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A SIMPLE MODEL ANALYSIS OF QUANTUM CHAOS
By B. V. CHIRIKOV
Institute of Nuclear Physics, 630090, Novosibirsk, USSR
( Received November 20, 1989)

The controversial phenomenon of quantum chaos is discussed using a simple model
of quantized standard map, or the kicked rotator. The relation to the classical dynamical
chaos is tracked down on the basis of the correspondence principle. Various mechanisms
of the quantum suppression of classical chaos are considered with an application to the
excitation and ionization of Rydberg atoms in a microwave field.

PACS numbers: 05.45.+b

1. Prologue: why quantum chaos?

The main purpose of this lecture is to present our understanding of a new contro-
versial phenomenon — the so-called quantum chaos — which is attracting now much
attention of scientists working in many different fields of research [1, 2]. The pictare of
quantum chaos I am going to discuss has been developed in a long-term collaboration
of the Italian-Soviet team including G. Casati (Milano); 1. Guarneri (Pavia); B. Chirikov,
F. Izrailev and D. Shepelyansky (Novosibirsk) [3, 4]. Of course, this particular presenta-
tion is my own as well as the full responsibility for possible inaccuracies, misconceptions,
and even mistakes.

So, why quantum chaos? Apparently because there is the classical dynamical chaos,
and a common belief that the quantum mechanics is universal, including particularly the
classical mechanics together with its dynamical chaos. Hence, there must be a quantum
theory of chaos, or the quantum chaos.

Now, the beauty of the classical chaos is, first of all, in its highly controversial nature
relating the apparent opposites — deterministic (dynamical) motion and random (sta-
tistical) behaviour. Besides, the chaos turns out to be a rather widespread (generic) dynam-
ical process which has been overlooked during a long period of a simplified approach
to the Nature.

* Presented at the Tenth International School of Coherent Optics ‘“Quantum Optics II”°, Ustron,
Poland, September 19-26, 1989.
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From the viewpoint of various applications the important property of chaos is a simple
statistical description (of course, incomplete but essential) of very complicated motions.
This is characteristic to any statistical theory but an exciting peculiarity of the dynamical
chaos is in extension of a simple statistics down to a few degrees of freedom which was
a great surprise, indeed.

On the other hand, there exists a number of fundamental problems which are still
waiting for solution, and to which the conception of dynamical chaos seems to be relevant,
indeed. I am not yet ready to discuss those problems at length. Still, I would like just
to mention two of them: (i)  collapse in the quantum measurement which as yet has
not been described by any dynamical theory, and (ii) the causality principle which still
seems to be completely separated from the rest of physics. Further discussion of these
problems can be found in Refs. [5, 6].

2. A simple model of diffusive photoeffect in Rydberg atoms

In the present audience the photoeffect in Hydrogen seems to be an appropriate
example to discuss a new phenomenon, the quantum chaos. Amid other problems under
study in the quantum optics this one looks apparently almost trivial. Yet, it turned out
to be very complicated and surprising.

The puzzle arised 15 years ago in the experiments by Bayfield and Koch who observed
a fast jonization of the Rydberg Hydrogen in a low frequency microwave field [7]. The
initial principal quantum number was n, ~ 70, and as many as about v ~ 100 quanta
were required to ionize the atom. How is it possible at all?

The first insight has been got by Delone, Zon and Krainov [8]: they conjectured
a new ionization mechanism, which is now called the diffusive ionization, as contrasted
with the well-known direct multiphoton transition. It is interesting to mention that the
immediate implication of this conjecture would be still much bigger number of one-photon
transitions required, namely, ~ v2 ~ 10%(!) instead of v ~ 102 for the direct transition.

A partial resolution of this difficulty came from a simple observation that for a big
quantum number n, > 1 the classical mechanics should be applied. The corresponding
theory has been developed [9] which apparently settled the matter, at least, temporarily.

