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Abstract :  The new phenomenon of quantum chaos has revealed the intrinsic 
complexity and richness of the dynamical motion with discrete spectrum which 
had been always considered as most simple and regular one. The mechanism 
of this complexity as well as the conditions for, and the statistical properties 
of, the quantum chaos are explained in detail using a number of simple models 
for illustration. Basic ideas of a new ergodic theory of the finite-time statistical 
properties for the motion with discrete spectrum are discussed. 

1. Introduction: the theory of dynamical systems 
and statistical physics 

The purpose of these lectures is to provide an introduction into the theory 
of the so-called quantum chaos, a rather new phenomenon in the old quan- 
tum mechanics of finite-dimensional systems with a given interaction and no 

quatized fields. The quantum chaos is a "white spot" far in the rear of the 

contemporary physics. Yet, in opinion of many physicists, including myself, 
this new phenomenon is, nevertheless, of a great importance for the funda- 

mental science because it helps to elucidate one of the "eternal" questions in 
physics, the interrelation of dynamical and statistical laws in the Nature. Are 

they independently fundamental? It may seem to be the case judging by the 
striking difference between the two groups of laws. Indeed, most dynamical 
laws are time-reversible while all the statistical ones are apparently not with 
their notorious "time arrow". Yet, one of the most important achievements 
in the theory of the so-called dynamical chaos, whose part is the quantum 

chaos, was understanding that the statistical laws are but the specific case 
and, moreover~ a typical one, of the nonlinear dynamics. Particularly, the 

former can be completely derived, at least in principle, from the latter. This 

is just one of the topics of the present lectures. 
Another striking discovery in this field was that the opposite is also true! 

Namely, under certain conditions the dynamical laws may happen to be a 

specific case of the statistical laws. This interesting problem lies beyond the 
scope of my lectures, so I just mention a few examples. These are Jeans' 



gravitational instability, which is believed to have been responsible for the 
formation of stars and eventually of the celestial mechanics (the exemplary 
case of dynamical laws!); Prigogine's "dissipative structures" in chemical 
reactions; Haken's "synergetics"; and generally, all the so-called "collective 
instabilities" in fluid and plasma physics (see, e. g., Ref. [1-3]). Notice, 
however, tha t  all the most fundamental laws in physics (those in quantum 
mechanics and quantum field theory) are, as yet, dynamical and, moreover, 
exact (within the boundaries of existing theories). To the contrary, all the 
secondary laws, both statistical ones derived from the fundamental dynamical 
laws and vice versa, are only approximate. 

By now the two different, and even opposite in a sense, mechanisms of 
statistical laws in dynamical systems are known and studied in detail. They 
are outlined in Fig. 1 to which we will repeatedly come back in these lec- 
tures. The two mechanisms belong to the opposite limiting cases of the 
general theory of Hamiltonian dynamical systems. In what follows we will 
restrict ourselves to the Hamiltonian (nondissipative) systems only as more 
fundamental ones. I remind that the dissipation is introduced as either the 
approximate description of a many-dimensional system or the effect of ex- 
ternal noise (see Ref.[103]). In the latter case the system is no longer a pure 
dynamical one which, by definition, has no random parameters. 

The first mechanism, extensively used in the traditional statistical me- 
chanics (TSM), both classical and quantal, relates the statistical behavior 
to a big number of freedoms N --~ co. The latter is called thermodynamic 
limit, a typical situation in macroscopic molecular physics. This mechanism 
had been guessed already by Boltzmann, who termed it "molecular chaos", 
but was rigorously proved only recently (see, e. g., Ref. [4]). Remarkably, for 
any finite N the dynamical system remains completely integrable that is it 

possesses the complete set of N commuting integrals of motion which can be 
chosen as the action variables I. In the existing theory of dynamical systems 
this is the highest order in motion. Yet, the latter becomes chaotic in the 
thermodynamic limit. The mechanism of this drastic transformation of the 
motion is closely related to that of the quantum chaos as we shall see. 

The second mechanism for statistical laws had been conjectured by Poinca- 
re at the very beginning of this century, not much later than Boltzmann's 
one. Again, it took half a century even to comprehend the mechanism, to 
say nothing about the rigorous mathematical theory (see, e.g., Refs.[4-6]). It 
is based on a strong local instability of motion which is characterized by the 
Lyapunov exponents for the linearized motion. The most important impli- 
cation is that the number of freedoms N is irrelevant and can be as small as 
N --- 2 for a conservative system, and even N = 1 in case of a driven motion 
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Figure h The place of quantum chaos in modern theories: action-angle 
variables I ,  O; number of freedoms N; Lyapunov's exponent A; quasiclassical 
parameter q; Planck's constant h. Two question marks indicate the problems 
in a new ergodic theory nonasymptotic in N and I t I. 

that is one whose Hamiltonian explicitly depends on time. In the latter case 
the dependence is assumed to be regular, of course, for example periodic, 
and not a sort of noise. 

This mechanism is called dynamical chaos. In the theory of dynamical 
systems it constitutes another limiting case as compared to the complete 
integrability. The transition between the two cases can be described as the 
effect of "perturbation" ¢V on the unperturbed Hamiltonian H0, the full 
Hamiltonian being 

H(I, O, t) = Ho(O + eV(I, O, t) (1.1) 

where I, 8 are N-dimensional action-angle variables. At e = 0 the system is 



completely integrable, and the motion is quasiperiodic with N basic frequen- 
cies 

w(I) = OHo (1.2) 
OI 

Depending on initial conditions (I(0)) the frequencies may happen to be 
commensurable, or linearly dependent, that is the scalar product 

m,w(I) = 0 (1.3) 

where m is integer vector. 
This is called nonlinear resonance. The term nonlinear means the de- 

pendence w(I). The interaction of nonlinear resonances (because of non- 
linearity) is the most important phenomenon in nonlinear dynamics. The 
resonances are precisely the place where chaos is born under arbitrarily weak 
perturbation ¢ > 0. Hence the term universal instability (and chaos) of 
nonlinear oscillations [6]. The structure of motion is generally very compli- 
cated (fractal), containing an intricate mixture of both  chaotic and regular 
motion components which is also called divided phase space. According to 
the Kolmogorov--Arnold--Moser (KAM) theory,  for ¢ ~ 0, most trajec- 
tories are regular (see, e. g., Ref. [7]). The measure of the complementary 
set of chaotic trajectories is exponentially small (,,~ exp ( - c /v~ ) ) ,  hence the 
term KAM integrability [8]. Yet, it is everywhere dense as is the full 'set of 
resonances (1.3). A very intricate structure! 

Even though the mathematical theory of dynamical systems looks very 
general and universal it actually has been built up on the basis of, but of 
course is not restricted to, the classical mechanics with its limiting case of the 
dynamical chaos. The quantum mechanics as described by some dynamical 
equations, for example, Schr6dinger's one, for a specific dynamical variable 
¢ well fits the general theory of dynamical systems but turns out to belong 
to . . .  the limiting case of regular, completely integrable motion. 

This is because the energy (frequency) spectrum of any quantum system 
bounded in phase space is always discrete and, hence, its t ime evolution is 
almost periodic. The ultimate origin of this quantum regularity is discreteness 
of the phase space itself inferred from the most fundamental uncertainty 
principle which is the  very heart of the quantum mechanics. In modern 
mathematical language it is called noncommutative geometry of the phase 
space. Hence, the full number of quantum states within a finite domain of 
phase space is also finite. Then, what about chaos in quantum mechanics? 

On the first glance, this is no surprise since the quantum mechanics is 
well known to be fundamentallly different as compared to the classical me- 



chanics. However, the difficulty, and a very deep one, arises from the fact 
that the former is commonly accepted to be the universal theory, particu- 
larly, comprising the latter as the limiting case. Hence, the correspondence 

principle which requires the transition from quantum to classical mechanics 
in all cases including the dynamical chaos. Thus, there must exist a sort of 
quantum chaos! 

Of course, one would not expect to find any similarity to classical behavior 
in essentially quantum region but only sufficiently far in the quasidassical 

domain. Usually, it is characterized formally by the condition that Planck's 
constant h --+ 0. I prefer to put h = 1 (which is the question of units), and 
to introduce some (big) quantum parameter q. Generally, it depends on a 
particular problem, and may be, for instance, the quantum (level) number. 
The quasiclassical region then corresponds to q >> 1 while in the limit q ~ oo 
the complete rebirth of the classical mechanics must occur somehow. 

Notice that unlike other theories (of relativity, for example) the quasiclas- 
sical transition is rather intricate. Actually, this is the main topic of these 
lectures. Thus, the quantum chaos we are going to discuss is essentially 
a quasiclassical phenomenon in finite (essentially few-dimensional) systems 
with bounded motion. These restrictions are very important to properly 
understand the place of the new phenomenbn - quantum chaos - in the gen- 
eral theory of dynamical systems, and to distinguish the former from the old 
mechanism for statistical laws in infinite systems N --* oo. The latter nature 
is sometimes well hidden in a particular model as, for example, the nonlinear 

Schr5dinger equation (Lecture 8). 
The number of papers devoted to the studies of quantum chaos and re- 

lated phenomena is rapidly increasing, and it is practically impossible to 
comprise everything in this field. In what follows I have to restrict myself 
to some selected topics which I know better or which I myself consider as 
more important. The same is true for references. I apologize beforehand for 
possible omissions and inaccuracies. Anyway, I refer in addition to a number 
of recent reviews [9-14], and to these proceedings. 

My presentation below will be from a physicist's point of view even though 

the whole problem of quantum chaos, as a part of quantum dynamics, is 
essentially mathematical. 

The main contribution of physicists to the studies of quantum chaos is in 
extensive numerical (computer) simulations of quantum dynamics, or numer- 
ical experiments as we use to say. But not only that. First of all, numerical 
experiments are impossible without a theory, if only semiqualitative, and 
without even rough estimates to guide the study. Mathematicians may con- 
sider such physical theories as a collection of hypotheses to prove or disprove 



them. What is even more important, in my opinion, that those theories re- 
quire, and are based upon, a set of new notions and concepts which may be 
also useful in a future rigorous mathexnatical treatment. 

I would like to mention that with all their obvious drawbacks and limita- 
tions the numerical experiments have very important advantage (as compared 
to the laboratory experiments), namely, they provide the complete informa- 
tion about the system under study. In quantum mechanics this advantage 
becomes crucial because in the laboratory one cannot observe (measure) the  
quantum system without a radical change of dynamics. 

