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Preface

The Tashkent Conference was the second in a series begun in Los Alamos (May
1988) devoted to the emerging field of combining effects of disorder and nonlin-
earity. Since the Los Alamos meeting, appreciation of the field has grown consid-
erably and attracted focused attention from both mathematicians and physicists.
The Tashkent meeting was therefore lively and interesting: many new results
were presented and new projects proposed. Yet it is clear that we are still largely
at a stage of collecting phenomena and special analytical cases — the comprehen-
sive picture will take some time to emerge, and along the way we can expect
many surprises and paradigms to emerge. Certainly the importance of the field
to real materials and devices is beyond doubt in an age when science is facing
the challenge of “novel” materials for unusual and special-purpose applications.
Such materials intrinsically involve noise, disorder, nonlinearity, competing in-
teractions, reduced dimensionality and geometries, nonequilibrium processes, and
so on. In some cases we need to use these features, in others to avoid them, but
in all cases we must learn to understand and then control them.

The central issues discussed at Tashkent involved the same basic components
as at Los Alamos (Springer Proceedings in Physics, Vol. 39). On the one hand,
nonlinearity on its own can lead to spatially and temporally coherent structures
(such as “solitons” or “polarons” and their cousins) or to intrinsic spatio-temporal
chaos. On the other hand, noise or disorder alone can also promote stochasticity
or localization (e.g., Anderson localization), with “disorder” arising from many
sources, including impurities, random spatial structures, thermal and quantum
fluctuations, and stochastic applied fields. After several decades of intensive study,
for each of the above phenomena we have achieved a fair (although far from
complete) understanding and we are able to begin putting them together — as
nature so often does. Classifying the regimes where these influences combine
constructively, destructively or largely independently, and developing appropriate
analytical and numerical approaches accordingly, is the challenge before us.

The articles included in this volume are organized into (I) Mathematical and
Statistical Aspects, and (II) Physical Applications. Much of (I) addresses effects of
disorder, noise, and external forces on soliton or near-soliton systems, since these
are very well controlled starting points. Examples include continuum and discrete
sine-Gordon, nonlinear Schrodinger, Korteweg-de Vries, and ¢-four equations,
which capture many of the basic types of nonlinearity found in nature. The
physical applications found in (I) also reflect the diversity of this field. Systems
range from Indo-European languages to DNA to Josephson junctions to liquid
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crystals to optical fibers and magnets. The propagation of energy, mass, magnetic
flux, etc., is a dominant theme where the interplay of coherence and chaos is
clearly a paramount concern.

We benefited from much local assistance in Tashkent, particularly from the
staff of the Thermal Physics Department of the Uzbek Academy of Sciences.
Organizing a meeting in this exotic but remote location was a complex logistical
exercise. However, those who were able to make the trip will always treasure the
experience and remember the generous hospitality.

There remains one very sad comment left to us as members of the Organiz-
ing Committee. Shortly after the Tashkent Conference our friend and colleague
Stephanos Pnevmatikos was senselessly and tragically murdered in Crete. His
loss is greatly felt by family and friends, and his enthusiasm and creativity will
be a loss to nonlinear science in many ways. He was not able to complete the
editing of this volume but we humbly dedicate these proceedings to his memory.
We hope that a little of his passion for “nonlinearity with disorder” will emerge
and infect future generations of young researchers.

Los Alamos F. Abdullaev
February 1992 A.R. Bishop
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fAxKa TYIRMH 5pYP CONUTOH,
Y3MUCUHU CAKIAP MYKOOHII. ..

Xoxu UITIOH, XOXU Maiiy TOH,
danag TrICHMIIAPY TOXAHY3 GOTHIL.