In spite of apparently ‘trivial’ character of the system some further simplification was
necessary. In most studies that was the one-dimensional (1D) model specified by the
Hamiltonian

1
H = — 2—5 +&z(n, 0) cos wt (2.1)
n

where ¢, w are the electric field strength and frequency; », 0 are the action-angle variables;
z is the coordinate along the linearly polarized field, and the atomic units e = m = h = 1
are used. In this model an extended electron orbit with big eccentricity is approximated
by the straight-line orbit with singularity at z = 0. In what follows the so-called scaled
variables w, = wng, &, = eng etc. will be convenient. These can be termed also the classical
variables as the classical motion cannot depend separately on quantum number n,.
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The continuous model (2.1) is still rather complicated for both analytical studies as
well as computer simulation, or numerical experiments as we use to say.
Subsequently [10], a simple Kepler map has been devised: (¥, ¢) - (N, ) where

N = N+ksin ¢
¢ = p+2n0(— o(N+v))7%%. (2.2

Here ¢ is field’s phase when the electron is in perihelion; the ‘action’ N = (E— E,)/w is
the number of absorbed quanta; E = —1/2r* is atom’s full energy, and v = E/w
= —no[2wy. Map (2.2) describes the change in canonically conjugated variables N, ¢
over a Kepler period of the electron.

The Kepler map can be still simplified by linearizing the second equation (2.2) which
is the Kepler law. In this way we arrive at the so-called standard map

N =N+ksing, ¢ =¢+TN (2.3)

which describes the dynamics of the Kepler map locally in N. The first equation of the
map remains unchanged, and it describes the effect of monochromatic electrical field on
the Kepler motion. Map’s parameters are

EoNo e
6mwg 2.5 1/3
T = = 6nw°ng, K = kT =~ 50g,my'". (2.4)

o

These expressions hold for the so-called high-frequency field wo 2 1 that is for field’s
frequency higher than Kepler’s one (15 °). This proves to be the most interesting regime
of the diffusive photoeffect. From the second expression for k we see that the perturbation
parameter remains constant in the process of excitation unlike parameter T which is rapidly
increasing with n,. The third parameter K is the only one which completely determines
the classical dynamics. Notice that upon introducing a new variable Njn, = (1/2m,)
(1—n/n?) the classical maps (2.2) and (2.3) contain the scaled quantities only.

3. Classical chaos, or random dynamics

The standard map (2.3) has been studied in many details independent of the perticular
application in question (see, e.g., Ref. [11]) It proved to be a very convenient model,
simple in appearance and highly nontrivial and rich in essence. In spite of intense studies
it still remains inexhaustible and continues to supply new information on both classical
and quantum chaos. On the other hand, it approximately describes some real physical
system as the present example shows.

The standard map is known to have chaotic component of motion for any finite
K > 0. The chaotic motion means that almost all trajectories (of a chaotic component)
of a purely dynamical system (without any noise or random parameters), like standard
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map, are nevertheless random. In turn, the random trajectory means that it is highly
irregular, complicated and unpredictable from any observation with arbitrarily high but.
finite accuracy. The ultimate origin of this randomness is in continuity of the phase space
in classical mechanics. This property is very important for understanding the quantum
chaos we are going to discuss below.

The mechanism of the chaos is explained by a strong local instability of motion..
Namely, the main condition for the chaos is a positive (nonzero) Lyapunov exponent
A for the solution of the linearized equations. In case of two-dimensional map which
can have, at most, one A > 0 the latter is related to the information I(f) associated with
a typical trajectory. According to the Alekseev-Brudno theorem (see Ref. [12])

lim ﬂ = A. (3.1

|t]— e

This remarkable relation explains why chaotic trajectory is unpredictable. Indeed, to
predict the next section of trajectory new information is required which is not contained
in the previous (infinite!) part of the trajectory. Notice that relation (3.1) does not depend
on the observation accuracy.

A nontrivial implication of this theorem is that a power-law instability (linear, for
example) is insufficient for chaos. In the latter case the prediction is possible from suf-
" ficiently many observations. Of course, a single observation (the initial conditions) is
still not enough to predict trajectory. This was an instructive mistake due to Born [13]
when the theory of dynamical chaos did not yet exist.

The unpredictability is an asymptotic property as [t] = co (3.1). On a short time
interval any dynamical trajectory is predictable, of course. Predictability is controlled
by the randomness parameter [14]

I U U
ny ¢’

(3.2)

where u is the accuracy of observation, and ¢, is the predictability time scale. The motion
on the latter is also called the temporal determinism (R < 1) while for R > 1 the asymptotic
randomness is building up.

