classical dynamics of the basic model to see (or to revise!) the meaning
of dynamical chaos and to see what is absent in quantum mechanics, and
why.

2. A brief review of the classical chaos

2.1. The basic model and physical problem

First, we shall specify further the basic model given by eqs. (1.6) and (1.7).
If we assume that (p,z) are action—angle variables and let V(z) = cosz,

then map (1.6) becomes,

p=p+ksinz, z=x+ A-H|(p), (2.1)
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Fig. 3. Chaos in the Coulomb interaction: (1) the central body (Sun or proton);
(3) comet or electron; the periodic perturbation is due to Jupiter (2) or to a uniform
alternating electric field (4); P is the perihelion and A is the aphelion of the comet’s
(electron’s) orbit.

where H{(p) = dHy/dp. The phase space of this model is a cylinder,
periodic in z (mod 27) and infinite in both directions of p.
The condition,

A- H(,) (pr) = 27, (22)

for any integer r determines the resonant values p,.. If their spacing ép, =
|27 /(A - H{)| < |H{/H{'| is small enough, we can linearize the second
equation (2.1). Introducing the new variable P = p — p,, we arrive at a
still simpler map,

P=P+ksinz, T=x+TP, (2.3)

where T'= A - H (p,) is a new parameter. The latter model has become
very popular in studies of nonlinear dynamics and chaos. It is usually called
the standard map.

The are two parameters in this map but one of them can be eliminated
by another change of variable: TP = (), whence,

Q =Q+ Ksinx; T=x+Q. (2.4)

Thus, the dynamics of the standard map is completely determined by the
only parameter,

K = kT, (2.5)

together with the initial conditions, of course. However, in quantum me-
chanics the latter simplification does not work, and we shall have to use
version (2.3) of the map (section 3).

The standard map appears so simple that it may seem to be a mathe-
matical exercise rather than a real physical model. To avoid such a mis-
conception let us consider straight away two particular physical examples
which can be described by, or, rather, reduced finally to, the standard map.



456 B. V. Chirikov

The first example is from celestial mechanics, namely, the motion of a
comet (around the sun) driven by Jupiter. We assume a plane-restricted
circular three-body problem as outlined in fig. 3. The comet’s orbit is
extended (eccentricity e ~ 1) and lies outside Jupiter’s circular orbit and
in the same plane. We may construct a map over either Jupiter’s period
of motion or that of the comet. Choosing the second (simpler) option, we
arrive at the basic model [9],

E=FE +ksingp, g5:<,0+27rw(—2E‘)_3/2.

(2.6)
Here E < 0 is the comet’s total energy (per unit mass), and w and ¢ are
Jupiter’s orbital frequency and its phase at the moment when the comet
is at perihelion, respectively. We assume the sun’s mass, Jupiter’s orbit
radius and frequency w to be unity but keep w in eq. (2.6) to use this
equation in the second example.

The perturbation parameter [9],

k= 8.5,u,q_1/4 e 0"’

(2.7)
(g is the comet’s perihelion distance and p =~ 1073 is Jupiter’s mass), does
not depend on the energy E. This is one reason to use the energy instead
of the action. Another reason will be given later on in this section.

Notice that the energy value E determining the Kepler period of the
comet is actually achieved at the aphelion, further from Jupiter, while its
strongest perturbation is concentrated near the comet’s perihelion. Thus,
the quantities ¢ and E correspond to different instants of time, and to
different positions of the comet. Hence, eq. (2.6) is not the usual Poincaré
map.

Problem. Change map (2.6) to the form in which ¢ and E are both taken
at perihelion (aphelion).

The second parameter of the corresponding standard map,
T = 61w (—2E) °/? (2.8)

(as well as K in map (2.4)) is energy dependent.

Map (2.6) is, of course, an approximation if only because the changes in
e and g are completely neglected but this can be justified [9]. Thus, the
map describes the essential dynamics of this three-body problem which, in
particular, may be chaotic. For example, the Halley comet with a somewhat
more complicated perturbation term turns out to be chaotic (see ref. [10]).
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This example is especially interesting because it belongs to celestial me-
chanics, the citadel of classical deterministic physics, which falls with the
onset of chaos.

Unlike the previous purely classical example, the next one is quantal: the
photoelectric effect in hydrogen, i.e., the ionization of a hydrogen atom by
a uniform monochromatic electric field. Here we consider the quasiclassical
region of large quantum numbers including the initial ones. Such states are
called Rydberg atoms.

In some approximation, to be discussed in detail in forthcoming sections,
we may use the classical model of the atom. Then, the picture of electron
motion is essentially the same as for the comet (fig. 3), the only difference
being that there is now an alternative uniform field of frequency w # 1,
. instead of a rotating point mass (Jupiter). Moreover, the map (2.6) as well
as the standard map can be used with the same parameter T' (eq. (2.8))
but different

€
Here ¢ is the field strength [11] (the atomic units e = m = h = 1 are used
in this example).

Now w is the field frequency, and ¢ is the field’s phase at the moment
when the electron passes the perihelion where the interaction with the field
is maximal. The latter is not obvious, perhaps, because the perturbation
is uniform, unlike the first example. The cause of the maximal effect of the
field near the perihelion is explained by the maximal electron’s acceleration
at that point.

2.2. Nonlinear resonances and their interaction

First, we shall consider the dynamics of the standard map (2.3), which
is quite simple in comparison with the basic model (2.1). Without the
perturbation (k = 0), the action P is the motion integral while the phase
z is uniformly rotating with frequency w = (z — z) /T = P = const. Such
an oscillation is called nonlinear because its frequency depends on the
action. Notice that nonlinearity is related here to a linear second equation,
eq. (2.3). This is because we interpret = as a phase variable, and interpret
the motion as an oscillation.

Even if z is a standard Cartesian coordinate, the notion of nonlinear
motion sometimes makes sense, depending on the perturbation to be in-
cluded. Suppose, for example, that the perturbation sinz is a spatially
periodic field. Then, uniform motion in a straight line with constant ve-
locity P would be also termed as a “nonlinear oscillation” in the modern
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(AP),

Fig. 4. Phase plane of a nonlinear resonance: the full circles indicate periodic orbits;
the dashed line is the separatrix.

theory of dynamical systems. The reason for this somewhat strange termi-
nology is related to the fact that just such a nonlinearity is responsible for
chaos as we shall now see.

The unperturbed motion is called resonant if the frequency ratio
w/(2n/T) = TP/2w = m/l is rational. For a sufficiently small perturba-
tion, only resonances are essential for the dynamics. The principal slogan
in Hamiltonian dynamics is,

Look for the resonances!

The resonances form a set that is everywhere dense, yet only part of
them are really important.

One resonance (I = 1; m = 0) can be analyzed in the following simple
way. Assume k — 0, and AP = |P - P| < 1; Az = |z — 7| < 1. Then
we can replace the difference equation (2.3) by the differential one with the
Hamiltonian,

2
HY = % + gcosx. (2.10)
However, this is simply a pendulum which, thus, models a nonlinear res-
onance. Notice that the unperturbed system in this model (k = 0) is a
rotator whose frequency P is equal to the action (in our units).

The phase portrait of a single nonlinear resonance is outlined in fig. 4.

There are two periodic trajectories (fixed points), stable (z =7; P =0) in
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the resonance center, and unstable (r = P = 0). The latter is asymptotic
to a peculiar trajectory — the separatrix (denoted by the dashed line) -
which bounds the resonance domain of z-phase oscillation. Outside the
domain, z is rotating. The resonance width in P at £ = 7 is equal to

(AP), = 4/k/T, (2.11)

and it is much bigger for small k¥ than a non-resonant perturbation AP ~ k.

The single nonlinear resonance (2.10) is a completely integrable system
with regular motion and no chaos whatsoever. How can we get other res-
onances in the standard map? One way is to construct the corresponding
continuous system as was explained in section 1 (see egs. (1.8) and (1.9)).
. For the standard map (2.3), Hy = P?/2, and A = T. Using the formal
expansion,

> 2mmt

5r(t)=T» 6(t—mT)=1+2 cos T (2.12)

we arrive at the continuous time-dependent Hamiltonian

P2 k& 2wmt
H(.T,P,t):T-FT' Z COs <.’E— W;), (213)

m=—0Q

which describes the same model (2.3).

A term in eq. (2.13) with m = 0 represents the pendulum (2.10), that is,
a single nonlinear resonance. But any other term m # 0 differs from the
former only by a shift in P by (§P),, = 2rm/T. The change of variables
z —y=2—(6P)ut, P— p=P — (6P),, with the generating function
F(y,P) = —[y + (6P)mt] [P — (6P).,] brings the Hamiltonian (2.13) with
a single term m # 0 into the form (2.10). Hence, the Hamiltonian (2.13)
explicitly describes an infinite set of resonances P, = 2mm/T which all
are alike. The latter is immediately seen from the map itself because it
is periodic not only in z (mod 27), but also in P (mod 27/T). This is a
peculiarity of the standard map which one should bear in mind.

The standard map describes the local structure of a more complicated
basic model, the former being presented as a uniform structure. The peri-
odicity of the standard map in P implies that the structure of motion on
the infinite cylinder phase space is essentially equivalent to that on a finite
torus (z (mod 27); P (mod 27 /T)), which is required for unstable motion
to be chaotic.
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The single resonance approximation (2.10) holds for any of the primary
resonances P, = 2mm /T in model (2.13) provided the perturbation k& is
sufficiently small. The question is, how small?

The natural measure is the overlap parameter,

S =

((AMIZ;;” = %KW, (2.14)

which is the ratio of the resonance width (2.11) to the spacing of the pri-
mary resonances (6P); = 2w /T. Obviously, s depends on K = kT only.

If s <1, or K < 1, all the resonances but one (depending on the initial
conditions) can be neglected. In other words, we may say that resonances
do not interact. In the opposite limiting case (s > 1; K > 1), they do
interact because the system is nonlinear.

When K « 1, the nonlinearity suppresses, or stabilizes, the resonant
perturbation unlike the case of a linear oscillation. However, if K > 1, a
trajectory may pass from one resonance domain to another, thus wandering
in P. This is quite comprehensible. What is less expected, and was actually
a big surprise, is that the motion becomes of a qualitatively different type,
namely, chaotic. How do we know that the motion is chaotic when K >
17 From the local instability of the motion. Before turning to the latter
point, let us briefly discuss the critical value of K = K, which separates
the bounded and unbounded motion in P. Notice that the existence of
such a critical value is directly inferred from periodicity in P. A plausible
conjecture would be that s. ~ 1, and K. = n2/4 ~ 2.5 (see eq. (2.14)).
This is true, but only in order of magnitude. Thorough analytical and
numerical studies yield [6,12,13],

K.~1, Sc =~ 2/T. (2.15)
The main cause of the discrepancy is related to high-order resonances P,,,; =
(2m/T)(m/l) (I > 1), which are not explicitly present in the Hamiltonian
(2.13), and which arise in higher approximations of the perturbation theory.

2.8. Local instability and chaos

Local instability is studied most conveniently by using the linearized stan-
dard map (2.3). We have,

n=n+&k cosxo, §_:§+ﬁT, (2.16)
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Fig. 5. Two periods of the standard map [13]: K = 1.13 > Kc; the connected chaotic
component is hatched; the circles are stable fixed points of period one in the centers of
three successive resonances Pp = 27n.

where z0 is the reference trajectory, and £ = dr and n = dP are infinites-
imal. The local eigenvalues of the map,

0 0
A(m0)=1+£;s—x—j:\/l(cosmo (1+KC#), (2.17)
depend, again, on K but also on z9. The latter implies fluctuations in the
motion’s instability.

If the instability were uniform, the Lyapunov exponent (for a bigger
|A|) would be TA = |In|A]| > 0, the latter inequality being the condition
for chaos. Consider, for example, a “linear” perturbation kz in the stan-
dard model. We use quotation marks because z is a phase variable taken
(mod 27), and the motion is confined to a torus but not to a plane. In this
example, the motion is unstable and chaotic for all K outside the interval
(—4,0).

What should we do in the case of eq. (2.17), when X (z°) varies along a
trajectory? Now we need to average In|A[,

TA =In[A| = (In|A]), (2.18)
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Fig. 6. Same as in fig. 5 but for K = 5: the motion time is 7 = 10° iterations; the
resolution is 128 x 128 bins [13].

where the horizontal bar denotes the time-averaging along a trajectory,
and the brackets do so for the phase-averaging over the invariant measure
of a motion component to which the trajectory belongs. The latter is the
principal difficulty because the motion component may happen to have a
very complicated structure which is sometimes called a fat fractal [14]. This
is certainly the case for K ~ 1 (fig. 5).

A plausible conjecture is that for K > 1, the trajectory will fill up the
whole torus as |A| > 1 for most z° values. Numerical experiments do
confirm this conjecture (fig. 6). Then, we can average eq. (2.18) over z° to
obtain,

TA =(In|\|),o =In(K/2), (2.19)
which proves to be a good approximation for K > 4.

Problem. Estimate the number of empty bins (small white spots in fig. 6)
missed by a chaotic trajectory because of random fluctuations.

In fig. 7, a few chaotic trajectories of the standard map are shown
for illustration. The dashed lines indicate the root-mean-square fluc-

tuations: <(AP)2>1/2 = 19(15/2)1/2 (T = 1, see below), while vertical
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-300

Fig. 7. Four chaotic trajectories of the standard map: T =1; K = 5; t = 10%; average
(dashed lines) and maximal (vertical hatching) fluctuations are shown.

hatching is the strict upper bound for the diffusion fluctuations: |[AP| <

((AP)2>1/2 (2In1n t)1/2, the so-called law of the iterated logarithm.

For K 2 K. ~ 1 the connected (global) component occupies about a half
of the phase space. If K < 1 the chaotic motion remains in exponentially
narrow isolated layers around resonance separatrices only. It’s interesting
to note that the motion in these layers can be approximately described,
again, by the basic model [13].

The local instability, as described by the linearized equation, charac-
terizes the behaviour of infinitely close trajectories. What would be the
evolution of two real trajectories initially at a small but finite distance?

In the standard map, for a sufficiently strong local instability (K > 1)
and a small perturbation (k < T), the exponential separation of close
trajectories proceeds mainly along the z direction. This is easily verified
by the linearized eq. (2.16), from which the ratio of eigenvector components
is

S mT> 1L (2.20)

§ -1
n
As soon as the separation in phase & ~ 1 reaches the maximal value, the
exponential instability in both  and P terminates (for these two particular
trajectories only!) and turns into a mixing in z, and into a diffusion in P.
The latter separation grows only as t!/2 only.
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2.4. Regular, or familiar, chaos

The term “regular chaos” should not be confused with the notion of “reg-
ular trajectory”. The latter is understood to be quasiperiodic motion of
discrete spectrum in a completely integrable system — something opposite
to chaos. The term “regular chaos” means chaos with commonly expected
statistical properties conjectured and described via additional statistical
hypotheses long before the contemporary era of dynamical chaos.

One of such routine statistical processes is diffusion (in P for the standard
map). The diffusion rate is by definition

_{(AP)?) g2
Dp = =57 C(K), (2.21)
where the latter expression takes account of the dynamics via the correla-
tion factor C'(K) that we are going to discuss.

In the old days, a reasonable statistical hypothesis would have been the
random phase approrimation: successive x values are random and statis-
tically independent. Then, obviously, C = 1. In the theory of dynamical
chaos, we don’t need any hypotheses but, instead, we must calculate the
correlation C(K) (and the diffusion rate) from the dynamics, eq. (2.3) for
the problem under consideration.

If K > 1, the principal contribution comes from the correlation of the
phases T and z, the latter being the backward iterate of z. This was first
done in ref. [15] (for a simple calculation see ref. [16]),

C(K) ~ 1+ 4(sinZsinz)
=1-2(cos(2z + Ksinz)) =1-2J5(K) . (2.22)

Here J5(K) is a Bessel function. The comparison of theoretical and numer-
ical results is shown in fig. 8 and it is fairly good except for a few points to
be discussed later on. Occasionally, C(5) ~ 1 which we shall use in some
numerical illustrations.

This is a good example with which to understand the relation of dynam-
ical chaos to the old traditional statistical mechanics. In case of a strong
instability of motion, the trajectory no longer has any direct physical mean-
ing, and we have to turn to a stable statistical description, if there is one.
Yet, the dynamical equations, e.g., the standard map, may and can be used
to derive the statistical laws.

The diffusion equation for the distribution function, or density,

of(Pt) 10 p, (B 1)
ot  20P T ap

(2.23)
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Fig. 8. The diffusion rate in the standard map: Dy = k:2/2; the solid line is the
prediction of a simple theory [15]; circles are numerical data [15], and the crosses are
the same for the quantized map [17].

has a formal solution for any initial f(P,0). Yet, dynamical chaos imposes
on this process some temporal and spatial scales related to the initial ex-
ponential spreading of the distribution function prior to the diffusion. The
spatial dynamical scale is (cf. eq. (2.20))

(Az)e~1;  (AP),~ 1T, (2.24)
while the spreading time is

(At)s _[In(T(AP))
T TA ’

(2.25)

where (AP)q <1/T is the initial width of the distribution function. Be-
cause (Az)s ~ 1, only the motion in P is diffusive.

In an infinite phase space on a cylinder, the uniform diffusion leads even-
tually to a Gaussian distribution,

P2
€Xp ( 2tDp >
vV 27TtDp ,

which is spreading out indefinitely (fig. 9).

f(Pt) = (2.26)
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Fig. 9. Gaussian fluctuations in the standard map [13]: fn = f/27tDp (see eq.

(2.26)); £ = P2/2tDp; the straight line is the prediction corresponding to a normalized
Gaussian distribution: —In f, = FE.

Instead, we may consider a finite P interval of total length L. For exam-
ple, we may “roll up” the cylinder into a torus, the model we are going to
use In future sections. Then, instead of an infinite diffusion, there would
be a relazation to the steady state fs = 1/L in accordance with the Hamil-
tonian invariant measure. The relaxation law is asymptotically determined
by the first eigenfunction of the diffusion equation, and has the form,

1 2 2nP
f(P,t) — 7 e=2mtDp/L% (o WT (2.27)

Notice that unlike the formal diffusion equation, the maximal number n of
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cigenfunctions f, ~ cos(2rnP/L) under dynamical chaos is restricted by
n < LT/2n = I, the number of the map’s periods in P over the torus (cf.
cq. (2.24)).

So far we have interpreted the standard map as a “kicked rotator”, hence,
x was the angle variable defined (mod 27). Instead, we may also view this
map as describing a particle motion in an infinite periodic field. Then z-
motion is also diffusive for Az > 2x. Since z —z =Tp and p ~ (Dpt)l/ 2,

the spreading of the distribution function in z grows as Az ~ TDL*3/2 ~
Kt3/? (see eq. (2.21)).

Problem. Derive an exact expression for ((Az)?).

