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The quantum localization of chaotically diffusive classical motion is reviewed, using the
kicked rotator as a simple but instructive example. The specific quantum steady state, which
results from statistical relaxation in the discrete spectrum, is described in some detail.

A new phenomenoclogical theory of quantum dynamical relaxation is presented and compared

with the previously existing theory.

I. INTRODUCTION

In this article we discuss a new development in the
theory of quantum diffusion localization. This surprising
phencmenon, which was initially discovered in numerical
experiments’ and has been further studied from many dif-
ferent perspectives (see, e.g., reviews in Refs. 2 and 3 and
references therein), is interesting in many respects, two of
which we mention here. First, it extends the very unusual
classical phenomenon of “deterministic chaos” into the
more fundamental realm of quantum mechanics. Second,
“localization” sets a quantum limit on classical chaos and
thus shows, much to our (initial} surprise, that quantum
mechanics is far more regular and less chaotic than classi-
cal mechanics. However, it should be stressed that this
latter conclusion is essentially related to a new philosophy
in the study of quantum dynamics, adopted (sometimes
explicitly but more commonly implicitly) by many re-
searchers in this field; namely, that the whole of quantum
dynamics is divided into two (unequall} parts: (i) the
proper quantum dynamics as described by the time evolu-
tion ¢&f the wave function ¥{(¢), and (ii) the quantum mea-
surement process, which is (as yet) the only link between
the micro- and the macroworld, and the only way for us,
macroscopic creatures, to study the mysterious quantum
world.

Of course, the second part is much more intricate than
the first, as there is so far no dynamical description of the
guantum measurement process, only the ‘“Copenhagen
convention,” which provides the macroscopic interpreta-
tien for 1. That such an interpretation is not the whole
story is suggested by a suspicion that the “collapse,” which
is the central core of the Copenhagen interpretation of
quantum measurement, may apparently occur without any
explicit measurement by an “observer.” The most spectac-
ular (albeit perhaps imaginary) example may be the birth
of the Universe in quantum cosmology.* But there are less
extreme examples. A much more mundane but important
possibility is that every “event” around us, as we under-
stand it, is a result of some continuously implicit (**hid-
den”) quantum measurement, Thus we badly need a {(dy-
namical) theory of quantum measurement to resclve these
issues. Indeed, recently a revival of interest in that sort of
theory is apparent (see, e.g., Ref. 5). But it is a hard nut!
Even some modification of the basic equations in quantum
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mechanics seems to be required. If so, essentially new
physics will appear.

In contrast, the first part of the problem of quantum
dynamics, as described above, is relatively “simple” and
essentially mathematical, since well-established quantum
evolution equations—e.g., the Schrédinger equation—are
available. We need “only” to solve them and to analyze the
solutions. In what follows, we concentrate on this simpler
part of the problem, as do most of the researchers in the
field. The physical aspect of this part of the problem lies
particularly in developing new quali{ative concepts in
quantum dynamics, among which “quantum diffusion”
and “localization” are especially important. Let me just
mention that a more general concept of “quantum chaos”
seems also to play a crucial role in the second part of the
problem, the quantum measurement process.

In our problem, guantum chaos represents a very pe-
culiar quasiclassical transition; that is, an asymptotic rela-
tion between classical and quantum mechanics. Generally,

thiec trancitinn ig hnh!v intricate and sinsmlar,
tiis wransiion 1§ qughni wricalc and smguiar,

stressed especially by Berry {see, e.g., Ref. 6). For a phys-
icist, the fundamental guide here is the correspondence
principle, which asserts that classical physics is not a sep-
arate theory but rather is 2 limit of quantum physics.