The exponential instability of motion is necessary but of course, not sufficient con-
dition for chaos. For example, an unstable solution of lincar equations with constant
coefficients is perfectly regular and cannot be termed chaotic in any sense. Hence, the
second important condition for chaos (also necessary) is the boundness of the motion.
In other words, chaotic motion has to be oscillatory in a broad sense of the word, at least,
in some dynamical variables which are locally unstable.

The boundness of unstable oscillations is provided by the nonlinearity of the equa-
tions of motion. This is why only nonlinear oscillations can be chaotic.

Any dynamical description in terms of trajectories loses direct physical meaning
for chaotic motion. Yet, the dynamical equations of motion can still be used to completely



77
derive the statistical properties of the motion without any additional statistical hypo-
theses.

For the standard map chaotic components of motion exist for any K > 0, the Lyapunov
exponent per iteration being approximately

—; K <1;
An il (3.3)
K
lnT; K = 3.

However, the global statistical properties crucially depznd on K. Namely, there is a critical
K= K, ~ 1 which separates strictly bounded motions (K < K,) for any initial conditions and
unbounded motions (K > K,) for somz initial conditions motions in N. In the former case
a chaotic component has the form of a layer within which a fast statistical relaxation occurs.

For any K > K, there exists an unbounded (in N) chaotic component of motion
which is characterized by a homogeneous diffusion with the rate

AN)? k?
Dy = SL—T‘)—> = —2-C(K),

1-27K); K24

C(K) ~ {0.6 08 (k- K Ks’ . (3.4)

Here J is the Bessel function; 7 is the number of map’s iterations, and function C(K)
describes the dynamical correlation of successive values of ¢ phase. Notice that the dis-
tribution function f(¥, 7), which describes the diffusion process, is a coarse-grained one,
averaged over ¢.

All the above relations can be, in principle, derived from the map (2.3) only. The main
technical difficulty is the structure of the chaotic component which is highly complicated,
indeed, unless K is very big. In the latter case the motion is ergodic to a good accuracy,
and the evaluation of C(K) and Dy is fairly simple (see, e.g., review [15]).

The diffusion is an aperiodic process, and it implies a continuous spectrum of the motion.
The same conclusion is directly inferred from the exponential instability which is incom-
patible with the discrete spectrum. The latter, at most, can provide the linear instability
due to the dependence of motion frequencies on initial conditions. These con51derat10ns
are also very important in discussing quantum dynamics and chaos.

The diffusive evolution f(N, 1) is, of course, irreversible in time in apparent contra-
diction with the time-reversibility of the dynamical equations of motion. This is a particular
case of the long-standing controversy in the foundations of statistical mechanics since
the Boltzmann time. The dynamical chaos has extremely bared this paradox as the statisti-
cal (diffusive) irreversibility is now directly derived from the dynamical reversibility.
So, what is the matter? The answer is now very simple, almost trivial: the irreversibility
is the consequence of the particular description (very convenient and adequatel) via
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a coarse-grained phase density. The exact (fine-grained) density, obeying the Liouville
equation, is as reversible as the dynamical trajectory. The main difference between the
two densities is in a big spatial oscillation in the latter whose scale decreasing exponen-
tially fast in the process of mixing with A > 0. Yet, the reversible density is, neverthe-
less, nonrecurrent for a chaotic motion. Thus, now there is no need to assume any special
properties of the time like the notorious time arrow. The chaotic dynamics alone explains
everything.
In the Hydrogen problem the condition for global diffusion and jonization is

1
(eD) o,
g0 > ey ~ W 3.5)

from K > K, (see Eq. (2.4)). This may be compared to the static-field ionization threshold
(s)

gy = 0.13. _

The diffusion rate in Hydrogen atom rapidly oscillates with N (see Eq. (2.4)) around
the average .

— k? e2n &?

which remains unchanged during the diffusion.

