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Chaotic Quantum Systems

Boris V. Chirikov

Institute of Nuclear Physics
630090 Novosibirsk, USSR

Abstract: New ideas concerning the peculiar phenomenon of quantum chaos are
presented with special emphasis on a number of unsolved problems and current
apparent contradictions.

1 Introduction

This lecture! is primarily addressed to mathematicians with the main pur-
pose to explain new physical ideas in the so-called quantum chaos which
since recently attracts ever growing interest of many researchers [1-5],[10].
The breakthrough in understanding of this phenomenon has been achieved,

particularly, due to a new philosophy accepted, explicitly or more often
implicitly, in most studies of quantum chaos. Namely, the whole physical
problem of quantum dynamics is separated into two different parts: (7) the
proper quantum motion described by a specific dynamical variable (t)
which obeys, e.g., the Shrodinger equation, and (i2) the quantum measure-
ment including ¥ collapse which, as yet, has no dynamical description. In
this way one can single out the vague problem of the fundamental random-
ness in quantum mechanics which is related to the second part only, and
which in a sense is foreign to the proper quantum system. The remaining
first part is then perfectly fits the general theory of dynamical systems.

The importance of quantum chaos is not only in that it represents a new
unexplored field of nonintegrable quantum dynamics with many applications
but also, and this is most interesting for fundamental science, in reconciling
the two seemingly different dynamical mechanisms for the statistical laws
in physics.

Historically, the first mechanism is related to the thermodynamic limat
N — oo in which the completely integrable system becomes chaotic [6]. A

! Here is the abridged version, for the full text see [33].
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natural question, what happens for large but finite number of freedoms N,
has still no rigorous answer but the new phenomenon of quantum chaos,
at least, presents an insight into this problem too. We call this mechanism,
which is equally applicable in both classical and quantum mechanics, the
traditional statistical mechanics (TSM).

The second (new) mechanism is based upon the strong (exponential)
local instability of motion characterized by positive Lyapunov’s exponent
A > 0 [6],[7]. It is not at all restricted to large N, and is possible, e.g.,
for N > 1 in a Hamiltonian system. However, this mechanism has been
operative, until recently, in the classical mechanics only. We term this the
dynamical chaos as it does not require any random parameters or any noise
in the equations of motion.

The quantum system bounded in phase space has a discrete energy (fre-
quency) spectrum and, in this sense, is always completely integrable similar
to the finite-V TSM. Yet, the fundamental correspondence principle requires
the transition to the classical mechanics, including the dynamical chaos, in
the classical limit ¢ — oo, where g is some quasi-classical parameter, e.g.,
the quantum number n (the action variable, % = 1). Again, a natural physi-
cal conjecture is that for finite but large ¢ there must be some chaos similar
to finite-V TSM. Yet, in a chaotic quantum system the number of freedoms
N does not need to be large as well as in the classical chaos. The quantum
counterpart of NV is ¢, both quantities determining the number of frequencies
which control the motion. Thus, mathematically, the problem of quantum
chaos is the same as that of the finite-N TSM.

The main difficulty in both problems (especially for mathematicians) is
in that they suggest some chaos in discrete spectrum which is completely
contrary to the existing theory of dynamical systems and the ergodic theory
where the discrete spectrum corresponds to the opposite limit of regular
motion.

The ultimate origin of the quantum integrability is discreteness of the
phase-space (but not, as yet, of the space-time!) or, in modern mathematical
language, the noncommutative geometry of the former.

As an illustration I will make use of the simple model described classi-
cally by the standard map (SM) [7],[8]:

n=n+k-sinb, 6=0+T n, (1.1)

with action-angle variables n, 6, and pertubation parameters k, T. The
quantized standard map (QSM) is given by [9],[10]

¥ = exp(—ik - cos é) - exp (—z'gfﬂ) Y, (1.2)

where momentum operator 7 = —i9/86. To provide the boundedness of
motion we consider SM on a torus of circumference (in n)
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2mm
L= 7 (1.3)
with integer m to avoid discontinuities. The quasi-classical transition cor-
responds to quantum parameters k — oo, T — 0, L — oo while classical
parameters K = kT = const, and m = LT /27 = const.

QSM models the energy shell of a conserved system which is the quantum
counterpart of the classical energy surface.

In the studies of dynamical systems, both classical and quantal, most
problems unreachable for rigorous mathematical analysis are treated “nu-
merically” using computer as a universal model. With all obvious drawbacks
and limitations such “numerical experiments” have very important advan-
tage as compared to the laboratory experiments, namely, they provide the
complete information about the system under study. In quantum mechanics
this advantage becomes crucial as in laboratory one cannot observe (mea-
sure) the quantum system without a radical change of its dynamics.

2 Definition of Quantum Chaos

The common definition of the classical chaos in physical literature is the
strongly unstable motion, that is one with positive Lyapunov’s exponents
A > 0. The Alekseev — Brudno theorem then implies that almost all tra-
Jectories of such a motion are unpredictable, or random (see [11]). A similar
definition of quantum chaos fails because, for the bounded systems, the set
of such motions is empty due to the discreteness of the phase space and,
hence, of the spectrum.