This article is organized as follows. In Sec. II a simple
model—the “kicked rotator”—which we will use for the
presentation of quantum chaos and its localization is de-
scribed. A brief review of its classical and quantum prop-
erties is given. A more detailed discussion of the peculiar
quanturn steady state, which results from dlﬁ'uszon local-
ization, ig presented in Sec. II1. The microstructure of cha-
otic eigenstates—the so-called “scars”-—due to the insta-
bility localization is briefly reviewed in Sec. IV. The
existing theory of diffusion suppression is outlined in Sec.
V, with special emphasis on a number of unresolved ques-
tions. The central part of this article is Sec. VI, in which we
attempt to solve some of these open questions.
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1. A SIMPLE QUANTUM MODEL

To begin, let us consider a simple classical model—the
kicked rotator—which is described in classical mechanics
by the “standard map” (see, e.g., Ref. 3)

n=n+ksin 8 6=0+ TH. (1)
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Here, {n,0} are the action-angle variables, and k,T—the
strength and period of perturbation—are the parameters of
the model.

This simple model, which seems almost trivial at ﬁrst
glance, has turned out to be very rich; this has made it very
popular in studies of both classical and quantum dynamics
and chaos. In addition, this model describes approximately
a number of real physical problems. For definiteness, let us
consider one specific example; namely, the photoelectric
effect in Rydberg (highly excited) hydrogen-like atoms.’
In the classical approximation, this effect can be described
by the following map over a Kepler period of the electron

around the nucleus® (see also Ref. 3):
—2E) %2, (2)

Here, E < ( is the electron’s energy; @ and 0 are the electric

E=E+4ksin @, 0=8+ 2mew(

field frequency and phase when the electron is at the peri- -

helion; and

7 A e 2 203 £y
Koz l.0le/w™ ") L2)
is the perturbation of the field strength € in atomic units
{e=m=+%#=1). The map {2) is readily reduced to the
standard map (1) by linearizing the second equation in

(2) in E around some Ey; this leads to the param

being given by

—2E) 372, (4)

Thus the standard map of type (1) describes the motion of
more complicated models locally (for E near E,} in action
.

T=6mw(

For a sufficiently strong perturbation
{K=kT>K,=1) an unbounded (in #n) chaotic compo-
nent arises in which the motion is diffusive with the con-
stant rate:

D={(Am)}) /7= (K2 /2)C(K). (5)

Here, 7 is the number of map’s iterations, and the function
C(K) describes the dynamical correlation of phase 8. In
particular, C(K) -0 if K- X _ from above, and C(K) -1
for K— . One finds that C(X} can be approximated by

(1—=25(|K|) +25(]K]); |K|>4.5,
|0.6(| K| — K.)/K |K|<4.5,

C(K)= (6)
except for narrow windows near | K| = 2mm, with integer
m>0, where the so-called “superfast diffusion™ occurs
with ((An)?) ~7*2,

The coarse-grained distribution function f(n,7) (aver-
aged over 8) obeys the diffusion equation

af DS

%2 o N

which has as a Green’s function an expanding Gaussian
distribution

G{n,7)=(27D7) " "2 xexp( — n*/2D7). (8)

The diffusion is unbounded, and hence, no steady state is
formed.
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The particular initial condition, G{#,0) =8(#n}, used in
Eq. (8) {and below} is not a restriction for the following
reasons. First, in a map, diffusion makes sense for integer
721 only, and, as K1, for |An|>1. Second, the map (1)
is periodic not only in 6 but also in #. Hence, to the above
accuracy, the diffusion is homogeneous in n.

It is interesting to mention that even in a continuous
dynamical system the diffusion is bounded from below by
the time of correlation decay. In the simplest case (but not
always), this time is of the order of the inverse Lyapunov
exponent., The latter characterizes the rate of the local in-
stability of motion, which is the mechanism for dynamical
chaos. In this initial stage of motion, the distribution func-
tion spreads out exponentially in time, rather than as a

power law as in the later staces of diffusion. Thig comnlatas
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our discussion of the classical kicked rotator.