Hyué numa? — Bopaug MaBKyIo0T.
Xapaxar ne? — Onam uxboru.
Jyuénu ypragmox Smamgas Mypox,
Xap KUMHUHI KYJIuAa ¥3 ucTuxborm.
Manbau He KaXOH PABHAKHH,

He yun 6ourkapap xejamak TOMOH?
Abaguii Kypaw 6y, HyK ¥3ra KOXUH,
HHconuii KUIMOKYYH Kenrycu 3aMoH!
fxka TYIKHH 5pYD COJUTOH,
Y3JIUTrHHU CAKIap MyKOOHII. ..
TloiiMoun aTca XaK HITHU &JIT0H,
Kepaxk smac xey y3ra KOTHI...

E O

Soliton is a solitary wave,

What does preserve itself immutable. ..

One can believe, one can reject,

That many mysteries have not been yet investigated.
What is the world? — Everything that exists.

And motion is its happiness.

The sense of this life consists in world study,

But everyone has got his own fate.

What things cause the worlds?

What things define their future?

Continuous struggle, but not the will of the Providence,
The expected century of Mankind will come.

Soliton is a solitary wave,

What does preserve itself immutable. ..

If justice is suppressed by evil,

The world will not need another executioner...

M. R. Djumaev
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Mathematical and
Statistical Aspects



Linear Chaos
B.V. Chirikov
Institute of Nuclear Physics, 630 090 Novosibirsk, Russia

Abstract. The controversial phenomenon of quantum (wave) chaos is reviewed
using a simple analogy with classical linear waves in cavities. Estimates for the
main statistical properties of wave dynamics are evaluated and discussed. The
transient nature of wave chaos is emphasized and explained in detail.

The main purpose of my talk is to present a fairly new conception of the
so-called quantum chaos. Formally, it is a part of quantum dynamics, rather
surprising but not at all exotic. On the contrary, the quantum chaos turns out to
be a typical phenomenon which was overlooked until recently. The under-
standing is now gradually coming from the classical mechanics where the
phenomenon of dynamical chaos was well ascertained and studied in great detail
(see, €. g., Ref. [1]). For this reason I am going first to remind you of the classical
dynamical chaos (Section 2).

In what follows I restrict myself to the conservative (encrgy-preserving)
Hamiltonian (nondissipative) dynamics as a more fundamental one. To il-
lustrate the general theory I will use simple models of classical and quantum
billiards as well as waveguides and cavities.

1. Simple Models

Consider free motion of a particle in the domain of d dimensions surrounded
by a (d-1)-dimensional perfectly reflecting wall. For d = 2 the model is called
billiard, and it was extensively studied by many authors (see, e. g., Refs [2, 3]).
For special shapes of the wall the motion is completely integrable, or regular,
which means that there is the full set of d motion integrals in involution (see, e.
g., Ref. [4]). The simplest example is a rectangular parallelepiped with sides ai.
Then motion integrals are momenta |pi| or the actions

ni = ALLL Ifr)i | .

(1

The corresponding Hamiltonian H(8;, 7y in action-angle variables is given by

2

nj

H =n3 ;‘2— +m?, )
t i

where m is particle’s mass, and we put the speed of light ¢ =1.
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The completely integrable motion is quasi-periodic, i. e. it has discrete
Fourier spectrum with d basic frequences wj =n?ni/ Ha% (for model (2)). This is

a nonlinear oscillation since dwi/ dni =n%/ Ha} #0. Being regular (by definition!)
the motion is unstable in phases 6; just because of nonlinearity: 66j~tdni. Yet,
this unavoidable instability is weak, only linear in time.

Now, introduce a small perturbation, that is deform the wall in such a way
to completely destroy integrability and to convert the motion into chaotic one.
This always can be done [2, 3], and we shall characterize the perturbation
strength by a small angle ¢ <1 between two surfaces of the wall, unperturbed
and corrugated.

In quantum mechanics the same model is described by the linear
Schrodinger equation. For boundary condition W= 0 (infinitely high potential
wall) the actions nj are now integers.