We call numerical experiments the third way of cognition in addition to 
traditional theoretical analysis, and to the main source of the knowledge and 
the Supreme Judge in science, the Experiment. 

Laboratory experiments are vitally important for the progress in science 

not simply to prove or disprove some theories but to eventually discover, on 
a very rare occasion though, new fundamental laws of nature which are taken 
for granted in numerical experiments and theoretical analysis. 

As an illustration of dynamical chaos, both classical and quantal, I will 
make use of the following "simple" model. In the classical limit it is described 
by the so-called standard map: (n, O) --* (fi, 0) where 

fi = n + k . s i n O ;  0 = 0 + T .  fi (1.4) 

Here n, 0 are the action-angle dynamical variables; k, T stand for the strength 
and period of perturbation. Notice that in full dimensions parameter T is 
actually wT/no where w is the perturbation frequency, and no stands for some 
characteristic action. The phase space of this model is an infinite cylinder 

which can be also "rolled up" into a torus of cirqumference 

20rm 
C-- T (1.5) 

with an integer m to avoid discontinuities. Notice that map (1.4) is periodic 
not only in 0 but also in n with period 27r/T. The latter is a nongeneric 
symmetry of this model. In the studies of general chaotic properties it is a 
disadvantage. Nevertheless, the model is very popular, apparently because 
of its formal and technical symplicity combined with the actual richness of 
behavior. It can be interpreted as a mechanical system--the rotator driven 
by a series of short impulses, hence the nickname--"kicked rotator ~'. 

The quantized standard map was first introduced and studied in Ref. [15]. 
It is described also by a map: ¢ ~ ¢ where 

(1.6) 



and where 

( .Th2~ 
= e x p ( - i k ,  cos0),  hT = exp (1.7) 

are the operators of a "kick" and of a free rotation, respectively. Momentum 
operator is given by the usual expression: ~ = - iO/O0.  

Sometime it is more convenient to use the symmetric map 

'~ = .RT/,Fk-Rr/2¢ (1.8) 

which differs from Eq. (1.6) by the time shift T/2 ,  and which is, moreover, 
time reversible. In the most interesting case of a strong perturbation (k >> 1) 
the operator Fk couples approximately 2k unperturbed states. Also, param- 
eter T can be considered as an effective "Planck's constant" [103]. 

Notice that  in classical limit the motion of model (1.4) depends on a 
single parameter K = k T  but after quantization the two parameters, k and 
T, can not be combined any longer. 

Even though the standard map is primarily a simple mathematical model 
it can serve also to approximately describe some real physical systems or, 
better to say, some more realistic models of physical systems. One interest- 
ing example is the peculiar diffusive photoeffect in Rydberg (highly excited) 
atoms (see, e. g., Refs [14, 16, 104] for review). 

The simplest 1D model is described by the Harniltonian (in atomic units): 

1 
g = -2n---- ~ + e .  z(n,  O)coswt (1.9) 

where z stands for the coordinate along the linearly polarized electric field 
of strength e and frequency w. 

Another approach to this problem is constructing a map over a Kepler 
period of the electron [17]: (N¢, ¢) ~ (N¢, ¢) where 

7r 
= + k . s i n ¢ ;  = ¢ +  

Here, N¢ = E / w  = - 1 / 2 w n  2, and perturbation parameter 

(1.10) 

k ~ 2.6w5/----- ~ (1.11) 

if the field frequency exceeds that of the electron: wn z > 1. 

Linearizing the second Eq. (1.10) in N~ reduces the Kepler map to the 
standard map with the same k, and parameter 

T = 67rw2n 5 (1.12) 



Thus, the standard map describes the dynamics locally in momentum. In this 
particular model momentum N# is proportional to energy as the conjugate 
phase ¢ = wt is proportional to time. 

In quantum mechanics, instead of solving SchrSdinger's equation with 
Hamiltonian (1.9) one can directly quantize a simple Kepler map (1.10) to 
arrive at a quantum map (1.6) with the same perturbation operator Fk (1.7) 
but with a different rotation operator 

k~ = exp(-2i~rv(-2wN¢)-l /2)  (1.13) 

Here parameter v = 1 (one Kepler's period) for quantum map (1.6), and 
v = 1/2 for symmetric map (1.8). 

Notice that  in Kepler map's description a new time (r) is discrete (the 
number of map's iterations), and moreover, its relation to the continuous 
time t in Hamiltonian (1.9) depends on dynamical variable n or N¢: 

dt 
• d'-~ = 2~rn3 = 2~r(-2wN~)-3/2 (1.14) 

In quantum mechanics such a change of time variable constitutes the 
serious problem: how to relate the two solutions, ¢(t)  and ¢( r )?  For further 
discussion of this problem see Ref. [14]. Besides, map's solution ¢(N,  ~') does 
not provide the complete quantum description but only some averaged one 
over the groups of unperturbed states [17]. 

These difficulties are of a general nature in at tempts to make use of 
the Poincard map for conservative quantum systems. The straightforward 
approach would be, first, to solve the Schrbdinger equation, and then to 
construct t he  quantum map out of ¢(t) .  Usually, this is a very difficult way. 
Much simpler one is, first, to derive the classical Poincar6 map, and then to 
quantize it. However, generally the second way provides only an approximate 
solution for the original system. The question is how to reconcile the both 
approaches? 

Another physical problem--the Rydberg atom in constant and uniform 
magnetic field, I will refer to below, is described by the Hamiltonian (for 
review see Ref. [18]): 

wL~ w2p 2 
g = p~ +2 p~ rl + T + 8 (1.15) 

Here r 2 = p2 + z 2 = x 2 + y2 + z2; w is the Larmor frequency in the magnetic 
field along z axis, and Lz stands for the component of angular momen tum 
(in atomic units). Unlike the previous model the latter one is conservative 
(energy preserving). It is simpler for theoretical studies and, hence, more 



popular among mathematicians. Physicists prefer time-dependent systems 
or, to be more precise, the models described by maps which greatly facilitate 
numerical experiments. 

An important Class of conservative models are biiliards, both classical 
and quantal [19-21, 9, 105]. Especially populai is the billiard model called 
"stadium" [20]. Interestingly, instead of a quantum ¢ wave one may consider 
classical linear waves, e. g., electromagnetic, sound, elastic etc. In the latter 
case the billiard is called "cavity". Of course, this problem has been studied 
since long ago, yet only recently it was related to the brand-new phenomenon 
of "quantum" chaos [22, 23] (see also Refs.[105, 106]. 

Quantum (wave) billiards are the limiting (and a simpler) case of the 
general dynamics of linear waves in dispersive media. It seems that the case 
of a spatially random medium does attract the most attention in this field. A 
striking example is the celebrated phenomenon of the Anderson localization. 
True, this is a statistical rather than dynamical problem. On the other hand, 
one may consider the random potential as a typical one, and the averaged 
solution as the representation of typical properties in such systems. Instead, 
in the spirit of the dynamical chaos, one can extend the problem in question 
onto a class of regular (but not periodic) potentials. 

Recently, a deep analogy has been discovered between this rather old 
problem of wave dynamics in configurational space (in a medium) and of 
the dynamics in momentum space, particularly, the excitation of a quantum 
system by driving perturbation [24, 25]. Remarkably, that while the latter 
problem is described by a time-dependent Hamiltonian the former is a con- 
servative system. This interesting and instructive similarity is discussed in 
Ref. [261. 

2. Asymptotic statistical properties 
of classical dynamical chaos 

To understand the phenomenon of quantum chaos it should be put into the 
proper perspective of recent developments in physics. The central focus of 
this perspective is the conception of classical dynamical chaos which has 
destroyed the deterministic image of the classical physics. What is the dy- 
namical chaos? Which should be its meaningful definition? 

This is one of the most controversial questions even in classical mechan- 
ics. There are two main approaches to the problem; The first one is essen- 
tially mathematical [4, 7]. The terms dynamical chaos and randomness are 
abandoned from rigorous statements, and left for informal explanations only, 
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Figure 2: A fractal nonergodic motion component for the standard map, 
K = 1.13 (a); almost ergodic motion, K = 5 (b). Each hatched region is 
occupied by a single trajectory (after Ref.[14]). 

usually in quotes, even in Ref. [27] where a version of the rigorous definition 
of dynamical randomness (chaos) was actually given. This is not the case in 
Chaitin's papers (see, e. g., Refi [28]) but his approach is somewhat separated 
from the rest of ergodic theory, and is related to a new, algorithmic theory of 
dynamical systems started in the sixties by Kolmogorov (see Refs [27, 28]). 

In the mathematical approach to the definition of dynamical chaos a 
hierarchy of statistical characteristics, such as ergodicity, mixing, K, Markov 
and Bernoulli properties etc, is introduced. In this hierarchy each property 
supposed to imply all the preceeding ones (see Fig. 1). However, the latter 
is not the case in the very important and fairly typical situation when the 
motion is restricted to a chaotic component usually of a very complicated 
(fractal) structure which occupies only a part of the energy surface in a 
conservative system or even a submanifold of lesser dimensions (see, e. g., 
e~f. [29]). 

In Fig. 2a an example of the fractal chaotic component for the standard 
map is shown [14]. The motion is not ergodic as a chaotic trajectory covers 
about a half of the phase plane only (cf. Fig. 2b for a bigger perturbation 
K with only tiny islets of stability filled up by regular trajectories). For still 
bigger K the motion looks like completely ergodic. However, this has not 
been as yet rigorously proved. Numerical experiments are also not a reliable 
proof, at least not the direct one, because in computer representation any 
quantity is discrete. An indirect indication is the dependence of measured 
chaotic area #c on the spatial resolution (discreteness) A. Numerically [30] 
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Figure 3: Normalized distribution function f,~(E) in the standard map for 
various time intervals. The straight line is theoretical dependence f,, = 
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~o(a) ~ ~o(0) + ~A~ (2.1) 

with nonzero #(0) and fractal exponent/3 ~0.5. 
Being nonergodic the motion in the hatched domain in Fig. 2a is non- 

integrable as the trajectory fills up a finite area of/~(0) ~ 0. Hence, no 
motion intcgrals exist in this region. From the physical viewpoint there is a 
good reason to tcrm such a motion chaotic. Anyway, the ergodicity, being 
the weakest statistical property, is neither necessary nor sufficient for the 
meaningful statistical description. 