The maps under consideration are canonical, which corresponds to the
Hamiltonian nature of the physical systems modeled by these maps. The
models are approximate, of course, and a crucial question is how large are
the deviations? Is the simulation quantitative or only qualitative? One ori-
gin of the large deviations is related to a somewhat surprising fact that the
steady-state distribution depends in general on the time variable chosen.

Consider, for example, our basic model (2.6). Here, the physical time
ton and map’s time ¢ (proportional to the number of map’s iterations) are
related by

dtpn 27 2w

dt = (—2E)3/2  Q(E)’

where  is the frequency of the motion in physical time. From the ergodic-
ity of motion, the invariant measure (= steady-state distribution) is propor-
tional to the corresponding time and, hence, is different in the two models
provided that the derivative dt,,/dt depends on dynamical variables. For
the physical time t,p,, the measure dy ~ dJ ~ déph is related to the action
J. Hence, for the corresponding Poincaré map dji ~ dt ~ QdJ = dE, the
true measure is determined by the energy, not by the action. This is the
main reason why one should use energy, rather than action or any other
variable, to construct the map for a time-dependent Hamiltonian system.
The chaos so far considered is simple in the sense that it is well known
in traditional statistical mechanics. What is not so simple is the dynam-
ical nature of this chaos. Particularly, it resolves an old mystery, how to
reconcile dynamical time reversibility with statistical irreversibility, or, in
other words, how to explain the nature of the so-called “time arrow”?
The answer given by dynamical chaos theory may surprise you: there is
no time arrow whatsoever! The statistical relaxation as well as the diffusion
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proceeds in both directions of time. Both of these processes are symmetric
with respect to time reversal as well as the dynamical motion of which the
former are particular cases.

To be sure, the diffusion equation (2.23) is not symmetric, of course,
but this is only because it describes an averaged (over phase z) evolu-
tion of the system. In other words, the distribution function f(P,t) is a
coarse-grained density. The fine-grained (evact) density f(P,a:,t) would
not tend to a constant like f(P,t). Instead, it becomes more and more
“scarred” as the relaxation proceeds. These “scars” remember the initial
state f(P,z,0) and provide the time-reversal behaviour. Yet, the exact
distribution f(P,x,t), as well as the coarse-grained f(P,t) for a chaotic
motion would never come back to the initial distribution, unlike an individ-
ual trajectory which does so infinitely many times according to Poincaré’s
recurrence theorem. Moreover, even if the distribution function is related
to a single recurrent trajectory, the former would not recur.

In my opinion, much of this confusion is due to ambiguous terminol-
ogy. One should distinguish two completely different properties: (i) time-
reversibility as a result of very strong external intervention into the system,
the reversal of its velocities, and (ii) the recurrence of a free evolution of
the autonomous system when it is left alone. The chaotic motion is time-
reversible relaxation which is non-recurrent.

The illusion of time arrow in Nature stems from the confusion of the
two above conceptions: in a chaotic system there is always some relaxation
whatever direction of time you follow (see also section 5).

2.9. Critical phenomena in dynamics: beyond any order

As the statistical properties of a dynamical system are completely deter-
mined by the equations of motion and do not depend on our simplified
assumptions, it is no surprise that the former are not always as simple
as we should expect. Moreover, it is common that neither dynamical nor
statistical description reveals any order or simplicity. Reality is highly
intricate!

Consider now the basic model in the form (2.6), for example. Its local
dynamics is described by a standard map with the principal parameter
(2.5)

K = 6mkw(—2E)™%/2 (2.28)

which now depends on a dynamical variable E, the energy. The connected
chaotic component of the motion is determined by the condition K > K.~
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l. or,
|E| < (6mkw)?/® = |Ey|. (2.29)
2

This condition determines the chaos border in the phase space. The struc-
ture of the motion near the border is very complicated as is immediately
obvious from fig. 5. Particularly, this leads to a high correlation in the
phase z which suppresses the diffusion rate as K — K., or E — Ej. For
the correlation factor near the border [17], we have,

C(K)~ 06K (1—K./K)°. (2.30)

This is another example of the particular statistical properties inferred from
" the dynamics which would be difficult to guess hypothetically. The power-
law dependence was obtained first from numerical experiments [13] which
are represented in fig. 10. The mean number of iterations N required for
the transition between two neighbouring resonances P, = 2mm is related
to the correlation factor by

872 0.8 955
C = NIz K2 (K —0.989)“"". (2.31)

The latter expression corresponds to the data in fig. 10. The accuracy of
the exponent had not been very high, and subsequently it was changed [18]
(see eq. (2.30)).

A low diffusion rate near the chaos border, albeit in a very narrow layer,
drastically changes the statistical properties of the whole chaotic compo-
nent. The most important effect is a slow correlation decay which is de-
scribed by a power law [19,20]. For example,

Ceg(r)=E®{)E(t+T1)~T17?, (2.32)

instead of the exponential decay usually assumed in traditional statistical
mechanics. Moreover, in the case of analytical perturbation, p = 0.5 <1
(for peculiarities of a singular perturbation see ref. [24] and the example
(2.35) below). The latter inequality implies, first, that the spectrum of the
motion, the Fourier transform of C(7), becomes singular at w — 0, namely,

S(w) ~wP ! ~ w2, (2.33)

This results in very large fluctuations so that the statistical description,
always incomplete, also loses its attractive simplicity and reliability. Those
fluctuations are clearly seen in fig. 10.
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Fig. 10. Critical behaviour in the standard map [13]: Dp = 472 /N; T = 1.0.

If critical chaotic motion, with the power-law correlation, is coupled to
another freedom, the diffusion in the latter would also be very unusual,
namely, “abnormally” fast. The formal diffusion rate, which is proportional
to the integral of the correlation function, diverges. Actually, this implies
that the dispersion of the distribution function

0% ~ t27P 4312 (2.34)

grows faster than time. In addition, the fluctuations of diffusion also diverge
in time which, again, restricts the description of such a process, essentially,
to order-of-magnitude estimates.

An example of such complicated statistics can be seen in fig. 8 at K ~ 6.5.
The measured diffusion rate grows as ¢1/2 by orders of magnitude [21] due
to a few small islands of stability surrounded by chaos borders (cf. fig. 6).

In conclusion, I would like to mention another very “ simple” map

P=p+ kzx, Z=2z+p (mod 1), (2.35)
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with parameter k in the interval (—4,0). Formally, the motion is locally
stable. Yet, for non-integer k values, the map is discontinuous, and this
results in an extremely complicated behaviour, both dynamical and statis-
tical. It is not at all clear what could be a meaningful description, if any,
of this apparently trivial model. You might like to play with this map on
computer.

3. Quantum dynamics and the classical limit
3.1. The correspondence principle

. Now we turn to the central topic of my course, quantum dynamics. For-
mally, it is described by the Schrodinger equation (or a similar equation)
for a very specific physical object, the wave function. However, for a physi-
cist, this is not the whole story. Unlike in classical mechanics, you cannot
simply presuppose the measurement in quantum mechanics as some rou-
tine procedure of a technical significance only. On the contrary, in spite of
the tremendous success of quantum mechanics, which has conquered the
whole physics and beyond, we still don’t know how to describe dynami-
cally the quantum measurement, and even to specify its physical nature.
To be sure, there is an unambiguous convention concerning how to relate
the results of measurements to the ¥ function. It goes back to the work
of Born and has been subsequently developed into a beautiful theory (and
philosophy) by Bohr and his school. This theory is known as the Copen-
hagen interpretation of quantum mechanics. Yet the physical mechanism
of quantum measurement remains a highly controversial topic (see, e.g., a
very interesting discussion of the mysteries of quantum physics in ref. [22];
one of the latest suggestions is due to Percival [23]).

As is well known, the Copenhagen convention is probabilistic, and more-
over, it is believed that the quantal probability is of some (unknown) fun-
damental nature beyond the conventional physics. This is very confusing
since we intend to discuss the nature of dynamical chaos, particularly, in
quantum mechanics.

To avoid this difficulty we restrict ourselves to the dynamics of the v
function, and its time evolution ¢(¢). We understand ¢ as a specific dy-
namical variable of a quantum system. In other words, we divide the whole
problem of quantum dynamics into two unequal parts: (i) the proper, or in-
trinsic, dynamics of a quantum system “itself”, that is independent of any
measurement, and (ii) the quantum measurement which, although “for-
eign” to the quantum world, is nevertheless the only way to study the
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latter experimentally.

The first part is, of course, much simpler because it is described by
well-established quantum equations of motion such as Schrodinger’s, for
example. This part comprises the essence of quantum dynamics, and it
is simply and unambiguously related to experiment, if necessary, via the
Copenhagen convention. In the latter case, we assume two and only two
measurements in the quantum system under consideration: (i) the first
complete measurement which determines the initial 1(0), and (i) the fi-
nal measurement, complete or incomplete, which records the result of the
intrinsic quantum evolution. Notice that unlike classical mechanics, any in-
termediate measurement would drastically change the quantum evolution.
In other words, the intrinsic motion of a quantum system, which we are
going to discuss, is a sort of “black box”. We don’t know what is going
on “inside” it, yet we can predict the result. In this respect, numerical
experiments in quantum mechanics have a key advantage over laboratory
experiments: in the former, you can follow the quantum system without
changing its dynamics. Of course, you are actually following the model,
no matter how universal it might be, and not the real system. But it is
pretty-well perfect for a theoretician! Notice that in classical mechanics
there is no such difficulty with the process of measurement, nor is there the
corresponding advantage of numerical experiments.

The importance of the second part of the general problem of quantum
dynamics, the problem of understanding the measurement, arises because
the latter results in the so-called collapse of the 1 function. This collapse is
not described, as yet, by any dynamical equations. Instead, in the Copen-
hagen interpretation, the collapse is related to the observer rather than to
the quantum system itself. However, some researchers, including myself,
argue that the collapse must occur somehow independently of the observer.
In other words, the controversial question concerns whether the collapse is
an intrinsic or extrinsic phenomenon with respect to the quantum system.
I plan to briefly discuss this topic, among others, in the concluding section.

As the measurement device in quantum mechanics is by definition a
classical system, the mystery of quantum measurement is intimately related
to a very difficult physical problem, the quasiclassical transition which is
still quite far from being completely understood. Quantum chaos, which
we are going to discuss, is also an essentially quasiclassical phenomenon
as true dynamical chaos occurs only in the classical limit, i.e., in classical
mechanics.

A linguistic remark. Some people use the term semiclassical instead of (or
as a synonym for) quasiclassical, but I reserve the former for a different
conception related to a system which has both classical and quantum in-
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teracting parts. In such a system, true dynamical chaos can occur. An
important example is quantum measurement.

Thus, we are going to discuss the so-called quasiclassical region. In this
region, the fundamental correspondence principle is of primary importance.
In a narrow sense, this principle had been formulated by Niels Bohr at the
dawn of quantum mechanics as a practical method for solving quantum
problems before the complete theory was built. However, in a broader
sense, the correspondence principle must hold in any new fundamental
theory, which simply implies that all firmly established previously scien-
tific laws must be immutable. The future development of the science may
only restrict, as a rule, or sometimes even broaden, the domain of their
validity but would never refute them altogether. This implies in particular
.that, whatever quantum dynamics is like, it has to approach somehow dy-
namical chaos in the quasiclassical region. This is a very important guiding
principle, which we are going to exploit.

3.2. Quantization of maps

Consider first the standard map (2.3) in which we change the notation to
n=n+ksincz, z=x+Tn, (3.1)

for the reason that I shall now explain. Quantization of this map depends
on the interpretation of the z-variable. Suppose the map represents the
kicked rotator, so that z is the angle variable defined (mod 27). Then, in
quantum mechanics, the wave function ¢ (z) must be periodic (mod 27),

inx
e

w(a) = Y v(n) (32

where 1)(n) are Fourier amplitudes of the function 9(z), and the integer n
is (angular) momentum. Here and later we assume Planck’s constant i =1
unless otherwise is explicitly stated. Without the perturbation (k = 0), the
momentum n = const., hence, exp(inz) are the eigenfunctions, whence the
momentum operator

a
n=—i—. 3.3
i3 (3.3)
Notice that because of quantization, it is impossible to get rid of the pa-
rameter T as in classical mechanics. Indeed, introducing a new variable
Q = Tn (cf. eq. (2.4)) does not help because n is an integer anyway.
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Hence, the operator @ = —iT9/0x, and T = heg remains as an effective
Planck’s constant [25]. For the same reason, one cannot set T' = 1 because
that would contradict the previous condition A = 1.

The quantum motion can be described [26] either by the continu-
ous Schrodinger equation idy/0t = Hv related to the Hamiltonian (cf.

eq. (1.8))

~ n: ok
H = > + T COST - or(t), (3.4)

or by a quantum map

Y(t+T) = ¢ = Uretp(t), (3.5)
where the unitary evolution operator over time period T is
O7x = exp <—i / at H) — ReWi. (3.6)

In the last expression we introduced the operators of a free rotation

T 92
> — e—iTﬁ2/2 — “Xp <IEW) ’ 1/)(:1:),

Rr (3.7)
exp (—i€n2) ,  Y(n),
and of a kick
) exp(—ik cos ), Y(x)
W= 2 T (B), 9(m) (3:8)

where Jj(k) are the Bessel functions. The operators are given in two forms,
for the coordinate (r) and momentum v(n) representations of the wave
function. In the latter case, the evolution operator is an infinite matrix

P(n) =D Unmh(m), Unm = (—i)" ™ exp (—iTn2/2) Jn_m(k).
" (3.9)

Notice that even though the operators RT and Wk do not commute, either
order can be used in the map (3.5), the difference being simply a shift in
time. Sometimes it is convenient to use a symmetric representation,

UTk- = ﬁT/2WkRT/2. (310)
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The explicit time dependence in this case is symmetric with respect to time
reversal. This will be used later, in section 5.

In the quantum standard map (3.9), both parameters, £ and T', are in-
dispensable as the two corresponding operations are qualitatively different.
In the n-representation, the rotation shifts only quantum phases, while the
kick causes transitions between unperturbed n-states. Formally, all the
states are coupled but actually only transitions within a band of width
~ 2k are significant owing to a fast drop of J;(k) for |I| 2 k (see eq. (3.9)).
This allows us to use efficiently a single n-representation in numerical ex-
periments as was done, e.g., in ref. [26]. Yet, later we found that using
both z- and n-representations,

P(z) = B emiTn?/2 freikcose (g, (3.11)

provides a faster computation in spite of two fast Fourier transforms per
iteration (F' operator).

Now, consider another interpretation of the standard map, namely, let
it describe the motion in a spatially periodic potential cos x. Then, the -
function does not to have to be periodic in z. Instead, it acquires a phase
shift over a period of the potential

V(x4 27) = P(z)e®™ . (3.12)

The new quantity v is called quasimomentum, and the function satisfying
condition (3.12) is a quasimomentum eigenfunction. Due to the periodicity
of the potential, ¥ = const. is a motion integral according to the Floquet
theorem. In other words, the momentum P = n 4 v is no longer an in-
teger but its fractional part v = {P} is conserved. In particular, v = 0
corresponds to a periodic ¢(z) as for the rotator considered above, and
with the same evolution ¢ (z,t). The evolution depends on v but different
quasimomentum eigenfunctions evolve independently of each other as there
are no transitions in v.

The general relation (3.6) between the Hamiltonian and evolution op-
erator holds for any quantum system, in particular, for our basic model
(1.6), (1.7). Consider, for example, the map (2.6). First of all, the vari-
able E here is not the action but the energy (of the Rydberg atom for the
second example, the photoelectric effect, in section 2). The quantization
here is related to an integer number of field quanta n = (E — Ey) /w and
the “quasimomentum” (integer part included) v = Ey/w where Ej is the
initial energy. Since v¥(¢p) is periodic (mod 27) the operator n = —id/dyp
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remains the same (cf. eq. (3.3)), and so does W with k — k/w. Yet, the
rotation operator is now different, namely,

R= exp [iw\/Z/—w(—u — ﬁ)_l/Q] : (3.13)

Another interesting peculiarity of this example is that the map’s time ¢ is
related to physical time ¢, via n as was discussed in section 2. Hence, the
wave function 9 (n,t) at a given ¢t describes the atom’s state at different
instants of ¢,,! This is a very unusual picture, and it is not clear at all
how to relate 9(n,t) and ¢ (n,tpn) in any simple way, since the relation
t (tph,n (tpn)) depends on the trajectory, which does not exist in quantum
mechanics.

What are the quasiclassical parameters of a quantum system which char-
acterize the transition to the classical limit, or to classical mechanics? Gen-
erally, the quantum numbers may play this role, the classical limit corre-
sponding to the large numbers, e.g., n — oo. Formally, this is equivalent
to the vanishing of Planck’s constant A — 0. Yet, I prefer to keep h = 1
which is more physical.

Inspecting egs. (3.7) and (3.8), we can see that for the standard map the
condition n — oo is not sufficient to provide the quasiclassical transition.
This is due to a specific perturbation in this model, as the perturbation
does not depend on n. It couples ~ k unperturbed states, so k is another
(principal) quasiclassical parameter (k ~ h_l). Since K = kT is the clas-
sical parameter independent of A, still another quasiclassical parameter is
T ~ k. Thus, the quasiclassical transition corresponds to k — 0o, T — 0
and K = const.

3.3. Quasienergy eigenstates

One method of analysis in quantum dynamics is somehow to find out the
eigenvalues and eigenfunctions of all the commuting operators. For the
time evolution problem, the most important “eigenquantities” are related
to energy.

Let us, again, begin with the quantized standard map (3.9). The unper-
turbed system (k = 0) is conservative and has, generally, the following set
of energy eigenfunctions ¢,, and eigenvalues E,, (see eq. (3.4)),

V2mp, = e Enttinz @ — (n 4 1)2)/2, (3.14)

With a time-dependent perturbation, the energy is no longer conserved
but, according to Floquet’s theorem, the quasienergy eigenfunctions can
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be introduced, satisfying
on(r t +T) = @n(z,t)e T = Urikon(z,t). (3.15)

The quantity €, is called the quasienergy. In a map, the dynamical state
is determined only at integer multiples of T, hence t can be dropped in
(3.15), to obtain the equation for € and ¢ namely,

o =eTUrp or () =eT Upnmp(m). (3.16)

The latter expression is given in the momentum representation, with the
matrix Uy, from eq. (3.9).

The standard way of solving eq. (3.16) involves the diagonalization of
the matrix U, which generally is possible only numerically, of course. For
the standard map, the infinite matrix Uj,, can be truncated to a fairly
high accuracy, as was mentioned above, assuming |l —m| < N ~ k. Then,
eq. (3.16) relates 2N + 1 successive values of ¢(l). Expressing ¢(l) for
the largest [ as a function of the 2N preceding ¢(m) we arrive at a 2N-
dimensional transfer map which describes a certain abstract dynamical
system of N freedoms with the quantum number of unperturbed state [ as
a “time”. This is another way to analyze the quasienergy eigenstates that
we are going to use [27].