Instead of quantum W waves we may consider any classical linear waves
(sound, electromagnetic, etc.) inside a cavity with appropriate boundary condi-
tions. Then the classical problem (e. g., Eq. (2)) corresponds, as is well known,
to the limit of geometrical optics with the rays as dynamical trajectories. The
Hamiltonian is now the local dispersion relation (see, e. g., Ref. [5]):

H = o (ki, x))=w (nj, 6) 3)

where x| are Cartesian coordinates, wave numbers kj=pj, and we put r=1.
Particularly, for electromagnetic waves in a medium with refraction index n(x1)
the Hamiltonian

w(ky, x1) = ;%;1—) . (4)

Finally, we consider a straight waveguide in vacuum with the perturbation
independent of longitudinal coordinate x3. Then k3 =const, and the dispersion
relation is the same as Hamiltonian (2)

w? =k} + K5 +m?. 5)

It describes “heavy” photons with “mass” m = |k3|.
vy" p

2. Nonlinear Ray Chaos

As is well known the classical dynamical chaos is only possible in nonlinear
systems, that is those whose cquations of motion are nonlincar [1]. Such are,
for example, the simple models described above, but not a lincar (harmonic)
oscillator. On the other hand, the main condition for chaos is lincar (local)
instability of motion discribed by the linearized equations of motion [1].
Moreover, the instability must be strong (exponential) and not a linear one
characteristic for a regular motion (Section 1).

The rate of local instability is given by the Lyapunov exponent A of the
linearized equations of motion. In a billiard or cavity

4



A~1In % , (6)

where R~a/ ¢ is the local curvature radius of the wall corrugation with charac-
teristic linear size a. The quantity

h~Ad~d-ln% %)

is called metric entropy, or KS-entropy (after Kolmogorov and Sinai). It is the
most important characteristic of chaotic motion in the modern ergodic theory
(see, e. g., Ref. [6]). Roughly, the condition

h=A>0; %~%“—z1. 8)
is necessary for chaos to occur.

I will not go into details of this condition. Rigorous results can be found in
Refs [2, 3]. Extensive studies of ray chaos in cavities were performed by
Abdullaecv and Zaslavsky [7] (see also Refs [5, 8]). For my purposes the rough
but transparent estimates are sufficient to cxpose the nature of dynamical chaos.

Let me just mention that for a big perturbation parameter e= 1 the chaos
occurs even for a~a. Such is a very popular billiard model, the “stadium™: two
semicircles connected by two straight lines of arbitrary finite length [3]. Again,
to simplify the presentation I consider small perturbation e—-0, hence a0 (8).
The perturbation in this case is like tiny ripples.

Now, what is the role of nonlincarity in chaos? The point is that instability
(8) is necessary but not sufficient condition for chaos. The other condition is
boundedness of the motion, at least in some unstable variables. For example,
unstable motion of a linear system (the so-called hyperbolic motion) is un-
bounded and perfectly regular. Nonlinearity makes the energy surfaces closed
and compact even for an unstable motion. In a billiard, for example, the motion
is trivially restricted by the wall.

So, what is really required for chaos is the boundedness of the motion
whatever the cause could be. As to the nonlinearity it depends on the description
chosen. As is well known there is an equivalent description in terms of the phase
space density, or distribution function, f(x1, p1, ) which obeys linear Liouville
equation

d 9
G-SLsm,g =0, ©)
where [, ] are Poisson brackets. This form of dynamical equation is especially
convenient for comparison mith quantum mechanics. Of course, Eq. (9) does not
change the boundedness of the motion. The density f itself is even the motion
integral (9).

How the local instability is described in this presentation? Consider the
characteristic function of a small domain that is the initial density concentrated
there. In case of the complete chaos the local motion instability results in

5



indefinite expansion of the domain over some (d—1)-dimensional manifold
and, what is more important, in also indefinite contraction on the complemen-
tary manifold, also of d —1 dimensions. Notice the cnergy conservation and zero
Lyapunov exponent along a trajectory, which reduces the expansion/contrac-
tion dimensions by 2.

Now, if the motion is bounded (in any representation) the expanding
manifold has eventually to mix up and to form the so-called foliation with ever
increasing number of sheets whose width is exponentially decreasing. This
highly intricate structure of the fine-grained (cxact) phase density is necessary
to provide the time reversibility of density evolution in agreement with trajectory
reversibility. However, any coarse-graining (averaging) of the density results
in the loss of this reversibility in apparent contradiction with the reversible
dynamics.

