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Abstract-Classification of chaotic patterns in classical Hamiltonian systems is given as a series of 
levels with increasing disorder. Overview of critical phenomena in Hamiltonian dynamics is 
presented, including the renormalization chaos, based upon the fairly simple resonant theory. First 
estimates for the criticial structure and related sataistical anomalies in arbitrary dimensions are 
discussed. 

INTRODUCTION 

The main idea exposed here is the inexhaustible diversity and richness of the dynamical 
chaos whatever description you choose: trajectories, statistics or, recently, renormalization. 
The importance of this relatively new phenomenon-the dynamical chaos-is in that it 
presents, even in very simple models to be discussed below, the surprising complexity of 
the structures and evolution characteristics for a broad range of processes in nature 
including the highest levels of its organization. Moreover, dynamical chaos is the only 
stationary source of any new information and, hence, a necessary part of any creative 
activity, the science included. This is a direct implication of the Alekseev-Brudno theorem 
and Kolmogorov’s development in the information theory (see e.g. [l, 21). The chaos is not 
always that bad! 

Below this paper is restricted to the classical mechanics only. The so-called ‘quantum 
chaos’ is another story (see e.g. [3, 41). Let me just mention that apart from very exotic 
examples there is no ‘true’ chaos in quantum mechanics contrary to a common belief. On 
the other hand, the unavoidable statistical element of quantum mechanics related to the 
measurement is very likely associated with the same classical chaos in the measuring 
device. 

With a bit of imagination and fantasy one may even conjecture that any macroscopic 
event in this World, which formally is a result of some quantum ‘measurement’, would be 
impossible without chaos. 

Also, any dissipative models (very important in practical applications) are not considered 
because they are not as fundamental as Hamiltonian systems. Besides, strictly speaking, the 
dissipative systems are not purely dynamical as the dissipation is inevitably related to some 
noise. 

In what follows a physicist’s approach to the problem is taken, that is, the presentation 
will be based on a simple (sometimes even qualitative) theory combined with the results of 
extensive numerical (computer) experiments. For a good physical overview of nonlinear 
dynamics and chaos, see [5, 61. 

*Revised text of the lectures given at the International School on Order, Chaos and Patterns, Como, 1990. 

79 



80 B. V. CHIRIKOV 

The principal concept of such a theory is the nonlinear resonance whose quite familiar by 
now phase space picture is depicted, e.g. in Fig. 4 below. An essential part of this 
resonance structure is a pair of periodic orbits, the most important being the unstable one 
as it gives rise to the separatrix and, under almost any perturbation, to a chaotic layer 
around. This is precisely the place where chaos is dawning. 

Again this paper is restricted to a simpler case of strong nonlinearity which does not 
vanish with perturbation. A very interesting weakly nonlinear resonance will be briefly 
mentioned in Section 1.2 below. 

The paper is organized as follows. In Section 1 simple models are described currently 
extensively used in the studies of nonlinear phenomena and chaos. They well represent the 
whole spectrum of complexity classified in Section 2. The main Sections 3 and 4 are 
devoted to a detailed description of the so-called critical phenomena in dynamics which 
reveal the most complicated behaviour presently known. 

1. SIMPLE MODELS 

First, let us consider a number of simple models currently very popular in the studies of 
dynamical chaos. Most of them are specified by some mappings, or maps, rather than by 
differential equations. This considerably simplifies both the theoretical analysis and, 
especially, the computer experiments. 

In conservative Hamiltonian systems the chaos requires, at least, two freedoms. Then, 
the corresponding so-called Poincare map is two-dimensional. 

1. Strong nonlinearity [7] 

Below we shall consider 2D maps of the following form: 

y = y + f(x); x =x + g(Y). (1.1) 

This map is area-preserving, or canonical, which corresponds to the Hamiltonian nature of 
the model. Function f(x), periodic in x, describes a perturbation usually assumed to be 
small. Hence, y is the unperturbed motion integral. Function g(y), even linear [see 
equation (1.6) below], represents the nonlinearity of x oscillation. 

The simplest example of an analytic perturbation is given by 

f(x) = K Sin x (1.2) 

We shall consider also a smooth perturbation specified by the Fourier series 

f(x) = C fmeimx; f, - K/m]+ (1.3) 
m 

where /3 is the smoothness parameter. The term ‘smooth’ means actually ‘not smooth 
enough’. For /3 = 2, for example, function f(x) is continuous but the first derivative is 
discontinuous. 

I mention two particular forms of nonlinearity. The first one 

g(y) = hlnlyl (1.4a) 

models the motion near separatrix of a nonlinear resonance, so that map (1.1) with this 
nonlinearity and perturbation (1.2) describes, particularly, a separatrix chaotic layer [7]. 

Another form of nonlinearity 

g(E) = 2aw(-2E)-3~ (1.4b) 
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corresponds to the Coulomb interaction, and it is actually the Kepler law. Here it is 
convenient to use unperturbed energy E < 0 as a dynamical variable, and w is the 
perturbation frequency (see [4]). 

The map (1.1) with nonlinearity (1.4b) and perturbation (1.2) is called the Kepler map, 
and it was applied in both celestial mechanics and atomic physics. In the former case the 
motion of comet Halley driven by Jupiter and Saturn was proved to be chaotic [8]. In 
atomic physics the Kepler map is a simple model to describe, in particular, a new type of 
photoelectric effect, the so-called diffusive ionization of Rydberg (highly excited) atoms [9]. 

The two latter examples show that map (1.1) can be considered also as a model for 
time-dependent dynamical systems that is for those driven by a periodic perturbation. This 
is, of course, simply a very convenient approximation in which the feedback from the 
perturbed freedom to perturbing one is completely neglected. Then, the model (1.1) can be 
described by the Hamiltonian 

H(x, Y, f) = G(Y) + F(x) &Cl> + G(y) + K c cos(x - 27rmt) (1.5) 
m 

where c&(t) is &function of period 1 (one map’s interaction), G’(y) = g(y), F(x) = -f(x), 
and the last series represents perturbation (1.2). 

A fairly simple map (1.1) can be simplified still further by linearizing the second 
equation. In this way we arrive, upon appropriate change of the action y, at the so-called 
standard map 

jj = y + Ksinx; P=x+jj (1.6) 

which describes the original model (1.1) locally in y, and which is also very popular now in 
studies of nonlinear phenomena in Hamiltonian systems. Model (1.6) is completely 
characterized by a single parameter K. In Hamiltonian representation (1.5) the ‘kinetic 
energy’ for standard map is G(y) = y2/2. Since x is an angle (phase) variable and y is the 
angular momentum the model (1.6) is also called the ‘kicked rotator’. 

Each term in series (1.5) describes a particular first-order (primary) nonlinear resonance 
with the ‘pendulum’ Hamiltonian (for standard map) 

H, = g + K cos(x - 2nmt). (1.7) 

The resonant value of momentum y,,, = lim = 2rrnz. In variables x” = x - 2nmt and 
y” = y - y,, any single resonance is a conservative system. Its motion is strictly bounded in 
y by the resonance width Ay, = 42/K owing to the nonlinearity that is the dependence of 
frequency k = y on momentum y. 