In this respect the most important property is mixing that is the corre- 

lation decay in time. It implies statistical independence of different parts of 
a trajectory as the separation in time between them becomes large enough. 
The statistical independence is the crucial property for the probability theory 
to he really applicable [31]. Particularly, the central limit theorem predicts 
Gaussian fluctuations which is, indeed, in a good agreement with the numcr- 
ical data for the standard map (Fig. 3). 

At average, the motion is described by the diffusion equation (also a 
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typical statistical law) with the rate [32] 

_-__ 

k 2 
- -~-I¢(K) (2.2) 

where function t;(It') accounts for short-time correlations [33] (see Fig. 4). 
The property of mixing is equivalent to continuous power spectrum of the 

motion which is the Fourier transform of the correlation function. This is 
just sufficient to provide the meaningful statistical description with its most 
important process of relaxation for an arbitrary initial distribution function 
f (n,  O) --* fo(n) to some unique steady state. In ease of the standard map 
on a toms, for example, the latter is ergodic 

1 
f~(n) = feCn) = ~ (2.3) 

if K >> 1 is big enough. The relaxation is asymptotically exponential [14] 

1 

with characteristic relaxation time 
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Notice that both diffusion and statistical relaxation proceed in two directions 
of time. The theory of dynamical chaos does not need the popular but 
superficial conception of "time arrow". True, the corresponding diffusion 
equation 

af(n,r) 1 ~ Daf (2.6) 

is irreversible in time. However, this is simply because the distribution func- 
tion f(n, r) is a coarse-gvainedphase density, averaged over phase 0. The fine- 
grained (exact) phase density f(n, O, T) obeys the Liouville equation which is 
time-reversible as are the motion equations. Being time-reversible the statis- 
tical relaxation is nonrecurrent that is even the exact phase density f(n, O, r) 
would never come back to the initial f(n, 0, 0). Unlike this almost all tra- 
jectories are recurrent, according to the Poincar6 theorem, independent of 
the type of motion (regular or chaotic). The difference is in the distribution 
of recurrence times: in discrete spectrum this time is strictly bounded from 
above while for chaotic motion an arbitrary long recurrence time can occur 
with some probability. 

In Fig. 5 an example of the statistics for Poincare's recurrences is shown in 
regular motion with N~, incommensurable frequencies randomly distributed 
within the interval (0,~Ol). Numerically [34], the upper bound is approxi- 
mately 
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(r--y = 0.8N  = 0.8 1p  (2.7) 

where (r) ~ 6/wl is the mean recurrence time under given conditions (par- 
ticularly, for a given set of frequencies), and p~, = N,, /wl  is the density 
of frequencies. The latter quantity is going to play the central role in the 
problem of quantum chaos. 

For r < rma~ the distribution function is close to exponential 

P ( r )  = e -*1(~) (2.8) 

as predicted by the probability theory for a random process with continuous 
spectrum which is the limit for N~ ~ oo. Actuallly, in the above example, 
the spectrum is discrete but this apparently cruciM property turns out to 
only restrict the random behavior to a finite t ime intcrval proportionM to 
the frequency density. 

Typically, chaotic motion possesses much stronger statistical properties 
than mixing. Here we come to the second approach to the definition of 
dynamical chaos which is essentially physical (see, e. g., Refs [5, 6]). In this 
approach the conception of random trajectories in a dynamical system is 
introduced from the beginning, and it is related to the strong (exponential) 
local instability of motion. Thi~ is characterized by a positive Lyapunov's 
exponent A or, more generally, by the Kolmogorov--Sinai (KS) dynamical 
entropy [4]. 

The main difficulty here is in that the instability itself is not sufficient 
for chaotic motion. One additional condition is boundedness of the mo- 
tion to exclude, for example, the hyperbolic motion which hardly can be 
termed chaotic. Further, the separated unstable periodic trajectories must  
be also excluded, possibly, by the requirement of some minimM dimensions 
of a chaotic component. To the best of my knowledge, the complete set of 
conditions for an arbitrary motion component to be considered chaotic has 
not been found as yet, and it constitutes a difficult problem. Nevertheless, 
such a difinition of classical dynamical chaos is commonly accepted in the 
physical literature. 

The crucial quantity A characterizes linearized equantions of motion. For 
example, in the standard map these are 

~/= 77 + k .  cos 0(r ) .  ~; ~ = ~ + T-  fl (2.9) 

where new dynamical variables, ~ = dO and ~1 = dn, form the additional 
tangent space. Lyapunov's exponent is defined by the limit 
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1 
A = lim , - : - ; lnv( r )  > 0 (2.10) M'~¢¢ I r l  

where v 2 = ~2 + ,/2, and v(0) = 1 is assumed. The last inequality in (2.10) 
means exponential instability of motion. The instability is t ime reversible 
as well as A. Actually, there are two (for a 2D map) A of opposite signs 
(A1 + A~ - 0). The latter condition is equivalent to the area preservation in 
Hamiltonian systems. 

In the standard map [6] 

0.07K g << 1 
A~ in g K>>I (2.11) 

The first expression holds, of course, within the chaotic component of motion 
only which decomposes, for K << 1, into infinitely many exponentially narro~v 
chaotic layers (An < exp(-Ir2/v/K)).  

Remarkably, the main condition for chaos (A > 0) is related to linear 
equations (2.9) with time-dependent coefficients though. As this dependence 
(0(r)) is very complicated for a chaotic motion, the mathematical analysis of 
those linear equations is almost as difficult as that of the original nonlinear 
ones. However, numerically the criterion A > 0 is much simpler than, say, 
the spectrum or correlation function as the former requires much shorter 
computation time because the instability is fast. Actually, one needs to 
discern between the exponential and linear instabilities. The latter is always 
present in  nonlinear oscillations due to the dependence of motion frequencies 
on initial conditions (see Eq. (1.2) and Refs [35, 36]). 

According to the algorithmic theory of dynamical systems the information 
J(t) associated with the chaotic trajectory of length t is asymptotically 

J(t) 
I t l  --" A; +oo (2.I2) 

that  is just proportional to the rate of exponential instability. This is the 
most important implication of the Alekseev--Brudno theorem (see Ref. [27]). 
It means that  for each new time interval one needs a new information which 
cannot be extracted from the measurement, to arbitrarily high but finite 
accuracy v > 0, of any preceeding section of the trajectory (even the infinite 
one!). 

Obviously, over some finite time interval the prediction of a chaotic tra- 
jectory is possible depending on the randomness parameter [37] 

AH 
r = i1 n v------~ (2.13) 
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Prediction is restricted to a finite domain of temporary determinism (r < 1) 
which goes over, as r increases, to the infinite region of asymptotic random- 
ness (r >> 1). Notice that the average information per unit t ime (2.12) does 
not depend on the measurement accuracy v > 0. 

For the regular motion with discrete spectrum the specific information 
decreases with time 

J(t_._)) In Itl (2.14) 
Itl-  It--T 

and the prediction is asymptotically possible contrary to the conclusion in 
rtef. [35]. 

Another way to understand the requirement of exponential instability for 
chaos is to consider the so-called symbolic dynamics (see, e.g., Ref.[27]) which 
is a mathematical description of the trajectory recording to a finite accuracy. 
For a map the total number of symbolic trajectories M ~ = exp(r In M) grows 
exponentially in time where the total number of symbols M ,,, 1/v determines 
the measurement accuracy. If the motion instability is also exponential, then 
all the symbolic trajectories are realized for a sufficiently large map's period 
T > (ln M)/A. 

The ultimate origin of the complexity (particularly, unpredictability) of 
a chaotic trajectory lies in the continuity of the phase space in classical 
mechanics. This is no longer true in quantum mechanics which leads to the 
most important  peculiarity of the quantum chaos. 

On the first glance the important condition for chaos A > 0 is not invari- 
ant with respect to the change of time. To avoid this difficulty the instability 
should be considered not in time but rather in the oscillation phase, e. g. 0 for 
the standard map, or per map's iteration like in Eq. (2.11). In other words, 
the appropriate quantity is a dimensionless entropy, e.g., A --* A/ < w > 
where < w > is some average frequency of the motion. 

To summarize, the physical definition reads: the dynamical ckaos is ex- 
ponentially unstable motion bounded, at least, in some variables. 

Remarkably, the instability is determined from the linear equations, the 
role of nonlinearity being to bound the unstable motion. On the other hand, 
any motion can be described equivalently by the linear Liouville equation 
for the fine-grained distribution function or phase space density. Being a 
stronger statistical property the exponential instability implies the continu- 
ous spectrum and, hence, the correlation decay. Yet, the latter is not always 
expotential but may be instead a power-law one (see, e. g., R.ef. [29]). 

The role of exponential instability in the statistical description of dynam- 
ical systems is not completely clear, it seems to be only sufficient but not a 
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necessary condition. Nevertheless, the conception of random trajectories of a 
purely dynamical system is of the fundamental importance as it destroys the 
mysterious image of the random and opens the way for quantitative studies 
in this large part of natural phenomena. Indeed, the theory of dynamical 
chaos shows that the random processes are not controlled by some qualita- 
tively different laws, to account for by means of some additional statistical 
hypotheses, but constitute a very specific, even though typical, part of gen- 
eral dynamics. An interesting question if there are "more random", or "true 
random", processes remains, as yet, open. 

3 .  T h e  c o r r e s p o n d e n c e  p r i n c i p l e  a n d  q u a n t u m  c h a o s  

Absence of the claassical-like chaos in quantum mechanics apparently con- 
tradicts not only with the correspondence principle, as mentioned above, but 
also with the fudamentai statistical nature of quantum mechanics. However, 
even though the random element in quantum mechanics ("quantum jumps") 
is inavoidable, indeed, it can be singled out and separated from the proper 
quantum processes. Namely, the fundamental randomness in quantum me- 
chanics is related only to a very specific event - the quantum measurement 
- which, in a sense, is foreign to the proper quantum system itself. 

This allows to divide the whole problem of quantum dynamics into two 
qualitatively different parts: (i) the proper quantum dynamics as described 
by the wave function ¢(t),  and (ii) the quantum measurement including the 
registration of the result, and hence the ¢ collapse. 

Below I am going to discuss the first part only, and to consider ¢ as a 
specific dynamical variable ignoring the common term for ¢,  the probability 
amplitude. Variable ¢ obeys some purely dynamical equation of motion, e.g., 
the Schr6dinger equation. This part of the problem is essentially mathemat-  
ical, and it naturally belongs to the general theory of dynamical systems. 