Note, that the evolution of the coarse-grained density is the same in both
directions of time because the only dynamical difference is interchange of the
two manifolds, expanding and contracting. Hence, there is no need for the
conception of “time arrow”. _

The time evolution of some coarse-grained density, say, f(ni, £) (usually
averaged over phases 6;) is described by the kinetic equation which, in principle,
can be completely derived from the equations of motion or from Liouville
equation (9) without any statistical hypothesis. Note, that coarse-graining as
well as the use of the phase density are not hypotheses, but a particular method
of adequate description to reveal the essential features of the motion.

In case of small perturbation the kinetic equation takes the form of the
Focker — Planck —Kolmogorov (FPK) equation that is a diffusion equation. In
our examples of ray dynamics the diffusion rate in spatial angles ;i and in actions
nj is

2V, - 2y
Dp~¢ pE Dy~ (en) P (10)
where we dropped sup i (@i~ a, pj~ ¢), and where

; ow v
V~a9~aan, a~Q (11
are the velocity of a “particle” and its unperturbed oscillation frequency, respec-
tively.
The diffusion leads to the statistical relaxation

f (i, 0) > fs (i) =8 (Ho (i) —E) =fe . (12)

Here fs is the steady-state, or statistical equilibrium density, E is the energy,
and Hop is unperturbed Hamiltonian of the completely integrable system. The
latter relation (12) means that fsis microcanonical distribution fe on an energy
surface. This is called ergodicity, which is the weakest statistical property of
motion. _

In simple dynamical systems like our models density fs #fc is typically
different from microcanonical one. The important statistical property is relaxa-
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tion itself, no matter what would be the final state fs. Loosely speaking, the
relaxation is equivalent to a continuous motion spectrum. The exponential
instability is a sufficient condition, because the discrete spectrum can provide
the linear instability at most (see above). Yet, the exponential instability is much
stronger a property as compared with the mixing and relaxation. On the other
hand, the latter seems to be quite enough to develop a relevant statistical theory.
The point is that relaxation, or correlation decay, provides the property of
statistical independence, which is the ultimate basis of the probability theory.
These considerations, not yet completely understood, are most important in
analyzing the conception of wave chaos below (Section 3).

Coming back to our simple models let me mention an obvious estimate for
the relaxation time t. in case of motion ergodicity. From Eqgs (10, 11) we have

fom e ~ I T2 (13)

This is the principal result in classical, or ray, dynamics to compare below
with quantum, or wave, mechanics.

3. Linear Wave Chaos:
Statistical Relaxation in Discrete Spectrum

The motion of a quantum particle in billiard is described by Schrodinger
equation. This and other quantum equations are lincar with respect to quantum
dynamical variable, the W-function, which represents the whole closed quantum
system. Moreover, all those equations have purely discrete spectrum for any
bounded motion. Hence, a common belief that dynamical chaos is impossible in
quantum mechanics. But this conclusion is in apparent contradiction with the
fundamental correspondence principle, which requires the complete transition
to the classical limit, chaos including.

The quantum evolution equations are wave equations, and they are formally
equivalent to any other (classical) wave equations like sound, elastic,
electromagnetic ctc. ones. Of course, the latter must be linear. For nonlinear
wave equations there is no problem with dynamical chaos (see, e. g., Ref. [1]).
This is why the quantum chaos is also called the wave chaos [9]. For classical
waves it is especially clear that the ray dynamics contains nothing beyond the
wave equation, and the nonlinear ray chaos must be present somehow in linear
wave equations.

To the best of my knowledge, nobody considered so far how the ray chaos
is represented and/or modified in the classical wave equations, for example, in
cavities or waveguides.