2. Weak nonlinearity [lo] 

The structure of resonance drastically changes if we add to Hamiltonian (1.7) the term 
c&2/2: 

H,=$+$ + K cos (x - 2nmt) (1.8) 

which breaks down the integrability of the system for any w. # 0. 
Actually, the model (1.8) is quite different from model (1.7) as now variable x is no 

longer confined to interval (0,2n=), and y is not the angular momentum. One may interpret 
Hamiltonian (1.8) as describing a particle-wave interaction. Such models have been studied 
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by many authors in plasma physics (see, e.g. [5]), yet the true understanding has been 
achieved only recently (see, e.g. [lo]). The peculiarity of model (1.8) is the weak 
nonlinearity that is the unperturbed (K = 0) oscillation is linear (isochronous) which turns 
out to be a much more difficult problem as compared with strong (unperturbed) 
nonlinearity (1.4). The resonance is now determined not by initial conditions but by the 
parameters of the model: 2rrn = no0 with any integer IE # 0. In the action-angle variables 
(I, q) of the harmonic oscillator a single resonance is approximately described by the 
Hamiltonian 

H, = Ky,(o)Cos(myl+ y) (1.9) 

where a = (~Z/(C)~)~‘* is the oscillation amplitude, and y, the Bessel function. There are 
now infinitely many stable and unstable periodic orbits (instead of two for strong 
nonlinearity) while the separatrices, connecting unstable points, form an unbounded 
network on the phase plane (I, v). As a result, even a single weakly nonlinear resonance 
can make the motion completely unstable and unbounded. 

2. LEVELS OF DISORDER 

This Section attempts to ‘organise’ the great variety of chaos into a series of levels with 
increasing disorder and complexity. 

0. Complete integrability [15] 

This, zero, level of the maximal order is characterized by a stable and dynamically 
predictable motion in terms of individual trajectories. The motion is quasiperiodic that is of 
a purely discrete spectrum. One may call it simple dynamics. Yet, in the general theory of 
dynamical systems this ‘simple’ motion includes the whole quantum chaos, typically on a 
finite time scale (see, e.g. [3]). The latter is dynamically equivalent to a many-dimensional 
linear oscillator which is apparently the simplest model of the quantum chaos [ll]. On the 
other hand, in the formal thermodynamic limit of infinitely many freedoms this model 
provided the foundations of the traditional statistical mechanics, both classical and quantal, 
for macroscopic systems (for a rigorous theory see, e.g. [12]). 

The standard map, as the simplest model, is completely integrable for K = 0 only, that is 
in the unperturbed limit. In this case y = const is the motion integral, and x = 2nrt where 
quantity 

w AX 

r =-%= 2nAt (2-l) 

is called rotation number. This very important parameter of a trajectory is the ratio of 
motion frequency (w) to that of the perturbation (2~). Particularly, this ratio determines 
resonance (with zero perturbation in this limit!) which correspond to rational r = p/q. Any 
resonant trajectory is just 4 separate points on the phase plane (x, y). For irrational r the 
trajectory is a continuous straight line y = 27rr which is called invariant curve. 

In spite of a great recent success in constructing the whole families of completely 
integrable systems (see, e.g. [13]) they all are exceptional, or non-generic, in the sense that 
almost any perturbation destroys the integrability. 
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1. KAM integrubility [14] 

KAM integrability is the generic property of a completely integrable system under 
sufficiently weak perturbation. The theory of such systems had been initiated by Kolmo- 
gorov and essentially developed by Arnold and Moser [15], hence, abbreviation KAM. 

For the standard map this first level of disorder corresponds to a non-zero K + 0. Most 
invariant (KAM) curves survive weak perturbation that is they are only slightly deformed 
but remain continuous and, hence, unpenetrable for other trajectories. For this reason the 
KAM curve is called absolute barrier (for the motion). This property depends on the 
rotation number r of the curve which must be sufficiently irrational for the stability against 
perturbation. Hence, the importance of parameter r which is used as the label for 
indentification of a given KAM curve at different perturbations. 

Curves with resonant r = p/q are all destroyed by any perturbation to form a different 
structure of the nonlinear resonance (Fig. 4). However, the nonintegrable part of the 
structure is confined to an exponentially narrow chaotic layer only. From physical point of 
view such a motion can be well considered in most cases as integrable to a very high 
accuracy. This is reminiscent of the adiabatic invariance which is very important in physics 
even though it is not exact. Actually, there is a deep relation between the two, and we call 
KAM integrability the inverse adiabaticity [14, 161. 

Approximately, the dynamics on this level is as simple as on the previous one. Yet, the 
chaotic component of motion, being of an exponentially small measure, is everywhere 
dense. As a result, the whole motion structure becomes very complicated. For more than 
two freedoms the phase space is cut through by a connected network of channels which 
support a global diffusion [7]. Even though the rate of this Arnold diffusion is also 
exponentially small it may be important in some special cases. For a weakly nonlinear 
system the Arnold diffusion is possible even in two freedoms as well, for instance, in model 
(i.8) [lo]. 

2. Complete chaos [20] 

Now we turn to the opposite limiting case when the motion is fully chaotic. In the 
standard map, as K + 00, there is a single chaotic component of motion stretched over the 
whole phase space (cylinder) of the model. The motion spectrum is purely continuous while 
a typical individual trajectory is most complicated. The latter means that Kolmogorov’s 
complexity, which is equal to the information associated with trajectory, is finite, per unit 
time, and equal to the rate of local exponential instability of motion [l]. Hence, the 
dynamics on this level is most complicated to the extent that trajectory actually loses its 
physical meaning. 

Nevertheless, the dynamical equations, e.g. map (1.6), can still be applied to completely 
derive the statistical properties of the unstable motion. Moreover, on this level the statistics 
turns out to be very simple and already well-known from the traditional statistical 
mechanics. For example, in the standard map it is simply a homogeneous diffusion in y 
with the rate 

D ~ WY12) 
Y t = $ C(K) + 5 (2.2) 

where function C(K) accounts for the dynamical correlation of phase x, and C(K) + 1 as 
K + 0 [17]. For this reason the complexity of motion on this level is still not the highest 
one. 
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3. Critical phenomena: scale invariance [21] 

For a typical (generic) perturbation, neither very weak nor very strong, the whole 
structure of motion is most complicated because phase space is generally divided in many 
separate domains with both regular and chaotic motions. In the standard map, for example, 
such an intricate behaviour corresponds to K - 1 (see Fig. 1) that is around the global 
critical perturbation K = K, = 1. The latter is the border between strictly bounded motion 
for any initial conditions (K 6 KG) and unbounded motion for some initial conditions 

(K ’ KG). 
In the unbounded chaotic component (for K > KG) the motion is still diffusive with the 

rate [18] 

4 = 0.30(K - KG)3 (2.3) 

Fig. l(a) Caption opposite. 
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vanishing toward the critical perturbation (cf. equation 2.2) where the correlation 
C(K) = 0.6(K - KG)3/K2). The main difficulty here is a hierarchial (fractal) structure of 
the chaotic component. The invariant measure-phase area, known beforehand, does not 
help in this case. The ultimate origin of that complexity is the chaos border in the phase 
space between chaotic and regular components of motion which also results in very peculiar 
statistical properties of the choatic motion (see Section 4). 