As to the second part of the problem - the quantum measurement - 
this is a hard nut for physicists. Currently, there is no common opinion 
even on the question whether this is a real physical problem or an ill-posed 
one so that  the Copenhagen interpretation of (or convention in) quantum 
mechanics answers all the admissible questions. In any event, there exists 
as yet no dynamical description of the quantum measurement including the 
¢ collapse. An interesting recent discussion of this question in the light 
of quantum cosmology can be found in Ref.[38]. In my opinion, one could 
find more "earthy" problems as well. Below I comment about the quantum 
measurement on a few occasions, but I will not discuss it in any detail as 
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this certainly goes beyond the frame of my lectures here. 
Recent breakthrough in the understanding of quantum chaos has been 

achieved, particularly, due to the above philosophy of separating the dynam- 
ical part of quantum mechanics accepted, explicitly or more often implicitly, 
by most researchers in this field. 

Currently, there are several approaches to the definition of quantum 
chaos. The first natural move was to extend onto the quantum mechanics 
the classical definition of dynamical chaos as exponentially unstable motion. 
One of a few physicists who still adheres to this philosophy is Ford [39]. 
He insists that  the quantum chaos is deterministic randomness in quantum 
mechanics over and above that contained in wavefunction or the expansion 
postulate. The latter refers to the quantum measurement as mentioned above. 
Some mathematicians implicitly accepted the same definition, and "succes- 
fully" constructed the quantum analogue to the classical KS-entropy (see, 
e.g., second Ref.[39]). 

For bounded in phase space quantum systems the quantum KS-entropy 
is identically zero because of discrete spectrum, and the classical-like chaos 
is impossible. Is it possible for unbounded quantum motion ? The answer 
is yes as was found recently but the examples of such a chaos are rather 
exotic. The first one was briefly mentioned in Ref.[40]. We consider here 
another example following the second Ref.[41] (for a more physical example 
see Ref.[42] while some general consideration are presented in Ref.[43], and 
a rigorous mathematical treatment is given, e.g., in second Ref.[39]). 

Consider the flow on an N-dimensional torus specified by the equation 

Oi = , , , (0) (3.1) 

If N _> 3 the classical chaos is possible with positive Lyapunov exponents that  
is the solution of the linearized equations is exponentially unstable. Consider 
now the Hamiltonian system 

o) =  k k(e) (3.2) 
k 

linear in momenta  nk canonically conjugated to coordinates 0k. Then, the 
equations for nk coincide (in reverse time) with the linearized equations (3.1). 
Hence, as soon as system (3.1) is chaotic the momenta of system (3.2) grow 
exponentially fast. 

It is easily verified that the density f(0, t) = I ~b(0, t)I  s of quantized 
system (3.2) obeys exactly the same (continuity) equation 
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Of ~O( fvk)  = 0 (3.3) 
0-7 + Ook 

as for classical system (3.1) with the same (particularly, chaotic) solution. 
The peculiarity of this and similar examples is in that  to achieve the true 
chaos not only the quantum motion must be unbounded and, hence, of a 
continuous spectrum but the momenta have to grow exponentially in time. 

This is why most physicists reject the above definition of quantum chaos 
and adhere to another one which reads (see, e.g., Ref.[ll]): quantum chaos 
is the quantum dynamics of classically chaotic systems whatever it could 
happen to be, I would add. 

Logically, this is most simple and clear definition. Yet, it is completely 
inadequate and even helpless, in my opinion, just because that  chaos my 
turn out to be a perfectly regular motion, much surpassing that  in the classi- 
cal limit. The point is that the discreteness of quantum spectrum supresses 
any transitions for a sufficiently weak perturbation, no matter  what is the 
corresponding classical motion [44]. For example, in the standard map this 
occurs if the perturbation parameter k < 1 independent of classical param- 
eter K = kT which controls the transition to chaos. This specific quantum 
stability is also called perturbative localization, or transition localization. 

For this reason Berry proposed [45] to use the term "quantum chaology" 
which essentially means studying the absence of chaos in quantum mechanics. 

My position is somewhere in between. I would like to define the quantum 
chaos in such a way to include some essential part of the classical chaos. It 
would be natural to include the mixing property which provides the mean- 
ingful statistical description of quantum dynamics. The difficulty is in that  
the discrete spectrum prohibits even the mixing in the sense of the ergodic 
theory. Yet, it turns out that the finite-time analogues of all the asymptotic 
properties in the ergodic theory, mixing including, can be formulated as we 
shall see below (cf. Fig. 5 as an example). For this reason, I currently ad- 
here to the following definition: the quantum chaos is finite-time statistical 
relaxation in discrete spectrum. 

A drawback of this definition is that such a chaos occurs also in the clas- 
sical systems of linear waves as already mentioned. The term quantum chaos 
(in this definition) is, nevertheless, meaningful, in my opinion. Unlike clas- 
sical linear waves, which are no doubt a limiting approximation to generally 
nonlinear waves, the linear quantum mechanics is as yet the fundamental 
and universal theory. 

In such interpretation the classical-like asymptotic (infinite-time) chaos 
remains as an important limiting pattern to compare with the true quantum 
dynamics. 
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4.  T h e  u n c e r t a i n t y  p r i n c i p l e  a n d  
t h e  t i m e  s c a l e s  o f  q u a n t u m  d y n a m i c s  

The main difficulty in the problem of quantum chaos is in that one needs 
to reconcile the quantum discrete spectrum, which apparently" prohibits any 
dynamical chaos, with the correspondence principle, which does require some 
chaos, at least, sufficiently far in the quasiclassical region. But this is also 
the principal importance of the phenomenon of quantum chaos which reveals 
the deep interrelation between the two opposites - order and chaos - in the 
theory of dynamical systems (see Fig.l). To put it another way, the quantum 
chaos, properly interpreted, unveils a very complicated and reach nature of 
what has been, and still is, considered as a dull order, the almost periodic 
motion of discrete spectrum. 

The other side of this difficulty is discreteness of the phase space in quan- 
tum mechanics, the size of an elementary cell being ,,~ h = 1. 

We resolved the above difficulty by introducing the characteristic time 
scales of the quantum motion on which the latter is close to the classical 
chaotic dynamics [41]. Actually, the first of those time scales had been dis- 
covered and explained by Berman and Zaslavsky already in 1978 [46], and was 
subsequently confirmed in many numerical experiments (see, e.g., Refs.[47]). 
We call it random time scale for the reasons given below.This scale is char- 
acterized, generally, by the estimate 

lnq (4.1) 
t rN  A 

where q is some big quantum (quasidassical) parameter, and A stands for 
the Lyapunov exponent. 

In the standard map A ~ ln(g/2) (see Eq.(Zn))and there are two quan- 
tum parameters: k and l IT .  The transition to the classical limit corresponds 
to k ~ o% T ~ 0 while the classical parameter K = kT =const .  It may 
seem strange that perturbation period T ~ 0 in the classical limit. This is 
because in full dimensions T ,~ l/no (see Eq.(1.4) and below), and charac- 
teristic action no ~ c~. General estimate (4.1) takes now the form [41] 

I ln T I (4.2) 
~ l n ( g / 2 )  

This corresponds to the optimal (least spreading) configuration of the initial 
¢(0), a coherent state. 

The physical meaning of this time scale is in the fast (exponential) spread- 
ing of the initially narrow wave packet. Thus, the exponential instability is 
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present in quantum mechanics as well but only on a very short time interval 
(4.1,2). 

This can be explained in two ways. On the one hand, the initial wave 
packet can not be less, in size, than a quantum phase-space cell. On the 
other hand, in Harniltonian systems, the local instability leads not only to 
the expansion in a certain direction but also to the contraction in some 
other direction which rapidly brings the initial wave packet to the size of the 
quantum ceU. 

Accoding to the Ehrenfest theorem a wave packet follows the beam of clas- 
sical trajectories but only as long as it remains narrow, that  is only on time 
scale (4.1). Nevertheless, characteristic time interval rr grows indefinitely 
in quasiclassical region, as T ~ 0, in accordance with the correspondence 
principle. However, the transition to the classical chaos is (conceptually) 
difficult as it includes two limits (T --+ 0 (q --+ c¢) and t -+ c¢) which do not 
commute (see F ig . l ) .  This is a typical situation in the quasiclassical region 
as was stressed, particularly, by Berry [10]. 

Substituting tr (4.1) for t into Eq.(2.13) we arrive at the quantum ran- 
domness parameter 

lnq > 1  (4.3) 
rq ~ I ln v I 

The latter inequality is the condition for the motion of a narrow wave packet 
to be random. It is equivalent to 

qv>~l  (4.4) 

Again, the transition to the classical chaos includes two noncommuting limlts: 
q--~ oo, v---~ O. 

The first time scale (4.1) is rather short, and the important question 
is: what happens next ? Numerical experiments revealed [15,41] that some 
classical-like chaos persists on a much longer time scale in, generally, of the 
order  

In t n  ,', In q 

which means some power-law dependence i n  ,,, q~ (see Fig.8 below). 
For the quantized standard map 

(4 .5 )  

rn  ~ k s (4 .8)  

On this t ime scale the diffusion in n proceeds and, moreover, closely follows 
classical diffusion in all details, again in agreement with the correspondence 
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Figure 6: Quantum diffusion in the standard map: K = 10; k = 6.56; T = 
1.52; E = <  n 2 > / 2  is the energy. Solid line - a single run; dashed and dotted 
lines - different averages over 104 runs; straight line - classical diffusion (after 
rtef. [48] ). 

principle. Subsequently, these numerical results were confirmed both numer- 
ically (see, e.g., Ref.[48]) as well as analitically [49]. In the Fig.6 the data 
from Ref.[48] are reproduced which demonstrate a classical-like behavior up 

to ~- ,-, 40 for k = 6.56. The dependence of the initial rate of quantum diffu- 
sion on classical parameter K, shown in Fig.4, is in a good agreement with 
the classical dependence even for those K values where a simple theory fails. 
We call tn the diffusion or (statistical) relaxation time scale. 