Before discussing this central topic of my talk let us consider first the
following question: why the wave (particularly, quantum) spectrum is discrete?
The reference to lincarity of the equations would be superficial. Indeed, the
linear Liouville equation can have a continuous spectrum as well, which means
that there are no nonsingular cigenfunctions. The latter is cxplained just by the

7



arising of indefinitely dense foliations described above, which is obviously an
aperiodic process.

It would be more correct to say that linear equations may be qualitatively
different. But what is the nature of the difference, and how to recognize it in a
given equation seems still to remain an open question.

A constructive solution of this problem could be the attempt either to deter-
mine the type of spectrum (discrete or continuous) or to find the ray approxima-
tion described by some ordinary differential equation.

The latter is apparently impossible for the Liouville equation. In case of a
wave equation the rays, or characteristics, are embedded in the “phase space”
of double dimensions as compared to the wave space. In the limit of geometrical
optics or of classical mechanics all variables of the former are independent
whereas for the wave equation each pair of variables is interconnected by a
Fourier transform, and, hence, is restricted by the uncertainty relation.

To describe this situation in a different way one can say that the ray phase
space (ki, xi) is discrete, the size of a cell being of the order of unity (Aki- Axi~1).
This is true for any finite k> and qualitatively different from the very ray limit
with its continuous phase space. Hence, the transition to the limit is singular and
the implementation of the correspondence principle is far from trivial.

Our solution of this problem [10] (see also review [11]) is based upon
introducing characteristic time scales of the wave dynamics on which the latter
is close to the ray dynamics, the scales increasing indefinitely towards the ray
limit k->. Let me show how this approach works in our simple models.

The most important relaxation time scale f; is determined by the mean
density p of frequency (energy) eigenvalues

tr~p=A"", (14)

where A is the average eigenvalue spacing. This is a direct implication of the
uncertainty relation Af-Aw~1. Indeed, while t~Ar < p the discreteness of
spectrum is not resolved as Aw~t~1 = A. Hence, the perturbation can and
actually does act as one with a continuous spectrum. Particularly, this produces
diffusion and relaxation in the discrete spectrum!

Then, an important parameter of wave dynamics is the ratio (sce Eq. (13))

A=2R (15)

which I call the ergodicity parameter. If A = 1 the ergodic microcanonical steady
state fe is reached (12) like in the ray limit. For 4 < 1 we would expect a different
steady state which will be discussed below.

Now, let us estimate parameter A for our models. To this end, we observe
that the total number of eigenvalues up to nj~n is roughly N(w) ~nY. Hence,
density p and relaxation time scale ¢y are :

-1

(16)

AN _ a-1|0®
IRP =gy ~H Ian




In combination with Eq. (13), we obtain
A~end7 1= (en)n? 73, (¢¥))]

Note, that A does not depend on dispersion relation w(ri) that is on a particular
mechanics of waves.

But the condition 4 = 1 is still not sufficient for the wave ergodicity. The
point is that the change in action n per collision with the wall is An1~en. Since
in wave mechanics all nj are integer the transitions between unperturbed states
ni, hence, any diffusion is only possible if

Ang~en = 1. (18)

This condition allows another simple interpretation if we compare the scat-
tering angle ¢ of a ray with the minimal diffraction angle u~# a~1/ n, where
A~a/n is the wave length. Then, condition (18) means that diffraction can be
neglected: u<e. This is, of course, the well-known condition for geometrical
optics to hold. Yet, this is also not sufficient, generally, because there is another
condition (17). The relation between them depends on spatial dimensions. If
d=3, usual condition (18) is crucial for ergodicity. However, for d =2the er-
godicity depends on A only while the diffraction parameter en = n'? must be
very big for n > 1.

In any event the wave dynamics becomes ergodic for sufficiently large n if
ray dynamics is chaotic. This implies that wave cigenfunctions are also ergodic
in agreement with Shnirclman theorem announced in 1974 and proved in 1990
[12]. From Eqs (17) and (18) the ergodicity border in n or in w is

_2 . -
ne(we) ~{°_ 0 472 (19)
£ M .