What happens in quantum mechanics, which is be-
lieved to be a more fundamental theory including the clas-
sical mechanics as the limiting case? To put it another way:
does classical chaos survive quantization? This was the mo-
tivation of our first paper on quantum chaos.' Specifically,
we studied the model of quantized kicked rotator described
by the quantized standard map:

U=RFy,
. (9)
R=exp( — iTn*/2),

F‘:exp( — ik cos 8);

where the operator F describing the kick is given in the
coordinate representation whiie the operator R describing
the rotation (of quantum phases) is in momentum repre-
sentation, and = 1.

The equations as well as the whole picture of motion
are completely different in classical and quantum mechan-
ics [cf. Eqgs. (1) and (9)]. It is not at all clear how the
evolution in both cases could be similar, as required by the
correspondence principle for the quasiclassical region. This
region is determined for the model in question by the con-
ditions: k- o, T=0, the
K=kT = const. Notice that the quantum number # is not
a quasiclassical parameter in the kicked rotator because of
the periodicity of this model (see above) in #. Despite the
increasing spacings between the unperturbed energy levels
(E, 1 — B,=n - 1/2), the perturbation {a “kick”) cou-
ples about 2k levels, independent of # [see Eq. (9)].

The first numerical experiments showed that, indeed,
diffusion persists in the quantum model, and its rate is
close to the classical one.! Further studies confirmed that
the quantum diffusive relaxation follows the classical pro-
cess in many details.” Not only does the oscillation of the
diffusion rate due to the classical dynamical correlation

(6) persist in the quantum model, but also a superfast
diffusion at K~2 wm (m >0 integer} is also observed.

However, the quantum diffusion was found to be dy-
namically stable,” in contrast with the strong, exponential
instability of motion in the classical limit. This quantum
peculiarity is closely related to a slow correlation decay to
be discussed below. One can also say that the quantum
chaos is a *second-rate chaos,” and we term it “pseudo-
chaos.”

classical
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The most important quantum limitation of chaos is the
decrease of the diffusion rate in time, discovered already in
the first numerical experiments' and subsequently con-
firmed by many researchers (see, e.g., Ref. 11). Within
statistical fluctuations, the diffusion completely stops in
some time T, and a very specific quantum steady state is
generally formed that has no counterpart in the classical
limit. This process is called “quantum localization of clas-
sical diffusion,” or just “quantum diffusion localization.”

11l. DIFFUSION LOCALIZATION AND THE QUANTUM
STEADY STATE

The quantum steady state is characterized by the fol-
lowing main quantities: {i) the size I, or the localization
length; (ii) the mean energy, E,={n’)/2~2; (iii) the
fluctuations in energy, € = ((AE)Z)W/ES; and (iv) the
relaxation {diffusion) time scale 7, or the time of forma-
tion of quantum steady state.

The theory of quantum chaos
ing estimates for all these quantities:

E,~D% e~D™12 (10

Here, p is the mean level density for the ‘“‘operative”
quasienergy eigenfunctions. The new concept of operative
eigenfunctions is very important in the whole theory and
means those that are actually present in the initial quan-
tum state ¥(»n,0). The density p is finite just because of the
localization of all the eigenfunctions, which is inevitably
refated to the diffusion localization.

The physical meaning of the first set of estimates in Eq.
(10) is very simple, and it is related to the uncertainty
principle; namely, the system does not resolve a discrete
spectrum unless the energy uncertainty ~ 1/{<1/p be-
comes less than the mean level spacing. The estimate for E,
is also straightforward.