Thus, the chaos border makes both individual (chaotic) trajectories as well as the 
statistical properties of the motion very complicated. Is there any way to simplify the 
description of such a motion? Or: would it be possible to find any order in that mess? 
Surprisingly, it is possible, indeed, in some cases if one compares the critical structure at 
different scales in the phase plane (Section 3.3). Asymptotically, as you enlarge the 
structure more and more it exactly repeats itself with all the dynamical and statistical 

Fig. 1. An example of critical structure in map (3.1) with I = 5; scattered points belong to a single chaotic 
trajectory: (a) the whole chaotic layer; (b) enlarged part near the chaos border y = -L where the motion is 

described locally by the standard map (1.6) with K F= 1 [19]. 
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complexity (see also Fig. 5 below)! This peculiar property is called the scale invariance, and 
it is described by the so-called renormalization group, or in brief, ‘renormgroup’. 

4. Critical phenomena: renormchaos [22] 

The variation of the motion structure with the scale in phase space can be considered as 
a certain abstract dynamics (see Section 3.4) which we termed the renormalization 
dynamics, or ‘renormdynamics’ [22]. Here the scale plays a role of ‘time’ and we call it 
renormtime. The simplest case of any dynamics is a fixed point (for maps) which in 
renormdynamics corresponds to the scale invariance described above (see also Section 3.3). 
But typically the dynamics is chaotic, and so there must be a sort of renormalization chaos 
(renormchaos) as well. Guided by this analogy we have found such a chaos, indeed [22]! 

In this case the renormalization is as complicated as an individual chaotic trajectory of 
the original dynamic system. Yet, some remnants of order still persist, namely, the 
universality of renormalization. It means that asymptotically for a big renormtime, that is 
for small spatial scales, the critical structure is a universal functional of a single irrational 
number-the rotation number rc of the critical curve, e.g. the border curve, in almost any 
2D map [21]. 

Moreover, one can introduce the renormstatistics that is statistical description of the 
renormalization. Then, for almost any r, the renormstatistics is the same, i.e. universal, 
and it is fairly simple. 

5. Critical phenomena: the breakdown of universality [23] 

Recently, the first example of still more complicated behaviour has been found in 1231, 
where some quasiperiodic driving perturbation was studied. Specifically, the standard map 
(1.6) was used in numerical experiments with periodically time-depedent parameter 
K(t) = kl + k2 cos (2nr2t) incommensurable with the map’s time step. 

To some extent such a model represents also a higher-dimensional behaviour. A critical 
curve is now characterized by the two irrational rotation numbers rl, r2. For a particular 
choice of irrationals r 1, r2 it was found that the renormdynamics is different in dependence 
of parameters kl, k,. It is not clear thus far whether such a breakdown is typical. If so, 
one would expect also a more complicated renormstatistics. 

Here we have come to the frontier of unknown. Currently, there is no idea what would 
be still higher levels of disorder, if any. 

3. CRITICAL DYNAMICS 

In this Section I consider in some detail the two levels of disorder briefly described in 
Section 2 above (levels 3 and 4). This work was done in collaboration with D. L. 
Shepelyansky. 

1. Statistical ‘anomalies’ in dynamical chaos [24] 

We encountered the critical phenomena in studying some statistical properties of motion 
in a simple map 

J = y + sinx; X = x + Aln(Jl (3.1) 

of the type described in Section 1.1 above. Our studies were stimulated by paper [25] with 
an intriguing title ‘Numerical experiments in stochasticity and heteroclinic oscillation’. 
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Actually, the motion in a chaotic separatrix layer had been studied, and we went on with a 
much simpler model (3.1) (see [7]). 

We studied the statistics of times c, when a trajectory crosses the symmetry line y = 0. 
We call differences r, = fn+l - t, the. times of Poincar& recurrences (to line-y = 0). The 
same was implicitly done in [25]. Our results are shown in Fig. 2 where P(r) is (integral) 
probability for t, > t. The initial part of the distribution is very close to 

Pf = -&; tsl (3.2) 

and it is explained by a free homogeneous diffusion within the chaotic layer before the 
trajectory reaches the layer border (yb = A). It takes the time 

tf = 0.3A2 (3.3) 

where the coefficient was obtained from the numerical data. 
Curiously, in [25] only this (trivial) part of distribution P(r) was observed. It was the 

cost for author’s great concern about the exponential error growth at a chaotic trajectory. 
To overcome the instability the computation was performed with the record accuracy of 
358 decimal places! As a result the chaotic trajectory can be followed during a rather short 
time interval. 

Error growth is a serious problem, indeed, as the structure stability of Hamiltonian 
motion is almost unknown rigorously. Yet, all the numerical experience up to now strongly 
suggests such stability and, hence, the stability of statistical properties which are of the 
primary interest for a chaotic motion. Besides, only structural stability justifies the use of 
various simple models and approximations. 

In our studies of model (3.1) we directly checked that distribution P(r), which is a 
statistical property of the motion, does not depend on a particular trajectory within 
expected statistical fluctuations. The latter noticably influence the lowest part of distribu- 
tion P(r) where the number of events per bin is -1 (see Fig. 2). 

The most interesting is asymptotics of P(r) for r >> tf (3.3). This part characterises the 
motion structure of chaos border at 1 y ) = y b = A, or the critical structure as we call it. 

log T 

-5 - 

Fig. 2. PoincarC’s recurrences in the chaotic layer of map (3.1) for various A = 1 (lower points) through 100 (upper 
points). Two straight lines are power law with exponents -0.5 and -1.37, respectively, (after [24]). 
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The following features of P(r) asymptotics seem to be of importance. First, the 
distribution is a power law and not an exponential: 

P-a 

P(t) = 5; t L tf; (p) = 1.5 < 2. (3.4) 

This suggests a hierarchal (fractal) structure of the border. The accuracy of numerical value 
for p is not very good, yet we are sure that important inequality (3.4) always holds. 

On the other hand distribution P(r) is a power law only approximately, at average. 
Irregular oscillations of the local exponent p(r) = dln P/d In t clearly show up in Fig. 2. 
These do not depend on trajectory and, hence, characterize not statistical fluctuation but, 
again, the structure of chaos border. Such a structure with variable exponent p(r) is now 
called multifractality (see, e.g. [26]). 