Problem. Prove that the transfer matrix is canonical (symplectic).
3.4. Quantum resonance

The quantized standard map, as well as the classical one, is periodic in n.
This leads to a peculiar phenomenon — the quantum resonance — discovered
in ref. [26] and studied thoroughly in ref. [28]. The resonance is related
to the dynamics of quantum phases, which are determined (mod 27) like
their changes by the rotation operator (3.7). Since n are integers, the
parameter T, which enters this operator only, is determined (mod 4). In
other words, only the fractional part of T'/4w (mod 1) is essential for the
dynamics. Moreover, there is a symmetry with respect to T = 27 (see
eq. (5.1) below).

Now, suppose T' = 4x. Then, all the quantum phases remain unchanged,
and the evolution operator over (discrete) time 7 = [t/T] becomes

A

U, =Uf, =e 'Tkeose, (3.17)

Hence a series of 7 kicks is equivalent to a single kick with parameter Tk,
and it couples ~ Tk unperturbed states. Roughly speaking, the average



478 B.V. Chirikov

momentum (|n|) ~ k7, and the (unperturbed) energy is given by E =
(n?®) /2 ~ k*12. More accurately,
k2T2

_1 2 2
E—2fd:c 3z 5 %dw|w0| sin® x
) . oY kT ?
+k7’% dz sinz Re <1¢0 aixo) — <7) ) (3.18)

where the subscript zero denotes the initial state, and the last expression
is for 1g = const. (the ground state). This is the main quantum resonance
at T/4w = 0 (mod 1). Formally, it also includes the classical limit but the
actual transition to this limit is singular.

2

0
v g,

Problem. Show that, for T = 27, the quantum motion is strictly periodic.

As was shown in ref. [28], the resonance occurs at any rational T/4An =
p/q. Except for ¢ =2 (T = 2x), the growth of the energy is proportional
toT? as T — 00,

E — r(q)T2, (3.19)

but the rate r(q) sharply drops with q. We shall estimate this dependence
in section 6. The resonant perturbation is of period ¢ in n (see eq. (3.7)).
Hence, any eigenstate satisfies Floquet’s condition

p(n+q) = p(n) e, (3.20)

and is an unbounded quasiperiodic function of n. There is a striking simi-
larity with eq. (3.12) for the eigenfunction in a spatially periodic potential
up to a Fourier transform from a coordinate to momentum or vice versa.
For this reason, we may term the quantity y in eq. (3.20) the quasicoor-
dinate. It is defined (mod 27/q). The Fourier transform of p(n), taking
account of eq. (3.20), gives the eigenfunction ¢(z) as a series of equally
spaced é-functions at the points z; = y+27j/q. The resonant quasienergy
spectrum is continuous with ¢ bands €,,(y), m = 1, ..., ¢q. The bands’
width is related to the energy growth rate r(q) in eq. (3.19) (see eq. (6.22)).

The above-mentioned analogy between the quantum resonance in the
kicked rotator and the Bloch extended states of a particle in a periodic
potential is not restricted, of course, to the standard map which describes
both. Actually, there is a very broad and deep similarity between quantum
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spatial and temporal behaviour, that is between our time-dependent prob-
lem and the solid-state physics. In particular, for the standard map such
an analogy was apparently first discussed in ref. [29]. We shall come back
to this problem in section 7.

Quantum mechanical resonances are not a generic phenomena but are
a peculiarity of the standard map. Yet, we may use this peculiarity to
construct one more model of some general interest. To this end, we fix
the quasicoordinate y = 0. Then the quasienergy spectrum becomes dis-
crete and consists of a finite number ¢ of the levels while all ¢ remaining
cigenfunctions ¢;(n), | =1, ... ,q are of period g. If, moreover, we retain
just one period (n = 1, ... ,q), the eigenfunctions ¢;(z) become smooth,
and even analytical, and are represented by ¢ Fourier terms. Obviously, we
arrive in this way at the quantized standard map on a torus whose classical
counter-part was described in section 2. The number of classical periods in
n over the torus [ = ¢T'/2n = 2p must be even. This map models a closed
finite energy surface of a conservative system. We shall use this model in
section 8.

4. Quantum stability: perturbative, or extreme, localization
4.1. Resonant perturbation

As was stressed in section 2, in nonlinear dynamics one should first
look for resonances. For linear oscillations, this is a matter of the sys-
tem’s parameters, while nonlinearity always provides some resonances
that depend on the initial conditions. In the quantized standard map
(3.9) there are both linear (quantum) resonances at the parameter val-
ues T = 4np/q (p, q integers) and nonlinear (classical) resonances for the
initial conditions at P = (2n/T)(p/q) and any T'.

What does nonlinearity mean in quantum mechanics which, after all, is
described by a linear equation (Schrodinger’s equation)? First of all, such
an ambiguity is also present in classical mechanics, where the always linear
Liouville equation for a distribution function is completely equivalent to
Newton’s equations for the trajectories. So, formally it depends on the
representation of dynamics. Yet, from the physical point of view, the most
important property of nonlinearity is the dependence of frequencies on
initial conditions (the actions). In quantum language, this means that
(quasi) energy levels are not equidistant. But this implies, in turn, that
the exact resonance may not (and generally will not) occur at all, a typical
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detuning being

dw(n)
dn

Omn = dw(n) = da()i_;n) (n—mn;) ~ : (4.1)
Here w(n) is the classical frequency, and n, is a noninteger resonant value
of integer action n [w(n,) = Q the perturbation frequency].

The perturbation causes some transitions for any detuning, but if §,,,, #*
0 the transitions are suppressed for a sufficiently weak perturbation. How
weak? The answer is provided by standard perturbation theory with small
parameter

= Vi ~ 1,
|6

where V,,,,, is the perturbation matrix element. The condition u~ 1 de-
termines the border of quantum stability: no matter what happens in the
classical limit, the quantum state remains close to the unperturbed one. In
the case of classically chaotic motion, this important conclusion was drawn
first in ref. [30], and we call eq. (4.2) Shuryak’s border.

In the case of the standard map (2.13), nonvanishing matrix elements
are V,, n+1 = k/2T and detuning at a classical resonance is Omn ~ 1 as
w(n) = n. Hence, there is quantum stability when k& <7T. Notice that
perturbation theory is certainly inapplicable at k = 1 since the kick operator
(3.8) couples ~ k > 1 states, which is obviously a nonperturbative result.
This is because for k 2 1, the perturbation parameter p ~ k/T > 1 because
|T'| < 2m.

Another simple meaning of quantum stability at resonance is inferred
from eq. (2.11),

p (4.2)

k
p s~ (An)? ~ 1. (4.3)

Hence, the quantum system does not “feel” the classical resonance unless it
comprises many levels. Thus, quantum motion is more stable than classical
motion, and the origin of this stability is in the discreteness of energy
spectrum. Notice that the structure of classical motion near nonlinear
resonances is qualitatively different from the unperturbed structure even
in the case of arbitrarily weak perturbation.

Quantum stability when p <« 1 is also called perturbative localization,
first, because perturbation theory is applicable, and second, because the
change of the unperturbed state is small. In other words, nothing happens
in the quantum system if p < 1.
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If T' — 0, the perturbation must be very weak to provide the localization.
‘T'his is because at resonance the transition continues over many kicks until
the detuning is developed.

When pt ~ k/T = K/T? and |T| < 27 the quantum stability at resonance
(¢ < 1) is only possible for K « 1, i.e., for regular classical motion.
What happens if 4 > 1 but K « 17 The unperturbed eigenstates inside
the resonance would completely alter, of course, due to strong coupling.
However, another set of eigenfunctions can be introduced corresponding to
the motion of a pendulum (2.10), not the rotator. The other resonances
(sce eq. (2.13)) would perturb the pendulum which results, in classical
mechanics, in the formation of a narrow chaotic layer around the resonance
separatrix [13]. Such a layer exists no matter how weak the perturbation
is, because the pendulum frequency

TWo
In (32wo/71)’

w (72) ~ (4.4)

vanishes at the separatrix (7 — 0) while nonlinearity grows indefinitely.
Here 7 = n — ng is the distance from the separatrix in the action n, and
wo = (k/T)Y/? = k/VK is the frequency of small oscillations near the
resonance center.

In quantum mechanics 7 2> 1, and the minimal frequency (level spacing)
becomes

mk

()

The latter inequality is a sufficient condition for the quantum suppression
of chaotic motion in a separatrix layer with classical frequency ws at the
layer’s border. Using the estimate for ws in ref. [13],

Wmin ~ w(1) = 2 Ws. (4.5)

k k
“S TR <K3/2> ~x Kb (49)
™+ —1In
™ 24
we obtain for the border of quantum stability in the chaotic layer,
2 2R
k ~ 61,3 &P (7r / K), (4.7)

which is fairly large for K <« 1, when chaotic layers are narrow. Such
estimates were first derived in ref. [30].
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4.2. Nonresonant perturbation and chaos

Nonresonant perturbation comprises two completely different cases. One
(less interesting) case corresponds to classically regular motion (K <« 1)
and to the initial condition away from all primary resonances n, = 27r /T
(r integer). The matrix element Vn.nt1 = k/2T remains the same but the
detuning increases up to § ~ T~1, whence the perturbation parameter

p~k~1, (4.8)

the latter estimate being the border of quantum stability, or of perturba-
tive localization. The border does not depend on T because transitions
by different kicks are not correlated (not in phase) unlike the resonant
perturbation.

The second case of nonresonant perturbation is much more interesting
and important. It corresponds to a classically chaotic system with K >
1. Obviously, the perturbation is nonresonant in the sense that at any
n several overlapping resonances are operative, and successive kicks are
completely decorrelated. Hence, the estimate (4.8) holds, which is also
obvious directly from the kick operator (3.8). Thus, even wild chaos in the
classical limit becomes completely quiet in the quantum region.

Suppose that the kicked rotator initially occupies a single level, say,
n = 0. Then, for £ < 1, one kick produces the distribution

(k/ 2)"

[Y(n)| = Jn(k) ~ (4.9)
which is steeper than exponential. However, asymptotically as t — oo, the
distribution approaches the exponential steady state, [31]

[¥(n)[ ~ exp (=|n|/l;), (4.10)

where we introduced the localization length g, the subscript s indicating
the steady state. Eq. (4.9) suggests that,

«
o~ —2 , 411
In(x/k) b<r (4.11)

for suitable numerical factors o and &, which is confirmed by numerical
experiments on a model equivalent to our basic model with o ~ 1.1 and
k ~ 3.4 [31]. In concluding this section, I would like to mention that the
perturbative localization is now well known (by one name or another), and
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it is extensively used in many problems of quantum dynamics. For us it is
very important, however, that sufficiently far in the quasiclassical region,
towards the classical limit, the perturbative localization never holds. In
the standard map, the absence of localization is related to increasing of
k ~ h~'. This is a generic result because the energy level density is infinite
in the classical limit (cf. eq. (4.2)).

5. Dynamically stable quantum diffusion
5.1. The correspondence principle and quantum diffusion

Consider a classically chaotic quantum system, e.g., the standard map with
K > 1, and suppose that we are above the quantum stability border
(> 1). What would the quantum dynamics be like? The correspondence
principle suggests that there must be some resemblance to the classical
dynamics: the closer the resemblance, the bigger are the quasiclassical
parameters of the quantum system (kK — oo). In particular, there must
be diffusion in n as described in section 2. Indeed, this was confirmed
in refs. [26,17]. The latter results are presented in fig. 8 by crosses. As
expected, the quantum diffusion rate closely follows the classical one (cir-
cles) including some deviations from a simple theory (solid line). Moreover,
the distribution function has a Gaussian shape, again in accordance with
classical theory (fig. 11). It is interesting to note that the distribution func-
tion f(n,t) = |¢(n,t)|? is obtained for a single quantum system from the
solution of Schrodinger’s equation ¥(n,t). In classical mechanics, f(n,?)
corresponds to an’ ensemble of many trajectories. So, the quantum state
characterizes, in a sense, many systems but not arbitrarily many. As a
result, there are quite large fluctuations in f which can be reduced in nu-
merical experiments by averaging over some short intervals of either time
or n, or both. We shall come back to this interesting question later.

The quasiclassical parameter £k = 40 is reasonably large for the data in
fig. 8. This is not the case for the second parameter 1/T = k/K , which falls
to 1/T = 2 for the largest value K = 20 in fig. 8. Nevertheless the diffusion
proceeds at a nearly classical rate. Further numerical experiments revealed
that the diffusion persists at any 7', and that the diffusion rate is approx-
imately described by the same classical theory but with a renormalized
classical parameter [32] (see fig. 12)

K — Kq =2k -sin(T/2). (5.1)
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Fig. 11. The normalized distribution function N = f(n,t)\/2rtDy, versus X =
n2/2tDn. The expected Gaussian distribution (2.26) corresponds to the straight line
In fN = -X.

Thus, the correspondence principle holds even in such an unusual process
as the quantum diffusion. This is a very satisfactory result. But is there any
difference between the classical description and the corresponding quantum
description? There is, and it is a great one!

5.2. Relaration time scale and quantum steady state

In the classical standard map, the diffusion proceeds indefinitely, the mean
energy grows linearly in time (see eq. (2.21), P = n),

E = <n2> = Dnt

5 - (5.2)

and the distribution function remains Gaussian (2.26). The time depen-
dence of energy in the quantized standard map is shown in fig. 13. Unlike
the classical case (the straight line), quantum diffusion slows down after
some time (relatively short in the scale of fig. 13), and eventually completely
stops on the average. The upper curve seems to grow slightly but a much
longer computation (up to 5 x 10? iterations) in ref. [33] demonstrates that
the residual diffusion rate, if there is any, Dyes/D,, <2 x 1075 (see fig. 17
below). Whatever the final theoretical conclusion is reached about Dyes,
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Fig. 12. The quantum diffusion rate and localization length of quasi-energy eigenfunc-
tions in the standard map versus the renormalized parameter K = 2k - sin(7'/2); the cir-
cles and the curve are as in fig. 8, Dyy = Do = k2/2; T € (0,7)(+), and T € (m,2m)(X)
(after ref. [32]).

this clear empirical fact, that there is a very strong quantum suppression of
classical chaos (diffusion), is of primary importance for ;uantum dynamics.
We shall discuss this in detail in section 6.

The distribution function also changes from an initially Gaussian one
spreading in time to, finally, one that is exponential and time-ind~pendei
(on average),

folm) = T exp (—2'"') (5.3)

(for the initial value n = 0). The latter is the very specific, quantum,
steady state with no analogue in the classical limit, where the diffusion
would never stop. On the contrary, in quantum mechanics the relaxation
takes place as if the phase space were finite (cf. classical relaxation on a
torus, eq. (2.27)).

The steady state (5.3) is a sort of localization (cf. eq. (4.10)) with local-
ization length ;. But this is not perturbative localization, as both Is and
k > 1 for the data in fig. 13 (cf. eq. (4.8)). Numerical experiments show
that roughly I ~ k? (see section 6). We shall call this new phenomenon the
diffusion localization, that is the localization of classical-like diffusion. The
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Fig. 13. Time dependence of the average energy E = <n2> /2 in the quantized standard

map [34]; ¢t is the number of map iterations; the straight line shows classical diffusion.
Insert: the distribution function fs(n) = [¢(n,t)|? for t = 103 (full circles) and ¢t = 104
(open circles); the straight line shows fs(n) ~ exp(—|n|/21). The initial state in each
case is n = 0.

time required for localization, or the relaxation time tg to the quantum
steady state is related to s by D,tg ~ I?, whence,

T TD, ’

where 7 is the number of the map’s iterations, and where D,, ~ k2 /T
(see eq. (2.21)). We shall call the quantity tg the relazation time scale of
quantum motion.

These estimates explain how the correspondence principle works in quan-
tum diffusion. The point is that both scales g and I grow indefinitely with
the quasiclassical parameter k.

The quantum steady state (5.3) is not a quantum stationary state be-
cause the energy is indefinite in the former. Hence, the steady state is a
stationary oscillation, notably in energy, as can be clearly seen in fig. 13
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Fig. 14. Time reversal at t = 150 in (1) classical chaos and (2) quantum chaos for the
standard map with £k = 20, T = 1/4. The straight lines show the expected classical
diffusion (in different scales). The accuracy of the quantum recurrence in E at t = 300
is better than 10710 (1) (after ref. [35]).

(the upper curve). The oscillation amplitude decreases with an increase
in k. Energy fluctuations look rather irregular but not completely chaotic,
which is indeed the case, as we shall see in section 6.

5.8. Motion stability in quantum diffusion

Even though quantum diffusion on the relaxation time scale is surprisingly
close to classical diffusion, the two turn out to be qualitatively different.
In classical mechanics the origin of chaos, in particular of diffusion, is in
the strong (exponential) local instability of motion. We spent a lot of
time trying to find any sign of quantum motion instability by means of
numerical experiments, and we finally failed. The crucial experiment due
to Shepelyansky is as follows [35].

Both the classical and quantum standard map are time-reversible (with
respect to the instant exactly half-way between two kicks, see eq. (3.10)).
Yet, when there is exponential instability, the reversed trajectory will not
come back to the initial point, due to unavoidable numerical errors (fig. 14,
lower curve). The time (or velocity) is reversed here at ¢ = 150, and the
energy decreases, but only for a very short time (~ 30 kicks), and then the
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diffusion continues at the same rate (backwards in time, one may say).

In the quantum case (fig. 14, upper curve), the impact of velocity reversal
(¥ — ¢*, complex conjugation) is totally different: a sort of “antidiffusion”
occurs in the system, back to the initial state. Notice that if the computa-
tion were continued beyond ¢ = 300, the “normal” diffusion would resume,
and the quantum steady state would be eventually reached as well. The
moral is that quantum dynamics, even when it is diffusive, lacks any no-
ticeable dynamical instability whatsoever.

In fig. 15 another, even more striking, confirmation of this conclusion is
presented [35] (see also ref. [36]). The initial Gaussian distribution (one of
upper curves) is diffusing and takes a rather irregular shape at the time
of velocity reversal (lower curve which looks quite random). Yet, quantum
antidiffusion brings it back, exactly to the initial state (another upper curve
shifted upwards in order to distinguish it from the initial one).

Problem (unsolved). Devise a Gedanken experiment to observe the time
(velocity) reversal.

Thus, quantum diffusion is a very peculiar phenomenon, even on the
relaxation time scale. Formally, it is close to classical diffusion, yet, un-
like the latter, it is dynamically stable. What about the correspondence
principle, which also implies that there is instability of the motion in the
quasiclassical transition? The instability does indeed exist! It was first
discovered and explained in ref. [37] (see also ref. [38]). The quantum in-
stability is related to the spreading of initially narrow wave packets. In the
quasiclassical approximation, the -function follows the beam of classical
trajectories (Ehrenfest’s theorem), which exponentially diverge in the case
of classical chaos. In the classical limit this process lasts forever: there is
no limitation to the scale in classical phase space because it is continuous.
In contrast, the quantum phase space is discrete, the bin size being of the
order of Planck’s constant h. Hence, the initial wave packet cannot be
arbitrarily small, and the spreading time is finite. Moreover, it grows very
slowly (logarithmically) with the quasiclassical parameters.

