INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
)
UNITED NATIONS EDUCATIONAL, SCIENTIFIC | []{}
AND CULTURAL ORGANIZATION \———

3
N

% ¥ INTERNATIONAL ATOMIC
¥ ENERGY AGENCY

b

Adriatico Research Conference and Miniworkshop

QUANTUM
CHAOS

4 June — 6 July 1990
Trieste, Italy

Editors
H. A. Cerdeira

( Universidade Estadual de Campinas, Brazil and ICTP, Italy )
R. Ramaswamy

( Institute for Molecular Sciences, Japan and Jawaharlal Nehru University, India )

M. C. Gutzwiller

( IBM Thomas |. Watson Research Center, USA )

G. Casati

( Universitd di Milano, Italy )

\\’ & World Scientific
. Singapore ® New Jersey ® London ® Hong Kong




CONTENTS

Preface

Introductory Remarks
M. Berry

I. General Aspects
Localization in Quantum Chaos

R. E. Prange

From Classical to Quantum Chaos
G. M. Zaslavsky

Quantum Chaos: Statistical Relaxation in Discrete Spectrum
B. V. Chirikov

Instability of Quantum Motion of a Chaotic System
A. Peres

KAM Behaviour in Quantum Dynamics
L. E. Reichl & Li Haoming

Bounds on the Instability of Quantum Dynamics
J. H. Jensen

On the Sensitive Dependence of Quantum Mechanical Quantities

G. A. Luna-Acosta
II. Eigenvalue and Eigenfunction Statistics

Some Studies on a Classically Chaotic Quantum System
V. B. Sheorey

Quasi Energy Eigenvalues and Eigenfunctions of Time-Dependent

Periodic Hamiltonians

J. V. José

Quantum Mechanical Eigenvector Statistics of Chaotic Systems

K. Zyczkowsk:

Wave Chaos in Singular Quantum Systems
P. Seba

vil

32

a7

73

103

111

118

132

143

153

169



On the Morphology of Avoided Crossings in the Spectrum
of Irregular Quantum Systems
Xtazhou Yang, J. Burgdorfer & E. Eschenazi

Constrained GOE for Systems with Few Degrees of Freedom in
the Intermediate Regime Between Chaos and Order
C. E. Carneiro, M. S. Hussein & M. P. Pato

Quantum Chaos in the Nuclear IBFM and IBFFM Models
V. Lopac, S. Brant & V.Paar
III. Semiclassical Theory

Dynamical Basis for the GOE-GUE Transition upon
the Breaking of Time-Reversal Invariance
A. M. Ozorio de Almeida

Geometrical Aspects of Trace Formulas
R. G. Littlejohn

Periodic Orbit Theory in Phase-Space Semiclassical Mechanics
K. Takatsuka

Quantum Signature of a Periodic Orbit Family in
a Hamiltonian System

C. P. Malta & A. M. Ozorio de Almeida

The Semiclassical Sum Rule and Riemann’s Zeta-Function
J. Keating

IV. Quantum Maps

Quantum Maps
N. L. Balazs

Stretching and Folding in the Configurational Quantum Cat Map

St. Weigert

Separatrix States in the Kicked Quantum Rotor
G. Radons & R. E. Prange

179

190

205

222

241

253

267

280

296

323

333



V. Irregular Scattering

Bound, Quasi-Bound, and Resonant Quantum State:

Dynamical and Statistical Aspects
P. Gaspard

Irregular Time Dependent Scattering of Electrons
L. Wiesenfeld

VI. Quantum Chaos and Experiments

Quantum Effects in Chaotic Josephson Junctions
R. Graham & J. Keymer

Dynamical Localization in the Microwave Interaction of
Rydberg Atoms and the Influence of Noise and Bichromatic Fields
A. Buchleitner, L. Sirko & H. Walther

Rydberg Atoms in Crossed Electric and Magnetic Fields
G. Raithel, M. Fauth & H. Walther

Stochastic Autoionization form the Molecular Rydberg

Quasicontinuum |
V. M. Akulin, V. Aquilanti, B. Brunetti & F. Vecchiocattivi

Periodic Orbits and the Classical-Quantum Correspondence for
Doubly-Excited States of Two-Electron Atoms
J.-H. Kim & G. S. Ezra

Semiclassical Eigenenergies in the Wake of Fast Ions in Solids
J. Muller, J. Burgdorfer & D. W. Noid

Concluding remarks
M. C. Gutzwiller

Xi

348

371

382

395

409

423

436

449

461




57

, QUANTUM CHAOS:
STATISTICAL RELAXATION IN DISCRETE SPECTRUM

Boris V.Chirikov

Institute of Nuclear Physics
630090, Novosibirsk, U S SR

ABSTRACT

The controversial phenomenon of quantum chaos is
discussed using the quantized standard map, or the kic-
ked rotator, as a simple model. The relation to the
classical dynamical chaos is tracked down on the basis
of the correspondence principle., Various mechanisms of
the quantum suppression of classical chaos are conside-
red with an application to the excitation and ioniza-
tion of Rydberg atoms in a microwave field. Several di-
finitions of the quantum chaos are discussed.