Now, a finite fluctuation € is the principal difference
between the quantum steady state and the classical equi-
Iibrium distribution. It is also relaied to the discreie spec-
trum of a finite density p and, hence, a finite number of the
operative eigenfunctions N~/ In a chaotic motion all ¥
quantum phases are decoupled statistically which resulis in
fluctuation €~ N~ Y2 This implies that the quantum dis-
tribution function

fq(nsf) = l¢(”,7—) |2

corresponds roughly to a finite classical ensemble of N ~ D
systems Hence, quantum | f{n7)is al\'xm}m recurrent, nn-

Sledaade A AlEinAs, Yradiiiiaeia A L & AR IRl ey

llke the classical fiy(n,7), whlch for chaotic motion would
never come back to the initial state. In other words, in the
quantum case both ¥ (n,7) and f,(n,7) behave like a clas-
sical trajectory rather than the phase density f,(»,7). No-
tice that the relaxation time scale 7 has nothing to do with
the Poincaré recurrence time, which is much longer and
which sharply depends on the recurrence domain.
Another peculiarity of the quantum steady state is that
it depends on the initial state, since the former is a result of
the diffusion localization of the latter. Hence, the steady
state is always spread around the initial state. Of course,
such diffusive spreading is possible only if the size of the

2312 yrovides the follow-

R~ Dmp;

(10a)

initial state, [y</; (for the Green’s function, for example).
This condition guarantees the statistical relaxation to the
quantum steady state. An extended initial state (/y>/;)
may happen to be close to one of the eigenfunctions or to
the steady state itself, which would suppress the relaxation.
To develop a more accurate description of the quan-
tum steady state we need, first of all, the exact definitions
of the quantities in Eq. (10). This is relatively simple for
the eigenfunction localization length / because the asymp-
totic exponential shape of localized eigenfunctions is well
confirmed by now both numerically and analytically:
(11)

Pm(n) = (1) exp( — |n—=m| /D).

Using this definition one can find numerically the relation-

ship between / and D. The result is>!*
1=D/2. (12)

The size [, of the quantum steady state is a more dif-
ficult question. Straightforward calculation using Eq. (11)
gives for the Green’s function'?

G 1 2|n| : 2|n|
=T, e"p( 7 ) T )
with the same localization length /. =/, But this is certainly
incompatible with the numerical results'®

(13

L= D221 (14)
A qualitative explanation of this discrepancy is related to
large fluctuations in eigenfunctions about the simple expo-
nential dependence (11). However, the question requires
fugther study (see Ref. 3).

The predicted deviation by Eq. (13) from the simple
exponential dependence is also very difficult to check nu-
merically, again due to large fluctuations. Meanwhile, the
additional factor

(1+2{n| /L) (14
in Eq. (13} doubles mean energy E; in the quantum steady
state;

(15)

This seems to agree with numerical results® but the accu-
racy of the latter is not very good. Besides, Eq. (13) de-

scribes the asvmptotic (|n| — ¢ ) dependence only, while

L LU LA ) Ll + VAN QO Sl Iy

E_ is essentially determmed by the initial part of the distri-
bution (|n| ~1;). We shall come back to this question be-
low.

The most difficult problem concerns the relaxation
time scale 75 To determine it with any accuracy, we need
to know the transient behavior that describes the transition
from the Gaussian [c¢f. Eq. (8)] to the exponential distri-
bution [ef. Eq. (13)]:

E.~D2.

exp( —n¥/2D7) (14 2|n|/L)exp( —2|n|/l)

(2aDr)1"? 21

(16)
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This brings us to the central issue of the article. But before
discussing this, we should briefly mention the interesting
microstructure of the chaotic eigenstates.

IV. INSTABILITY LOCALIZATION AND “SCARS”

The large spatial fluctuations in a chaotic eigenstate,
mentioned above, are not completely random but reveal
the structure of classical periodic trajectories. This inter-
esting phenomencn was discovered by Heller in numerical
experiments with the quantum stadium billiard" and was
subsequently confirmed by many others (see, e.g., Refs.
15), particularly in quantum maps. The microstructure
was observed in the form of enhancements au‘)i‘lg classical
periodic trajectories in both configurational and phase
space. Such enhancements were termed “scars” by
Heller.

The general theory of scars in conservative systems
with arbitrary number of freedoms N was developed by
Berry®'® (see also Ref. 17). He made use of the Wigner
function (#), which is the quantum counterpart of the
classical fine-grained phase space density. Notice that ¥ is
generally not positive definite.