In the standard map, for example, the optimal shape of a wave packet
(the coherent state) is found from the uncertainty relation AnAz ~ 1, and
the second eq. (2.3) Az ~ TAn; it follows that Az ~ T%/2, and that the
total spreading time, which we call Ehrenfest’s time scale, is given by,

tge  |InT|  |InT|
T TA ~ In(K/2)

where A is the classical Lyapunov exponent (cf. eq. (2.25)). The time tg is
very short but, nevertheless, it was recently observed in ref. [39]. According

(5.5)
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Fig. 15. Time reversal as in fig. 14: the probability distribution, initial (at ¢ = 0) and

upon recurrence (t = 300) (upper part), as well as at time reversal (¢ = 150) (lower
part).

to Ehrenfest’s theorem, a narrow wave packet follows a classical trajectory
and, in this sense, it is as random as specified in the classical limit, only
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on a rather short time scale tg. However, this scale grows indefinitely as
T — 0, again in accordance with the correspondence principle.

5.4. An example of true chaos in quantum mechanics

Apart from a short Ehrenfest time scale, quantum dynamics is stable, and,
hence, quantum chaos, whatever it is like, cannot be true chaos as it is in
the classical limit. We call it pseudochaos. In the next section, we shall see
that the quantum stability is explained by the discreteness of the energy
(and frequency) spectrum of any quantum system bounded in phase space,
that is in both coordinates and momenta.

A simple example is the standard map on a torus where the spectrum
is obviously discrete and even has a finite number of energy levels. For
the map on an infinite cylinder, this is already not the case. Indeed, for
rational 7'/4m (and even for some irrational ones, see ref. [40]) the spectrum
of the motion becomes continuous as was discussed in section 3. Yet,
the continuous spectrum in this case results not in chaos but in regular
motion, namely the quantum resonance. The question arises if true chaos
is ever possible in quantum mechanics. Yes it is, but under very peculiar
conditions, as I shall illustrate using the following simple example, borrowed
from ref. [36].

Consider a classical dynamical system on an N-dimensional torus with
angle variables 6;,

0; =g:(0x), 4,k=1,... N. (5.6)

In such a system, chaos is possible for N > 3. One particular example due
to Arnold is (see ref. [41]),

6, = cos 0 + sin 3,
6y = cos 05 + sin 01, (5.7)

03 = cos 01 + sinO,.
This implies that the linearized equations

. d0;
& = &k 7

, (5.8)
00 0, =69 (t)

where 69(t) is the reference trajectory, are exponentially unstable,

& ~ eht, (5.9)
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As was mentioned in section 1, the combined dynamics of the original (5.6)

and linearized (5.8) systems can be described by the conserved Hamiltonian
(cf. eq. (1.4))

H (nk70k) = NkGk (01) ) (510)
which implies the equations for conjugate momenta (cf. eq. (5.8))

09k
00;

fli = —Ng (511)
If the main system (5.6) is time-reversible, as is the case for Arnold’s exam-
ple (5.7) (t — —t is equivalent to §; — 6; + ), the combined system (5.10)
. is completely equivalent to the pair (5.6) and (5.8). Another way to see
this is by observing that eq. (5.7) conserves the volume dI' = df; df,dfs
because,

00;
00;

F:/drdivé, divd = — = 0. (5.12)

On the other hand,

N
le0 = ZA’C
k=1

One of the Lyapunov exponents (along the reference trajectory) is al-
ways zero. Hence, in example (5.7), the remaining two satisty, in view
of eq. (5.12): Aa+ A3z = 0, or A; = —Ag, thus providing the time-reversible
behaviour. I should mention that the sum of all the positive Lyapunov
exponents

h=> Ay 20, Ap>0, (5.13)

constitutes a fundamental characteristic in the modern theory of dynamical
systems, the so-called metric, or Kolmogorov-Sinai entropy.

Coming back to our example, consider now a quantum system with the
Hamiltonian operator

. 0

H =1 (gxfk + Nkgr), Mk = ~136. (5.14)

which is a quantized version of the classical combined system (5.10). The
operator 7 is constructed from the periodicity in 6 (cf. eq. (3.3)), and
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symmetrization is needed for H to be Hermitian. Introducing the quantum
probability density f(6,t) = |¢(0,t)|?, and using Schrédinger’s equation,
we arrive at the relation

of 0

FYial 30, (fgx) =0, (5.15)

which exactly coincides with the continuity equation for the classical Sys-
tem (5.6). Hence, the quantum probability would evolve identically to the
classical one, including chaotic motion.

This simple example clearly demonstrates how extraordinary the truly
chaotic quantum dynamics has to be. Besides unbounded motion in mo-
menta, the momenta must grow exponentially fast. This is necessary be-
cause the fine-grained (exact) density f(6,¢) does not become homogeneous
in chaotic motion, as I have already discussed in section 2. Instead, it is
getting more and more “scarred” by the mechanism of local motion insta-
bility. This results in the exponential growth of the density’s wave numbers
(Fourier harmonics), and, in quantum mechanics, of momenta.

Problem (unsolved). Devise a Gedanken experiment to observe true quan-
tum chaos.

True chaos is also possible in a semiclassical system, only a part of which
is quantal while the rest obeys classical mechanics. One example is the
interaction of a quantum atom with a classical electric field, the latter
being a dynamical variable of the system (see, for example, ref. [42]).

A very important class of semiclassical processes is the quantum mea-
surement since in the Copenhagen interpretation the measurement device
is classical by definition. Moreover, any quantum measurement appears
to be always chaotic as it has to be highly unstable to achieve a large
macroscopic effect via a very weak microscopic interaction with a quantum
system. We shall return to consider further this interesting and important
problem.

6. Quantum stability: diffusion localization
6.1. Localization principle for quantum chaos
In the previous section, we have seen that the quantum diffusion in the

standard map is always localized, no matter how large the classical param-
eter k. Why? What is the localization mechanism? In this section, we
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shall consider a theory of diffusion localization which was first proposed in
ref. [38] and subsequently developed in many papers (see, e.g., refs. [11,43]),
especially in the work related to the problem of the diffusive photoelectric
effect in hydrogen, to be discussed in section 9. Alternative explanations
will be reviewed in the next section.

Consider first the principal idea of our theory. To begin with, we shall
relate the localization phenomenon to the discreteness of the (quasi) energy
spectrum. The main question here is whether the quantum spectrum is
always discrete. For a conservative system with bounded energy surfaces,
the affirmative answer is a rigorous mathematical result. In what follows,
the most important characteristic of the discrete spectrum is the mean level
density

dn
In the unperturbed standard map, the rotator for example, o = 1/n =
(2E)~1/2 depends on E (and n), and is the inverse classical frequency.

However, in a time-dependent system, even as simple as the standard
map, the above question presents a very difficult and delicate mathemati-
cal problem, which is still unsolved. We know that the spectrum becomes
continuous in a quantum resonance at rational values of T'/4m. Even more
important, it does so at very special irrational T/4mw as well [40]. The
Lebesgue measure of these irrationals is zero, yet it is not clear at the mo-
ment whether this is a fundamental or technical restriction. So, we have to
assume the hypothesis that for a typical irrational T'/4m, the quasienergy
spectrum in the standard map is purely discrete. From the physical view-
point, it is well confirmed by the results of numerical experiments presented
in section 5.

Even with this hypothesis, we face another difficulty: the total density of
all the quasienergy levels is infinite as quasienergy is defined (mod 27/T).
To cope with this obstacle, we shall further refine the definition of .
Namely, we include in g only the operative eigenstates which are actually
present effectively in the initial quantum state to evolve.

Obviously, the discrete spectrum cannot produce aperiodic diffusive evo-
lution. How, then, can we explain why the initial quantum diffusion is
fairly close, as we have seen, to classical diffusion which has a continuous
spectrum? Here, the central point of our theory is directly related to the
fundamental quantum law, the uncertainty principle. The latter asserts
that in a finite time interval ¢ (in our case from the switching-on of the
perturbation or from the birth of a quantum initial state left after the
measurement), any energy F is defined only within AE ~ 1/t.
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If AE 2 1/ 0 the formally (asymptotically) discrete spectrum is physically
continuous, that is it acts as a continuous one while,

t<o~ tr. (6.2)

If so, the relaxation time scale ¢g, introduced in the previous section, is
simply of the order of the density of the operative quasienergy levels.

This is a fairly simple result, and the next problem is the calculation
of p. For the standard map, it can be done as follows. During the time
interval tg ~ p, classical diffusion couples (An)g ~ (DntR)l/ ? unperturbed
states whatever initial 4(0) was, provided it comprised not too many states:
(An)o < (An)r. It is sufficient to consider the case when only one un-
perturbed state is initially occupied. To explain the diffusion over (An)g
states in terms of eigenfunctions, we conclude that each state is coupled, in
turn, to roughly the same number (An)g of eigenfunctions. Hence, we ob-
tain the operative quasienergy level density o ~ (An)r/(27/T) ~ T(An)g
(we shall drop numerical factors in these crude estimates). Using eq. (6.2),
we have,

tr ~ T (Dntr)"/?. (6.3)

Notice that for ¢ SR, the left-hand side is less than the right one. This is
just the condition for classical-like diffusion to continue because the guar-
anteed number of operative eigenfunctions provides a still longer time for
the currently continuous spectrum.

From equation (6.3), we obtain our main estimate,

TR = t?R ~TD, =D, (6.4)

where we have rescaled ¢ and D,, to transform this important relation into
the simplest form (7 =¢/T is a dimensionless time).

Further, the maximal diffusion spread (An)g ~ (DntR)l/2 = (DTR)1/2 ~
D is of the order of the localization length I;. Hence, we have another
important estimate,

TR ~ D ~J lS' (6'5)
Finally, we can also estimate the energy of the quantum steady state,

E, ~ 12 ~ D2 (6.6)
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These results are very remarkable as egs. (6.5) and (6.6) relate essentially
quantal characteristics of motion (7r, ls, Es) to the classical quantity D.

The best check of a theory is its ability to predict a new phenomenon.
This was indeed done in reference [38]! Consider the time-dependent per-
turbation parameter k(1) = ko7®. Then (An)% ~ Dor22*! where Dy ~ k2,
and we obtain, instead of eq. (6.4),

15 ~ Dyl/(1=20) (6.7)

For a = %, the relaxation time scale becomes infinite, provided that Dy > 1,
or kg 2 1, i.e., that no perturbative localization occurs. Then, there is no
quantum steady state at all, and the diffusion is permanent, as it is in
. the classical limit. We shall call that regime the delocalization of quantum
diffusion. It persists for a > % as well. In the latter case, the left-hand side

of eq. (6.3) is less than the right-hand side for any 7 > 1 (7 < Dé/27a+1/2),
again, provided Dy > 1. So, there is no solution for 7g and the diffusion
does not stop. All this has been confirmed in numerical experiments [38].

The delocalization condition Dy > 1 is similar but generally not identical
to Shuryak’s condition ko > 1 (see eq. (4.8)). For delocalization, both must
be satisfied.

Further, even in the interval 0 < a < %, the diffusion cannot stop com-
pletely as for a = 0. This is because the quasienergy spectrum is certainly
continuous due to the aperiodic variation of k(7). As 7 — oo, the latter
perturbation becomes adiabatic because k/k = a/r — 0. In particu-
lar, it implies a slow increase in energy: Es ~ k* ~ DZr4>. This rate
reaches the classical one E ~ Do7?**! just at the critical value o = .
Another interesting case corresponds to k(7) = exp(y7). The width of
the Fourier spectrum of this perturbation is A ~ |y|. It implies that the
width of quasienergy levels is the same: TAe ~ |y| (see eq. (3.15)). If

|¥|TR ~ |7|0/T 2 1, or,
D21, (6.8)

the “thick levels” overlap, and the spectrum remains continuous at any 7.
Hence, the diffusion would be classical forever. As condition (6.8) does not
depend on the sign of <, the same classical behaviour holds for decreasing
k until the border of quantum stability k& ~ 1 is reached.

A more interesting example of the latter behaviour is a decaying sys-
tem, one whose total probability gradually falls: |¢)| ~ exp(—~7). Under
the condition (6.8), the mean energy of the remaining part would grow
indefinitely: £ ~ Dr.
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Now consider another version of the standard map with a perturbation
k(n) = ko|n|* which depends on momentum n, rather than explicitly on
time. This model is simpler to analyze because the perturbation is time-
periodic and the spectrum can be purely discrete.

Problem. Show that a symmetric solution to diffusion equation (2.23) with
D(n) = Dy|n|** satisfies (|n[*1=2)) = (1 — a)Dyr.

Using the latter result and the estimate T ~ (An)r ~ ng, we arrive at
the same relation (6.7) as we obtained for time-dependent k(7) [17]. The
difference between the two cases is in asymptotic behaviour: the quantum
steady state for k(n) (an allegedly discrete spectrum), and the residual
diffusion for k(7) (certainly a continuous spectrum). The critical « = 1
for k(n) has been recently confirmed in ref. [44] by a very sophisticated
calculation.

As a final check of our localization principle, let us consider multi-
dimensional diffusion, homogeneous but not necessarily isotropic [32]. Let
Dy, ... ,Dy be principal diffusion rates. Then, relation (6.3) takes the

form
T ~1lry, =Dy Dy. (6.9)

If the product II > 1, this equation has no solution for any 7 > 1 and
N 2 3, which implies delocalization. Formally, the same holds for N = 2,
when eq. (6.9) does not depend on 7g. However, in the latter case our
simple method fails because it is rather too crude. A more refined theory
for a similar problem reveals that localization persists for N = 2, but
the localization length becomes extremely long: Inlg ~ (D1D2)1/ 2 (see
ref. [35]). This shows the limitations of our simple approach.

With regard to the condition IT > 1 above, one should bear in mind that
for delocalization to occur, quantum transitions in all freedoms must be
possible. In the simplest case the latter requires k,, 21 (m = 1,...,N)
where D,,, ~ k2, , as it is in the standard map. Then, the crucial condition
is kmin 2 1 for minimal k,,.

Instead of a “real” many-dimensional system, we may consider, for ex-
ample, the standard map with a quasiperiodic perturbation [35]: k(7) =
ko+kycoswiT+---+ky_1coswy_17 of N—1incommensurate frequencies.
Qualitatively, the behaviour is similar to the former case.

From the analysis, one may conclude that the diffusion localization is
restricted essentially to one-dimensional systems. Yet, this is not always the
case. The point is that in eq. (6.9) we tacitly assumed that the time-scales
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Fig. 16. Outline of various regimes in quantum dynamics as exemplified by the standard
map: k is the quantum perturbation parameter; K the classical stability (resonance
overlap) parameter; in general, T = K/k.

of the motion in all freedoms are comparable, and hence that there are
efficient transitions between all freedoms of the many-dimensional system.
If this is not the case, the localization may persist. A trivial example is
N completely decoupled freedoms. A more interesting situation will be
considered in section 9 for the photoelectric effect in hydrogen.

Finally, in this qualitative part of the section, observe on fig. 16 the
outline of various regimes in quantum dynamics using the standard map
as a representative example.

6.2. A sketch of the quantum steady state

To improve on our rough order-of-magnitude estimates for diffusion local-
ization we need, first of all, precise definitions for localization parameters
. The latter is trivial to define,

= (n2/2), (6.10)

where the bar denotes time-averaging in the steady state. Localization
length I  is defined via the exponential distribution (5.3), which is approx-
imately confirmed by numerical experiments (see also below). The most

TR? lS)

E,
E;
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difficult parameter to define is the relaxation scale 7g, in view of the fact
that there is a broad transition region of unknown shape (see lower curve
in fig. 13). We shall postpone this definition until section 8.

Using the definition (5.3) for I, and the estimate (6.5), we have found
from numerical experiments [17] that

(Is/D) = 1.04+0.03, I~ D, (6.11)

where the errors here and below are only statistical. This would imply that
the average energy is E ~ -}ID2. However, the numerical result is different
[36],

(2E,/D?) =0.92+0.04, E,~D/2. (6.12)

We will discuss this discrepancy later. Now I would like to mention that
both Is and E; are sensitive to the arithmetical properties of the parameter
T, which do not enter the simple estimates above. This is demonstrated in
fig. 17, taken from ref. [33]. The relative difference in T for the two curves
is about 2 per cent. Both 7'/4m values are close to the rational number
p/q=1/25, but one (lower curve)

T 1

= i

S S
1+

=(25,1,1,...),

is a typical irrational with

1
~ _3N_
___’Nlo =

while the other is much closer (by a factor of 60) to a quantum resonance,
which substantially affects the energy growth. This particular example
gives an idea of the accuracy of the above relations for the quantum steady
state. The real accuracy is, of course, much worse than the statistical one
given above.

A characteristic feature of the quantum steady state is its appreciable
fluctuations, which are clearly seen in fig. 13. Their amplitude decreases
with increasing k. Roughly,

AE;, 1 1 1
E. VI, VD k

(6.13)
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Fig. 17. Quantum steady state in the standard map [33]: k = 10; K ~ 5; T values are
given as continued fractions; t is the number of iterations; the corresponding values of
ls =~ 40 and 53. Compare this with the much better time resolution in fig. 13 (upper
curve).

This allows a very simple physical interpretation, namely, the quantum
steady state of a single system represents a small ensemble of ~ [ sta-
tistically independent “particles”. These particles are not random, of
course, because the stationary oscillations in the quantum steady state are
quasiperiodic. A regular component of quantum stationary fluctuations is
clearly seen in fig. 13 and, especially, in fig. 17 (lower curve).

The dips in E; corresponds to Poincaré’s recurrences, which do not quite
reach the initial state £ = 0. To be sure, they will reach it eventually, but
it would take an enormous time, far greater than the relaxation time, TR.
So, the energy (frequency) level density o (see eq. (6.1)) determines the
relaxation scale, not the Poincaré recurrence time; this seems to be widely
misunderstood. Notice that Poincaré recurrences occur in a truly chaotic
oscillation with a continuous spectrum as well, but in a more irregular
manner than for quasiperiodic motion.

An interesting, common feature of deep recurrences is their symmetry,
on average, with respect to the minimal Fg (see fig. 13). This means that
the recurrence, which is simply a big fluctuation, is developing according to
the “antidiffusion” law. This profound statistical property was discovered
and rigorously proved in 1936 by Kolmogorov [46].

In a different interpretation of the standard map as the wave-particle
interaction, there is a diffusion in z in addition to that in n, as far as
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classical mechanics is concerned (section 2). In the case of the quantized
standard map, the whole spectrum becomes continuous (eq. (3.14)). How-
ever, it does not influence the n-dynamics because the quasimomentum v
is conserved. What about the z-dynamics?