Statistics of Poincare’s recurrences P(t) proved to be the most convenient and reliable 
numerical data to study (cf. [25]). On the other hand, it is directly related to the most 
important statistical property of motion-the time correlation [27], e.g. such one 

C,(r) = 
y(t)y(t + r) 

y2(t> 
(3.5) 

which chatacterizes the ‘sticking’ of trajectory near the border. Notice that y(t) = 0 for 
map (3.1). 

Indeed, the correlation is proportional to the sticking time that is (cf. [27]) 

CY _ tP(z> _ ypc. 

(T> ’ 
pc=p-l<l (3.6) 

for t 2 rf. Here ( r) = 3J. is mean recurrence time, and the latter important inequality 
follows from equation (3.4) (see also Fig. 3b). For chaotic motion C, + 0 as r+ 03 (mixing 
property), hence, pE > 0, and, for bounded motion, p > 1. Also, notice that due to 
ergodicity of motion C,, - y(r), the measure of the sticking domain (a strip) which is 

--lY - ybl/~b where Yb = A is a half-width of the chaotic layer for map (3.1). 
Slow correlation decay due to the sticking of a chaotic trajectory near the chaos border, 

and especially the inequality (3.6) are responsible for all other statistical ‘anomalies’ of the 
motion with a chaos border to be discussed below. A power law decay (3.6) is especially 
remarkable in view of the strong exponential instability of the motion which is character- 
ized by positive Lyapunov’s exponent A+ and the KS-entropy (per map’s iteration): 
h=A,= 0.7 (see Section 6.3 in [7]). The apparent contradiction is explained as follows. 
The instability rate h is mainly determined by the central part of the chaotic layer while the 
sticking is a peripheral effect which has a negligible impact on the mean local instability. In 
other words, KS-entropy does not discern such statistical anomalies. It can be done using 
the so-called Renyi entropy K, which is a generalization of h = K1 (see, e.g. [28]), and 
which drops to zero for all values of parameter q > 1 in the presence of chaos border [29]. 

The critical phenomena at the chaos border and related statistical anomalies are 
‘universal’ (a very popular word in this field of research!) in that they are approximately 
the same in any 2D map. In Fig. 3(a), for example, our results are compared with those in 
[27] for a different map on torus 

J = y + 2(x2 - a2); f=x+j (3.7) 

with a closed chaos border surrounding the domain of regular motion around the stable 
fixed point at y = 0; x = -a (0 < a < 1). Notice that the two distributions P(z) are not 
identical but rather similar (see below). 
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(b) 
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pz1.44 

Fig. 3. Statistical properties of motion with chaos border: (a) PoincarC’s recurrences; (b) correlation dacay. Solid 
curves are for map (3.7) [27] while circles are our data for A= 3. Straight lines indicate power law with the 

exponent shown. Dashed curve is the effect of noise [22]. 

2. The resonant theory [30] 

To understand the statistical anomalies described above we have developed a resonant 
theory of critical phenomena in dynamics [30, 311. Let us begin with a simpler problem of 
isolated critical KAM curve whose rotation number is some irrational r. According to the 
KAM theory most invariant curves are preserved under a sufficiently weak perturbation in 
the sense that they remain continuous and are only slightly deformed by the perturbation. 
The theory of critical phenomena follows the transformation of a KAM curve up to the 
critical perturbation which destroys the curve. 

The critical perturbation, e.g. K,(r) for the standard map, crucially depends on the 
arithmetic of r. Remember that for the everywhere dense set of rationals r = p/q the 
critical K&/q) = 0 (Section 2.1). The whole dependence K, (r) is a fractal function [32]. 

The physical explanation of this behaviour is in resonances. Their profound impact on 
the critical structure is clearly seen in all numerical data (see, e.g. Fig. 1). For irrational r 
the principal resonances correspond to the best rational approximations of r which are 
known to be the so-called convergents r,, = pn/qn of the infinite confined fraction 

1 
r= 

1 
= (ml, m2, . . .); r, = (ml, . . ., m,> + r, n+ 03. 

ml + m2+ . . . 

(3-S) 

The arithmetic of continued fractions gives for almost any r 

IfhI = Irn - rl - -$ - Irn+l - ml. 
n 

(3.9) 

From physical viewpoint pn is the detuning of the nth principal resonance with respect to 
the critical motion. Then, from the resonance overlap criterion [7] the main critical scaling, 
or the criticality condition, is 

4, - 1~1 - $ 
n 

(3.10) 

where Ap, is the resonance width. The resonances determine the principal scales of the 
critical structure whose scheme is outlined in Fig. 4 (cf. Fig. 5 below). 
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Fig. 4. Outline of the critical structure with a few principal resonances, represented by the separatrix chaotic 
layers (hatched) and stable periodic orbits (circles), and the corresponding scales q,,. Another chaotic layer Q, is 

a bottleneck between the scales (Section 4.3). 

To estimate Ap,, we need the critical Hamiltonian which describes all resonances 
rP4 = p/q (p, q any integers), and not the primary ones I, = m only from the original 
Hamiltonian of the type (1.5). Integer resonances rm = m are obtained in the first 
approximation xc(t) = 2vr,t = EC;, the mean motion on the critical KAM curve. 

Extrapolating the KAM theory (see, e.g. [15]) the following expression can be assumed 
for the critical motion: 

x,(t) = 5, + Ca, sin(qL). 
9 

(3.11) 

Locally in y, in the standard-map approximation the critical Hamiltonian H,, which 
describes some vicinity of the critical KAM curve r = rc, can be written as a natural 
generalization of the original Hamiltonian (1.5) [with G(y) = y*/2] in the following form 

H,(8, p, t) = $ + 2 _-f!!~- 
P.4 cw* cos 2n(q 8 - vpq t) (3.12) 

Here p = r - r,; 27r8 = x - c= x - 2art, and vpq = p - qr, are the driving frequencies. 
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Fig. 5. A small part of the critical structure with three successive scales shown by rectangles (including the whole 
picture). Critical curve is indicated by two arrows (after [21]). 

Resonances pP4 = p/q - rc are characterized by perturbation amplitudes vPq to be found 
below from the criticality condition. The factor (2~7)~ is introduced to recover the original 
Hamiltonian for which up1 = K (in variables 8, p). 

For principal resonances (p = p,, , q = q,,) the frequencies Y, - q ;’ are minimal, and 
they determine the time scales t, - vi1 - qn which are the motion periods at the 
resonances. Instead we can introduce the scaled variables, e.g. 