This similarity to the classical chaos is, however, only partial. Unlike 
the classical one the quantum diffusion was found to be perfectly stable 
dynamically. This was proved in striking numerical experiments with the 
time reversal [50]. In a classical chaotic systems the diffusion is immediately 
recovered due to numerical "errors" (not random !) amplified by the local 
instability. On the contrary, th e quantum "antidiffusion" proceeds untill 
the system passes, to a high accuracy, the initial state, and only than the 
normal diffusion is restored. An example of the time reversal in classical and 
qu0axtum standard map is shown in Fig.7 [50]. The stability of quantun chaos 
on relaxation time scale is comprehensible as the random time scale (4.1) is 
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' l "  

Figure 7: The effect of time reversal at ~" = 150 in classical (1) and quantum 
(2) chaos for the standard map with k = 20; T = 0.25. The straight lines 
show the same classical diffusion in different scales. The accuracy of the 
quantum reversal in E at r = 300 is better than 10 -l° (!) (after Ref.[50]). 

much shorter. Yet, the accuracy of the reversal is surprising. Apparently, 
this is explained by a relatively large size of the quantum wave packet as 

compared to the unavoidable rounding-off errors. In the standard map, for 
example, t h e  size of the optimal, least-spreading, wave packet A0 ,-~ v ~  

[41]. On the other hand, any quantity in the computer must exceed the error 
5 < T, hence (50)2152 > (T15)5 -1 >> 1. 

Beyond the relaxation time scale, that is for t >> tn,  the quantum diffusion 
stops, and a certain steady state is formed which may or may not be close 
to the classical statistical equilibrium as will be discussed in detail below. 

For k ~ co ( k T  = const) the time scale tn  ~ co, again in accordance 
with the correspondence principle, but this quasiclassical transition is also 
characterized by the same double limit as for tr above. 

Thus, various properties of the classical dynamical chaos are also present 
in quantum dynamics but only temporarily, within finite and different time 
scales tr or tn. This is the crucial distinction of the quantum ergodic theory 
from the classical one which is asymptotic in t. It seems that any substantial 

progress in the mathematical theory requires a generalization of the existing 
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ergodic theory to a finite time. Perhaps' it is better to say that  a new 
nonasymptotic (finite-time) ergodic theory needs to be cre~ted. 

Why the existing ergodic theory is asymptotic ? I suspect that  the main 
reason is technical rather than physical or mathematical.  Namely, the asymp- 
totic analysis is, typically, much simpler. Remember, for example, the con- 
ception of continuous phase space in classical mechanics. One particular 
difficulty in a finite-time ergodic theory is the important distinction between 
discrete and continuous spectrum of the motion which is unambiguous only 
asymptotically in time. 

The conception of a finite-time chaos in discrete spectrum appears un- 
usual and even strange, indeed. Yet, in my opinion, it has no intrinsic defects 
or contradictions. Moreover, such a notion already exists in the rigorous algo- 
rithmic theory of dynamical systems. For a physicist, the decisive argument 
is that  the finite-time chaos perfectly fits a broad class of quantum pro- 
cesses and, moreover, provides an arbitrarily close approach to the classical 
chaos in accordance with the fundamental correspondence principle. Also, 
notice that  in numerical experiments on the digital computer the finite-time 
pseudochaos is only possible as any quantity in the computer is discrete. 
In computer representation any dynamical system is "superquantized" in a 
sense (for discussion see, e.g., Ref.[41]). 

This philosophy, which has not yet many adherents, resolves also the 
double limit ambiguity discussed above. From the physical viewpoint there 
is no reason to take the limit t ~ oo at all. Instead, the time should be 
fixed for any particular problem, the regime of quantum motion depending 
on the quasiclassical parameter q as outlined in Fig.8. In this picture the 
asymptotic classical chaos is but a limitin# pattern to compare with the true 
(quantum) dynamics. 

The real quantum chaos, nevertheless, is called sometimes pseudochaos 
or transient chaos to distinguish an "ugly" reality from the perfect ideal. 

Of the two characteristic t ime scales of quantum motion discussed above 
the relaxation time scale tR is most important  simply because it is much 
longer than the other one, tr. Peculiarity of quantum statistical relaxation 
is in that  it proceeds in spite of the discrete energy spectrum. As is well 
known, the latter is always the case for the quantum motion bounded in 
phase space. The crucial property is a finite number of quantum states on 
the energy surface or, better to say, within an energy shell. In this case [41] 

tR <p (4.7) 

where p is the finite energy level density (h = 1) (cf. Eq.(2.7)). 
The physical meaning of this estimate is very simple and is related to the 
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Figure 8: Classically chaotic quantum motion: 1 - random time scale tr N 
In q; 2 - relaxation time scale tn ,-~ q~; q >> 1, the quasiclassical parameter. 

fundamental uncertainty principle 1. For sufficiently short time the discrete 

spectrum is not resolved, and a classical-like diffusion is possible, at most up 

to t ,,~ p. The same is true for the standard map on a torus which has also a 

finite number (C) of now quasienergy states. Since quasienergy is determined 
rood (2~-/T) the level density is 

TC 
P = 2~" m > tn (4.8) 

Notice that p is classical parameter as is m because while C ~ oo parameter 
T ~ 0 in the classical limit. 

The situation is much less clear for the standard map on a cylindcr where 

the motion can be unbounded in n. In some special cases the quasienergy 
spectrum is, indeed, continuous, yet this does not mean chaotic motion but 

rather the peculiar quantum resonance. A more complicated case of contin- 
uous spectrum will be discussed below. On the other hand, all the numerical 

evidence indicates that typically the quazienergy spectrum is discrete in spite 

of infinite number of levels. Formally, the level density p is then also infinite. 
Yet, relaxation time scale tn is finite. The point is that the quantum mo- 

tion does not depend on all quasienergy eigenstates but only on those which 
are actually present in the initial quantum state ¢(0) and, thus, control the 
motion. We call them operative eigenstates (for given initial conditions) . If 
their density is p0 _< p a better estimate for ta is (cf.Eq.(4.7)): 

ta  ,-~ po (4.9) 

1In a different way this first principle was used in Ref.[51] to explain the Anderson 
localization in a random potential. 
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For p0 to be finite all eigenfunctions have to be localized that is to decrease 
sufficiently fast in n. To the best of my knowledge there are as yet no rigorous 
results on the eigenfunction localization and/or the spectrum even for such 
a simple model as the standard map. 

If the localization length is l, the density po "~ Tl/2~r (for sufficiently 
localized intial state), and "rR = t R / T  ,,~ I. Actually, Eq.(4.9) is an implicit 
relation because P0 depends, in turn, on dynamics. Consider, first, the un- 
bounded standard map where the rate of classical diffusion has the form 

(2.2), and 

D,,~ k 2 (4.10) 

for K >> 1 (complete classical chaos). Suppose, further, that the width (in 
n) of the initial state Ano = lo << I. Then the final width due to a diffusion 
during time rR is A n  I ,~ (TRD) 1/2 ~ I. Since TR "~ l, we arrive at the 

remarkable estimate 

r a , ~ l , , ~ D  (4.11) 

which relates essentially quantum characteristics (rR, l) with the classical 

quantity D. 
Thus, the quantum diffusion' in the unbounded standard map is always 

localized, and a certain steady state is formed which has no counterpart in 
classical mechanincs. 

For the bounded standard map the situation is qualitatively different 
depending on a new parameter 

l D 
A = ~ ~ ~ (4.12) 

which we term the ergodicity parameter .  Indeed, the quantum localization 
occurs for A << 1 only. In the opposite limiting case A >> I ( D  >> C) 
the relaxation time scale, being finite, is nevertheless long enough for the 
relaxation to the ergodic steady state to be accomplished. In this case the 
final steady state is close to that in classical mechanics. The same is true 
for conservative systems of two freedoms like billiards or cavities. In terms 
of the relaxation times A 2 ,,, Tn/r~ (see Eqs.(2.5) and (4.11)). 

5.  F i n i t e - t i m e  s t a t i s t i c a l  r e l a x a t i o n  
i n  d i s c r e t e  s p e c t r u m .  

We turn now to a more accurate description of the quantum relaxation in 
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the standard map. First, what are the quasienergy eigenfunctions ? We shall 
discuss this in detail below. So far it is sufficient to know that the quantum 
localization is approximately exponential with eigenfunctions 

and the steady state 

1 ( I m - n l )  (5.1) 
vm(n)  ~ - ~ e x p  - l 

1 ( 2 1 h I  ) (5.2) g.(n) = I ¢ , (n)I  ~ ~ ~ exp - I. 

Here the bar means averaging in time, and the initial conditions are g(n,  O) = 

5(n) so that g is actually the Green function. Generalization to arbitrary 
conditions is obvious. 

Using these definitions the more accurate relations were found numerically 
for the standard map (see, e.g., second Ref.[41]): 

l, ,,~ 21 ~ D (5.3) 

Surprisingly, the localization lengths for eigenfunctions and for the steady 
state are rather different. This is due to big fluctuations around the simple 
exponential dependence. Generally, relations (5.3) depend also on system's 
symmetry [107,108]. 

The first a t tempt  to describe the quantum relaxation in standard map 
was undertaken in Ref.[52]. The idea was very simple: the diffusion rate 
should be proportional to the number of quasienergy levels which are not yet 
resolved in time r. This number decreases, for r >_ rn, as r -1, hence 

D(r )  ,',, D(O) rn (5.4) 
T 

where D(0) is the classical diffusion rate. This result was corrected in Ref.[53] 
where, in a more sophisticated way, the so-called level repulsion was taken 
into account to give for the rate of energy variation 

dE(T) = J~(T)'~ k(O)(T~RT (5.5) 

where fl is the repulsion parameter. Preliminary fitting of Eq.(5.5) to some 
numerical data looked as an agreement with fl ~ 0.3. 

However, recent extensive numerical similations [48] revealed a different 
dependence for r >> rn (in our notations) 

TR 
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supported by a different theory. Numerically (my fit) 

rn ~-, 2l~; c ~ 0:2 (5.7) 

in apparent contradiction with Eq.(5.5). 

Still another phenomenological theory was proposed in R,ef.[14] and devel- 
oped in Ref.[54]. It is based on the general diffusion equation (see, e.g.,R,ef.[5]): 

0 r) 1 02 _ 0 
~'~Tg(n, = -~-~n2Dg -- ~nAg (5.8) 

The second term describes a "drift" 

< An > dD 
A -  - -  - - -  + B  (5.9) 

r dn 
Introducing this relation into Eq.(5.8), we obtain 

Og 1 0 D a g  0 
-~r = -2-~n -~n On Bg (5.10) 

In our problem the last term represents the so-called "backscattering', or re- 
flection of ¢ wave propagating in n. Negligible in the begining the backscat- 
tering eventually suppresses the diffusion and leads to the formation of steady 
state (5.2). 