1. PROLOGUE: WHY QUANTUM CHAOS?

The main purpose of my lectures is to present our
understanding of a new controversial phenomenon - the so
celled quantum chaos - which is attracting now much at-
tention of scientists working in many different fields
of research 1’2). The picture of quantum chaos I am
going to discuss has been developed in a long-term col-
laboration of the Italian-Soviet team including G.Casati
(Milano); I.Guarneri (Pavia); B.Chirikov, F.Izrailev and
D.Shepelyansky (Novosibirsk) 3’4). Of course, this parti-
cular presentation is my own as well as the full respon-
gibility for possible inaccuracies, misconceptions, and
even mistekes.

So, why quantum chaos? Apparently because there is
the classical dynamical chaos, and a common belief that
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the quantum mechanics is universal, including particular-
ly the classical mechanics together with its dynamical
chaos. Hence, there must be a quantum theory of chaos, or
the quantum chaose.

Now, the beauty of the clagsical chaos ig, first of
all, in its highly controversial nature relating the ap-
parent opposites - deterministic (dynamical) motion and
random (statistical) behaviour. Besides, the chaos turns
out to be a rather widespread (generic) dynamical process
which has been overlooked during a long period of time
with a simplified approach to the Nature.

From the viewpoint of various applications the impor-
tant property of chaos is a simple statistical descrip-
tion (of course, incomplete but essential) of very compli-
cated motions. This is characteristic to any statisticael
theory but an exciting peculiarity of the dynamical chaos
is in extension of a simple statistics down to a few fre-
edoms which was a great surprise, indeed.

On the other hend, there exists a number of funde-
mental problems which are still waiting solution, and to
which the conception of dynamical chaos seems to be rele=-
vant. I am not yet ready to discuss those problems at
length. Still, I would like just to mention two of them:
(1) yQ collapse in the quantum measurement which as yet
has not been described by any dynamical theory, and (ii)
the causality principle which still seems to be complete-
ly separated from the rest of physics. Further discussion
of these problems can be found in 5’6>.

2. A SIMPLE MODEL OF DIFFUSIVE PHOTOEFFECT IN RYDBERG
ATOMS

The photoeffect in Hydrogen seems to be an appropria-
te example to discuss a new phenomenon, the quantum chaos.
Amid other problems currently under study this one looks
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apparently almost trivial. Yet, it turned out to be very
complicated and surprising.

The puzzle arised 16 years ago in the experiments by
Bayfield and Koch who observed a fast ionization of the
Rydberg Hydrogen in a low-frequency microwave field 7).
The initial principal quantum number was 7, ~ 70, and
as many as about ) ~ 100 quanta were required to ioni-
ze the atom. How is it possible at all?

The first insight hasg been got by Delone, Zon and
Krainov 8): they conjectured a new ionization mechanism,
which is now called the diffusive ionization, as contrag-
ted with the well-known direct multiphoton transition.

It is interesting to mention that the immediate implica-
tion of this conjecture would be still much bigger num=-

ber of one-photon transitions required, namely,fV)f%~'1O4(!)
instead of Y ~ 10° for the direct transition.

A partial resolution of this difficulty ceme from a
simple observation that for g big quantum number oy >> 1
the classical mechanics should be applicable., The corres-
ponding theory has been developedg) which apparently set-
tled the matter, at least, temporarily.

In spite of apparently 'trivial' character of the
system some further simplification was necessary. In most
studies that was the one-dimensional (1D) model specified
by the Hamiltonian

H-——-——-—--f-EZ(i’l ) Cos wZ (1)

where £ , & are the electric field strength and fre-
quency; # , &  are the action-angle variables; Z is
the coordinate along the linearly polarized field, and the
atomic units © == % = 1 are used. In this model an ex-
tended electron orbit with big eccentricity is approxima-
ted by the straight-line orbit with singularity at Z = 0.
In what follows the so-called scaled variables W, = a)ﬁz3
Eo= E/f/é etc will be convenient. These can be termed
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also the classical veriables as the classical motion can-
not depend separately on quantum number X, .