The common definition of quantum chaos is quantum dynamics of clas-
sically chaotic systems whatever it could happen to be. Logically, this is
most simple and clear definition. Yet, in my opinion, it is completely inad-
equate from the physical viewpoint just because such a chaos may turn out
to be a perfectly regular motion as, for example, in case of the perturbative
localization [12]. In QSM this corresponds to k¥ < 1 when all quantum tran-
sitions are suppressed independent of classical parameter K which controls
the chaos.

I would like to define the quantum chaos in such a way to include some
essential part of the classical chaos. The best definition I have managed to
invent so far reads: the quantum chaos is statistical relazation in discrete
spectrum .This definition is certainly in contradiction with the existing er-
godic theory as the relaxation (particularly, correlation decay) requires the
mixing, hence, a continuous spectrum. In what follows I will try to explain a
new, modified, concept of mixing which is necessary to describe the peculiar
phenomen of quantum chaos.
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3 The Time Scales of Quantum Dynamics

Already the first numerical experiments with QSM revealed the quantum
diffusion in n close to the classical one under conditions K > 1 (classical
stability border) and k£ > 1 (quantum stability border) [9]. Further studies
confirmed this conclusion and showed that the former followed the latter in
all details but on a finite time interval only [10],[13]. The latter fact was
the clue to understanding the dynamical mechanism of the diffusion, which
is apparently an aperiodic process, in discrete spectrum. Indeed, the funda-
mental uncertainty principle implies that the discreteness of the spectrum
is not resolved for sufficiently short time interval. Whence, the estimate for
the diffussion (relazation) time scale :

tR~00 < 0. (3.1)

Here p is the density of (quasi)energy levels, and gp is the same for the
operative eigenstates which are actually present in the initial quantum state
¥(0). In QSM the quasi-energies are determined mod 27 /T, hence, o =
= LT/2m = m is a classical parameter (1.3). As to gy, it depends on the
dynamics and is given by the estimate [10],{13]:

m

T T T - T

Here 7 is discrete map’s time (the number of iterations), and D is the classi-

cal diffusion rate. This remarkable expression relates an essentially quantum

characteristic (7r) to the classical one (D). The latter inequality in Eq. (3.2)

follows from that in Eq. (3.1), and it is explained by the boundedness of
QSM on a torus.

In the quasi-classical region g ~ k? — oo (see Eq.(1.1)) in accordance
with the correspondence principle. Yet, the transition to the classical limit is
(conceptually) difficult to understand (and still more to accept) as it involves
two limits (k — oo and ¢ — oo0) which do not commute. The second limit is
related to the existing ergodic theory which is asymptotic in ¢. Meanwhile
the new phenomenon of the quantum chaos requires the modification of the
theory to a finite time which is a difficult mathematical problem still to be
solved.

Besides relatively long time scale (3.2) there is another one given by the
estimate [14],[10]

Ing T|InT)|
"4 T n(K/2)°

where ¢ is some (large) quasi-classical parameter, and where the latter ex-
pression holds for QSM. It is called some time the random time scale since
here the quantum motion of a narrow wave packet is as random as classical
trajectories according to the Ehrenfest theorem. This was well confirmed

(3.3)
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in a number of numerical experiments [15]. The physical meaning of ¢, is
in fast spreading of a wave packet due to the strong instability of classical
motion.

Even though the random time scale ¢, is very short it grows indefinitely
in the quasi-classical region (¢ — oo, T' — 0), again in agreement with the
correspondence principle.

Big ratio tg/t, implies,another peculiarity of quantum diffusion: It is
dynamically stable as was demonstrated in striking numerical experiments

[16].

4 The Quantum Steady State

As a result of quantum diffusion and relaxation some steady state is formed
whose nature depends on the ergodicity parameter

[ D

A==~ —. 4.1

T~7T (4.1)
If A > 1 the quantum steady state is close (at average) to the classical statis-
tical equilibrium which is described by ergodic phase density g.i(n) =const
where n is continuous variable. In quantum mechanics n is integer, and the
quantum phase density gq4(n,7) in the steady state fluctuates according to
the Gauss law approximately [17],[5], the ergodicity meaning

9a(n) = Fa(m I = 7, (42)

where the bar denotes time averaging.

According to numerical experiments the ergodicity does not depend on
initial state which implies that all eigenfunctions ¢,,(n) are also ergodic at
average with Gaussian fluctuations [17],[5]:

(1#m(m)P) = T (43)

This is always the case sufficiently far in the quasi-classical region as A\ ~
~ k*/L ~ Kk/m — oo with k — oo (K = kT and m = LT/2r remain
constant) in accordance with old Shnirelman’s theorem [18].

Finite fluctuations (4.2) show that a single chaotic quantum system,
described by ¢s(n,7), represents, in a sense, finite statistical ensemble of
M ~ L “particles”. The fluctuations can result in partial recurrences toward
the initial state but the recurrence time is much longer as compared to the
relaxation time scale 7g and sharply depends on the recurrence domain.