From Eq.(5.10) the general expression for steady state g,(n) is 

l n g , =  2 f  
B(n) dn 

D(n) (5.11) 

For homogeneous diffusion (D = coast) g~ is given by Eq.(5.2) with l, = D, 

hence 

a 
B = _ m  (5 .12)  

I n l  

The analysis of quantum relaxation can be performed using the two first 
moments of g(n,r) : rnl --< n > (n > 0) and m2 = <  n 2 >-- 2E. Notice 
that for initial g(n, O) = 5(n) the solution is symmetric with respect to n = 0, 
and we can consider n > 0 only. The equation for the moments are derived 

from Eq.(5.10) 

1 
r/tl = ~Dg(0, r) + B; rh2 = D + 2miB (5.13) 

Here B = - 1  but we keep it for further analysis. The second equation shows 
that one should distinguish the rate of energy variation from the diffusion 
rate just because of the backscattering. 
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The quantity g(0, r)  in the first equation, called staying probability is of 
independent interest as a characteristic of the relaxation process. 

In our case Eqs.(5.13) describe the evolution of initially spreading Gaus- 
sian distribution into the final exponential steady state (5.2). Accidentally, 
the ratio of moments 

m 2 _ '/2 
_ ~ 0 . 5  

m2 2 
remains almost constant which allows for a simple solution 

(5.14) 

- t = ~ + l n ( 1 - ~ ) ;  

Here the new variable and time are 

(5.15) 

,/,2 
~ =~ 2_~ ,¢/-~; t= -~r (5.16) 

Initially, as T --* 0, Eq.(5.15) describes the classical diffusion (~2 ~ 2t, E 
Dr/2) independent of % For constant D and B the relaxation '/ ~ 1 is 
exponential 

~-. 1 - e - t - ' ;  t ~ o o  ( 5 . 1 7 )  

To explain the power law relaxation observed numerically in Refs.[48,52,53] 
one needs to take account of the explicit time dependence for both D(r) = 
Ds('c) and B(r) = - s ( r ) .  Notice that  their ratio must be independent of 
time, at least asymptotically, to provide the exponential steady state (see 
Eq.(5.11)). 

The solution for the moments (see Eq.(5.13)) can be obtined by a change 
of time 

t*  j (5.18) 
Then, Eq.(5.15) shows that  a power-law tail is only possible for s(v) ~ r - ' .  
This is in accord with the first simple estimate (5.4). Assuming 

we arrive at the following implicit dependence E(r) :  

( r ) ,  ' /2r ,  
e~(1-~)  1 + ~  =1 ;  P - - D - - - 1  (5.20) 

The value of exponent p is obtained from asymptotic relation (T ~ co): 
~(r) ,,~ r=P ,~ s(r)  ,,, r -1. Hence, the relaxation time scale is 
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D 
ra = ~-ff ~ 2D (5.21) 

The value of ~,2 ~ 0.5 was derived from the best numerical data available 
[48]. It is only a half of the theoretical value (5.14). Besides, Eq.(5.20) 
does not contain the logarithmic dependence like Eq.(5.6) [48]. The latter 
seems to agree better with the numerical data for large r.  The origin of this 
discrepancies will be discussed below. 

From the first Eq.(5.13) we can derive also implicit dependence of the 
staying probability on time: 

2 e -~(~) 1 
- -~ - -  (5.22) 

g(O,r) D (rR + r)~(r)  er 

which is in agreement with numerical data in Ref.[55]. 
Recently, an exact solution of diffusion equation (5.10) with B = - 1  

(n > 0) has been found [109] in the form 

1 
D .  f (Z ,8)  = ~ exp s + e - ' z .  er fe  z - s (5.23) 

where the function 

e . / c (~ )  = ~ e do 

and z = n/2D; s = r /2D.  The dependence E ( r )  can be found from the 
equation (see Eqs.(5.13), D , B  = con~t): 

rha = 2 - D .  g(0, r )  (5.24) 

Asymptotically, as r --) oo 

D /~(r) ~ 4D4 
D .  g(o, ~) -~ 2 + vqr[Zn(~)]3Z ~; vq~[Zn(~)]3/= (5.25) 

where the decrease in time of D and B is taken into account as before, via 
the change of time variable (5.19). 

Comparison of Eqs.(5.25), (5.20) and (5.6) shows that  the accuracy of the 
"exact" solution (5.23) is logarithmic only. This is because of the original 
simplifying assumption of a purely exponential steady state (5.2). The exact 
distribution is not known but, most likely, it contains some power-law factor 

[41]. 



3] 

In many-dimensional systems or for a quasiperiodic driving perturbation 

the diffusion localization is typically absent besides some special cases (see, 
e.g., Ref.[56]). For three freedoms or two driving frequencies the localization 
persists but its length is exponentially large. However, the perturbative 
localization, mentioned above, occurs in all cases of discrete spectrum. 

On the other hand, even in the lowest dimensions under consideration the 

so-called delocalization is possible if the motion is allowed to be unbounded. 
Consider, for example, the standard map on a cylinder with the perturbation 

k (n )  depending on momentum: 

D ( n )  = Don 2~ (5.26) 

with some constant a. To solve this problem it is essential to assume that 
the backscattering remains unchanged, that is B = - 1  as before, since it 

does not depend on system's parameters. Then, using Eq.(5.11), we obtain 
the steady state distribution in the form 

2n 1-2• 1 

- lng . (n)  = # (5.27) 
~001nn a = !2 

In agreement with previous results [32] the critical value of the parameter is 
ac = 1/2. For a < ac the localization remains exponential while for a > a~ 
delocalization occurs because g , (n )  ~ const  ~ 0 as n --* co. In the critical 
case the steady state distribution is a power law: 

g, ~ n -2/D° (5.28) 

and the localization takes place for sufficiently small Do < 2 only, when 

g , (n )  is normalizable. Notice that for the localization of energy, that is for 
the mean energy.< E > = <  n 2 > / 2  to be finite in the steady state, a more 

strong condition is required, namely 

2 
Do < 5 (5.29) 

This result was recently confirmed numerically in Rcf.[57]. 
In spite of all this theoretical developments no rigorous treatment of the 

quantum relaxation exists so far. 
The analogy with disordered solids mentioned by the end of Lecture 1, 

being very fruitful, is nevertheless restricted since it concerns the correspon- 
dence between eigenstates only. The properties of motion in the two prob- 

lems, both dynamical and even statistical, are generally different. For exam- 
ple, the ratio of the localization lengths for eigenfunctions and for the steady 
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state is different: 1, ~ 21 in momentum space, and l, ~ 41 in disordered solids 
(see, e.g., Ref.[59]). 

The most striking difference is in the absence of the diffusion stage of 
motion in 1D solids [110]. This is because the level density of the operative 
eigenfunctions 

ldp ,.¢ I (5.30) 
p N  d E  u 

which is the localization (relaxation) time scale (4.9), is always of the order 
of the time interval for a free spreading of the initial wave packet at a char- 
acteristic velocity u. In other words, the localization length 1 is of the order 
of the free path for backscattering. On the contrary, in momentum space, for 
instance, in the standard map each scattering (one map's iteration) couples 
,-, k unperturbed states, so that  ~ k 2 >> 1 scatterings are required to reach 
the localization l ~ k 2. 

Another (qualitative) explanation of this surprising difference is in that  
the density of quasienergy levels for driven systems is always higher as com- 
pared to t-hat of energy levels. The same is true for a conservative system of 
two freedoms as compared with the one-freedom motion in solids. Thus, the 
Anderson localization is the spreading, rather than diffusion, localization. 

Interestingly, the asymptotic relaxation (t --* oo) in solids [110] is the 
same as in the momentum space (5.6). Yet, the decay of the staying proba- 
bility is different ([110], cf. Eq.(5.22)) 

g .  ~ t -3  (5 .31 )  

Nevertheless, the analogy in question remains very fruitful and extensively 
used in the studies of quantum chaos (see, e.g., Ref.[55]). 

6 .  T h e  q u a n t u m  s t e a d y  s t a t e  

The quantum diffusion localization generally results in the formation of a 
peculiar steady state which has no classical counterpart. The statistical 
relaxation to this steady state is also surprising because the motion spectrum 
is discrete. 

The ultimate origin of this steady state is in localization of all the eigen- 
functions. In a homogeneous systems like the standard map on a cylinder 
the localization is asymptotically exponential because the equation for eigen- 
functions is linear whose behavior is described by the Lyapunov exponents in 
n. This is the most powerful method, borrowed from the solid-state physics, 
to numerically calculate localization length I [58]. 
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However, a simple exponential dependence (5.1) is only the average be- 
havior superimposed by big fluctuations 

~aCn) ~ ~exp 

By definition < ~n >--- 0 while the dispersion is not only big but grows with 

I ~ n  l as [25] 

1 2 
< ( ~  _ ~.~)2 > =  D~ I n - m I; D~ ~-, ~ ~ ~ (6.2) 

Nevertheless, the accuracy of numerical determination of I can be fairly high: 

- -  ~ (6.3) 
l 

for sufficiently large n. Fluctuations ~,, have a big impact on the steady state 
as was already mentioned above. Namely, they double the localization length 
(5.3). This is essentially numerical result, no accurate theory still exists [32]. 
Also, it is not clear if the steady state is purely exponential asymptotically 
or there is a power-law factor like in solids [59]. 

Initial part ([ n In l) of the distribution for both eigenstates as well as the 
steady state must deviate from a simple exponential dependence. Again, big 
fluctuations impede the direct numerical measurement. Instead, two integral 
characteristics were studied. One is the average energy in the steady state. 
For exponential localization (5.2) 

E~ < n2 > l~ D 2 
= - - 7  - ¥ = T (6.4) 

and it is in agreement with numerical results within a factor of 2. 
Another integral quantity - the entropy H - was introduced in Ref.[60] 

(see also Refs.[13, 103]) as a different measure of quantum localization. The 
entropy localization length, which is also called the Shannon width, is defined 
a s  

IH=~H; H = - - ~ l ~ ( n )  I=lnl ~(n)  I ~ 

For exponentially localized eigenfunctions 

(6.5) 

eD 
In = el = -~- ~ lAD (6.6) 

where I/7 = exp(/t) ,  and H is the average over all eigenfunctions. Numeri- 
cally, l/~ ,~ D that is less, partly due to fluctuations which decrease entropy 
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and l n by a factor of 2. Again, deviations from exponential dependence are 
apparently present but not very big. 