The continuous model (1) is still rather complicated
for both analytical studies as well as computer simula-
tion, or numerical experiments as we use to say. Subsequ-
ently 10), a8 simple Kepler map has been devised: (7V29n)—>

(N, ) wnere
2

W= Y+ 27w («—zcd (A/’—HJ))

Here ¥ is field's phase when the electron is in perihe-
lion; the 'action' A= (F~£, ) /@ is the number of ab-
sorbed quenta; £ =-~7,/21% is atom's full energy, and
Y = Eo/co ::——/70/2&)0 o Map (2) describes the change in
canonically conjugated variables /V y (P over a Kepler
period of the electron.

The Kepler map can be still simplified by linearizing
the second equation (2) which is the Kepler law. In this
way we arrive at the so-called standard map

(2)

/V:/\/+/(§éh90; =P+ TN (3)

k=266, }"Lo/w(,f/gj- 7= 6‘7/‘&%%/%)' 7(5/4735?5&«1&:/3
which describes the dynamics of the Kepler map locally in
N . Parameter %(' is the only one which completely deter-
mines the classical dynamics. Notice that upon introducing

a new variable /V/ho = (4/.2 a)o)(4 — /’/o—e/n’?‘) the clagsi~

cal maps (2) and (3) contain the scaled quantities only.

3+ CLASSICAL CHAOS, OR RANDOM DYNAMICS

The standard map (3) has been studied in many details
independent of the particular application in question (see,
Cale 11)). It proved to be a very convenient model, simple
in appearance and highly nontrivial and rich in essence. In
spite of intense studies it still remains inexhaustible and
continues to supply new information on both classical and
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quantum chaos. On the other hand, it spproximately descri-
bes some real physical system as the present example shows.

The standard map is known to have chaotic component
of motion for any finite K > 0. The chaotic motion means
that almost all trajectories (of a chaotic component) of a
purely dynamical system (without any random parameters),
like standard map, are nevertheless random., In turn, the
rendom trajectory means that it is highly irregular, comp-
licated and unpredictable from any observation with arbit-
rarily high but finite accuracy. The ultimate origin of
this randomness is in continuity of the phase space in
classical mechanics. This property is very important for
understanding the quantum chaos we are going to discuss be-
low,

The mechanism of the chaos is explained by a strong
local instability of motion. Namely, the main condition
for the chaos is a positive (nonzero) Lyapunov exponent
jﬁ for the solution of the linearized equations. In ca-
se of two-dimensional map which can have, at most, one
A> 0 the latter is related to the information J(%/
associated with a typical trajectory. According to the
Alekseev-Brudno theorem (sece 12)).

ZJWI .:.']_-_(_g -_ A (4)

#{~ 00 /2]

This remarkable relation explains why chaotic trajectory
is unpredictable, Indeed, to predict the next section of
trajectory a new information is required which is not con-
tained in the previous (infinitel) part of the trajectory.
Notice that relation (4) does not depend on the observa-
tion accuracy. A nontrivial implication of this theorem
is that a power-law instability (linear, for example) is
insufficient for the true chaos.

The unpredectability is an asymptotic property as
[Z]— 00 (4). On a short time interval any dynamical
trajectory is predictable, of course. Predictability is



62

controlled by the randomness parameter14)

R Al 1zl (5)
[Lnpa | %

where /~1 is the accuracy of observation, and ;; is
the predictability time scales. The motion on the latter
is also called the temporal determinism ( /‘a,ﬁ 1) while
for ﬁa‘2> 1 the asymptotic randomness is built up.

Any dynemical description in terms of trajectories
enevtually loses direct physical meaning for chaotic mo-
tion. Yet, the dynamical equations of motion can still be
used to completely derive the statistical properties of
the motion without any additional statistical hypotheses.

FPor the standard map chaotic components of motion
exist for any K > O .However, the global statistical
properties crucially depend on K . Namely, there is a
critical K = Z(Citii which separates strictly bounded
( K< K. ) for any initial conditions and unbounded
( K>K.) for some initial conditions motions in A .
In the former case a chaotic component has the form of a
layer within which a fast statistical relaxation occurse.
For eny K > K_ there exists an unbounded (in-A )
chaotic component of motion which is characterized by a
homogeneous diffusion with the rate

D = <@M)?> _éfcﬂ() (6)

N oy
Here fox is the number of map's iterations, and func-
tion C?(7§](describes the dynamical correlation of suc-
cessive (O phases. Notice that the distribution
function f?(OVlfﬁj s which describes the diffusion pro-
cess, is a coarse-grained one, averaged over y9 .