The transition to the ray limit depends on two paramecters, wave number
n->c0 and time interval -, The complexity of transition is in that the result
depends on the order of two limits. If, first, we take formally the limit n-> e, then
for any finite - the wave dynamics becomes the ray dynamics. However, if
we fix n, no matter how large, the wave bchaviour remains close to the ray
diffusion while ¢ < ty(n) only. Hence, the ray limit is singular, indeed.

Above the ergodicity border (19), as n->o, almost every cigenfunction, in
Wigner’s representation, approaches microcanonical distribution fe (12) [12].
Moreover, the fluctuations in chaotic eigenfunctions were shown to be Gaussian
[20] (see also Ref. [10]). Yet, they are not completely random. The most
important elements of their microstructure are so-called “scars”, that is some
enhancements above the average microcanonical density along unstable periodic
rays. The scars had been discovered in quantum billiard models by Heller [21]
and were subsequently confirmed by many others (see, e. g., Ref. [22]). The
question how to reconcile scars with Shnirelman’s theorem is not completely
clear so far. Apparently, all the scars arc of the minimal width comparable with
an clementary wave cell (Section 3). If so, the scars would not affect any
quasi-classical integral rclation which is Shnirclman’s wave ergodicity.



4. Wave Chaos: Diffusion Localization

A more interesting question is what happens if n<nc¢ or o <wc? For d=3 the
answer is very simple: nothing happens as all the transitions are suppressed, so
that the initial state of wave field doesn’t change at all. It is also called pertur-
bative localization, because the wave perturbation theory is applicable just under
condition en <1. In this case the cigenfunctions remain close to the unperturbed
ones.

For d =2 the problem is much more difficult. The first guess could be as
follows. The diffusion proceeds durin§ time interval tz~p, so that the angular
size of the wave packet becomes (Ap)“~Dptp~A < 1.

However, there are at least two questions. First, would the diffusion stop for
t = tg? This plausible conjecturc was well confirmed numerically, indeed [10,
11]. Second, would the density p remain unchanged if Ap < 1? Apparently, it
will not as now only a part of the unperturbed states contributes to p. A plausible
estimate for new density and relaxation time scale is

p~pAp~iy. (20)
Then, from the diffusion law (Ago)2~D¢ t;, we obtain

(Ap)s ~ szn; (An)s ~Dp ~1Is, (21)

which is much smaller than the first guess. In the second estimate (21) Dn’~(en)2
is the diffusion rate per collision with wall. This estimate was also well confirmed
numerically in somewhat different but related models [10, 11].

The size [s is called also the localization length as it characterizes suppres-
sion, or localization, of the ray diffusion. Note, that condition (18) must be
satisfied, otherwise the perturbative localization occurs with minimal

Bep~L;  (@nyp~1. (22)

For en = 1 a very peculiar steady state is formed whose size is given by
estimate (21). As in the ray limit this steady state is a result of statistical
(diffusion) relaxation f(n, 0) - fs(n) but it differs from the limiting
microcanonical distribution fe(r) in two major ways.

First, the wave steady state depends on the initial state as the former is a
result of diffusion localization of the latter. Hence, the steady state is always
spread around the initial state. Second, the steady state is composed of a finite
number M of eigenfunctions owing to the discreteness of the wave phase space.
Roughly, M~Is (21), hence, statistical fluctuations are finite, ~M 2
~(en)_1. One can say also that wave phase density f(n, f) represents always a
finite ensemble of ~M systems [11]. Fluctuations of the classical electromag-
netic field in wave-guides were discussed, e. g., in Ref. [16], without any relation
to the wave chaos though.

This remains true for an ergodic steady state as well, for any 4 and d, when

M~n%"1, This estimate is inferred from the only restriction w(ni) = const for
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the ergodic steady state and eigenfunctions. In turn, it implics a finite width Aw
of the energy shell occupied by an ergodic state. Using the last estimate and Eq.
(16), we obtain

Ao ~Q. (23)

Asn-o the relative width Aw/ w->0 because w(n)->< in our units (F= 1), and
the encrgy shell becomes an energy surface of the ray dynamics. Estimate (23)
is also valid for nonergodic steady states.