Just because lH essentially depends on the main part of the distribution 
its fluctuations are much bigger as compared to those for l (6.3). Namely 
[61]: 

A1H 
in 0.5 (6.7) 

Fluctuations of entropy H were numerically found [61] to be described quite 
well by a simple expression (l• >> 1): 

dR a 
dH = ~r cosh[a(H-/] r ) ]  (6.8) 

with a ~ 3. So far there is no idea as to the explanation of this distribution. 
There is another class of localized eigenfunctions which we call Mott's 

states. They were conjectured by Mott [62] in the context of the Anderson 
localization and further studied in Refs.[55,48,63,64]. MoWs state is also 
called the double-hump state for its shape of two exponential peaks sepa- 
rated by distance L (in n). These states exist in pairs of the symmetric 
and antisymmetric superpositions of the two peaks. The mechanism of their 
formation can be quMitatively explained as follows. The exponential local- 
ization is the effect of resonant backscattering, that is the backscattering on 
a resonant harmonic of random (or sufficiently irregular) potential. Hence, 
the exponentially localized states are in a sense the unperturbed ones. The 
perturbation (nonresonant potential) mixes them. For close unperturbed 
states this increases still more the fluctuations. However, for distant states 
a new, double-hump, structure is formed. The principal parameter is the 
overlapping integral 

which determines the energy splitting in the pair" Ac ,~ v. 
We studied numerically [65] the structure of Mott's states in the standard 

map assuming two versions of dependence At(L):  

l,,,w = Ae -L/l'~ (6.10a) 

( L)e-L/"~ (6.10b) l,,,w=A 1 + ~-~ 

where w = TA~/2~r, and A is a constant. The first dependence is usually 
accepted in literature, the second one is suggested by parameter (6.9). Our 
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preliminary results seem to better confirm the second law with fitting pa- 

rameters 

A ~, 0.05; l,~ ~ Dn ~-, l, ~ 21 (6.11) 

The fitting to the first dependence gives a close l,~ but larger A ~ 0.15. 
In disordered solids the structure of Mott's states was directly calcu- 

lated in Ref.[63] via the correlation functions. The result is of the form of 

Eq.(6.10a) with A ~-, 5, and Im= l = 1~/4 (cf.Eq.(6.11)). 
The importance of Mott's states, for which they actually were sought, is 

a large matrix element 

/ L (6.12/ 

The latter expression holds for L >> l,~. The additional logarithmic depen- 
dence in the long-time relaxation (5.6) is explained just by the effect of Mott's 
states in the low-frequency part of the spectrum [48]. 

The probability for a given unperturbed (exponential) eigenstate to form 
the Mort pair with L > L1 can be estimated as 

= 2c~ fL~ w(n) dL = 2aAe -L'/t'" (6.13a) pl 

pl = 2hA 2 + 

for two dependences w(L) in Eq.(6.10), respectively. In both cases a ~ 1.5 
according to our numerical experiments. The total probability pl << 1, and 
this explains why multi-hump states are very rare. We have found a few 

states which could be interpreted as distorted three-hump eigenfunctions. 

In disordered solids pl > 1 but this is not necessarily a contradiction 
because Eqs.(6.10,13) are asymptotic. Nevertheless, it would be interesting 
to analyze the structure of Mott's states in more detail. 

The time-averaged density g,(n) (5.2) determines a certain invariant mea- 
sure of the quantum motion which is qualitatively different from the classical 
measures (microcanonical, Gibbs' etc). One important distinction is in that 
the former depends on initial conditions as the quantum steady state results 
from the localization of a spreading initial state. Moreover, if the width of 
initial state exceeds the localization length this dependence becomes even 
more complicated. 

Another difference is in that the relaxation of initial state into the steady 
state is never as full as in the classical mechanics. For example, average 
quantities like energy E8 = <  n 2 > /2 (6.4) oscillate, and can even come 
back, close to the initial value E0 since the motion spectrum is discrete. 
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Does it make any physical sense to speak about statistical relaxation in 
discrete spectrum ? In my opinion, it does. First, such Poincare's recurrences 
are extremely rare, and their time scale has nothing to do with character- 
istic relaxation time scale rn (4.6). Second, which is even more important, 

those recurrences are but large fluctuations characteristic for any statistical 
systems. 

The same occurs in classical mechanics - for trajectories, and this is the 
difference. In fact, the quantum density g(n, r)  plays an intermediate role be- 
tween the classical density (which would never come back for chaotic motion) 
and the classical chaotic trajectory with its Poincare's recurrences. Namely, 
the quantun density which actually describes a single quantum system rep- 
resents, nevertheless, a finite statistical ensemble of M ,.- I, systems. Hence, 
finite fluctuations in the quantum steady state. For example, the energy 
fluctuations 

AE,  1.5 1 
~ (6.14) 

in a reasonable agreement with numerical experiments (see, e.g.,Ref.[48,52] 
and Fig.6. Numerical factor in Eq.(6.14) is taken from our recent computer 
simulations [101]. 

One can say also that the mixing, which is responsible for relaxation, is 
terminated by localization, so that the quantum mixing is only partial or 
a finite-time mixing. Such a partial relaxation with persistent fluctuations 
is clearly seen, for example, in Fig.6 . Notice, that a big fluctuation in 
this run, which is a partial recurrence towards the initial state Eo - 0, is 
approximately symmetric with respect to the minimum of E. Moreover, the 
growth of the fluctuation follows the "antidiffusion" law (cf. Fig.7, T > 150) 
while its decay is the "normal" diffusion (cf. initial part of dependence E( r )  
in Fig.7). This is another manifistation of time-reversibility in the dynamical 
chaos.  

The smooth (up to fluctuations) steady state (5.2) is formed only if local- 
ization length l~ ~> 2~r/T, the period of standard map in n. In the opposite 
limit l~ ~ 2~r/T the quantum measure g~(n) reveals the classical resonance 
structure [32]. Since quantum diffusion requires both K > 1 (classical bor- 
der) and k > 1 (quantum border) this regime is only possible near K = 1 
where the diffusion in the chaotic component is very slow: 

k 2 
I, ~, D ~ 0.3 (AK) 3 k 2 ~  - -  (6.15) 

r2r 
and where the resonance structure is critical with characteristic time scale 

[32,66]. 
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Figure 9: The quantum steady state in the standard map:  a - homogeneous 
localization, K = 5, k = 10,T = 0.5, the straight line: - - l n f N  = x = 
2n / l , ;  f N  = f ( n ) 2 l , / ( 1  + x); b -  inhomogeneous localization, g = 1.5, k = 
10,T = 0.15, l~ ~ 2,< l~ >..~ 7, the straight line: - l n / ( n )  = 2 n /  < l, > 
(a ter Ref.[32]). 

The border between the two regimes is approximately at 

8 
l , T  ,~ ~ ~ 1 (6.16) 

At the border, r~  ,~ k 1/s as was recently confirmed in Ref.[67]. 
For l , T  << 1 the localization length < l, > averaged over the resonance 

structure is 

k 
< I. (6.17) 

and the interpolation between the two regimes is approximately described by 
the expression [14] 

+ (6.18) 

Two examples of the quantum steady state are shown in Fig.9 for homo- 
geneous (a) and inhomogeneous (b)localization, respectively. 

The nature of a new time scale is a controversial question. In my under- 
standing it characterizes the phase motion in 0 rather than the excitation 
in n assumed in Ref.[26]. Indeed, the localization length for l , T  > 1 is only 
,,~ k, hence, the relaxation time scale eR "" 1, and does not depend on k at 
all. Since r= (in my interpretation) is also of the order of local instability 
rise time the ratio of the two time scales TR/rr "~ l/T= ,,~ k -1/3 << 1 in the 
critical structure is opposite as compared to the usual TR >> Yr. 
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The quantum steady state is only possible i n  discrete spectrum. The 
conditions for the latter in an unbounded quantum map remain unknown. 
For the standard map on cylinder the spectrum is continuous for the rational 
values of parameter T/47r = p/q  due to periodicity of this map in n. This 
results in an additional motion integral which can be termed quasicoordinate 
by analogy with the quasimomentum in spatially periodic potential [14]. By 
the same analogy the momentum n grows linearly in time, hence the term 
quantum resonance [15,68]. The mechanism of this resonance is especially 
clear in case q = 1 when rotation operator /) = _Tbecomes identity (see 
Eq.(1.7)). 

In Ref.[69] the continuous spectrum was proved to exist also for very 
special Liouville's (transcendental) T/4~r (see below) but if this condition is 
only a technical limitation remained unclear. This constitutes a very subtle 
mathematical problem. We shall try to discuss it using semiempirical theory 
of the quantum resonance [14] which leads to the expression 

< n 2 > ~  Dr2 exp ( - ~ D )  (6.19) 

This is the asymptotic energy growth in quantum resonance with denomina- 
tor q > D. A detuning ~(q) =1 T / 4 r  - p /q  I would stop the growth in time 
r(e) which we assume to satisfy the condition (see Uq.(1.7)) 

e r  < n 2 > =  u --, 1/2rr 

According to a few numerical results in Ref.[102] u ~ 0.02. 
Consider now irrational 

(6.20) 

T 1 
1 : (ml,  . . . ,m,,  ...) (6.21) 

47r ml + m2+... 

T 
P~ = (ml, . . . ,  m i )  ~ ~ "  qi+l = mi+lqi + qi-1 
qi 47r ' 

where Pi/qi are the convergents of T / 4 r .  Comparing Eqs.(6.19-6.21) we 
can formulate the following conjecture: there exist infinitely many irrational 
values of T / 4 r  which provide unbounded energy growth and, hence, a con- 
tinuous spectrum; moreover, T/4~r can be adjusted in such a way to achieve 
any desired growth rate. 

Take growth law in the form 

< n 2 > = G r  ~ (6.22) 

Substituting this into Eqs.(6.19, 6.20) and excluding r,  we arrive at the 
relation 



39 

~ ( q , ) = G ( G ) ~ - - ~ e x p (  q, 1 + ~ )  c 7rD 2--  ~ , -  (6.23) qiqi+~ 

where the latter expression (c ,,- 1) follows from the continuous fraction repre- 
sentation (6.21) of T/4~r. This relation determines a map for the construction 
of desired T/4r: 

cG I'G'~ 2-~ 1 + (6.24) mi+, ~ qi+lqi ~ ~ q ~ D )  exp "2- - - -  

Successive convergents determine the quantum resonances which operate in 
turn, each one on its own time scale 

f v ~--~ ql (6.25) 
ri = ~-~qiq,+,) = exp ~rD(2 :  7) 

Since these time scales rapidly increase the diffusion is inhomogeneous in 
time, its local rate F = d < n 2 > / d r  oscillating from about zero up to 

F, .~(rl)  = 2D ~ exp ~-D. 2 - - 7  (6.26) 

The ratio 

F,~(ri________) _ 2 _> I; < F >= "/GT ~-I (6.27) 
< F >  7 

where < F > is the mean rate from Eq.(6.22). 