All above relations can be, in principle, derived
from the map (3) only. The main technical difficulty is
the structure of the chaotic component which is highly
complicated, unless A is very big. In the latter ca-
se the motion is ergodic to a good accuracy, and the
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evaluation of C(%) and D/V is fairly simple (see,
€eZes, review 15)).

The diffusion is an aperiodic process, and it implies
a continuous spectrum of the motion. The same conclusion
is directly inferred from the exponential instaebility which
is incompatible with the discrete spectrum.

The diffusive evolution .%9(7V}?3) is, of course,
irreversible in time in apparent contradiction with the
time~reversibility of the dynamical equations of motion.
This is a particular case of the long-standing controver-
sy in the foundations of statistical mechanics since the
Boltzmann time. The dynamicel chaos has extremely sharpe-
ned this paradox as the statistical (diffusive) irrever-
gibility is now directly derived from the dynamical rever-
sibility. So, what is the matter ? The answer is now very
simple, almost trivial: the irreversibility is the conse-
quence of the particular description (very convenient and
adequatel) via a corse-grained phase density. The exact
(fine-grained) density, obeying the Liouville equation, is
as reversible as the dynamical trajectory. The main diffe-
rence between the two densities is in a big spatial oscil-
lation in the latter whose scale is decreasing exponential-
ly fast in the process of mixing with /A > 0. Yet, the
reversible density is, nevertheless, nonrecurrent for a
cheotic motion. Thus, now there is no need to assume any
gpecial prOperties of the time like the notorious time
arrow. The chaotic dynamics alone explains everything.

A rough estimate for the ionization time in the Hyd-

rogen problem is 2 .2 4/3
2\ ~ CE \)) A ? @, (7)
2,2 4 c s e
where 1y = 1 — ho/nc , and #1,. 1is ionization thre-

shold, or cutoff, which depends on a particular experi-
mental set-up. The most interesting peculiarity ofj}his
expression is in that the mean ionization rate ?ED ~ &,

as if it would be one-photon transition whereas, actually,
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there are a lot of them (fv'Q7V):Z>> {1 ). The explana-

tion is the following. Unlike a direct multiphoton ioni-

zation, which starts immediately upon the interaction

with the field, the diffusive ionization lags by fv'?Eé

while for < — 0 the ionization probability F% ~
exp (-4 /2 ) is exponentially small,

Kepler map (2) is a very simple model of electron's
dynamics in a Rydberg atom. Yet, it brings about new dif=-
ficulties, One is in that the relation between map's
discrete time C and continuous time ¥ depends on
electron's trajectory as d€/H7 == 3 LA surprising
implication is that even a steady-state density -%Q(CKY,
which, by definition, does not depend on time, turns out
to be different in both times: 3

&) G, NN\ Z (8)

42 Y ’ <//“ ——

s (V!
In quantum mechanics this difficulty, not resolved as yet,
becomes crucial because electron's trajectory has no lon-

ger any physical meaning.

4. QUANTUM PSBEUDOCHAOS AND THE CORRESPONDENCE
PRINCIPLE

1,2) was

A recent breakthrough in quantum dynamics
due to, first, an intensive use of the concept of classi-
cal chaos and of its implications in quantum mechanics
via the correspondence principle, and, second, a new phi-
losophy of quantum dynamics. I mean the restriction of
the latter to the Schrodinger (or similar) equation neg-
lecting, or rather leaving for better times, a very int-
ricate and vague problem of the quantum measurement. In
this philosophy the wave function y/fiﬁ/ is simply a
very specific dynamical variable which describes the
proper dynamics of a quantum system.

In the Kepler model (2), to be quantized below, inte-

ger ,4/ specifies what I call a photonic state which is



65

& group of neighbouring unperturbed Hydrogen levels gepara-
ted from the next (or previous) photonic state by one

field quantum, that is by & in energy. Thus, 3%«%0[
gives the probability within the energy interval (WZ ,)a)
All neighbouring photonic states are coupled by one-pho~
ton transitions.

The quantization of the Kepler map can be performed
as follows. The 'momentum' A/ is integer, hence, <the
operator /\/_~ - 9/390 Quantity Y ((mod 1 )xconst
plays a role of 'quasimomentum', and it is approximately
conserved.