A rough estimate for the ionization time is

m)? el
B (3.7)

where n = 1—n3/n2, and n_ is ionization threshold, or cutoff, which depends on a par-
ticular experimental set-up. The most interesting peculiarity of this expression is in that
the mean ionization rate 1, ! ~ &2 as if it would be one-photon transition whereas, actually,
there are a lot of them (~(yv)? > 1). The explanation is the following. Unlike a direct
multiphoton ionization, which starts immediately upon the interaction with the field,
the diffusive ionization lags by ~7, while for v — 0 the ionization probability
Py ~ exp (— A7) is exponentially small.

Kepler map (2.2) is a very simple model of electron’s dynamics in a Rydberg atom.
Yet, it brings about new difficulties. One is in that the relation between map’s discrete
time 7 and continuous time ¢ depends on electron’s trajectory as dt/dr ~ n3. One surpris-
ing implication is that even a steady-state density £(N), which, by definition, does not
dependend on time, turns out to be different in both times:

N\~32 )
FARS s(’><1— —-) . (3.8)

vl

In quantum mechanics this difficulty, not resolved as yet, becomes crucial because elec_tron’s
trajectory has no longer any physical meaning. As a result, the Kepler map can provide,
generally, the rough estimates only. Still, it helps understanding quantum dynamics.
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4. Quantum pseudochaos and the correspondence principle

A recent breakthrough in quantum dynamics [1, 2] was due to, first, an intensive
use of the concept of classical chaos and of its implications in quantum mechanics via
the correspondence principle, and, second, a new philosophy of quantum dynamics.
I mean the restriction of the latter to the Schrodinger (or similar) equation neglecting,
or rather leaving for better times, a very intricate and vague problem of the quantum meas-
urement. In this philosophy the wave function y(¢) is simply a very specific dynamical
variable which describes the proper dynamics of a quantum system.

In the Kepler model (2.2), to be quantized below, interger N specifies what I call
a photonic state which is a group of neighbouring unperturbed Hydrogen levels separated
from the next (or previous) photonic state by one field quantum, that is by w in energy.
Thus, |y(N)|? gives the probability within the energy interval (N4 1/2)w. All neighbouring
photonic states are coupled by one-photon transitions.

The quantization of the Kepler map can be performed as follows. The ‘momentum’
N is integer, hence, the operator N = —i0f0p. Quantity v(mod 1) & const plays a role
of ‘quasi-momentum’, and it is approximately conserved.

Any map can be represented by a time-dependent Hamiltonian. For the Kepler map,
for example,

H = Hy(N)+k cos ¢3,(2),
TN?

Ho = —2n(=20(F+)" > ——, | (4.1)

where 0,(t) is o-function of period 1. The latter expression for H, is valid for the standard
map. Now the quantization comes simply to substituting the operators for dynamical
variables in Hamiltonian (4.1). Using the standard technique we arrive at a quantum map

pyoyp=cxp(—if dtH)y = RFy, (4.2)
where
A s A ~i—1;-N2
F=e¢ s R=g 2, (4.3)

are the operators of a ‘kick’ (in coordinate representation), and of the rotation (in momen-
tum representation and for the standard map), respectively. The expression for R opera-
tor shows that an important quantum parameter is 7/4n (mod 1).

The transition to the classical limit corresponds to k = oo and T — 0 while the clas-
sical parameter K = kT = const. The latter condition is very important in analyzing
quantum effects in the quasiclassical region: the classical dynamics should be fixed. Other-
wise, one cannot discriminate the quantum features of the process. Quantum map (4.2)
shows that the original guess n, > 1 is necessary but insufficient for the quasiclassical
treatment of the problem. Instead, one needs

5/3

€0 (O .

k ~ Hg —5—/‘3‘ > 1 or (7)) > > 1. (4.4)
@o | €o

Under this condition the perturbation couples ~ k& photonic states per iteration.
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In the oposite limiting case (k < 1)} all photon transitions are suppressed, even if
ny, > 1, no matter what is system’s behaviour in the classical limit. This is a purely quantum
effect which is also called the perturbative localization. The latter term emphasizes that
the perturbation is inefficient, and the exact eigenfunctions are close to the unperturbed
ones. In relation to the problem of chaos this property was first discussed in Ref. [16],
and we call the condition k£ ~ 1 Shuryak’s border. In the Hydrogen problem this border is

w5/3

0

&M~ 0.4 -0 (4.5)
o

For a fixed w, the critical e§™ — 0 as n, = o in accordance with the correspondence

principle.