Within a scar, W forms complicated diffraction
fringes, rapidly oscillating and rather extended along the
energy surface. The relative width of the central fringe
contracts with the quantum number 7 as ~» ~ "2, In this
sense the scars have an essentially quanium structure that
vanishes in the quasiclassical region. However, this transi-
tion to the classical limit is not a trivial one, as the fringe
amplitude does not depend on #. To get rid of scars, one
needs a coarse-grained (averaged) density #, which is also
called the Husimi distribution, and which is positive defi-
nite(.NT}}r)sn the averaged density of a scar vanishes as
n .

According to Berry’s theory, the Wigner chaotic eigen-
function can be approximately represented as a sum over
classical periodic trajectories:

Wix)= 5[E H(x)]

N—-1_
x[1+ > 2(2M>N“Iexp( S ASTS)
$

Xcos(%+ y,)S(Xs)]. (17)

\ FE
Here, x={(p,g} is a point in 2N-dimensional phase space,
while X = (P,Q) describes a 2(~N — 1)-dimensional Poin-
caré section transverse to a periodic trajectory at X = 0.

Th indin traiant, H 1 tarizad i timem O o
1€ PEricaic rajeCiory 1s Cnaracicrizea oy ai aciion S and

a quasiclassical phase as well as by a mean instability rate
A. Each term in the sum {17) represents a scar which, by
the way, can be of either sign; that is, it may produce either
a bump or a dip in the phase space density W.

A possible physical interpretation of this formal theory
is as follows. One can consider Eq. (17} as an expansion in
the basis of certain “coherent” states, the “scars”

W=(1/T)8(X)6[E — H(x)]; f W.dx=1, {18)
which are localized on periodic trajectories. A peculiar

property of such coherent states is that they are stationary;
that ig

Ligdin iy

they dn not move in nhace enare nar dn theu
wily GO DO INOVe 11 pirast space, nor G0 Lncy

spread. The mechanism of localization is essentially the
same as that for the diffusion discussed in the previous
section, but now it involves the exponential spreading of a
narrow wave packet prior to diffusion, mentioned in Sec.
IL. The difference is in the level density, which for a scar is
ps~ T 1. Hence, the time scale for the localization of the
instability is 7", and this explains the exponential factor in
the expansion (17).

The small quasiclassical factor #¥ ~ ! in Eq. (17) is due
to the maximal localization of scars in X, which is within a
quantum cell of size 4.

Oscillation tails §(X) of unknown length overlap to
produce somehow the average ergodic (microcanonical)

dictrihntinn L SIF . H{+\] feaa B (17Y] a2 weall ag tha
GISLIIOUION ~ 0o LA )] (500 . (17 )], 48 WELl a5 i

Gaussian fluctuations predicted in Ref. 18 and observed in
numerical experiments.> The total number of separated
scars is ~#' ~¥. Since the number of periodic trajectories
with T, < T grows roughly as exp[(N — 1)AT] (see Ref.
19), the longest period T,, of basis scars is given by the
estimate

AT~ |In#|, (19)

which coincides with the so-called Berman-Zaslavsky time
scale.® This is the time interval for a wave packet to spread
over the whole energy surface. The scars with longer peri-
ods T» T, are not separated from each other; that is, even

their central fringes essentially overlap and hence they are
crucially modified, Asa crnde nnnrnvumnhnn one can gim-

LR LAARLNY ILAUGR 1o 4 LA RUC QPP lUALIIL fALiian, AN LG Shadd

ply drop these higher terms, and thlS would be another way
to cope with the divergence of the series in Eq. (17). After
this digression, we now return to the main problem of
quantum diffusion localization.