Any map can be represented by a time-dependent Ha-
mlltonlan. For the Kepler map, for example,

H H W)+ k. Cos . 3\(2“)
12
o = Z(-Rw — . s
Z ( (Mw))) g

where & (o) is S -function of period 1. The latter
H, expfgssion in Eq.(9) is for the standard map. Now
the quantization comes simply to substituting the opera-
tors for dynamical variables in Hamiltonian (9). Using
the standard technique we arrive at a quantum map

— A 11
> p=explifdet )y =RFy U9
where
1 —ikGse g ~e Lt (11)
%‘ZTQZ Az = O 2
are the operators of a 'kick' (in coordinate representa-
tion), and of the rotation (in momentum representation and
for the standard map), respectively. The expression for
e operator shows that an important quantum parameter
is 7 /%5~ (mod 1).
The transition to the classical limit corresponds to
k- o and 7 —» ¢ while the classical parameter
7( L,/ = const. The latter condifion is very important

(9)

0
J
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in analyzing quantum effects in the quasiclassical region:
the classical dynamics should be fixed. Otherwise, one
cannot discriminate the quantum features of the process.
Quantum mep (10) shows that the original guess /7, >> 1

is necessary but insufficient for the quasiclassical trea-
tment of the problem. Instead, one needs kvVigzgéz} S>> e
Under this condition the perturbation couples ,»ﬁé-photo~
nic states per iteration.

In the oposite limiting case ( Af<<1) all photon
transitions are suppressed, even if As>> 1, no matter
what is system's behaviour in the classical limit. This
is & purely quantum effect which is also called the per-
turbative localization. The latter term emphasizes that
the perturbation is inefficient, and the exact eigen-
functions are close to the unperturbed ones. In relation
to the problem of chaos this property was first discussed
in'®), and we call the condition K ~ 1 Shuryak's bor-

der. In the Hydrogen problem this border is

£ %

o (S4)

For a fixed O, the critical &, —» (0 as #4,—~»Lo in
accordance with the correspondence principle.

This border is well-known and is widely used in ato-
mic and molecular physics (see, e.g.g) )e What is less
known that it is not the only, and even not most impor-
tant, quantum limitation of the classical dynamics in
quagiclassical region. Meanwhile, such limitations are
very essential to know as classical methods become rat--
her popular in atomic and molecular physics (see, e.g.17)).
Indeed, the fundamental correspondence principle seems
to require the transition between quantum and classical
mechanics, including peculiar chaotic phenomena.

In our problem we would expect the diffusion in AV
for sufficiently big £ , and for classical K > e
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This is, indeed, the case18). Moreover, the quantum dif-
fusion mimics all peculiarities of the classical case19)
Yet, it only mimics those and besides on a finite time
interval only, as was discovered already 1n18)
cal experiments revealed that in a time'»'zﬁz the tran-
sition of the distribution function

f[/\/“]wexP(zw )___>, @XP( 2N (13)

occurs from an expanding Gaussian one to an exponential
steady state. The latter is a purely quantum formation
without any classical counterpart. The process (13) is
called the quantum localizatian of classical diffusion, or
in brief, the diffusion localization. A remarkable rela-

tion
/.~ D, |

holds between quantum localization length gfi and clas~
gical diffusion rate :DA/ (see 4’19)). ain, in accor-
dance with the correspondence principle i?'xréfz—e— 2o
as  k — oo,

The physical cause of localization is the discreten-
e3s of the quasienergy spectrum whose density pw ~ /
Notice the finite quasienergy level density which is de-
fermined by the so-called operative eigenfunctions only,
that is by those actually present in the initial quantum
state /(/, 0) . The effective number of these is fini-
te because of the locealization of eigenfunctions inevi-
tably related to the diffusion localization. It is inte-
resting to mention that eigenfunction localization length
Z / /,2, turns out to be quite different from /;
according to numerical exper1ments19’ 20). A qualitative
explanation of this surprising result is in very big
fluctuations around the average exponential dependence.

The diffusion completely stops in time ~~ ?ﬁé ,
and we call ¢, the relaxation time scale. It has

R

» Numeri-

S
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nothing to do with the so-called Poincare recurrence
time. The latter is much bigger than Eié and it sharp-
ly depends on the recurrence region.