First of all, the steady state in n does not depend on v on average, yet
the fluctuations do, in view of the different phase relations (see eq. (3.14)).
Since the quasienergy spectrum (g, + A(v)) is continuous, the motion in
z is unbounded, and the diffusion proceeds as in the classical limit for a
given distribution in n. The latter is completely different from the classical
one, in that the former is asymptotically localized and time-independent
with (n®) = 2E,. Hence, (Az) ~ (n)t = T(n)7 (generally (n) # 0), and
(Az)) ~ (n?)¢2 = 2B,T2r2.

Problem. Derive the distribution function f(z,1).

A different qualitative explanation may be given by noting that the eigen-
functions are all unbounded (quasiperiodic) in z (see eq. (3.12)). It is sim-
ilar to the quantum resonance, also discussed in section 3. In both cases
the motion is unbounded but the evolution is different. Why?

Problem. Derive the motion law in z in the case of a quantum resonance
in n.

6.3. Quasienergy eigenfunctions

The diffusion localization and formation of the quantum steady state im-
plies localized eigenfunctions. The standard technique for computing them
involves the diagonalization of the evolution matrix (3.9); this is very time
consuming. The largest feasible interval is An ~ 103. On the other hand,
if we are interested only in the asymptotic behaviour of the localized eigen-
functions, i.e., in their tails, a much faster technique is available, namely,
the transfer matrix discussed in section 3. It was used first for the problem
under consideration in ref. [27]. The asymptotic behaviour of the eigenfunc-
tions is determined by the minimal Lyapunov’s exponent of the “dynamical
system” (3.16). Calculating the smallest exponent is more difficult than the
calculation of the largest one in studies of classical motion instability. Still,
the former is fairly fast, and it allows us to follow an eigenfunction over
An ~ 10° and more.

Is there any relation between the local instability in the transfer ma-
trix and the corresponding motion instability in the classical limit? There
seems to be none. First, the rate of the local instability is determined by



Time-dependent quantum systemns 001

2] log(IT?)

C
6 -1 0 1

5 -1 0 1 2 log(DT?)

Fig. 18. Relation between the scaled localization length and the diffusion rate in the
standard map [17]: open circles denote the steady state; full circles denote the eigen-
functions. Insert: scaled diffusion rate versus classical parameter K down to K¢ = 0.97;
AK = K — Kc. The logarithm is decimal.

the classical diffusion, not by classical instability. Second, the quantum lo-
calization persists even if the classical motion is perfectly stable and regular
(e.g., for k < 1).

The first surprising result, in the standard map, was that the asymptotic
localization length for eigenfunctions ! # I differs from that for the steady
state (fig. 18). In spite of the large fluctuations, the mean difference is
clearly seen and it amounts to a factor of 2 [17],

(1/D) = 0.57 £0.02, I~ D/2. (6.14)

This is further confirmed in fig. 12 (right-hand scale).

What could be the cause of this strange discrepancy? At first glance, it
looks like a contradiction. Indeed, if we assume that the eigenfunctions are
purely exponential,

1 —|m—n
pm(n) = 7 e (6.15)

and that n = 0 is the initial state, the time-averaged steady state is given by
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fs(r) =19, 1) = " [om (0)pm(n)|?

1+ X)e X 2
~ +2l)e , X=¥>o. (6.16)

Apart from a relatively small deviation from the exponential dependence,
to be discussed later, the localization length is the same: ls = 1. But,
empirically, Is =~ 2[ (!). What is wrong?

At long last, we have found that the origin of this apparent contradiction
is in the very large spatial fluctuations of ©m(n). Instead of a smooth
exponential (6.15), they are described as something like

Pm(n) ~ eXp(_lm_nl/l+§mn)’ (6.17)

with some random ¢&,,,, and (&mn) = 0 by definition.

Large fluctuations in quantum chaos are quite comprehensible and are
immediately seen in any numerical data (see, e.g., fig. 13). However, we
have been very surprised to discover in numerical experiments that §,,,, are
not only large and highly irregular but that they grow diffusively with n,

<(A§mn)2> = D¢|An|, D¢~ 1/I. (6.18)

Now, the length [ is defined via (n_l In Igog(n)|> = [, while the steady state

is related to a different average <|<,0|2> Our first idea was to renormalize

[ by averaging (6.17) over ¢, assuming a Gaussian distribution, which was

more or less confirmed by numerical experiments [17]. The result

1 D

(lpo(n)]) ~ e~ IM/ln, LT 1 D> 1 (6.19)
2D 2> "¢ 7 T

appeared to be very satisfactory because in combination with the numerical
evidence [D; = 1, we obtained I; ~ 2] ~ ls, just as required. Yet, the
problem is that eq. (6.16) suggests that we should use the averaged |o|?
rather than |p|. Then, the result

1
- — D¢, D¢ < 3,

2 1
(lpo(m)|”) ~ e 2imirt, L= ‘' - (6.20)
4D2’ Tt 7

DN

9
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is different (I = 41), and contradicts with numerical experiments ({5 &~ 21),
unless Dy = -;—, which would contradict another numerical experiment
(ID¢ = 1). The origin of these inconsistencies is not yet clear. A suspicious
point is the truncation of the Gaussian distribution at £ = n/l, leading
to the second expression in eqs. (6.19) and (6.20). Such a procedure is,
perhaps, too crude and needs to be refined. Anyway, we have failed to
achieve a quantitative explanation for the empirical relation [y ~ 2I.

The exponential localization is related to the periodicity in n of the
standard map. At least, some homogeneity seems to be required. Generally,
the diffusion localization is of a different shape, for example, in our basic
model. A sufficiently large inhomogeneity may even result in delocalization,
as in the above example of the standard map with the variable k(n). We
shall come back to this problem later.

Now, a few words about the deviation of the steady-state distribution
(6.16) from the exponential form. It is hardly observable on the back-
ground of large fluctuations discussed above. Yet, this “slight” deviation
doubles the mean energy Es (eq. (6.12)) in agreement with the numerical
results. But E fluctuates as well (see, e.g., an example in fig. 17), so that
the realistic accuracy is actually within a factor of 2. Another source of
discrepancy is in the shape of both the eigenfunctions and the steady state
near their maxima, which is most important for F;, and which is very dif-
ficult to measure, again due to large fluctuations. A different approach to
this problem will be discussed in section 8.

An interesting problem is to find the rate of energy growth at a high-
harmonic quantum resonance T/4m = p/q ; ¢ > 1 (section 3). On the
one hand, the modulus of the eigenfunction has period ¢ (eq. (3.20)), but
on the other hand, it must be “localized” during each period if | < g¢,
because during a sufficiently short time the fine structure of the spectrum
is irrelevant owing to the uncertainty principle, and the motion is insensitive
to a small change in T'/4m, shifting it from a rational to a typical irrational
value. This implies that the overlapping of different eigenfunctions and
the corresponding rate of transitions over a period g will be exponentially
small in the parameter g/l > 1. Hence, we can assume for the rate (see

eq. (3.19)),
r(q) = E/r? ~ (k/2)? e /%™ (6.21)

where (k/2)? ~ r(1) (see eq. (3.18)), and the empirical factor in the ex-
ponent has been derived from numerical data in ref. [33] and proved to be
very close to 2.

The band-width (Ae¢)y, of the quantum resonance spectrum can be es-
timated as the inverse of the characteristic time 7, at which the reso-



504 B. V. Chirikov

nant growth of energy (6.21) is of the order of the steady-state energy
Es = D?/2 = 2% ~ k*, whence,

1 e—q/47rl \/;

For m, > 7r ~ [, a temporary steady state persists at resonances with
g% 2mlIni. This is close to, but not identical with, the estimate in ref. [76).

(6.22)

6.4. Addendum: the impact of noise and of measurement

If external noise is present, the problem is no longer purely dynamical, and
hence is not really part of the subject that I am discussing. However, I will
briefly mention the effect of noise, in order to complete the picture.

The effect was studied in ref. [47] by modifying the standard map (3.11):
kcosr — kcosz + kg( ), where g is some random function, and k <
k, k> 1. Two principal conclusions have been drawn by the authors: (i)
any, arbitrarily weak, noise breaks up the localization and produces some
diffusion with rate Dy where

QEN{DD,DDSL (6.23)

D 1, DD >1,

and D ~ k? is the rate under noise only; (ii) for DD > 1, the noise restores
classical diffusion. The latter conclusion is especially important in quasi-
classical transitions when D ~ k? — oo and, hence, when the critical noise
level D. ~ k=2 goes to zero.

The interesting question of whether noise could restore the classical ex-
ponential instability of motion, remains open.

Generally, successive measurements also restore classical diffusion but
this is not weak noise at all, owing to the collapse of the wave. To the best
of my knowledge, this problem has not yet been thoroughly analyzed (for
brief remarks, see ref. [48]). First, we need to control the measurement-
induced diffusion rate

A 2
D, ~ (An)m < D, (6.24)

Tm

where 7, is the measurement period (in the number of map’s iterations),
and (An)Z is the momentum dispersion per measurement.

To maintain classical diffusion, the measurement period must be
Tm STR ~ D ~ p. Hence, any such measurement would produce transitions
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between quasienergy eigenstates. It is not easy to estimate the correspond-
ing dispersion (An)2,. A plausible guess would be (An)2 ~ Iy ~ D. Then,
the minimal value D, ~ (An)2/mm ~ ls/Tm < D is for 7, > 1. And, of
course, D, /D ~ ls/Tm k=2 — 0 as k — oo (the classical limit).

Suppose now that we measure x, and do it in the optimal way, that is to
accuracy Az ~ T"/2 (see eq. (5.5) and the associated text). Then (An)2 ~
1/T, which is much smaller than (An)2, so that D,/D, ~ (An)2/(An)2 ~
1/Tls ~1/Kk — 0 as k — oo.

Principally, it is also possible to “keep” a narrow quantum packet on a
classical trajectory by appropriate successive measurements of a sufficiently
short period 7, <7 ~ |InT|/In K ~ (Ink)/In K (see eq. (5.5)). In this

~y

case, the minimal D, /D ~IlnK/Ink — 0 when k — oo.

7. Diffusion localization: alternative explanations
7.1. Quantum corrections in the quasiclassical region

The phenomenon of quantum diffusion and its localization has recently at-
tracted much attention, especially after it was applied to an apparently
simple and well-known process of photoionization in hydrogen. Confirmed
in many numerical experiments, and recently also in a few laboratory ex-
periments, the phenomenon stimulated many attempts to understand it
from different points of view. In this section, I shall briefly review var-
ious approaches known to date, each of which, if true, sheds some new
light on this interesting problem, and facilitates a more complete and deep
understanding of the underlying physics.

Quantum stability, discovered in ref. [30] and also called perturbative
localization (section 4), is well-known by now and widely used. However,
it is not our main topic. Quantum stability is certainly sufficient but not,
in general, necessary for diffusion localization.

Another early approach involved calculating the quantum corrections to
the classical behaviour which is quite natural in the quasiclassical region
where one would expect a sort of dynamical chaos if it occurs in the classical
limit. The first calculations [37] revealed a fast exponential growth of the
quantum corrections to various average quantities, like the energy E in the
standard map, for example. This fast growth, related to the spreading of
wave packets, restricts the applicability of perturbation theory to a very
short time scale tg (see eq. (5.5)).

To cope with this difficulty in ref. [38], the quantum corrections were cal-
culated to the ¥-function itself, rather than to the averages, using Maslov’s
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asymptotic expansion. Surprisingly, the exponential terms completely dis-
appeared from the final expression even though they were explicitly present
in the initial expansion. Apparently, this is explained by isolating the most
unstable part in the zeroth approximation, ¥° ~ exp(iS/h), which is di-
rectly related to classical dynamics with action S. In any event, this method
allowed us to follow quantum corrections up to the relaxation time scale
tr (eq. (6.5)), and to obtain the first estimate for this scale.

Still another approach was related to the behaviour of quantum time cor-
relations, which determine the diffusion rate [35,49]. Correlations rapidly
decay, as in the classical limit, on the short Ehrenfest time scale tg but the
further decrease (if any) is very slow. However, the residual correlations
are very small, of the order of k!, so that they can affect the quantum
dynamics (diffusion) only on a much longer time scale, presumably tg.
However, these quantitative estimates are very uncertain, mainly, due to a
crude estimate for tg.

7.2. Anderson’s localization mechanism

An interesting analogy with the well-known Anderson localization of quan-
tum motion in a static, spatially random potential was discovered in
ref. [29], and further developed in ref. [32]. The idea was to compare the
stationary Schrodinger equation (3.16) in the momentum representation for
the standard map, for example, with that in the coordinate representation
in a disordered one-dimensional lattice. The former can be represented as

on e X =3 (=) T (k)pn—r = Jo(k)pn, (7.1)
r#0

where x, =T (8 —n?/ 2), and ¢ is the quasienergy, while the latter (Lloyd’s
model) is usually taken in the form,

UnEn + Y Wittnir = Eup,. (7.2)
r#0

Here n is the integer spatial coordinate along the lattice, E the energy,
the vector W, describes the translation operator, that is the motion along
the lattice, and E,, represents the potential energy at the nth site of the
lattice. In Anderson’s theory, the values of F,, are assumed to be random
with the statistical properties homogeneous along the lattice. In particular,
in Lloyd’s model E, = tan(x,/2) where the random yx, are uniformly
distributed in the interval (0, 7). Then, the distribution in E, is

f(ETl) - 1 1_/;2 9

n

(7.3)
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and does not depend on n, while all the eigenfunctions are exponentially
localized.

There is a transformation that relates both Schrédinger’s equations, (7.1)
and (7.2), with x, =T (E —n? /2) It is essentially a Fourier transforma-
tion. If the x, were random, the Anderson theory could be applied to the
standard map to prove the existence of localization. This was the original
logic in ref. [29]. But the x, in eq. (7.1) are certainly not random, they
are only ergodic. Hence, the supposed explanation of diffusion localization
via Anderson’s mechanism fails. Moreover, the logic may be reversed: be-
cause there is a direct connection between egs. (7.1) and (7.2), on the one
hand, and as the diffusion localization is firmly established, if only from nu-
merical experiments, on the other, quantum localization in the solid-state
problem does not require a random potential but only an irregular one.
How irregular? It seems that only a periodic potential completely excludes
localization, and provides, instead, the extended Bloch eigenstates. In the
standard map, it corresponds to the quantum resonance.

Some researchers argue (see e.g., ref. [36]) that diffusion localization is
a dynamical version of the statistical Anderson’s localization. True, in the
standard map (7.1) there are no random parameters, whereas in Anderson’s
model (7.2) the E, are assumed to be random. On the other hand, the
perturbation in both models is regular, and dynamical chaos in the classical
standard map is itself the delocalization factor. To counteract the diffusion
and to provide localization, one needs to avoid quantum resonances which
may or may not help, depending on the diffusion.

The analogy between dynamical and solid-state problems proves, as
usual, to be fruitful since it allows various ideas, methods and concepts
in the fields to be shared. In particular, the method of the transfer matrix
borrowed from solid-state physics is very helpful in dynamical problems,
as we have seen. On the other hand, in addition to the non-random An-
derson localization which we have discussed, there is another interesting
conjecture: in a nonhomogeneous irregular lattice, it is possible that there
exist some delocalized states that are quite different from the homogeneous
Bloch states. This would correspond to delocalization in the standard map
with the variable k(n) considered in section 6.

7.3. Two-level statistical approximation

In ref. [51], an extremely simple approximation was proposed, taking into
account only two (!) unperturbed states directly coupled by a time-
dependent perturbation. It seems very strange, but this method appears
to work!
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As this is certainly a very local description, the standard map is the ap-
propriate model. Consider two unperturbed states, n and n+1, coupled via
the matrix element V,, , 1 = k/2T (section 4). Leaving only one frequency
in the Hamiltonian (2.13), which is of course another approximation, we
arrive at Rabi’s elementary theory of the two-level system. Assuming that
the system is initially in state n, the time-averaged probability for another
state n + 1 is

S V22 R2)2
T ve i (A2)? T k24 (TA)Y

(7.4)

where A = E, 1 — E, —2mm/T is the detuning (m fixed). So far, there is
nothing new in eq. (7.4). But the next main step in ref. [51] is the following:
instead of solving the very complicated problem of many back-and-forth
transitions among unperturbed states, the authors average eq. (7.4) in D,
assuming that its distribution in the interval (0, 7 /T") is uniform. Actually,
they considered a particular case of a hydrogen atom in a microwave field
(sections 2 and 9), but here I shall simply rephrase their arguments for the
more general situation of the standard map. The result of the averaging is

P = (Py11) = (k/2m) arctan (7/k) . (7.5)

Finally, if the localization in the steady state is exponential (5.3), then,

% ~ exp (—2/15) . (7.6)

In particular, in the two limiting cases, the localization length is given by

Iy =~

9 (7.7)
l—m, kL.

{ 3k2/m2, k>,
The upper expression is close but not identical to the result of diffusion
localization Iy = D ~ k? (cf. fig. 12). The lower expression may be
compared to eq. (4.11). Again, they differ by a factor of 2. This is no
surprise as the two-level approximation is too crude, of course.

The averaging process that we have used makes this theory conceptually
similar to Anderson’s. As illustrated in fig. 19, it provides a reasonable
description of quantum localization in the overall range of k. Curiously,
in ref. [51] the relation P = exp (—2/I5) was used by mistake (lower solid
curve in fig. 19) with no agreement in the region of diffusion localization
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Fig. 19. Two-level approximation for momentum localization in the standard map:
crosses and squares are numerical results presented in ref. [51], while numerical data
from ref. [31] are shown by open circles; the lower solid curve is P (eq. (7.5)) [51] and
the upper one is P/(1 — P); the broken line represents the average diffusion localization
length Is =~ k2 /2.

(k2 1). With the correct equation (7.6), the approximation works much
better!

The main quantum resonance with extended Bloch eigenfunctions is also
included into the two-level approximation, corresponding to the only de-
tuning factor in this case, A = 0. Notice, however, that the second param-
eter T' does not enter this approximation at all, and this is the principal
weakness of the method.

7.4. Localization and cantori

In the classical standard map when K < K. = 1, the motion in n is strictly
bounded by continuous invariant (KAM) curves n(z) with some irrational
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rotation numbers (frequencies),

(7.8)

2m 21T m—oo m

Any KAM curve acts as an absolute barrier for a trajectory. It is not very
obvious for the map with its “jumps” in the phase space but we can always
imagine some equivalent continuous system in the extended phase space.
Above the critical K.(r), which depends in a very complicated way on r,
the KAM curve is destroyed and transformed into the so-called cantorus,
a nowhere dense set of points along some line n(z) [18]. Loosely speak-
ing, the cantorus is a curve that everywhere contains holes. This is a part
of the critical structure briefly considered in section 2. Cantori are called
also partial barriers as they allow some trajectories to pass through. In
quantum mechanics, the cantorus may become an absolute barrier for the
motion if its biggest hole is less than an elementary cell of the quantum
phase space. Apparently, this was the main idea used in refs. [53,54] to ex-
plain localization phenomena. Indeed, one conclusion of this work was the
existence of the well-known Shuryak border (4.8). The work also indicated
a substantial modification of diffusion localization by the critical structure
but only near the classical chaos border where AK = K- K.~ K—1 — 0.
This had already been established in ref. [17], although it was missed in
ref. [54].