V. THE BERMAN-IZRAILEV THEORY OF QUANTUM
DIFFUSION SUPPRESSION

The first attempt to explain the transient behavior from
classical-like diffusion to quantum localization was made
in Ref. 21 (see also Ref. 22). The main idea is that residual
correlations, even fairly small ones but on the whole relax-
ation time scale 74, will eventually result in the complete
suppression of the diffusion. The authors managed to de-
rive the explicit dependence of the mean energy on time:

E(r)=E{1 — 1/[1 + (7/7%)]%}. (20)

There are three parameters to be determined from numer-
ical data. One is just the desired time scale 75 E, is the
enarayu af tha atandy otata e S

mean Clii gy Ul ulu HLauy siald, a.ud a new paaaxuctcx ]J

characterizes the “repulsion” of quasienergy levels:

plsy~s% s-0. (21)

Here, p(s) is the probability density and s is the level spac-
ing. Equation (20) seems to agree with numerical data for
B =0.3.2! This rather small value corresponds to the so--
called “intermediate level statistics” that were introduced
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and studied in detail by Izrailev.” In the present problem,
the statistics in Eq. (21) describe the operative eigenfunc-
tions only.

If we assume the expression (15) for £, the two pa-
rameters in Eq. (20) are related by 7, = 8D from the clas-
sical diffusion law E~Dr/2 for 7<7g. This is in agreement
with estimate (10}, and it apparently solves the problem of
the relaxation time scale 7.

However, in Ref. 24 a different law for the diffusion
suppression was derived, using an analogy to Anderson
localization in solids (see Refs. 25 and 26). The main dif-
ference from Eq. (20) is in the exponent, 81, which
implies a much faster suppression of diffusion. The origin
of this discrepancy is as yet not clear.

In any case, the saturation shown in Eq. (20) of the
energy growth E(7) — E is not the whole story. The trans-
formation of the initial Gaussian distribution into the final
exponential one is still to be explained [see Eq. (16)].

V1. ANEW PHENOMENOLOGICAL THEORY OF
QUANTUM LOCALIZATION

This theory, proposed in Ref. 3, was aimed, first of all,
at explaining the transformation of the Green’s function
from Gaussian to exponential [cf. Eq. (16)]. Let us begin
with the general diffusion equation {see, e.g., Ref. 27):

Gn7r) 1 &

The second term describes a “drift”

{An) dD
A= =—+B.
dn

By introducing Eq. (23) into Eq. (22) we obtain

J¢ 14 9G 4
dr 29n b an  on BG.
The last term usually represents the effect of some dissipa-
tion. In our problem there is no dissipation, yet there exists
what is sometimes called “backscattering,” that is, the re-
flection of the ¢ wave propagating in momentum space.

To explain this backscattering, let us make use of a
deep analogy between the dynamical problem in question
and Anderson localization in solids. As mentioned above,
this fruitful analogy was discovered in Ref. 25 and further
developed in Ref. 9. The two problems are related by a
Fourier transform from momentum to coordinate space or
vice versa. In the original Anderson theory, the spatial
potential was assumed to be random, which implies that it
has a continuous spectrum. Then, for any energy of a prop-
agating particle, there exists a resonant harmonic of the
potential which provides an effective reflection of the ¥
wave, or backscattering. This results in the localization of
all eigenfunctions in one-dimensional problem.

Notice that the potential in a solid corresponds to the
rotation operator R in the dynamical problem (9) while
the kick operator F represents “free” motion of a particle.
In the exact analogy the random potential would require
random quantum phases T#°/2 in the standard map [see

(23)

(24)

Eq. (9)]. These phases are cbviously not random, so an
attempt to use Anderson’s theory for proving the diffusion
localization® fails. However, the analogy can be applied in
the opposite direction: The diffusion localization with non-
random phases implies that the random potential is only
sufficient but not a necessary condition for the Anderson
localization. Indeed, it was proved later that even a quasi-
periodic potential with only two spatial frequencies can
provide localization (see, e.g., Ref. 28).