Even on the relaxation time scale fg the wave behaviour is qualitatively
different from the limiting ray dynamics in that the former is perfectly stable
whereas the latter is strongly unstable. It was proved in numerical (computer)
experiments via time reversal in both cases [13]. For the ray dynamics the
diffusion is immediately restored due to a fast growth of computation errors
while for waves the “antidiffusion” proceeds down to the initial state which is
recovered with surprisingly high accuracy.

At a first glance, it seems to contradict to the correspondence principle. The
resolution is in that there exists another characteristic time scale tp; on which
the wave dynamics is also unstable, yet fpy <<fg. It was discovered and ex-
plained by Berman and Zaslavsky {14] (see also Refs [10, 11]). The instability
manifests itself in rapid spreading of a narrow wave packet which follows for a
while the beam of rays according to the Ehrenfest thcorem. In case of exponen-
tial instability the corresponding time scale is very short. Roughly (see Eq. (7)),

tpy = ———lr;\” <fy. (24

Nevertheless, ty3, > asn—>o in accordance with the correspondence principle.
Yet, this transition, as well as that for ¢y discussed above, is singular, being also
a double limit in 2 and ¢.

A nice picture of the initially unstable wave evolution can be found in Ref.
{15] where the formation of the foliation in phase space, described above in
Section 2, is clearly seen.

5. The Nature of Wave and Quantum Chaos

The principal distinction of the wave chaos is its transient character. In other
words, the wave dynamics remains close to the ray chaotic motion on a finite
time scale only [10]. Moreover, particular statistical properties of the wave
evolution correspond to rather different time scales. The strongest ones related
to the exponential instability persist on the shortest time scale (24) which is
almost independent on integer wave numbers n. Yet, it is important that such
significant statistical behaviour as diffusion and relaxation continues much
longer, on time scale (16), thus providing a relevant statistical description of
wave dynamics. This is very important in many applications as it allows for a
fairly simple statistical represcntation of the cssential features of otherwise
highly complicated phenomena.
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From mathematical point of view the problem of wave chaos requires a
fundamental generalization of the contemporary ergodic theory [6] which was
developed for the ray chaos, and which is essentially asymptotic in time
(]¢|=>). Note the considerable simplification of the theory due to that
asymptotic approach.

To emphasize the finite-time nature of the wave chaos we call it pseudochaos
as distinct from the true ray chaos. The ultimate origin of wave chaos limitations
is in the discrete phase space as explained above (Section 3).

The same is true, by the way, for the computer simulation of any dynamical
systems. Moreover, in the digital computer any quantity is “quantized” that is
represented by an integer number, whereas in the wave mechanics only the
product of each pair of canonically conjugated variables does so. As a result any
dynamical trajectory in computer eventually becomes periodic as compared with
almost periodic evolution of waves. Note, that it is the effect of round-off
“errors” which are not random at all. This should be taken into account in
computer simulations of ray dynamics. The shortest time scale (24) is of the
order of length nm (the number of bits) of computer word (mantissa), and it is
negligible in most cases. Fortunately, the relaxation time scale (16) grows like

some power of the maximal computer number (~2"") which is typically not a
serious restriction (for details see, e. g., Refs [10, 17]).

Coming back to wave dynamics I would like to stress that even though from
formal mathematical point of view all linear wave equations have similar proper-
ties the physics of quantum waves is fundamentally different. While most
classical linear waves are simply a low-amplitude approximation (an important
exception is electromagnetic waves) the linear quantum mechanics is as yet the
most fundamental and universal theory. Hence, the “true” classical chaos is but
a limiting pattern, very important in the theory but never realized, strictly
speaking, in nature.

On the other hand, the evolution of W wave is only a part, and a simpler one,
of the quantum dynamics as a physical theory. The other part, much more
difficult and vague, is the quantum measurement with its misterious W collapse.
It is not excluded that the latter is the most spectacular example of the true
quantum chaos (for discussion see, e. g., Refs [11, 18, 19]).
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