According to ref. [17] the crucial parameter is the ratio of the localization
length /s to the map’s period 27 /T in n, or,

I.T ~ 0.3k(AK)* <1, (7.9)

where K ~ 1 is assumed. The latter inequality is the condition for
a new type of localization, which we called the inhomogeneous localiza-
tion (fig. 20). The steady-state distribution f(n) reveals here the res-
onance structure of the standard map with plateaus corresponding to
nm = 2rm/T. The mean localization length I, ~ 7 (fig. 20), which is
close to £k = 10 and represents a one-kick effect of the perturbation. Using
the results of ref. [17], a more general relation can be derived,

? =~ Il + k%/3, (7.10)

where the diffusion localization length I is given by eq. (6.11), and the
numerical factor is adjusted from the data in fig. 20. Whence

Lo BLOR (1 Is> k,
—= —
3 k/\/g, ls < k,

2 4
where k£ > 1 is assumed to be large.

s ~

(7.11)
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Fig. 20. Inhomogeneous localization in the standard map near the classical chaos border

[17]; K = 1.5; AK =~ 0.53; k = 10; T = 0.15; Is =~ 2.0; Is = 7; IsT =~ 0.3; Is/k =~ 0.7; the
straight line: In f = 2n/ls .

We should also point out that the change in the localization shape under
the border (7.9) results in a periodical variation of the steady state distri-
bution function superimposed on the average exponential dependence with
the modified length (7.10).

In ref. [54], the relation

Ky ~ e1:31)1° (7.12)

was derived which is similar to our eq. (7.9) for AK = K}, — K. < 1 (with
a numerical factor of = 0.7 instead of our 0.3). But K} is interpreted in
ref. [54] as the border for quantum penetration through cantori. Actually,
as we have seen, the localization exists at both sides of this border, although
with a different shape and length.

7.5. Classical model for quantum dynamics

In our early attempts to understand the mechanism of quantum localiza-
tion, we studied a very simple modification of the classical standard map
(2.3), namely [38],

n=n+ [ksinz], z=x+Thn, (7.13)
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Fig. 21. “Quantum localization” in the classical discrete map (7.13) [38]: the straight
line represents classical diffusion; the wiggly curve shows quantum localization, and
circles are for the discrete model; ¢t is the number of iterations; k = 20; K = 5.

where the brackets denote the integer part. The main idea was to introduce
a quantization of action by some means into the classical mechanics. Of
course, this quantization is not equivalent to a complete quantum mechani-
cal description. However, numerical experiments demonstrated a surprising
qualitative similarity between the semidiscrete classical model (7.13) and
the quantized standard map (fig. 21). The agreement between the two
models is only within an order of magnitude, but one hardly could expect
any better.

Besides the localization, the classical model accounts also for the quan-
tum stability border k ~ 1 (nonresonant and chaotic cases, see section 4)
but not for ¥ ~ T <« 1 (resonant case). The model also accounts for the
quantum resonance, but with the wrong resonant values T/2m = p/q (see
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section 3).

An attempt to improve the discrete model was made in ref. [55] by adding
a very complicated term to the first eq. (7.13); this is more complicated to
compute than the exact quantum map. Nevertheless, this unusual approach
may help in a qualitative analysis of quantum dynamics. In particular,
it demonstrates that the discretization of phase space alone drastically
changes the dynamics.

Another interesting application of the model (7.13) is to numerical ex-
periments in classical dynamics [38]. The point is that any quantity stored
in a digital computer is discrete, or “quantized” . Such a numerical quanti-
zation is even more severe than in quantum mechanics where only actions
(and not coordinates) are quantized. The principal result here is that
there is no true chaos in numerical experiments but only pseudochaos, as
in quantum mechanics. Asymptotically, as ¢ — oo, all trajectories in the
computer become periodic. This important fact was known long ago from
the theory and practice of so-called computer pseudorandom number gen-
erators, which are widely used in various numerical simulations (e.g., the
Monte-Carlo method, see also ref. [56]).

Problem. Estimate periods of motion for the standard map in discretized
calculations done using a digital computer.

A novel effect of discretization that has been discovered is that even
partial discretization (of one or two variables in the map (7.13)) may cause
a crucial change in the dynamics.

8. Statistical properties of chaotic eigenstates
8.1. Quantum ergodicity and level “repulsion”

The statistical properties I am going to discuss in this section are not
the fundamental ones inevitably related to quantum measurement and to
the very interpretation of quantum mechanics. On the contrary, we shall
restrict ourselves, as before, to the properties of the -function, which
represents the quantum system.

In the case of the discrete (quasi)energy spectrum, asymptotically (as
t — 00), almost-periodic quantum evolution loses any resemblance to clas-
sical chaos, and turns into its opposite, the regular motion of a completely
integrable system. Only spatial chaos remains embedded in the eigenfunc-
tions, and also in the distribution of (quasi)energy levels. This is the topic
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of this section. We shall mainly discuss the level statistics, which have
now been studied very thoroughly, and only briefly the so-called chaotic
eigenfunctions whose investigation is only beginning.

Consider first the concept of integrability in quantum mechanics. The
origin of the confusion involved in analyzing this problem is that there are
two concepts that are completely different, and, I would say opposite. One
is related to the Hilbert space of the y-functions considered as the phase
space (dynamical space) in quantum mechanics. In this space, the inte-
grability is equivalent to the discreteness of the spectrum and to the very
existence of eigenfunctions (see, e.g., nice reviews [57,58]). In this sense,
all bounded quantum systems are integrable, independent of their classical
behaviour. Notice that in classical mechanics the situation is completely
different — the Liouville equation may have no eigenfunctions at all, and
this just corresponds to chaotic motion.

To a physicist, the above concept of quantum integrability is too formal
and certainly insufficient if only because it has no classical counterpart,
even in the classical limit. In physics, we need to use the conventional
phase space in action-angle variables, for example. In this sense, besides
the 9-function, the so-called Wigner function W (n,x) is very convenient.
It is a particular type of density matrix, being the quantum counterpart of
the classical phase density f(n,z) (see the review [61]).

The second (physical) concept of quantum integrability is directly re-
lated to the classical limit. In the latter case, the (conservative) system of
N freedoms is called completely integrable if there are N motion integrals
(usually actions), so that any trajectory is confined to an N-dimensional
torus in phase space. The opposite case — ergodic motion — corresponds
to the case in which only one integral, the energy, exists and in which the
trajectories cover uniformly the whole energy surface. In a similar way, an
integrable quantum system possesses N commuting operators (again, usu-
ally actions), and the eigenstates all have fixed actions. The corresponding
Wigner eigenfunctions are localized around “thick” tori in ordinary phase
space. In the opposite case of ergodic eigenstates, there are no quantities
with definite values except the energy. The Wigner eigenfunctions uni-
formly fill up the energy shell of a finite width corresponding to the energy
surface in the classical limit.

Turning to our simple models, we choose the standard map on a torus
with a finite number of states (sections 2 and 3), to illustrate the quantum
statistical properties in question. In this model, a string of ¢ momentum
states around the torus, comprising ¢q7/27 classical periods (resonances)
simulates an energy shell of a conservative quantum system. We shall
consider the quasiclassical region with ¢ — co, T — 0, and ¢qT = const.
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If the perturbation is weak (k < T, perturbative localization), the system
is integrable because n = const. is a motion integral independent of the
quasienergy €,. Notice that for £ = 0 the model becomes conservative,
which implies that it is always integrable because it has one freedom.

A version of Wigner’s function for the standard map, both on cylinder
and torus, is given by the expression

Win,z) = 5= § dy vla)y* (o —y)e ™

= 3wt m)yr () (8.1)

m

It has the following obvious properties of normalization,

?{d:c W(n,z) = |[¢(n)|?,
ZW(n,m) = |¢(z)[%, (8.2)

7{ dxzn:W(n,m) =1.

Problem. Calculate the upper bound for |W(n,z)|.

This less obvious property is directly related to discreteness of the quan-
tum phase space in which each elementary cell has a finite volume of ~ 1.

Generally, the quantum phase density W is neither positive nor even
real. If, for example, 1(0) = 1(1) = 1//2, the two nonzero components of
the density are,

4eW(0,z) = 14€%,  4aW(l,z) =1+e€ 7,

thus,
1+ coszx
2 _ 2 _
IW(0,z)|" = |W(1,)|°” = TRz
and
1+ coszx

In the quasiclassical region, W oscillates at a diminishing spatial scale
around the classical phase density.
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There are many statistical properties of the energy levels. We shall
consider only the most popular one, namely, the distribution of the spacings
Ae between neighbouring levels normalized to the average (local) level
density g of eq. (6.1): s = Ac.p; (s) = 1.

In a one-dimensional conservative system, the spacing is equal to the
classical frequency of the motion, so that the statistical distribution is an
inappropriate concept. However, the situation drastically changes in higher
dimensions or in any time-dependent system. In the standard map, for
example, the unperturbed quasi-energies w, = T¢, /27 = Tn? /4w (mod 1)
are distributed very irregularly for irrational values of T'/47. We rescaled
here €, to the unit interval. Moreover, the spacing distribution was shown
to be Poissonian (see ref. [64])

p(s) =e %, (8.3)

as if w, were random and independent. Of course, they are not, but the
origin of the w, irregularity is in the random arithmetical structure of a
typical irrational factor 7'/4xw. Instead, one can model the level distribu-
tion in many-dimensional integrable systems using a random sequence of
(quasi)energies. This would be a simple example of Random Matrix Theory
(RMT), which analyzes statistical properties of various matrix ensembles
supposed to represent “typical” quantum systems (see, e.g., review [59]).
In its approach to the problem, RMT is reminiscent of Anderson’s theory
of localization (section 7).

In conservative systems, the level statistics was experimentally observed
long ago. A particular distribution (8.3) was derived in ref. [60]. The
study of quasienergy level statistics in time-dependent systems was begun
by Izrailev [62], using the standard map on a torus. The distribution he
observed was close to Poissonian (8.3). This distribution was rigorously
proved for the Anderson localization in a random potential [63]. Yet, for
the apparently very simple nonrandom set w, = T'(n+v)?/4n (mod 1), the
rigorous proof of eq. (8.3) has been given by Sinai only recently, following
the results of numerical experiments [64]. Some details of the statisti-
cal properties, and the proof, require that the irrational quasimomentum
should be non-zero, v # 0, but eq. (8.3) holds approximately for v = 0 as
well.

Coming back to our standard map on a torus, we should mention that
here the parameter T'/4m = p/q is rational. Yet, for sufficiently large ¢ — o0
(in the quasiclassical region), and for n < g, the distribution (8.3) approx-
imately holds as well under perturbative localization, that is when k& — 0.
For a resonant perturbation, the Poisson distribution persists also for 2T
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but K <1 (i.c., in the interval T < k < 1/T'). In this case, the perturbative
localization breaks down but the system remains integrable with a new set
of resonance eigenfunctions, and two incommensurate frequencies. One fre-

quency is that of phase oscillations at resonance (~ VEk /T) and the other

is a frequency of perturbation (27 /T) (see section 4).

With all these results, one might think that in the chaotic region
(K 21 and k2 1) of irregular quantum phases, a random-like distribution
(8.3) would hold as well. However, this is generally not the case!

True, in the standard map on a cylinder, the Poisson distribution does
indeed hold as well as for the corresponding solid-state Lloyd model (7.2).
However, on a torus it does not, in general [62]. Here, a new parameter
becomes of importance, namely,

A=1/q, (8-4)

which we shall call the ergodicity parameter. The standard map on a torus
is intended to model an energy shell of a conservative system. Ergodicity
implies that any initial distribution function will relax to the microcanon-
ical distribution, which homogeneously fills up the energy shell. In quan-
tum mechanics, this would imply that the eigenstates themselves or, rather
their Wigner functions, must be also microcanonical, which is only possible
when A > 1. We shall call such functions ergodic. In this case, the spacing
distribution drastically changes from Poissonian to

p(s) = As® e~ Bs” (8.5)

where A and B are normalizing constants, to be determined from the con-
ditions [pds =1 and (s) =1, and where 8 # 0 is the level repulsion pa-
rameter. Contrary to our expectation, the successive quasienergy values
of chaotic eigenstates are correlated, and in this sense are “less random”
compared with the Poisson distribution. Neighbouring levels avoid each
other, or “repel”, hence the term for the parameter 3. Notice that there is
repulsion at both small and large spacings (cf. egs. (8.3) and (8.5)).

The phenomenon of energy level repulsion has been known since the
beginning of quantum mechanics [65]. The distribution (8.5) with 8 =1
was surmised by Wigner [66], using an early version of RMT, to explain
experimental data for the level statistics of heavy nuclei.

A further important development in RMT was due to Dyson (see
ref. [59]), who considered three values of § =1, 2 and 4, depending on the
system’s symmetry. Equation (8.5) is now called the Wigner—Dyson dis-
tribution. The principal underlying philosophy of RMT is that a random



518 B. V. Chirikov

matrix from a certain statistical ensemble represents a “typical” complex
quantum system of the corresponding class. This is, by the way, in accord
with the modern understanding of randomness. RMT represents a typ-
ical statistical approach to the problem. Recently, it was complemented
by a dynamical picture related to the phenomena of classical and quan-
tum chaos. This was first done in numerical experiments by Bohigas and
Giannoni [67] using simple Sinai billiard models.

Coming back to our model, I should emphasize again that the Wigner—
Dyson distribution holds only for ergodic eigenstates, that is under the
condition A >> 1 (8.4). For this reason, it was called the limiting distribu-
tion [62]. What is the mechanism of the level repulsion? An interesting
insight into this problem is given by a dynamical analogy due to Dyson [68].
One may consider the dependence of (quasi)energy on some perturbation
parameter, say k for the standard map, as the motion in abstract “time”
k. Suppose that the perturbation is proportional to k. Then, the exact
“equations of motion” can be derived using standard perturbation theory
for the infinitesimal variation dk,

2
d2€n —9 Z |an|

dk2 m#n €n —E€m

F,, (8.6)

where ¢,, are “instantaneous” quasienergies, and V,,,, are the transfer ma-
trix elements calculated for ¥ = 1, and with “instant” eigenfunctions. The
right-hand side of eq. (8.6) is the “force” of level interaction which clearly
shows the repulsion. I should mention that Percival [69] considered the
force F;, as a measure of the quantum instability of the system with re-
spect to variations of its parameters.

Now, the main question we must answer is why the levels do not always
repel, so that the Poisson distribution (8.3) is also possible. One reason
is trivial: due to some symmetry V,,, = 0, so that the states m and n
are physically decoupled. Then, lines €,,(k) and €, (k) cross, and nothing
happens. This explanation does not work even in the case of perturbative
localization (K — 0), because matrix elements are taken at k = 1, to say
nothing of the resonance eigenstates for T <k <1/T.

A more general (qualitative) answer is apparently the following. The
main factor determining the level repulsion is the correlation between the
transition strength V,,,,, and the level spacing A,,,, = €, — €,,. The latter
is a frequency of classical motion (in the quasiclassical region) if V,,,,, # 0.
If the classical motion is regular, as in the above example of separated
resonances, the frequencies A,,,, are not small, and the repulsion is weak.
However, in the case of chaos, the classical spectrum becomes continuous,
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which implies arbitrarily small spacings A,,, coupled, nonetheless, by a
perturbation. Hence, strong level repulsion and the Wigner-Dyson distri-
bution are to be expected. In turn, level repulsion prevents the spacings
from being too small. Does it influence the classical continuous spectrum
in any way? This is an interesting question that you may like to think
about!

To complete the picture of level repulsion, one should not forget the
localization. Owing to this phenomena, very close quasienergy levels
(len — em| — 0) can occur belonging to well separated localized states, with
consequently negligible coupling (V;,, — 0). This would modify the lim-
iting distribution (8.15). The ergodicity condition A > 1 is inferred from
precisely this consideration.

8.2. Localization and intermediate statistics

The ergodicity of eigenfunctions obviously depends on the particular dy-
namics and is not a universal property. In the first work on quantum
ergodicity, von Neumann claimed to have proved the opposite [70]: under
very weak conditions (which later turned out to be also unnecessary!) he
allegedly established the approximate equality of the time and phase av-
erages for any quantum system provided that there are a sufficiently large
number of quantum states (cells) within the energy shell. The error was
actually an instructive physical confusion (see ref. [57] for an interesting
discussion).

The point is that for a system to be ergodic, the two averages must coin-
cide for any physical quantity whose eigenfunction occupies a certain part
of the energy shell. Of course, this is not always the case, as von Neu-
mann found immediately. But because he was apparently completely sure
that ergodicity must be a universal property, he decided to “cope” with
this difficulty by introducing a global average physical quantity. What he
missed was the ergodicity of this global quantity itself. Hence, his theo-
rem actually turned out to be only an approximate identity! To the best
of my knowledge, the first rigorous result on quantum ergodicity was due
to Shnirelman [71] (see also ref. [72]). Formally, it was restricted to bil-
liard systems. For most eigenfunctions to be ergodic, two conditions must
be fulfilled: (i) ergodicity in the classical limit, and (ii) large quasiclas-
sical parameters. The latter condition is particularly important, in view
of quantum localization. In our model, it corresponds to the condition
A=1/q~k?*/qg~ kK/qT > 1, which is satisfied as ¥ — oo, since K and
qT are classical parameters.

Now, our problem is the impact of localization on the quasienergy level
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statistics. If A > 1, we have one limiting statistics, Wigner and Dyson’s
(8.5), with the parameter = 1 in our model. For A <« 1, there is another
limiting statistics, Poisson’s (8.3), with 3 = 0 for small s. It is quite
natural to assume that in between (0 < A<1), the level statistics is an
intermediate one corresponding to noninteger 3 (0 < 3 < 1). On purely
empirical grounds, that was introduced in ref. [73] in the form,

p(s) = As® exp [-Bs'tF] | (8.7)

where (3 is a free parameter required to fit experimental data.

A different approach has been adopted by Izrailev [74]. His main idea was
to make use of Dyson’s nice Coulomb gas model for level repulsion [81]. In
RMT, this model has meaning only for the integer values 8 = 1,2 and 4.
Izrailev conjectured that Dyson’s model actually makes sense at any 3,
intermediate 3 values corresponding to localized eigenfunctions. Moreover,
he looked for and found the relation between the repulsion parameter (3
and the localization parameter A. Finally, he managed to find a simple
approximate solution to Dyson’s model for any value of .