T=f”-I 
qn 

(3.13) 

which remain of the same order of magnitude on all scales n. 
The width of a principal resonance Ap,, - vkP - q ;* [see equation (3.10)]. Hence 

r-),-q, 7 -4 and another scaled variable 

v = vnq; - 1. (3.14) 

Now we can approximately solve the equation 

. . 3HC e=p=-,,-- aH, 

ae o=. 
The latter approximation means that we substitute mean motion 5; for xc(t). As our 
original model (3.1) is a map, time t is integer, and we can drop term pt in the solution 
19(t) which then takes the form (3.11) with 
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Hence, the longitudinal scaled amplitude 

A = anqn - 1 

and x scale is 4;’ which is simply one cell of the resonance chain (see Fig. 4). 
In the standard-map approximation 

(3.15) 

y,(r) = i,(t) = 27~~~ + c b, cos (q& - 2npt) 
4 

with b, = 2na, Y,, and the transverse scaled amplitude 

B = b,,q2, - 1. (3.16) 

Hence, y scale is qn2 which is the resonance width. 
Consider now the periodic orbit at resonance’s center (Fig. 4). Its stability is determined 

by the so-called Greene residue [33] (see also [5]) 

R = sin’ (3.17) 

where t, = q,, is the period, and w, = q,v’,’ is the small oscillation frequency [see 
equation (3.12)]. Obviously, R is a scaled variable. 

Finally, the scaled rotation number, or rather the scaled detuning 

D = p,,q; - 1 (3.18) 

determines actually all the other scaled variables. 
So far we considered exactly critical conditions that is K = K,(r). What would be the 

impact of any deviation AK = K - K,(r) # O? It can be evaluated as follows. Perturbation 
amplitudes v, in equation (3.12) appear in order qnth of the perturbation theory and are 
proportional to (K/K,)4 = exp (q In K/K,). Hence, for a small deviation from criticality 
(AK + 0) the amplitude v, - exp (Cq, A K) with some C - 1. At AK = 0 the exponential 
dependence cancels, and only a power low (3.14) remains. Generally, 

0, - -!- exp(Cq,AK). 
s: 

(3.19) 

For AK >O all scales q,, 5 (AK))’ are destroyed and a chaotic layer of width 
Ay - (AK)2 is formed. From equation (3.19) the scaled perturbation can be introduced 

P = q,,AK,, - 1 (3.20) 

which describes approaching the renormalization limit for a fixed V, for example. 
If the original perturbation is non-analytic that is with some power law spectrum 

0 
-p-1 [cf. model (1.3) where fm - mui] the critical conditions are only possible for 

2;3? otherwise K, = 0. Thus, p, = 3 is the critical smoothness of the perturbation. We 
shall come back to this point in Section 4.1 below. 

3. The renormalization group [21] 

This powerful method, well known and widely applied in hydrodynamical turbulence, 
phase transitions and quantum field theory, was first used in nonlinear dynamics and chaos 
theory in [33]. Later on, the exact renormalization equations were formulated and studied 
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in [34] for (dissipative) 1D maps, and in [21] for 2D area-preserving (Hamiltonian) maps. 
The renormgroup equations are an abstract map acting in the space of dynamical maps, 
and it is based on the arithmetical map for successive convergents I n = pn/q n of the critical 
rotation number re = (m,): 

p = riip + p; q=rTq+q (3.21) - - 

where p = P,,+~; p =p,,; p=~,,_~ etc. Besides qualitative understanding of critical 
phenomena (particularly, th% universality) this approach provides very efficient numerical 
algorithms for computing all the parameters of critical structure. Unlike this, our resonant 
theory, being inherently approximate, allows some analytical estimates. 

The resonance overlap criterion, on which the theory is essentially based, can directly 
provide order-of-magnitude estimates only as, for example, for scaled variables 
(3.14-3.17). However, there exists another group of critical parameters which can be 
evaluated to a surprising accuracy. Those are the scaling factors that is the ratios of 
particular quantities on the neighbouring scales. For example, 

a, b, 
S, = -. _hK, 

7 

an+1 Sb=b; n+l sK - AK,,, 

are the renormalization factors for x, y , and perturbation K, respectively. 
The structure of scaled variables shows that all scaling factors are some powers of the 

main arithmetical factor 

qn 
sq = - 

4n-1’ 
(3.22) 

To compare both approaches let us consider the simplest case of a homogeneous 
continued fraction r = (m, m, , . . , m, . . .) = (mm). In th is case all the scaled variables 
become asymptotically, as n + 03, exact invariants of the renormgroup. This is called the 
scale invariance. For example, D + (4 + m2)-ln [see equation (3.21)] which is a simple 
arithmetical propert The other invariants are not yet known except the case of 
r = rc = (1”) = ( d - 1)/2 = 0.618 . . . which is called the golden tail (because for 
asymptotic properties only tail of the continued fraction matters). 

In this particular case, studied in great detail, the normalization invariants are T = 1 [if, 
by definition, t, = q,,, see equation (3.13)]; R = 0.2500888 . . .; V = (2arcsin 0)’ = 
1.097052 . . .; A = 0.167; B = 2aA/ a = 0.470. Notice that from the above relation 
R - V - Ap”/p,, the Greene residue also characterizes the resonance overlap. 

Now consider the scaling factor for the area c, - anbn of a resonance cell (the 
corresponding scaled variable C = c,qz = AB = 0.0787): 

s, = c,/c,,+~ = s; = 4.236 . . . (3.23) 

while the exact numerical value via the renormgroup is 4.339 . . . The two numbers are not 
equal but very close which was a puzzle for the formal renormgroup approach. 

A similar situation is for the perturbation factor: SK = sq = 1.618 . . . (resonant theory), 
and SK = 1.627 . . . (numerically). 

The differences in scaling factors of the two theories can be interpreted as small changes 
of the exponents of q in scaled variables. For the two above examples we can write: 

c = c,q;; cx = 3.049960 . . . 

P = AK,qf; p = 1.0126966 . . . (3.24) 

Other examples will be given below. 
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The behavior of asymptotic renormalization invariants A and R is shown in Fig. 6 below. 
Remarkably, the invariant critical structure, which repeats itself on finer and finer scales 
with rapidly increasing precision, is itself of the highest complexity as it contains both 
chaotic trajectories and intricate admixture of regular and chaotic components of motion. 
An example of a tiny part (- 0.01 X 0.01) of that strucutre is shown in Fig. 5 [21]. The 
scale invariance is clearly seen within three successively scaled areas indicated by 
rectangles. 

Notice that the scale invariance holds on a particular discrete set of scales, infinite 
though, because the renormgroup equations are based on the arithmetical map (3.21). 