This border is well-known and is widely used in atomic and molecular physics (see,
¢.g., Ref. [8]). What is less known that it is not the only, and even not the most important,
quantum limitation of the classical dynamics in the quasiclassical region. Meanwhile,
such limitations are very essential as classical methods become rather popular in atomic
and molecular physics (see, e.g., Ref. [17]). Indeed, the fundamental correspondence
principle seems to require the transition between quantum and classical mechanics, in-
cluding peculiar chaotic phenomena. '

In our problem we would expect the diffusion in N for sufficiently big k, and for
classical X > 1. This is, indeed, the case [18]. Moreover, the quantum diffusion mimics
all peculiarities of the classical case (see Eq. (3.4)) [19]. Yet, it only mimics those and
besides on a finite time interval only, as was discovered already in Ref. [18]. Numerical
experiments revealed that in a time 7z the transition of the distribution function

f(N, 1) ~exp <— ZJIVDN) — exp (— leNl) (4.6)

occurs from an expanding Gaussian one to an exponential steady state. The latter is a purely
quantum formation without any classical counterpart. The process (4.6) is called quantum
localization of the classical diffusion, or in brief, the diffusion localization. A remarkable
relation '

Tp ™~ ls I~ DN (4.7)

holds between quantum localization length /; and classical diffusion rate Dy [4, 19]. Again,
in accordance with the correspondence principle /; ~ k2 —» o0 as k — co.

The physical cause of localization is the discreteness of the quasienergy spectrum
whose density ¢ ~ 7z ~ I,. Note that the finite quasienergy level density which is determined
by the so-called operative eigenfunctions only, this is by those actually present in the
initial quantum state (N, 0). The effective number of these is finite because of the locali-
zation of eigenfunctions inevitably related to the diffusion localization. It is interesting
to mention that eigenfunction localization length /= //2 turns out to be quite different
from I, according to numerical experiments [19, 20]. A qualitative explanation of this
surprising result is in very big fluctuations around the average exponential dependence.
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The conception of operative eigenfunctions, whose effective number is typically
finite, uncovers a delusive nature of another notion, the quasicontinuum, which seems
to be fairly popular in atomic and molecular physics. The latter appeals to the picture
of infinitely many quasienergy levels packed up into a finite energy interval. This provokes
a generally wrong conclusion about a classical-like diffusion. Actually, the diffusion com-
pletely stops in time ~ 7z. We call 75 the relaxation time scale. It has nothing to do with
the so-called Poincaré recurrence time. The latter is much bigger than 7z and it sharply
depends on the recurrence region.

The present quantum example shows that statistical relaxation can also occur in
the discrete spectrum. The main difference from the classical relaxation is in that the
quantum distribution f(N, 7) = |@(N, 7)|? is never constant but rather oscillates about
the classical equilibrium distribution, and even sometime (on a very rare occasion!) can
come back to the initial distribution. In other words quantum distribution behaves, in
a sense, like a classical trajectory or like the classical phase density for a regular motion.
A more precise statement is that an individual quantum system, as described by its p
function, corresponds statistically to a finite ensemble of ~ I, ~ k? ‘particles’ with respect
to y fluctuations.

Thus, the quantum chaotic motion, or briefly the quantam chaos, has a discrete spec-
trum which in a classical system would correspond to the opposite limiting case of regular
motion. Yet, it reveals some statistical properties including diffusion and relaxation but
only on a finite time scale 7. For this reason we use to speak about the temporary quan-
tum pseudochaos.

Another peculiarity of the quantum chaos is its dynamical stability [21] that is the
quantum Lyapunov exponent A, = 0. This is a direct consequence of the linearity of
Schrodinger’s equation and the conservation of probability. But how about the .corre-
spondence principle? It turns out that a temporary instability is still possible, indeed.
This was discovered by Berman and Zaslavsky [22]. The physical meaning of the insta-
bility is the exponentially fast spreading of a narrow wave packet which follows for a while
the classical unstable trajectory according to the Ehrenfest theorem. Hence, the corre-
sponding time scale

tyy ~ LT | (4.8)
BZ A .