The first step in this argument was a new definition of the localization
parameter A. In eq. (8.4), I describes the eigenfunction tail, and it loses
its meaning, at least quantitatively, if A > 1. Izrailev introduced another
definition,

p
H
|
CD

j ==l Pl (8.8)

Here H is the standard statistical entropy, and the factor 2 accounts for
the Gaussian fluctuations that provide A = 1, in the case of ergodic eigen-
functions.

The main result of this theory is the Izrailev distribution,

p(s) = AsPexp [—T—;ﬂ.ﬁ — -725 (B — g) s} : (8.9)

which seems to apply in the entire interval (0 < 3 < 4). At the first stage,
the repulsion parameter 3 was determined empirically by the relation,

- <>\> , (8.10)

where the averaging applies over all the exact eigenfunctions. Recently,
the empirical dependence 3(D/q) has been found [75,79] (fig. 22). The
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Fig. 22. Intermediate statistics [75]: the level repulsion parameter 3 versus the local-
ization parameter k2 /q in the standard map on a torus; different symbols correspond to
q = 400, 600, 800. Notice the change in the scale kz/q.

argument of this function was actually k2 /q, but I believe that the true de-
pendence must relate to D/q, in accord with the dependence of the original
localization parameter A (eq. (8.4)). One question remains open: which is
the better procedure, to average A, as in eq. (8.10), or to use the average
of In\ ~ H (eq. (8.8)), as in ref. [79]?

8.3. Level repulsion and diffusion suppression

Level statistics can serve as a criterion for quantum chaos, although the
criterion is somewhat ambiguous. For example, the Poisson distribution
may indicate either integrability (no chaos) or a strongly localized quantum
chaos.

Do the level statistics have any direct effect on the quantum evolution?
Yes, some, but it is not a very important effect. The basic spectral pa-
rameter is the mean level density (6.1), which determines the relaxation
time scale 7r. The level spacing statistics influences the decrease of dif-
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fusion rate for 7 2 7. The main idea is the following. The diffusion rate
is proportional to the mean spectral density of the perturbation. It re-
mains unchanged while 7 < 7, owing to the uncertainty principle (section
6). However, at 7 > 7R it decreases as the only eigenstates that continue to
contribute are those whose spacing is s < 7g /7. The relative number of the
latter (hence, relative diffusion rate) is given by the spacing distribution

p(s),

2 [ sy o (Y7 (8.11)

where 7 > 7 is assumed, and D(0) is the classical diffusion rate on the
relaxation time scale.

If we neglect the level repulsion (3 = 0), the rate D(7) ~ 77!, and the
mean energy E ~ D?In(7/mg) formally diverges [34]. However, the above
estimates hold only for 7/7g <1, ~ VEs, that is until there are at least a
few spacings < Tr /T ~ 1/ls. From this, it follows that Ex ~ D?InD. Still,
there seems to be a contradiction in the latter estimate for I ~ Dv/In D,
as compared with the previous result presented in section 6 (s ~ D).

The answer is apparently related to the level repulsion with some Gp # 0
[76]. Remember that the quantum evolution depends on the operative
eigenfunctions (section 6), which partially overlap and hence repel. The
result is,

E=E, [1 —(1+ T/TR)_ﬂD] . m=Dfp, E,=D%2  (812)

Preliminary numerical experiments give Op = 0.2, a fairly low value. One
unclear point is that eq. (8.12) holds only if In D > 1/3p, otherwise the
finite [ limitation is decisive, as for 8p = 0 above.

In any event, the vanishing diffusion rate does not give a complete de-
scription of diffusion localization because the distribution function also
changes from a Gaussian to an exponential form. This suggests that a
different explanation can be given by introducing a drift into the classical
diffusion equation

of 190 _of 0 o oQ
ot 29n on T aan = on’ (8.13)
where the flux @) is given by
Do
Q=-— ——f—Rf. (8.14)
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The second term describes an additional flux that is proportional to the
phase density f; hence the term drift. Consider the Green function of dif-
fusion equation, that is the solution with an initial single value n = ny. For
the steady-state distribution to be exponential, fi ~ exp (—2|n — ng| /Is),
the drift rate must satisfy

_n-m D ., (8.15)
|n —no| s

R
This expression is rather peculiar because the rate depends on the initial
conditions. The physical meaning of the drift is the quantum reflection of
the 1-wave back to the initial state. The whole problem requires, of course,
further study.

8.4. Spatial fluctuations in eigenfunctions

The spatial structure of chaotic eigenstates is much less known compared
with the statistics of energy levels. The main reason seems to be related to
the scarcity of experimental data on the eigenstates. This information is
much more difficult to obtain than information on energy-level statistics.
However, there is no such limitation on data from numerical experiments.

As regards the localized eigenfunctions, we have already discussed this
problem in some detail in section 6. Consider now ergodic eigenstates.
Their level spacing distribution agrees well with the prediction of statistical
RMT. It is quite reasonable to expect a similar agreement for eigenfunc-
tions. For these, Gaussian fluctuations are predicted in the limit of very
large matrices of dimension g — oo,

— |4 —ap?/2 8.16
plp) =4/5-¢ , (8.16)

where the quantity ¢ is any of the p(n), (¢) =0, and (¢?) = 1/q from
normalization.

In RMT, the parameter q is arbitrary, and is subject only to technical
limitations in numerical experiments. However, in a real quantum system,
q is determined by the size of the energy shell which depends, in turn, on
the system’s dynamics. Hence, in the dynamical problem, unlike RMT,
q is a physical parameter which may not be very large. For example, in
complex nuclei, g ~ 108 is very large indeed. Yet, in complex atoms g ~ 10
is rather small, and this should be taken into account [77]. In this respect
RMT, which is the local theory, is more applicable to nuclei than to atoms.
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Fig. 23. Histogram (arbitrary units) of fluctuations for ergodic eigenfunctions [78]:
q =25 k =20; K = 20; I = 130; A = 5; A =~ 0.90; curve I shows the Gaussian
fluctuations rejected by a x2-criterion (x2(38) = 98, confidence level < 10_6(!)); curve

I shows the microcanonical fluctuations compatible with the numerical data (x2(38) =
56, confidence level 0.03).

In particular, if g is small, the fluctuations differ from Gaussian expec-
tations and, according to RMT, they have the form

I'(q/2) (1—2) 972

)= AT - D/2 (8.17)

We call these microcanonical fluctuations. Figure 23 illustrates the differ-
ence. Even for ¢ = 25, the difference is fairly small, and can be safely
distinguished by x? criterion only.

The detailed structure of the chaotic eigenfunctions is more complicated.
In particular, they carry the signs of classical unstable periodic trajectories,
which have been discovered by Heller [80] who called them “scars”. He
studied conservative models. In maps, we don’t see any scars; we do not
understand this. The scars don’t contradict Shnirelman’s theorem [71],
because their integral contribution to |p|? vanishes in the quasiclassical
region.
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9. Diffusive photoelectric effect in hydrogen
9.1. Classical ionization in Rydberg atoms

In this section we consider a more physical problem — the photoelectric
effect in hydrogen, that is the excitation and ionization of a hydrogen atom
in a given monochromatic electric field. What could be simpler? However,
this problem, allegedly solved at the dawn of quantum mechanics, has
recently attracted the attention of both theoreticians and experimentalists.
Why?

The hydrogen atom was studied intensively at the beginning of quan-
tum mechanics, where it played the role of the famous Kepler two-body
problem in classical mechanics. In both cases, new fundamental physics
emerged from surprisingly simple problems, later to explain a vast range of
phenomena. One of the first, in quantum mechanics, was the photoelectric
effect. As early as 1905, Einstein explained the surprising existence of a
threshold frequency, rather than a threshold intensity, of the ionizing field.
Now we know that this threshold is not absolute, and that multi-photon
ionization is possible. However, the probability of the latter type of ioniza-
tion is usually negligible unless the electric field strength is comparable with
the atomic field strength. This is why the experimental results of Bayfield
and Koch [82] in 1974 presented a surprising puzzle for both experimental-
ists (who thought they knew all about the photoelectric effect, at least, in
hydrogen) as well as for theoreticians (who presumptuously believed that
they possessed the complete theory of such simple processes).

The new feature of Bayfield and Koch’s experiments was that they stud-
ied the ionization not from the ground state of the atom but from a very
high energy state corresponding to the principal quantum number n x 66
(the so-called Rydberg atom). Accordingly, they used a low-frequency mi-
crowave field (w/2m ~ 10 GHz). However, to ionize the atom, as many as
about 80 photons were required! Nevertheless, the ionization was very fast
in spite of a rather moderate field strength € ~ 15V /cm.

In this section, we shall use atomic units e = m = A = 1 where e and
m are the electron’s charge and mass. The frequency unit is w;/27 ~
0.66 x 10'® Hz, and the field unit is ¢; ~ 5.14 x 10° V/cm. In the ground
state, the atomic units are of the order of the actual values of the physical
quantities for the hydrogen atom. In a highly excited state, this is already
not the case. To restore the physical meaning of the units, we need to
rescale them as follows: w — wp = wn3, € — gy = en?, etc. It is already
a (bad) tradition to denote rescaled quantities by a subscript zero because
usually (but not always!) they describe the initial condition (then n = ng).
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The rescaled field in Bayfield and Koch’s experiments was €9 ~ 0.06,
quite small. Why, then, did the ionization proceed fairly quickly? The
first guess — that there was a diffusive excitation (whatever the mechanisir.
might be) — was put forward in ref. [83]. This implies a chain of transitions
in both directions, that is absorption as well as re-emission of field quanta,
instead of a direct multi-photon transition. One immediate conclusion from
this picture is that the total number of quanta involved becomes incredibly
big: of the order of (ng/2wo)’ ~ 6000 (1), instead of ~ ng/2wp ~ 80 in the
direct transition.

The next step, which determined the direction of further studies, was the
observation that for a quantum number as high as n ~ 100, the classical
treatment of the problem seems to be appropriate. In ref. [84], the classi-
cal criterion for chaos was derived, and thus the diffusion conjecture was
justified. Meanwhile, in ref. [97], numerical experiments on the classical
model were reported to be in agreement with laboratory experiments [82],
thus confirming the classical description.

The problem seemed to be settled. Following this early trend, we shall
consider first the classical theory of excitation of Rydberg atoms [85]. The
simplest such theory is the so-called one-dimensional model, which is spec-
ified by the Hamiltonian

2

H = % — -i:+€zcoswt: —#jLsz(n,O)coswt, (9.1)
where z > 0, and n and 6 are the action-angle variables. There are two
parameters in this model, the field frequency w and the field strength e,
which are easily expressed in the rescaled form for some initial unperturbed
state n = ng. Then the rescaled frequency wy = wn is the ratio of the
field frequency w to the Kepler frequency Q(n) = 0Hy/dn = 1/n3, where
Hy = —1/2n? is the unperturbed Hamiltonian. Similarly, the rescaled field
g0 = eng is the ratio of the external field strength ¢ to the atomic field
€a ~ N4, because the orbit size z, ~ n? (energy |Eo| = 1/2n2 ~ z71). We
may call the rescaled atomic units the “classical atomic units” because the

motion of model (9.1) is similar for all ng provided that wg and &g are both
fixed.

Problem. Transform the Hamiltonian (9.1) to the rescaled variables.

For numerical experiments, we can and did use the Hamiltonian (9.1)
in special variables to avoid a singularity at z = 0 [43]. The analytical
study was performed initially with the same Hamiltonian [85]. Later, a
much simpler approach was invented in ref. [86] (see also ref. [87]), namely,
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a map over Kepler's period was constructed, as described in section 2 (see
egs. (2.6), (2.8), and (2.9)). We shall rewrite it here using the excitation

energy N, = (E — Ep) /w (in the number of absorbed quanta) and field
phase ¢ as canonically conjugate variables,

N, = N, + ksinp, ¢ =+ 21w (—2w (N, + 1/))_3/2 (9.2)

where v = Fy/w, and the perturbation parameter is given by the expression

3 EoNo
kr26— =267, (9.3)
w5/3 wg/3

provided that wg 2 1 (see ref. [11]). The latter inequality defines the region
of the so-called “high-frequency” field which is the most interesting region,
as we shall see.

In spite of the dependence k(ng), the classical motion of the model
(9.2) is similar of all ng, which is immediately clear upon rescaling N, —
N, /ng = (1 - E/Ey) /2wg. In the corresponding standard map, the second
parameter is

T = 6mw? (—2w (N, + 1/))_5/2 = 6mw?ng = 6mws /ny. (9.4)

The border of classical global chaos (see section 2) corresponds to K =
kT = K.~ 1, or

1 ]
50ws/>’ ~ 50wl/3n5”

cl o

€0 = (9-5)

Notice the rapid decrease in ! with n. For a low-frequency field (wo <1),
this simple estimate doesn’t hold because the parameter k& decreases with
wo (ref. [11]), which would increase the critical £,

1

50w/

cl

£g ~ (9.6)

The latter estimate approximately describes experimental data (both labo-
ratory and numerical) [88] down to wg ~ 0.25, when the static field border
ey = 0.13 is reached. The whole classical chaos border curve & (wp) is

outlined in fig. 24.
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classical ionization

perturbative
localization

classical stability

Fig. 24. Various borders related to the diffusive photoelectric effect in Rydberg atoms:
(1) the static field border eg = 0.13; (2) the classical chaos border, eqs. (9.5) and (9.6);
(3) the quantum delocalization border, eq. (9.17); (4) Shuryak’s border, eq. (9.19). The
dashed line corresponds to the dependence shown in fig. 27.

Above the chaos border, the diffusion in N, proceeds at the mean rate

_ k2 edn? e?
0

We can neglect here the rapid oscillations in D due to the correlation factor
C(K) (see eq. (2.22) and fig. 8) because of the strong dependence of T on

o (eq. (9.4)), and set C(K) ~ 1. The mean rate does not depend on 7,
which is the advantage of using the variables (N, ¢). In the unperturbed
action-angle variables (n, ), the rate (per field period)[85],

<(An)2> ~ 3 352n3

D, ~ 3350
wt /2w wT/3

(9.8)

strongly depends on n, which complicates the theoretical analysis.
In order to ionize an atom, about |v| = |Ey| /w photons are required,
and the ionization time is

V2 /s
0 3
D~ = ~ tp = TN (9.9
D e’ 0> )

(in Kepler’s periods, and in physical time t). A peculiar feature of diffusive
ionization is that the rate yp ~ t];l is proportional to €2, as it is for a
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direct one-photon transition, where actually as many as ~ v? > 1 such
transitions occur. On the other hand, diffusive ionization lags compared
with immediate direct transitions.

Problem. Estimate the initial growth of the ionization probability.

The diffusion approximation for the excitation is valid if the resonance
width 41/k/T (see eq. (2.11)) is small compared with the distance |v| to
the ionization border, or if

16k 9¢o 3k K
~ N — & —— 1. 9.10
Tl/2 wg/3 no 5w3 < ( )

This is compatible with chaotic ionization (K 2 1) for wg 2 1/ K/5.

In real laboratory experiments, the ionization threshold, or cut-off may
be much lower, at some n = n. [94]. Then, on the right-hand side of in-
equality (9.10), a small factor n? = (1 — n3/ ng)2 appears, and the opposite
inequality is compatible with wg > 1, if n2 < K/5, even for K <1. In the
latter case, a fast, though partial, ionization occurs during one period of
the phase oscillation 7, ~ K~1/2>1,

Still faster ionization (in one Kepler period, but also partial) occurs if
k > n|v|, or if

k ~ 560 g K
VI~ 2P 10w

(9.11)

The one-dimensional model was challenged in ref. [90], where the motion
was theoretically shown to be unstable unless an additional, sufficiently
strong, static field was applied. This would deprive the model of any phys-
ical significance and convert it into something of only theoretical interest.
Fortunately, the one-dimensional model was later rehabilitated in ref. [91],
at least in the chaotic region where this instability turned out to be very
slow, with the characteristic rise-time 7, ~ (no/k)°. This time is longer
than the ionization time (9.9),

Hence, the instability is unimportant if the initial state is approximately
one-dimensional, when it is also called the extended state.
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A particularly simple version of the one-dimensional model the Kepler
map, (9.2) — faces another difficulty: it describes the motion in a non-
uniform time (number of Kepler’s periods) with respect to the continuous
physical time t. This problem has already been discussed in sections 2
and 3. In numerical experiments with the classical Kepler map, one can
record continuous time t for each trajectory, to obtain the distribution
function at a given ¢. In the diffusion approximation, the general answer
for a steady-state distribution can be derived from the Fokker—Planck-
Kolmogorov (FPK) equation (see, e.g., ref. [6]),

of _ 19

ot 20J2
where the diffusion rate and the drift in the action variable J are defined
as

Dyf ~ By f. (9.13)

AJ)? AJ
DJ:«_B)’ BJ:<T)_ (9.14)
If we change only the time variable (¢t — £(¢,J)), both D; and B are mul-
tiplied by 9¢/0t = A(J), which is equivalent to a change of phase density:
fs (J.t) = fs(J,t)/A(J). Unfortunately, this simple rule doesn’t hold if

af/ot £ 0.
9.2. Quantum suppression of diffusive excitation

As I have already mentioned, the first studies of ionization in Rydberg
atoms — experimental, theoretical, and numerical — confirmed the simple
classical picture. Everybody seemed to be satisfied, except our group.
We knew well, from our “exercises” with the standard map, that in any
one-dimensional system there must be quantum localization under some
conditions. So, we looked carefully for localization in the photoelectric
effect, and eventually we found it!

First, we noticed that the classical picture had actually been checked only
for low-frequency fields (wp < 1), where no simple theory exists. For both
reasons, we concentrated our efforts on the high-frequency region wg > 1.

The technique of numerical experiments with the quantized model (9.1)
is straightforward in the discrete part of the spectrum [43]. The continuum
can only be partially included using the so-called Sturmian basis. There was
a lot of discussion concerning the importance of including the continuum.
Our impression is that the inclusion is certainly not crucial, particularly
because the “ionization border” corresponds to some finite n = nc, as I
have already mentioned.
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Fig. 25. Dependence of the normalized distribution function fp = N (Nw)/}'(O)

on X = 2N, /ls for 41 cases with various €, wg and ng. The straight line describes
In fny = — X (after ref. [86]).

From the theoretical point of view, using the standard map with the
parameters (9.3) and (9.4) as a local approximation for the Kepler map

(9.2) immediately implies the universal localization of length (see eq. (9.7))
[86]

2 2.2
_ D o~ 19 . EO’I’LO
Iy~ D~ 33— = 3.3w10/3. (9.15)
0

The difficulty is that the map’s parameter T strongly depends on n (9.4),
so the local description rapidly changes. On the other hand, the localization
length depends only on the parameter k£ = const. (eq. (9.15)). Anyway, the
numerical experiments in refs. [11,86] confirmed not only the localization
but also its length and exponential shape (fig. 25). Two examples of the full
distribution function are shown in fig. 26. A chain of one-photon transitions
is clearly seen with distribution peaks becoming more and more narrow as
n (or E) increases. We shall call each peak a photonic state. In the full
description (n), the Kepler map’s probability |¢(Nw)|2 corresponds to
the probability in the interval N, £ 1/2.