4. Renormalization chaos [22] 

Variation of the critical structure from scale to scale can be viewed as some abstract 
dynamics. The corresponding dynamical space is infinitely dimensional but we may 
consider various few-dimensional projections of that as described by a set of scaled 
variables such as A,,, R,, V, etc. (see, e.g. Fig. 6.). The serial scale number n plays a role 
of ‘time’, and we call it the renormtime. It is proportional to the logarithm of spatial and 
temporal scales; 

n - llna,l - Ilnb.1 - lnt, - lnq,. (3.25) 

The renormtime is discrete as is the renormdynamics based on the arithmetical map (3.21). 
The scale invariance described in the previous Section is the simplest type of renorm- 

dynamics, namely, a fixed point of the renormmap. The dynamical interpretation of 
renormalization suggests other, more complicated, scalings up to a chaotic one which 
would be the opposite limiting case. Guided by this heuristic approach we conjectured a 
new type of chaotic behaviour-the renormchaos [22], and presented an example of the 
latter in [30]. A similar possibility was also considered in [35] for dissipative systems as 
modelled by an 1D map. 
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Fig. 6. An example of renormchaos for a random rC (circles). Arrows indicate the corresponding scales for 
A = aq (lower part), and for R (upper part); n is renormtime (the number of a principal scale). For comparison 

the same data are given for rc = rG (dots) which illustrate the scale invariance (after [3]). 
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Our basic idea was to achieve the most complicated renormalization by using a random 
critical rotation number that is one with a random sequence of the elements {m,}. As is 
known from the modern ergodic theory (see e.g. [20]) this is just the case for almost any 
irrational r. Indeed, we may introduce a sequence of rotation numbers via the Gauss map 

1 
I=-’ 

m + F’ 
?=$modl 

which is known to be chaotic [20]. Moreover, the basic arithmetical 
tion (3.22) also obeys the same map 

w=lmodl; w=l<l 
W sq 

backwards in renormtime, and with the ‘initial’ w, = i: where 7 

(3.26) 

factor in renormaliza- 

(3.27) 

is the irrational with 
reversed sequence of elements in respect to r. Clearly, the variation of critical structure in 
this case would be as random and unpredictable as a chaotic trajectory. An example of 
renormchaos is presented in Fig. 6 as described by A and R scaled variables. Irregular 
character of this renormdynamics is clear from Fig. 6 but the proof of its randomness is 
related to Gauss’s map (3.27). 

A chaotic trajectory is completely determined, in principle, by the initial conditions via 
the formal equations of motion. By analogy, we can conjecture that the chaotic variation of 
critical structure is related to the rotation number r. This would imply that the scaled 
variables are some universal functions of r. Then, asymptotically, as n + 03, the renorm- 
dynamics is described by an infinitely dimensional map 

A(r) = A(f); R(r) = R(F) etc. 

1 
(3.28) 

FE--- mod 1. 
r 

Some numerical confirmation of this conjecture was presented in [30]. 
Thus, particular critical structure essentially depends on r, and in this sense is not 

universal. Nevertheless, the statistical properties of chaotic renormalization are the same 
for almost any r. Particularly, the average arithmetical factor (3.22) 

(sq) = ehfr = 3.28; h= *2=237 
61n2 * 

(3.29) 

where h is KS-entropy of the Gauss map (3.27). This may be compared with a non-generic 
case of the scale invariance for r = (mm): 

sq = 
m + W ~ 1 618 

2 
. . . . (3.30) 

Numerical value is given for m = 1 (golden tail). 
A grandiose example of renormchaos is the oscillation of the whole Universe near 

singularity in homogeneous but anisotropic cosmological models [36]. So far there is no 
sign of such oscillations in our early Universe. Yet, the equations of the general relativity 
allow that type of solution. Remarkably, the very complicated relativistic equations are 
approximately reduced to the trivial Gauss map. _ 

5. Higher dimensions 

- 

A general picture of overlapping resonances, which destroy KAM tori, holds for 
arbitrary number of freedoms [7]. This allows to extend our resonant theory of critical 
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phenomena to higher dimensions. There are two generally different cases of the latter: (i) 
N > 2 freedoms, and (ii) a driving quasiperiodic perturbation of one freedom. In the 
resonant theory both are similar, the principal parameter being the number of frequencies 
N [37]. 

First of all, for arbitrary N the number of all resonances with - q harmonics of each 
basic frequency is - qN, hence the detuning p - qeN [cf. equation (3.9)], and 

D = ,oqN - 1. (3.31) 

Now the main rotation number r is defined with respect to one of perturbation 
frequencies. Remaining N -.2 rotation numbers enter driving frequencies Ye - qp - qleN 
in the critical Hamiltonian (3.12). The resonance width Ap - uk!z, and from the overlap 
criterion (3.10) the criticality condition is uq - q-2N, or [cf. equation (3.14)] 

R- v = u4q2N - 1. (3.32) 

Hence, the critical perturbation smoothness PC = 2N - 1 increases with N (cf. [37]). 
Longitudinal amplitudes uq - qu,/$, - q-l of the critical motion xc(t) do not depend on 

N, and 

A = qa, - 1 (3.33) 

as before. The transverse amplitudes b, - a,~, - qeN - Ap decrease with N but remain of 
the order of resonance’s width. Finally, the perturbation scaling does not, approximately, 
depend on N also: 

P = qAK, - 1. (3.34) 

However, in many-dimensional case (N > 2) there is no simple procedure to single out the 
principal resonances like for N = 2. 

The renormalization group in higher dimensions was generally discussed already for 
dissipative systems (see e.g. [35]). Yet, I am not aware of any particular results concerning 
the scaling properties in such systems. 

To the best of my knowledge the only numerical data for N = 3 (standard map with a 
time-periodic parameter K(t)) were presented recently in [23]. They seem to confirm the 
scalings related to R, P and A. 

On the other hand, the authors did not find the scale invariance in this model, and it 
seems do not exist at all. What is even more important, they discovered a breakdown of 
the renormalization universality in the sense that irregular oscillations of the critical 
structure depend, generally, not only on the two rotation numbers but also on the model’s 
parameters. Thus, many-dimensional renormdynamics appears to be even more complic- 
ated (chaotic?) as compared to the simplest case N = 2. 

4. CRITICAL STATISTICS 

The most difficult, and as yet unsolved, problem is the impact of the critical structure at 
chaos border on the statistical properties of motion. 

1. Smooth perturbation: j3 < fi, 

To begin with let us consider a simpler problem of a smooth perturbation (1.3) with 
p < /3, = 3. First we can evaluate PC directly form the resonance overlap criterion as 
applied to the original perturbation (1.3). The simplest estimate is as follows. The total 
width of all primary resonances rpq = p/q on the unit r interval is 
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_C4”f/;? _ K’D~qu-P)/2 - 1 (4.1) 
4 4 

This sum diverges for /3 G 3, hence /3, = 3 in agreement with the previous estimate in 
Section 3.2. The latter estimate in equation (4.1) determines those resonances which 
provide the overlapping for /3 < 3. The critical qc - 
width Apt - K’Pq;(B+l)b, 

K(@-3)-‘. The corresponding resonance 
and the frequency [cf. equation (3.17)] o, - q,Ap,. Hence, the 

diffusion rate in r (or in y) is 

D- w(Ad2 - K3~q;(‘+‘B)/2 _ ~5/(3-L7). (4.2) 

The border case /3 = 3 requires more accurate estimates. 
Estimate (4.2) agrees with numerical results in [38] for p = 1 [discontinuous f(x)]. 