The present quantum example shows that statistical
relaxation can also occur in the discrete spectrum. The
main difference from the classical relaxation is in that
the quantum distribution ﬂ(/i/, z)= U, ’?//Z’ is ne-
ver constant but rather oscillates about the classical
equilibrium distribution, and even sometime (on a very
rare occasion!) can come back to the initial distribution.
In other words quantum distribution behaves, in a sense,
like a classical trajectory or like the classical phase
density for a regular motion. A more precise statement
is that an individual quantum system, as described by
its §» function, corresponds statistically to a
finite ensemble of ~~ {i ~ AT& 'particles' with res-
pect to ¥/ fluctuations.

Thus, the quantum chaotic motion, or briefly the
quantum chaos, has a discrete spectrum which in a clas-
sical system would correspond to the opposite limiting
case of regular motion. Yet, it reveals some statistical
properties including diffusion and relaxation but only on
a finite time scale ?}k_ o« For this reason we use to
speak about the temporary quantum pseudochaos.

Another peculiarity of the quantum chaos is its dy-
nemical stability21), that is the quantum Lyapunov expo-
nent /\$,EE O. This is a direct consequence of the
discreteness of phase space in quantum mechanics. But
how about the correspondence principlef’ It turns out
that a temporary instability is still possible, indeed.
This was discovered by Berman and Zaslavskyzz). The phy-
sical meaning of the instability is the exponentially
fast spreading of a narrow wave packet which follows for
a while the classical unstable trajectory according to
the Ehrenfest theorem. Hence, the corresponding time
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gcale .
= . ]éﬁﬁ 75/ (15)
BZ A
is logarithmically short. Yet, qﬁéz;_? co @ag [ > O
in accordance with the correspondence principle.

There is an interesting analogy between the diffu-
gion localization and well-known Anderson's localization
in solidszB). In my opinion, this analogy cannot explain
the diffusion localization as it would require the quan-
tum phases ‘Tﬂ/fké mod £7- (see Eq,(11)) to be random
whereas they are obviously not. Yet, the analogy can by
used in the opposite direction: the diffusion localiza-
tion with nonrandom phases implies that the random poten-
tial is only sufficient but not necessary condition for
the Anderson localization. Indeed, it was proved that
even quasiperiodic potential can provide localization
(see, e.g.13)).

In the standerd map the diffusion stops and the

quantum steady state is formed no matter how big is quan-
tum parameter éi—%’ﬂo « This is not the case in the
Kepler map with a finite number [V | of photonoc states
up to the continuum. Hence, & new important parameter

,X = Zi /ﬁV( appears which I call the ergodicity para-
meter. The diffusion localization would influence (sup-
press) ionization only if A < 1o The condition A~
is called delocalization border, .

Numerical eXperiments well confirmed the above pre-
dictions, including the velidity of 720 model 3*24),
Recently, first indications of the diffusion localization
in Hydrogen were reported also in laboratory experiments
25). The localization occurs for ¢, > 1 only. The
cage (W,_,< 1 1is much more difficult for analytical
studies while the result is much simpler and not so in-
teresting, namely, the classical behaviour holds as soon
as MNg >> 1 (see, e.g.26)).
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5, EPTLOGUE: WHAT IS THE QUANTUM CHAOS ¢

The quantum chaos, unlike its classical counterpart,is
a rather new topic of research. There is, as yet, even no
common definition of the quantum chaos. Here four versi-
ons currently in use are listed.

The Quantum Chaos is:

(i) quantum dynamics of classically chaotic systems;

(ii) partial imitation of the classicsl chaos;
(iii) dynamically stable statistical relaxation;
(iv) the relaxation in discrete spectrum.

The most popular is the first definition which is also
logically simplest one. In my opinion, however, it is comp-
letely inadequate from the physical point of view. Indeed,
that 'quantum chaos' may happen to be a perfectly regular
motion, for example, below Shuryak's border (12). Corrent-
ly, I advocate the fourth definition as the best. A common
disadvantage of all the above definitions but the first one
is in that such a chaos is also possible in a classical
system. Yet, in quantum mechanics it is the maximal chaos
available apart from very exotic examples (see Section 2
in 4 and27§).

Another interesting question is whether one really
needs any property stronger than relaxation (even in a
discrete spectrum) to develop statistical mechanics ¢

Let me conclude with a principal question due to
Ford: Is there any quantum chaos ¢ Now I would answer
this question in the affirmative, even though the quantum
~chaos is certainly rather different from the classical
one. Then, the next question is quite natural: Is there
any classical chaos ¢ I would say no, to the extent that
the quantum mechanics is a universal theory. In any event,
the classical chaos remains a very important conception,
at least, as a limiting pattern to compare with real
physical systems.
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