Now, we can determine the backscattering function B
in Eq. (24) by requiring the steady state to be exponential
as in Eq. (13) with [, = D. For simplicity we neglect the
factor

(14 2|n|/7L)

and consider first a constant diffusion rate (see below).
The answer is very simple, namely,

B=7F1; n20.

(24a)

(25)

'We assume G{n,0)=8(n), so that G(N,7) is always sym-

metric about # = 0, and we consider below only n30.
The mechanics of the backscattering is still to be un-

derstood. Certainly, it is not a single-kick effect, since this

is perfectly symmetric. To get an idea on the effect of back-

scattering, consider the equations for moments
my={n}(n>0) and my= (n*):
ry=1DG(0,7) — 1, #y=D—2m,. (26)
On the other hand, the ratio
my/mi=2/y (27)

remains almost constant in the transition from the Gauss-
ian to exponential distribution:

ye=2 27— 142106 1. (27a)

Neglecting this small variation and introducing a new vari-
able & = 2yE"%/D and new time 7 = v*7/D, we arrive at
the equation

EE=1—§, (28)
with the solution
—t=&+In(1—£&); £(0)=0. (29)

Initially, as 7— 0 we have £ ~2f, or E=~ D7/2, independent
of y; this is just the classical diffusion. Asymptotically, as
7— o0, the solution £—1, or E —» E, = D¥/4 2. Ify=1,
this differs from the value (15) by a factor of 2. This
difference may be related to our neglect of the factor

(1 +2|n| /1)

in the steady-state distribution and can be corrected by
choosing ¥ = ¥, = 1/2? = 0.71. The relaxation £— 1 is
exponential

{29a)

_£;=1—e‘"§:1—e“"1 (30
with a characteristic time
Tr=1/t=D/y*>D. (31)
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This is again in agreement with a rough estimate (10) but
much larger than in Eq. (20) (rz = 8D =~ 0.3D).

A preliminary comparison of some numerical data
with the new relaxation dependence (30) reveals a reason-
able agreement in a fairly large range of A(E/E) =~
the average fitting parameter being ¥ =~ 0.75 = v.. How-
ever, the empirical E; is only about a half of the expected
value E, = D?/4* with this ¥ = 1/2.

One way to check the proposed theory is to consider
ntha A ER A~ ahla frr aveminla tha Arnca Af a
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variable rate
D=Dyn**

with some constant ¢. The general expression for the
steady state is obtained from the diffusion equation [Eq.
(24)] with B= — 1 (n>0} in the form

InG= -2 J- D)

2l —2/(1 — 2a)Dy; A,
= (33)
- (2/D0)11'l LA Q=

(32)

R

In agreement with previous results'® the critical value of
the parameter is @, = 3. For @ < a, the localization remains
exponential, while for ¢ > «a, delocalization occurs since
G(n) —const as #— 0. In the borderline case ¢ = «,
= 3, the steady-state distribution is a power law

G,~n~¥% (34)

and localization occurs only for sufficiently small Dy <2,
when G.(n) is normalizable.

The diffusion equation (24) with backscattering [cf.
Eq. (25)] leads to an exponential relaxation [cf. Eq. (30)]
which is qualitatively different from the power law (20) in
the existing theory. Is it possible to derive Eq. (20) from
Eq. (24)7 it turns out that it is! One needs only allow some
variation in time of the diffusion rate (7). Indeed, assume
m,(7) is given by Eq. (20) with E, approaching m, Then
from the second Eq. (26), we have

B

m
D) = T r/rp) P

(35)

1 172
1/2 -
i-—
+2m; ( (1+T/TR)B)

assuming m? = m, (27). If, moreover, m, = 47%/f3* so that
D(0)y=D(w), the rate D(r) has an oscillation only with
r = Dpp/Dpin = 14 (with B=0.3)2" and r=12
[(B= 1%

To summarize, the proposed theory seems to have the
prospect of being true but, of course, a much more exten-
sive comparison with numerical data is required.
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