2. Critical perturbation [31] 

One peculiarity of the standard map (1.6) is the periodicity not only in x but also in y 
with the same period 27r. As a result there is exact critical perturbation K = KG = 1 [33], 
such that for K > K, the motion is unbounded in y and diffusive for some initial 
conditions (Section 2.3). The problem I am going to discuss now is to explain scaling (2.3) 
for the diffusion rate as K + KG. 

For K > KG the last (most robust) KAM curve is destroyed and transformed into a 
chaotic layer comprising all critical scales q,, 3 qE where qE - e-l, and E = K - KG + 0 
[see equation (3.19) and around]. This chaotic layer is just the critical ‘bottleneck’ which 
controls the transition time between integer resonance r = m, and, hence the global 
diffusion. The time scale in the layer is - qE, and the same is for the exit time (t _) from 
the layer. However, the entering into this thin layer [Ar, -qF2, equation (3.16)] from a big 
region (Ar - 1) takes much more time: 

(4.3) 

This determines the transition time which is inversely proportional to the diffusion rate D 
in agreement with recent numerical results (see equation (2.3) and [18]). Notice that the 
first value for the exponent = 2.6 [7] was not very accurate. The above estimate 
Are/t_, - A./t+ (4.3) is simply the flux balance in statistical equilibrium. 

It is interesting to mention that the renormgroup theory [39] gives the value 
lns,/lnSK = 3.011 . . . . This is another example of surprising accuracy in the apparently 
primitive resonant theory. 

3. The chaos border [30] 

The impact of the critical structure at chaos border in phase space on the statistical 
properties of the chaotic motion is the most difficult, and as yet unsolved problem. The 
straightforward approach would be as follows. The transition time t, between adjacent 
scales is proportional to the time scale t, - q,, which, in turn, scales like &i/Z - C;‘p 
where p,, - p,, - qi2 is the sticking measure, and where C, is the correlation (Sections 3.1 
and 3.2). Hence, C,, - re2, and pc = 2; p = 3. In a more sophisticated way the same result 
was obtained in [40]. But this is a sheer contradiction with numerical data: p = 1.5 < 2. 

The only way I see to avoid this contradiction is the conjecture that at exact criticality all 
transition times r,, = t4 that is all scales are dynamically disconnected. Then, why a 
connected chaotic component near the chaos border exists? The natural answer is in that 
the exact criticality is achieved on the border only while inside a chaotic region the motion 
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is supercritical. Consider, for example, model (3.1). Locally it is described by the standard 
map with K = A/y. In a small vicinity of the border y = yb = A the perturbation K 
increases, indeed, like AK - Ay - p - q-2. However, this is not enough to destroy the 
corresponding scale qn as qnA K, - 4;’ << 1 [see equation (3.19)]. Only resonances with 
qaQe,-- q’, would be destroyed and form a very narrow (- Qi2 - qi4) chaotic layer 
which could play a role of the bottleneck controlling transition time t,. Similarly to 
derivation of equation (4.3) we obtain 

‘Gn - Qn4 - q”, - Pi2 - C;2. (4.4) 
n 

Hence 

C,(r) - r-lb; 

now in agreement with numerical data. 

P(r) - t-3’2 (4.5) 

The same result can be obtained in a different, more formal, way. Namely, we can 
rescale dependence (4.3) for transition between integer resonances (qn = 1) to arbitrary 
scale qn. To this end we rewrite equation (4.3) in scaled variables 

rtl 
- - (qnAK)-3 
cl 

(4.6) 

With t, - q,, and AK - qi2 we arrive at equation (4.4). Notice that a different relation 
z,(q,) in [22] was due to a mistake in scaling. 

A weak point of the latter approach (4.6) is in that the scaling (4.3) is asymptotic 
(qn + m) while integer resonances (q,, = 1) are not. In any event, further studies into the 
mechanism of critical statistics are certainly required. 

In higher dimensions (Section 3.5) the supercriticality AK - p - qmN; the bottleneck 
harmonic Q - (AK)-’ - qN, and transition time [cf. equation (4.4)] 

t _ QN& _ Q2N-2 _ p2-2N 

qN 

Hence 

C, _ IL _ r-V-2); 1 ~ 
pc = 2N _ 2’ 

(4.7) 

(4.8) 

As N + ~0, pc + 0, and correlations do not decay at all. I am going to come back to this 
interesting case in Section 4.5 below. 

Another difficult problem is the arithmetic of rotation numbers rb of the critical border 
curves. In [22] it was conjectured that the set of rb consists of all combinations of only two 
elements m = 1 and 2 in the continued fraction representation. This is sufficient for rb to 
be random, and hence to explain irregular oscillation of the local exponent in the 
distribution of Poincare’s recurrences (Section 3.1). This conjecture was partially confirmed 
numerically in [45]. Our recent refined conjecture is that rb are the so-called Markov 
numbers [30]. 

4. Internal borders 

Typically, the central part of principal critical resonances is not destroyed (see e.g. Fig. 
5). Hence, in any neighborhood of the main chaos border there is an infinite set of internal 
chaos borders, each one with its own critical structure. Assuming universality of critical 
phenomena at any chaos border we arrive at the following estimate in scaled variables 
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(vqq2> - ; -pc ( 1 (4.9) 

for a principal resonance q where pq is the sticking measure at the internal border. 
The main difficulty here is in that the internal border exists not only inside the principal 

resonances but also in many others, near the critical border curve, which are not destroyed 
by the local supercritical perturbation. To estimate the total number of such resonances we 
can make use of equation (3.19) which determines the stability zone AK, - ps - q-’ for 
any q (as a very crude approximation, of course). Then, for a given q only M,/q - 1 
resonances fall into this zone, where M, - q is the total number of resonances p/q for 
fixed q. Again, as a crude approximation we can extend the estimates, particularly 
equation (4.9), on all undestroyed resonances. As a result, the total internal border 
contribution to the correlation is 

(4.10) 
4 4 

where the sum is taken over all q up to t. This co_ntribution is essential if pc > 1. But for 
pc > 1 the above estimate is not self-consistent as C, - r-l contrary to assumed universal- 
ity. However, the latter holds for pc = 1 (to logarithmic accuracy). This was the 
preliminary conclusion in [41] which was confirmed also in [42]. 

It would be a nice solution in the spirit of universality of the critical phenomona. Yet, 
first, the value pc = 1 seems still to be incompatible with numerical data (Section 3.1), and 
second, there is another possibility missed in [41], namely, pc > 1 as is suggested by 
numerical data. Then, the effect of internal borders is not decisive, at least, for exponent 
pc whose value is determined by another mechanism, for example, one described in the 
previous Section. 