18 logarithmically short. Yet, 75, — c0 as T — 0 as the correspondence principle requires.

There is an interesting analogy between the diffusion localization and well-known
Anderson’s localization in solids [23]. In my opinion, this analogy cannot explain the
diffusion localization as it would require the quantum phases TN%2mod 27 (see Eq.
{4.3)) to be random whereas they are obviously not. Yet, the analogy can by used in the
opposite direction: the diffusion localization with nonrandom phases implies that the
random potential is only sufficient but not necessary condition for the Anderson locali-
Zation.

In the standard map the diffusion stops and the quantum steady state is formed no
matter how big is .quantum parameter k£ — co. This is not the case in the Kepler map with
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a finite number |v| of photonic states up to the continuum. Hence, a new important param-
eter

L=t 4.9

appears which I call the ergodicity parameter. The diffusion localization would influence
(suppress) ionization only if A < 1. The condition A ~ 1, or

1/2
8o ~ 69 & /¢ (—”—) (4.10)
ng

is called delocalization border. Here 1 again introduce cutoff factor  (see Eq. (3.7)). This
quantum limitation of the diffusive photoeffect is more important that Shuryak’s border:

Q) 1/2
€o nne
8‘gsn) ~ ((Do) > 1. (4-11)

The border &5 — 0 (as well as e5™ does) if no — 00, thus, providing the transition to the
classical limit.

Numerical experiments well confirmed the above predictions, including the validity
of 1D model [3, 24]. Recently, first indications of the diffusion localization in Hydrogen
were reported also in laboratory experiments [25]. The localization occurs for w, = 1
only. The case w, < 1 is much more difficult for analytical studies while the result is much
simpler and not so interesting, namely, the classical behaviour holds as soon as n, > 1
(see, e.g., Ref. [26]).

5. Epilogue: what is the quantum chaos?

The quantum chaos, unlike its classical counterpart, is a rather new topic of research.
There is, as yet, even no common definition of the quantum chaos. Here four versions
currently in use are listed.

The Quantum Chaos is:

() quantum dynamics of classically chaotic systems;
(i) partial imitation of the classical chaos;
(iii) dynamically stable statistical relaxation;
(iv) the relaxation in discrete spectrum.

The most popular is the first definition which is also logically the simplest one. In
my opinion, however, it is completely inadequate from the physical point of view. Indeed,
that ‘quantum chaos’ may happen to be a perfectly regular motion, for example, below
Shuryak’s border (4.5). Currently, 1 advocate the fourth definition as the best. A common
disadvantage of all the above definitions but the first one is that such a chaos is also possible
in a classical system. Yet, in quantum mechanics it is the maximal chaos available apart
- from very exotic examples (see Section 2 in Ref. [4]).
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Another interesting question is whether one really needs any property stronger than
relaxation (even in a discrete spectrum) to develop statistical mechanics? On the other
hand, the discrete quantum spectrum does not allow to predict quantum dynamics, unlike
the classical case. Indeed, the prediction requires many successive measurements which,
in quantum mechanics, would completely change the dynamics. As a result the predicta-
bility is lost as well, in spite of the discrete spectrum of motion, now because of the un-
predictability of the quantum measurement. In my opinion, the latter is again related
to the chaos in the measurement process but this is a ‘hard nut’ to be open.

Let me conclude with the principal question due to Ford: Is there any quantum chaos ?
Now I would answer this question in the affirmative, even though the quantum chaos
is certainly rather different from the classical one. Then, the next question is quite natural;
Is there any classical chaos? I would say no, to the extent the quantum mechanics is a uni-
versal theory. In any event, the classical chaos remains a very important conception,
at least, as a limiting pattern to compare with more real physical systems.

I express my sincere gratitude to the Organizing Committee for the invitation to
this interesting School in a beautiful place and a possibility to exchange views with many
scientists from different countries. It is always pleasant to meet old friends, and to make
new acquaintances.
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