If A <« 1 the quantum steady state is qualitatively different from the
classical one. Namely, it is localized in n within the region of size I, around
the initial state if the size of the latter [y < I,. Numerical experiments
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show that the phase space density, or the quantum statistical measure , is
approximately exponential [10],[13]

1 2|n
gs(n) = T exp (— l |> ; Iy~ D (4.4)

for initial g(n,0) = é(n). The quantum ensemble is now characterized by
M ~ 1, ~ k? “particles”.
The relaxation to this steady state is called diffusion localization , and
it is described approximately by the diffusion equation [19],[33]
g 10 _0g . Og
9 _190,9 L 9 4,
or' 20n 0On + on (45)
for initial g(n,0) = §(n) where the signs correspond to n z 1, and where new
time

' =7rln (1 + L) (4.6)
TR

accounts for the discrete motion spectrum [20]. The last term in Eq. (4.5)
describes “backscattering” of i wave propagating in n which eventually
results in the diffusion localization. The fitting parameter 7p ~ 2D was
derived from the best numerical data available (see Ref. [21] where a different
theory of diffusion localization was also developed).

5 Intermediate Statistics

Statistical properties of ergodic states are well described by the random
matrix theory (RMT) [22]. Particularly, the statistics of nearest-neighbour
level spacings s is given by the Wigner — Dyson distribution

p(s) = AsPe™B (5.1)

where constants A and B are found from normalization and condition (s) =
1, and where level repulsion parameter 8 = 1; 2 or 4 depending on system’s
symmetry. This is to compare with the Poisson distribution for integrable
systems

p(s) = * (5.2)

with § = 0 (independent levels). Extension of these statistics onto the quasi-
energy levels was made in [23],[5].

The impact of diffusion localization on the level statistics is described
by the Izrailev distribution [24]

2
p(s) =~ AsP exp (—%ﬂsz — (B - -7-:?) ) , (5.3)
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which is also called intermediate (between (5.1) and (5.2)) statistics . Re-

pulsion parameter § is now continuous and may take any value in the whole

interval (0, 4). The limiting statistics (A = l;/L — oo) corresponds, for a

given l;, to small L which in RMT is matrix’s size. This shows that RMT

is a local theory which holds true within the localization length /; only.
Repulsion parameter in (5.3)

B =By =exp({H)— H) = WTH , (5.4)

where (H) is the mean entropy of eigenstates

H=-> |¢(n)In|g(n)], (5.5)

Iy = exp(H) is another localization length and H, = In(L/2) is the entropy
of ergodic state. No explanation of a simple relation (5.4) has been given as
yet, nor for the important scaling g () obtained numerically [5].

The discovery of intermediate statistics stimulated the development of a
new RMT which makes use of band random matrices (BRM) [25] with the

scaling parameter
b2
Ar = —,
L
where 2b is the band width. In the limit L — oo this scaling has been proved
recently in Ref. [26].

(5.6)

6 Concluding Remarks

In conclusion I would like to briefly mention a few important results for
unbounded quantum motion. In SM it corresponds to L — oo. First, there
is an interesting analogy between localization in momentum space and the
celebrated Anderson localization in disordered solids. It was discovered in
[27] and essentially developed in [28]. The analogy is based upon (and re-
stricted by) the equations for eigenfunctions. The most striking (and less
known) difference is in the absence of diffusion regime in 1D solids [29].
This is because the energy level density of the operative eigenfunctions in

solids
Idp 1

~ — o~ —~t 1
Po dE u R, (6)

which is the localization (relaxation) time scale, is always of the order of the
time interval for a free spreading of the initial wave packet at caracteristic
velocity u.

Another similarity between the two problems is in that the Bloch ex-
tended states in periodic potential correspond to a pecular quantum reso-
nance in QSM for rational T'/4w [9],[10]. An interesting open question is the




Chirikov: Chaotic Quantum Systems 41

dynamics for irrational Liouville’s (transcendental) T'/4n. As was proved in
[30] the motion can be unbounded in this case unlike a typical irrational
value. In [33] the conjecture is put forward, supported by some semiqualita-
tive considerations, that depending on a particular Liouville’s number the
broad range of motions is possible, from purely resonant one (|n| ~ 7) down
to complete localization (|n| < 1).

If quantum motion is not only unbounded but its rate in unbounded
variables is exponential, the “true” chaos (not restricted to a finite time
scale) can occur. A few exotic examples together with considerations from
different viewpoints can be found in [10],[31]. However, such chaos does not
seem to be a typical quantum dynamics.

The final remark is that the quantum chaos, as defined in Section 2, com-
prises not only quantum systems but also any linear, particularly classical,
waves [32]. So it is essentially the linear wave chaos . Moreover, a similar
mechanism works also in completely integrable nonlinear systems like Toda
lattice, for example. From mathematical point of view all these new ideas
require reconsideration of the existing ergodic theory. Perhaps, better to say,
that a new ergodic theory is needed which, instead of benefiting from the
asymptotic approximation (|t| — 0o or N — 00), could analyze the finite-
time statistical properties of dynamical systems. This is the most important
conclusion from first attempts to comprehend the quantum chaos.
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