Above the last photonic-state peak, the excitation ¥)(n) — 0 as n —
0o0. Some researchers call it localization in the discrete spectrum. This
terminology is possible, but what is important is that this “localization”
does not prevent ionization because of the possibility of direct transition
from this last peak to the continuum.
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Fig. 26. Examples of steady-state distributions in n (a) [43], and in N, (b) [86]; the
wiggly curves show the probability distribution for each n (from Schrodmger s equation),
while the crosses give the integral probability in the intervals N, i ; the points are for
the quantized Kepler map; k ~ 1.7; Is &~ 1.4; T = 1.7 (b). The logarlthm is base 10.

The rather wide scattering of points in fig. 25, as well as the differ-
ence between the two descriptions in fig. 26b, are apparently related to
the following factors. First, we express /s via the mean diffusion rate D
(eq. (9.15)), whereas the local rate changes with T (eq. (9.4)). Second, the
proper quasiclassical parameters are not n and other unperturbed quantum
numbers but, rather, the map’s parameters k and 1/T (cf. section 3), which
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are actually not at all large. The latter point was especially emphasized in
ref. [51]. Finally (so far!), the Kepler-map description, being very simple,
is incomplete and makes use of non-uniform time as I discussed above.

To estimate the importance of the latter factor we may apply, as a prelim-
inary crude approximation, the classical diffusion equation, which includes
the drift (section 8). As I have shown, the steady-state distribution f()
at fixed t is related to fs(7) at fixed 7 by,

- fs(7)
Q(N)

fo(2) ~ fo(T) (1= No/Jv|) 72 (9.16)

Some increase in the distribution near the continuum (N, — |v|) is appar-
ent in fig. 26b (|v| = 17).

Because there is a finite number of photonic states |v| = ng/2wp (which
can be as low as |v|n, due to a possible cut-off at n = n.), the ionization rate
depends crucially on the ratio l5/|v|n =~ 1. The latter equality determines
a quantum border of fast ionization [11],

7 Ui
ed ~ wl/® S (9.17)

This is not a very sharp border, of course. Ionization occurs at any Is/|v|n,
but its rate exponentially drops with |v|n/ls=1. If |v|n/ls <1, the ion-
ization is roughly classical. In this case, we often speak of delocalization,
hence, the term delocalization border for eq. (9.17).

Above this border, the diffusion is roughly classical but it is dynamically
stable as it is in the standard map (section 5). In particular, the time
(velocity) reversal brings the atom back to the initial state with high ac-
curacy [89]. An interesting peculiarity of “antidiffusion” in atoms is that
it comprises not only a discrete spectrum but also a continuum, a sort of
coherent recombination.

Estimate (9.17) coincides with our earlier result [43], which was obtained
in a continuous model (9.1), but which seemed to indicate a sharp tran-
sition from localization to classical diffusion. This distinction is not yet
completely clear.

The border (9.17) is also outlined in fig. 24 for some ny and 7. Unlike the
classical chaos border (9.5), the quantum border decreases with 1/ng (for
fixed €9 and wy), in accordance with the correspondence principle. At this
point, I should explain that the quasiclassical transition must be performed
under given classical conditions, that is for €9,wy = const. Lifting these
conditions may lead to an apparent contradiction with the correspondence
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principle. For example, the ratio of the quantum to classical £y border
values (see eqgs. (9.17) and (9.5)) is,

€5 wg/2 3/2, 4
0

= Vo

If we were to fix w (instead of wp) the difference between the quantum and
classical behaviour would grow with ng!

The two borders (2 and 3 in fig. 24) cross at wéz?’) ~ 0.14(n0/n)1/3,
which exceeds unity for ng 2 3607. At smaller ng, eq. (9.6) should be used
instead of eq. (9.5), which gives, wéz?’) ~ 0.3(n0/n)1/5.

Finally, the border of quantum stability, or Shuryak’s border k¥ ~ 1
(section 4), is given by,

st ~ 0.4w"? Ing. (9.19)

It grows faster with wy than the delocalization border (9.17) and crosses
the latter at

w(()34) ~ NNy, (9.20)

which is quite large unless 7 is very small. Shuryak’s border crosses the
classical chaos border at

(24) ng
0 ~1\/30° (9.21)
The whole picture in fig. 24, although it lacks many details, looks rather
complicated. That’s typical of any real problem in this area, even the
simplest one!

Another interesting feature of the diffusive photoelectric effect is its re-
markably high rate, in spite of the multi-photon character of this process.
It is instructive to compare the diffusive photoelectric effect with ordinary
one-photon ionization [43]. The maximal rate of the ordinary process at
the threshold wg = nng/2 s,
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Fig. 27. lonization probability (per cent) versus the scaled frequency (numerical ex-
periments in ref. [43]): ng = 66; ¢g = 0.05; nc = 99; n = 0.56; the solid line is for
Schrodinger’s equation; the dashed line describes the classical model; the logarithm is
base 10.

On the other hand, diffusive ionization has its maximal rate (see eq. (9.9))
ymax , g2 /nd at around wg ~ 1, where the critical field strength &g is min-
imal (see fig. 24). This corresponds approximately to the main classical
resonance, wg = 1. However, it does not directly explain the fast excitation
because the resonance is nonlinear. Hence, we need to assume the overlap
of many resonances, which results in diffusive, rather than monotonic, ex-
citation. The ratio of diffusive to one-photon ionization rates at different

(optimal) frequencies is equal to

D ~ 'yl (9.23)

Yph

Typically, diffusive ionization is the faster process unless the cut-off param-



536 B. V. Chirikouv

eter n = 1 — n2/n? is small. This is illustrated in fig. 27, where the de-
pendence of the ionization probability on the scaled frequency is presented
for fixed €¢ and fixed interaction time t;,. The dependence corresponds to
the dashed line in fig. 24. The ionization occurs only within some window
between the classical chaos border wy = w. on the left and the quantum
delocalization border wg = w; on the right. Classical ionization persists for
larger wo as well, although with a decreasing rate (see eq. (9.9)). The small
peak on the right corresponds to one-photon ionization.

9.3. Two freedoms in the atom and two frequencies in the field

Now I shall briefly review some results obtained with other models of the
photoelectric effect in hydrogen. Consider first a more realistic model in-
volving two freedoms [91]. In the classical case, the one-dimensional motion
is unstable, as I've already mentioned, but if the motion is chaotic, which is
of primary interest to us, the instability is negligibly weak (the rise time is
long). In the quantum case, our first prediction [43] was that there should
be a considerable decrease of the value of the localization border, following
the general estimates discussed in section 6. However, numerical experi-
ments [91] refuted this prediction: the localization in n did not change,
while the motion in n, (a parabolic quantum number related to the sec-
ond freedom) showed no sign of localization. The theory of the diffusive
photoelectric effect in the two-freedoms model was presented in ref. [91],
using a four-dimensional map that was a generalization of the Kepler map.
Notice that in the linearly polarized electric field, the magnetic quantum
number is an exact integral of the motion, so that the system can always
be reduced to two freedoms.

According to the theory in ref. [91], a monotonic increase in n, is ex-
plained by the classical instability in this freedom. However, the corre-
sponding spectrum width v ~ 771 ~ (k/ng)? (see above) is too narrow
(because the instability is too weak) to overlap the discrete spectrum of
the N,-motion. Indeed, the density of the latter is ¢ ~ I, and

€0 ! 0’

~l 5] =— K1, 9.24

on~ () 3z o2

is always very small below the one-dimensional delocalization border €0

(9-17). Another qualitative explanation is that slow n,-motion acts as an

adiabatic perturbation, which cannot produce any additional transitions.
The origin of this adiabaticity is the Coulomb degeneracy.

Instead of the second freedom, we may add to the one-dimensional model

a second incommensurate frequency: w — wq, wo, so that the ratio w1 /wa is
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irrational. The quasiperiodic perturbation in the standard map was studied
in ref. [35] (sce also ref. [92]).

The quasiperiodic photoelectric effect was considered recently by Shep-
clyansky [93] using the following generalization of the Kepler map,

N1:N1+k18in(Pla N2:N2+kgsin<p2,

21 =1+ 21wy (—2E) "% @y = pp + 21wy (—2E) Y%, (9.25)

E = E() +w1N1 +(.¢J2N2.

This map describes two chains of transitions coupled via the electron’s
energy E. For incommensurate frequencies, the photonic states do not
overlap, and we have a two-dimensional situation with the delocalization
condition D1 Dy 2 1, or k1ko 2 2. As was discussed in section 6, this actually
reduces to Shuryak’s condition for the minimal value

kmin Z; L. (926)
Otherwise, the excitation remains essentially one-dimensional.
9.4. First laboratory observations of quantum chaos in hydrogen

We spent a lot of time trying to persuade experimentalists to raise the
field frequency to wg 2 1 and hence to try to observe quantum localization,
a characteristic feature of quantum pseudo-chaos. Somehow, we finally
succeeded, and the first observations recently emerged [94,95] from two ex-
perimental groups led by Koch and by Bayfield, now working separately.
In fig. 28, an example of the quantum suppression of the diffusive photo-
electric effect is shown [94]. Although it is not large, the deviation of the
experimental (quantal!) 10% ionization border from the classical model is
clearly seen and it grows with wg. The field frequency w was actually fixed,
so the difference between the classical and quantal behaviour increases here
with the quantum number ng. However, there is no contradiction here, as
I have explained.

Several rather different explanations of the observed phenomenon were
reviewed in section 7. In a recent paper [96], Meiss (but not his co-author
MacKay!) insists that their theory [54] provides the best agreement with
the experimental data. In my opinion, there is some confusion here because
the border curve eg(wg) depends on the ionization level (10%), on the
interaction time, on the cut-off parameter 7, and possibly on other details
of the process. None was included in any of the competing theories. For
example, our theory is stated in ref. [96] to give values that are too large
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Fig. 28. JIonization threshold g (10%) versus the scaled frequency wqg [94]: cut-off
ne =~ 90; the interaction time is about 108 s (360 field periods); the upper scale
indicates the initial value ng; experimental data are shown by open circles (o) and
connected by a solid line; dashed and dotted lines with symbols x, ¢ and error bars

represent numerical simulations with classical models; the lower curve is the classical
chaos border K = 1 (eq. (9.5)).

by a factor of 2. Yet, if a rather small value of n = 1 — n3/n? (n. ~ 90) is
used (eq. (9.17)) the agreement with experiment becomes excellent for this
particular case (fig. 28). But in the second case in ref. [94], with a higher
cut-off n. &~ 180, the difference is already about 50% . In theoretical terms,
one could hardly expect better agreement. Another important detail in
fig. 28 is that the classical ionization border considerably exceeds the chaos
border. Why? Apparently, this is because diffusive ionization requires a
finite time (eq. (9.9)): wip /27 ~ 2wy’ ®/e2 ~ 300 field periods. The latter
value, close to the interaction time, is given for ¢g = 0.03, which is roughly
constant away from the integer resonances wy = 1 and 2.

In experimental (quantal) data, the classical resonance structure was also
observed and emphasized in ref. [94]. This is because the classical stability

parameter K =~ 5050w(1,/ 3 <4 is relatively small for the data in fig. 28, so

that for integer resonances at least, there exist domains of stable classical
motion that impede ionization.
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Fig. 29. A sketch of quantum pseudochaos with (semi)-classical and thermodynamic
limits, where true dynamical chaos is reached.

10. Conclusion: questions, problems, conjectures ...

The study of quantum chaos is still only beginning. Yet, a lot of work has
already been done. The main result? The absence of chaos! In quantum
mechanics there is no true chaos, but only pseudochaos — some chaos, as
much as it is compatible with a discrete spectrum.

From the viewpoint of fundamental physics, true classical chaos is but
an illusion - a scientific abstraction, if you like — which exists nowhere but
is very useful from a conceptual point of view. Classical chaos is the ideal
model, a pattern, to compare with real quantum pseudochaos.

Pseudochaos exists in a “fictitious” classical world as well, where it is a
part of the limit opposite to true chaos. The crucial point is what is the
set of frequencies determining the time evolution of a dynamical system.
This basic idea is illustrated in the simple scheme presented in fig. 29.

There are two ways to increase the number of frequencies and, thus, to
achieve a complicated, irregular, and even “pseudorandom” evolution. The
first way is to increase the number of freedoms, which obviously leads to
chaos! The limit N — oo is well known in statistical mechanics and is
usually called the thermodynamic limit. This is the traditional mechanism
for obtaining statistical laws in both classical and quantum mechanics, and
it has nothing to do with the new ideas on dynamical chaos.

The second way is to increase the values of a quantum number or, rather,
to increase some characteristic quasiclassical parameter, say ¢, for any num-
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ber of freedoms, including very small numbers. This is the brand-new
quantum pseudochaos, now under mass attack by many researchers. In the
classical limit ¢ — oo, a new quality — dynamical chaos — may or may not
be born, depending on the particular dynamics of the system. As I have
already mentioned, the semiclassical limit is sufficient for dynamical chaos.
I understand the semiclassical limit as the classical limit even in a single
freedom.

In the thermodynamic limit, true dynamical chaos is also possible under
some conditions related to the dynamics of a system. The crucial point is
that infinitely many freedoms have to be operative (“active”), and not just
present in the system.

At first glance, it might seem that the thermodynamic limit is more
formal than the classical limit to which we are very much more accustomed.
On the one hand, the world appears to be quantal, and on the other hand,
the fields, which do not enter our simplified theory, each have infinitely
many freedoms. In the theory of quantum chaos, the main problem is the
finiteness of NV and g and (sometimes) of ¢ as well. This problem is much
more difficult than the limiting cases.

This is similar to some problems in computer mathematics: continu-
ous differential equations in real (irrational) quantities are much simpler
to analyze than difference equations in integers (rationals). In section 7,
I mentioned the classical discrete model of quantum dynamics. Unfortu-
nately, the model in its present form is either too complicated or too crude
an approximation. The dream of numerical experimentalists is to invent a
way of direct quantum simulation, making use not of very complicated and
time-consuming partial differential equations but of the very defect of the
digital computer — the rounding errors — that is of computer discreteness,
or “quantization”. That would indeed be a great break-through!

Another global problem is that we actually need chaos to explain the
world around us. This was especially emphasized by Ford in relation to
the problem of quantum chaos (see, e.g., his popular article in ref. [98]).
Obviously, there are universal statistical laws, so that any real dynamical
system is always at least partly statistical, in the sense that some noise
and dissipation is always present. What is much more fundamental and
important is the very structure of the dynamics.

Strange as it may seem, the causality principle in physics, which ap-
pears as something opposite to statistical indeterminacy, is actually closely
related, I believe, to the same statistical independence from the past. In-
deed, the causality principle requires a definite time ordering between a
cause and its effect; this is of course confirmed in a wide range of experi-
ments. However, the principle itself stands alone, separated from the rest
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of modern physics. My conjecture is that this principle is a subtle corollary
of chaos. The reason is that only chaos can decorrelate events and, thus,
justify the very conception of a cause which is independent of the past.
The problem here is to analyze the noncausal/causal transition in parallel
with the order/chaos transition.

This problem already arises in the classical limit. In quantum mechanics,
it becomes even more severe as we can no longer avoid the quantum mea-
surement problem. A cause is an event which is realized as the outcome
of some measurement. Otherwise, only virtual possibilities would exist,
and their number would rapidly increase due to any interaction within
the system. A quantum measurement sharply breaks the connections with
the past to create a definite initial condition for the future evolution of
the system. This is also a typical statistical process. What is its origin?
Apparently, in some chaotic interaction with the measurement device. In-
deed, the device is, by definition, a classical system, so, it admits chaos.
Moreover, the device has to be very unstable to amplify microinteractions,
so it is actually inclined to be chaotic. Now, what is the actual role of
the observer, so important in the Copenhagen interpretation of quantum
mechanics?

I should like to put forward the following conjecture. Before the mea-
surement, the quantum probability is qualitatively different from that in
classical mechanics because of the interference of various states in an over-
all superposition state. So, for a pure state, the quantum probability has
nothing to do with incomplete knowledge of the system. On the contrary,
it is complete or, at least, the maximum possible. But in the course of any
chaotic process, including measurement, the coherence of a pure state is
lost, the state becomes a mixture, the interference vanishes, and the quan-
tum probability resumes its usual meaning of incomplete knowledge. At
this stage, the role of the observer in quantum mechanics is as natural as
it is in classical mechanics: to convert incomplete knowledge into complete
knowledge.

True, the mixture appears each time we consider a part of the system
after any interaction (not necessarily chaotic) with another part of the sys-
tem. But in this case the pure quantum state can be recovered by including
the rest of the system. A principal distinction of the measurement is that
one part of the whole system — the measuring apparatus — is so complicated
that it cannot be described in terms of quantum mechanics. In this sense,
the collapse of the system’s i-function after the measurement is, in fact,
the result of the absence of any superposition of states in the measuring
device. The main problem here is to follow the transition from a purely
quantum description to a semiclassical description of the measurement.
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Another question, even more unclear, is the following. The chaotic in-
teraction destroys quantum interference. However, to convert the quantum
probability into a classical one it is a necessary but still not a sufficient con-
dition. Somehow, the quantum probability must be redistributed between
former superimposed states to provide a particular result of the measure-
ment. Precisely this problem has been addressed recently by Percival [23].
In my opinion, a drawback of his approach is that he is trying to solve the
problem for a measured quantum system that is relatively simple. I believe
that one should, instead, pose this problem for a measuring device that is
incomparably more complicated, and where the required redistribution of
probabilities is much more likely to be found.

On the other hand, Percival’s approach leads to a very interesting and
delicate question if the wave collapse in any form is normally possible with-
out a special measurement, the corresponding device, and the observer.
The Copenhagen interpretation, rejecting that possibility, is perfectly suit-
able for the conventional man-made experiment with its routine “prepa-
ration” of the system and recording of the results. However, there is a
different class of problems, those involving a natural free evolution. Of
course, you may imagine an observer who is spying on the system, but
in quantum mechanics this is not the same, because the measurement in-
teraction cannot be neglected. If the natural evolution is of a statistical
nature, then there seem to be no serious problems. However, in the case of
a dynamical process related, for example, to the formation of new chem-
ical or biological structures, the situation needs to be carefully analyzed.
There is implicit confirmation of possible difficulties here in an old paper
due to Wigner [99], who “proved” that quantum mechanics is incompatible
with the reproduction of structures. Even though the proof seems to be
erroneous, I believe that the problem remains.

Again the quantum chaos, which destroys interference, may help, but
only partially. The mechanism for probability redistribution is needed!

The main purpose of these chaotic concluding remarks is to remind you
again that many questions in this exciting field of research are still open

and that many problems remain to be solved. Try your hand, and good
luck!
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