In higher dimensions we have instead of equation (4.9) (see Section 3.5) 

(C1qqN) - --J& -pr. ( 1 (4.11) 

In calculating the total contribution of all internal borders we need to take into account 
that now there are as many as - qN-* undestroyed resonances, for a given q, within the 
stability zone. Hence, the total ‘internal’ correlation 

2;, _ CpqqN-2 _ t-P< c qPww* 

4 4 
(4.12) 

The critical value pr of the critical exponent is pT: = (IV - 1)-l. Only this value preserves 
universality based entirely on the internal borders. And, again, there is another possibility 
that pc < p: so that internal borders are irrelevant. This is just the case if the above 
estimate (4.8) is true: pc = pz/2. 

Preliminary numerical results obtained in collaboration with V. V. Vecheslavov 
(p, = 0.26 and 0.19 for N = 3 and 4, respectively) seem to confirm (or, at least, do not 
contradict) prediction (4.8). 

5. Superfast diffusion [22] 

Slow correlation decay with pe < 1 (4.5) may result in a superfast diffusion. Indeed, if 
this correlation determines the diffusion, the rate 

DZ - 



100 B. V. CHIRIKOV 

formally diverges. Here the diffusion goes in a new variable z, and i = y . The divergence 
means that the dispersion (the second moment of the distribution function) 

o2 - 
I 

D dr - t2-Pc (4.13) 

grows faster than time t. Hence the term ‘superfast diffusion’ we use. This phenomenon 
was studied from different points of view in many papers (see, e.g. Refs. [43, 441). 

The simplest example is again a standard map for special values of parameter K = 27rrn 
with any integer m # 0. At these K the so-called accelerator modes exist [7] which are 
relatively small areas of regular motion with linearly increasing momentum: y - +t while 
phase x is fixed. A chaotic trajectory cannot penetrate into these domains but it sticks at 
their borders. As a result, a superfast diffusion in y occurs which was first observed 
numerically in [46]. Notice that in the above notations z = y now while the role of y plays 
a new coordinate normal to the chaos border surrounding the regular regions. According to 
equation (4.13) 

(4.14) 

where a~= 0.5 from numerical data [46] for K i= 2a, and relative stable area pL, = 0.02. As 
0% - Ke2 [7] the rate of this anomalous diffusion (~~/t~~) does not depend either on 
K + CO or on pS + 0. 

In [44, 471 more complicated accelerator modes were shown to produce a superfast 
diffusion also corresponding to pc F= 2/3 in reasonable agreement with our numerical data. 
A simple expression for the growth of all moments of the distribution function was also 
given in [44] namely: 

ok _ tk-e, (4.15) 

for k even. In higher dimensions when N + ~0, and pc + 0 this relation becomes especially 
simple but somewhat puzzling. It appears to describe almost a free motion but in both 
directions of z variable! The limiting case pc = 0 corresponds to the fastest homogeneous 
diffusion possible. 

Further insight into the nature of superfast diffusion can be obtained from the motion 
power spectrum which is the Fourier transform of the correlation [30]. For o+ 0 we have 
from equation (4.8) 

s,(~) _ w~c-l _ W-(2~-WW’-2) (4.16) 

As N -_, 03 it approaches the famous l/w spectrum which, thus, produces the fastest 
diffusion. If i = y, the spectrum of z-motion is 

(4.17) 

From normalization (Parseval’s theorem) 

zT = 
I 
S,(o)dw - (,#‘c-~ - r2-pc. (4.18) 

If pc < 1 the integral diverges as w-+ 0. For a finite time interval the minimal o - t-‘, and 
the diffusion law (4.13) is recovered, including the limiting pc = 0. However, in the latter 
case the velocity dispersion 7 - In o diverges [see equation (4.16)]. In our models with a 
chaos border this is impossible, hence, always pc > 0 (4.8). 

The theory of superfast diffusion can be applied to a broad variety of different problems. 
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A nice example is the tangle of a long polymeric molecule in a certain environment. 
Approximately, such a molecule can be considered as a trajectory of the self-avoiding 
random walk. The constraint imposes a long-term correlation which can be estimated as 
follows. Suppose that the molecule length 1 and the tangle size o are related by 

o2 - 12” (4.19) 

with some so far unknown parameter Y. Then, the correlation due to avoided crossings of 
molecule line is roughly proportional to the probability of the self-crossing: 

(4.20) 

where integer d is the space dimensions. Hence, we have a power-law correlation with the 
exponent pc = vd -1 . Using equation (4.13) with t = 1 and equation (4.19) we arrive at 
the relation 

2~ = 3 - vd; 
3 

Y=2+d 
(4.21) 

which is known as Flory’s formula (see e.g. [48]). It was derived in a completely different 
way (from the thermodynamics of a polymeric molecule), and holds for d s 4, otherwise 
Y = l/2. In our dynamical approach the latter limitation follows from the condition pc < 1 
for anomalous diffusion. In the border case a2 - I In 1 (see e.g. Geisel et al. in [43]) which 
slightly differs from Flory’s formula. 

6. Fructul properties [49] 

The critical structure in Hamiltonian systems is also called ‘random fractals‘ (Voss [43]) 
because of the renormchaos (Section 3.4) or ‘fat fractals’ [49] for their finite measure 
unlike dissipative systems. Some fractal properties were studied numerically in [49]. 

Here, one property-the fractal dimension dL of the set of all chaos borders (mainly 
internal ones, of course) is explained. It is inferred from the dependence of the measure 
,&h of a chaotic component on spatial linear resolution E + 0: 

kh(&) = r%d”) + Ck’EB (4.22) 

Here ~~~(0) > 0 is the measure of the whole chaotic component, hence, its dimension 
ds = 2 is topological. The second term represents the borders whose total length and 
dimension are 

L(E) - &B-l; dL=2-/3 (4.23) 

The simplest evaluation of this scaling can be done as follows (see Section 4.4). Each 
undestroyed resonance has internal borders of the total length 1, - 1. This estimate follows 
from the fact that an individual border is a non-fractal curve whose dimension dl = 1 is 
topological. It is because the ratio of transverse to longitudinal scaling factors of the critical 
structure sJs, = qn + Q) as n + 03 (see Sections 3.2 and 3.3). Thus, the border curve ya(~) 
is very smooth (see Fig. 5). The number of undestroyed resonances is of the order of 
maximal q = qmax which is determined by the resolution: E - q,&. Hence 

L 5 c-‘/2; p= 1; dL = 1 (4.24) 

in a reasonable agreement with numerical p = 0.3 - 0.7 [49]. 
Notice also that the total number of resolved borders scales, in this approximation, as 
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2 
Nb -9max-& 

-1 (4.25) 

In higher dimensions with N frequencies we need to consider N-dimensional map with 
non-fractal border surfaces of N - 1 dimensions. Now there are - qN-’ undestroyed 
resonance up to qmax - E -UN The border surface in each such resonances Sr - 1, and total . 
border surface and its dimension are 

sb - & -(l-U/N)). 
3 d, = N - $. (4.26) 

The total number of resolved border surfaces, or of the domains with regular motion 

Nb- E -1 

does not depend on N and in this sense is universal. 

(4.27) 
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