For maximal ~/ = 2 a single resonance operates according to Eq.(6.19). 
In the whole interval 0 < 7 -< 2 the motion is unbounded, and the spec- 
t rum is (singular) continuous with a fractal structure in agreement with the 
rigorous results in Ref.[69]. Irrationals which are approximated by rationals 
to exponential accuracy, like those satisfying Eq.(6.23), are called transcen- 
dental numbers. A new conjecture is that even among those T/4r  values 
there are (infinitely many) such ones which provide the diffusion localiza- 
tion. They correspond, particularly, to 7 = 0 with any finite G. A more 
general condition is that asymptotically 

1 m,+l < exp(aq,); a < (6.28) 

For a particular value of T/4~r satisfying this condition the energy E~ = 
G/2 of the quantum steady state is determined by maximal Gi found from 
Eq.(6.23) 

( q ' )  (6.29) --i (73/2 = ~ exp -2---~ 
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If this G , ~  < D2/2 (6.4) the resonances are irrelevant, and the usual expo- 
nential steady state is formed described by Eqs.(5.2) and(6.4). This is just 
the case for a typical irrational T/4~r when G,~ax "~ V ~  << D if quasiclassical 
parameter k >> 1 is big enough. 

The change of time is a serious problem in quantum mechanics as ex- 
plained above. For the steady state this problem can be solved [14] as fol- 
lows. The steady state distribution is proportional to invariant measure and, 
hence, to (sojourn) time t. Whence, upon a change of t ime t --* 

g,(n) = d-t (6.30) 

the steady state distribution does change as well even though g, does not 
depend on time ! Now we can change momentum n in such a way to provide 
~,(~) = g,(n). We have 

d~ d~ 
dn dt (6.31) 

Partcularly, if t '=  % the map time (the number of map's iterations) 

= _1 = __d~ (6.32) 
g, T dn 

where T = 2rr/f~(n) is map's period. If, moreover, n is action, the map 
momentum ~ = E/2rr is proportional to the energy (cf. Kepler map (1.10)). 

7 .  A s y m p t o t i c  s t a t i s t i c a l  p r o p e r t i e s  o f  q u a n t u m  c h a o s  

The well developed random matrix theory (RMT) (see, e.g., Refs.[70, 111, 
112]) is a statistical theory which describes average properties of a "typical" 
quantum system. At the beginning, the object of this theory was assumed 
to be a very complicated, partcularly, many-dimensional quantum system 
as the representative of a certain statistical ensemble. With understanding 
the phenomenon of dynamical chaos it became clear that  the number of 
system's freedoms is irrelevant. Instead, the number of quatum states, or 
the quasiclassical parameter, is of importance. 

Until recently the ergodicity of eigenfunctions, that  is the absence of any 
operators commuting with the Hamiltonian, was assumed. Of course, that is 
not always the case (for a very interesting and instructive review of first at- 
tempts to prove the quantum ergodicity, see Ref.[71]). One of a few rigorous 
results in quantum chaos is an old theorem due to Shnirelman (announced 
in Ref.[72] with a full proof published only now [73]). Loosely speaking the 



41 

theorem states that  the classical ergodicity implies the ergodicity of most 
quantum eigenfunctions sufficiently far in the quasiclassical region that  is 
for sufficiently large quantum parameters. The quantum ergodicity was fur- 
ther discussed in Refs.[75] and well confirmed in numerical experiments with 
quantum billiards [21]. 

Shnirelman's definition of quantum ergodicity is of an integral type 

/ dpdqW,~(p,q) f(p,q) ~ / dpdqgt,(p,q)f(p,q ) 

n--- .~ o o  

(7.1) 

for any sufficiently smooth function f of the phase space. Here W,, are 
Wigner eigenfunctions, and 

g, = 5(H(p,q) - E) dE (7.2) 
dpdq 

is microcanonical (ergodic) measure. The quantity p(E) = dpdq/dE is the 
classical counterpart of the mean level density. 

To understand the quantum limitations of ergodicity and the importance 
of the quasiclassical asymptotics (n ~ co) we consider as an example the 
Rydberg atom in magnetic field (see Eq.(1.15)). 

In Ref.[76] the eigenfunctions of this model were found, for chaotic motion 
in the classical limit, in the form 

~i = C E ~flm m xffi  (7.3) 

Here c is normalizing constant, ~m are some unperturbed eigenfunctions with 
a fixed quantum number m, and 

1 (7.4) 

is the electron longitudinal frequency depending on quantum numbers n, m. 
In the classical limit the ergodic measure is 

where Ft = OH/On. 
In quantum mechanics this measure is discrete, and to satisfy ergodicity 

(7.1) the change in a must be small, hence, w -~ 0, and m ~[ E I /w -~ o~. 
On the other hand, classical ergodicity (chaos) takes place under condition 

[181 
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I E I  e---- w---~<l 

Therefore, the condition for quatum ergodicity is 

(7.6) 

<< P (7.7) 

The RMT operates with finite matrices Nm x Nm so that expansion similar 
to Eq.(7.3) 

¢~ = ~ ]  a~j~j (7.s) 
J 

is always finite, the ergodicity meaning that 

1 
< l a,j I ~ > =  N~ (7.9) 

In other words, all probabilities [ aij [2 are equal at average. This is not the 
case in a physical system whose energy shell, corresponding to the classical 
energy surface, is bounded. Hence, the conventional RMT is a local theory 

applicable far within a quantum energy shell. We will come back to this 
important question below. 

Statistical properties of quasienergy eigenstates (for driven systems) were 
first studied in Refs.[77,78] (see also Ref.[13]) using, as a model, the standard 
map on a torus. Owing to condition (1.5) the parameter T/4~r = m/2C  is 
rational. But for a finite system, with C states, the spectrum is discrete, 
of course, so that no delicate problems, discussed above, arise. This model 
represents the quantum dynamics within the energy shell of a two-freedom 
conservative system. 

The ergodicity depends on the parameter 

l D 
A = --  = - -  (7.10) 

C 2C 
and corresponds to large values of the latter. In the quasiclassical region 
A ,,~ Kk ~ oo (K = kT and m = CT/27c remain constant). Thus, sufficiently 

m 

high quantum states are ergodic in accordance with the Shnirelman theorem. 
The structure of ergodic eigenstates well agrees with the prediction of 

RMT, namely, the fluctuations are nearly Gaussian with the probability den- 
sity 

F(Nm/2) (1 _ a2) ~ 2.v.~V_~ ( 2 ~ )  1/2 ( ) (7.11) 
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Figure 10: Fluctuations in ergodic eigenfunctions for the standard map on a 
torus: K ~ 20, k = 20, T / 4 r  = 4/51; I - RMT, II - Gaussian approximation 
(after Ref.[781). 

Here a, assumed to be real, stand for amplitudes in expansion (7.8). Interest- 
ingly, a slight difference between the two distributions was clearly observed 
in Ref.[T8] for Nm = 25 using the X 2 criterion (Fig.10). 

Big spatial fluctuations in a chaotic eigenstate are not completely random 
but reveal the structure of classical periodic trajectories. This interesting 
phenomenon had been discovered by Heller in numerical experiments with 
the quantum stadium billiard [79], and was subsequently confirmed by many 

others (see, e.g., Ref.[80]), particularly, in quantum maps. The microstruc- 

ture was observed so far as some enhancements along classical periodic tra- 
jectories in both configurational and phase spaces. Such enhancements were 
termed "scars" by Heller. 

A general theory of scars in conservative system with arbitrary number of 
freedoms N was developed by Berry [81,10] (see also Ref.[82]). He made use 
of the Wigner function W which is the quantum counterpart of the classical 
fine-grained phase space density. Notice that W is generally not positively 
definite. 

Within a scar W forms complicated diffraction fringes, rapidly oscillating 
and rather extended along the energy surface. The relative width of the 
central fringe contracts with the quantum number n as ,,~ n -1/2. In this sense 
the scars have essentially quantum structure which vanishes in quasiclassical 
region. Yet, this transition to the classical limit is not a trivial one as the 
fringe amplitude does not depend on n. To get rid of scars one needs a coarse- 
grained (averaged) density W, which is called also the Husimi distribution, 
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and which is positively definite. Then average density of a scar vanishes 
,.,, n-(N-x). 

As the scars are maximally localized (essentially within one quantum cell 
of the phase space) they do not violate Shnirelman's integral ergodicity (7.1). 
However, it is not completely clear why they are not seen in the fluctuations 
of eigenfunctions (Fig.10). 

According to Berry's theory the Wigner chaotic eigenfuntion can be ap- 
proximately represented as a sum over classical periodic trajectories: 

dE W(x) ~-. ---~x6(E - H(x))x 

× [ l + u  ~ e x p ,  ( N - l A s T , ) 2  cos(S8 + %) 6(X,)] (7.12) 

Here z = (p, q) is a point in 2N-dimensional phase space while X = (P, Q) 
describe 2(N - 1)-dimensional Poincard section transverse to a periodic tra- 
jectory at X = 0. The periodic trajectory is characterised by action S and 
quasiclassical phase as well as by instability rate A and period T. Each term 
in sum (7.12) represents a scar which, by the way, can be of any sign, that  is 
it may produce both a bump or a dip in phase density W. Explicit expression 
for 6(X) is given in Refs.[81,10], and u is some numerical factor. 

A difficult mathematical problem in this theory is apparent strong diver- 
gence of series (7.12) since the number of periodic trajectories with T~ < T 
grows as e x p ( ( N -  1)AT) (see, e.g.,Ref.[83]). One way to approach this prob- 
lem is as follows [54]. Let us try to consider Eq.(7.12) as an expansion in the 
basis of certain "coherent" states, the "scars" 

Ws = ~-~6(X,)S(E- H(x)); ] Wsdx = 1 (7.13) 

which are localized on periodic trajectories. A peculiar property of such co- 
herent states is in that  they are ~ t i o n a r y  that  is they don't  move in phase 
space, nor they are spreading. The mechanism of localization is essentially 
the same as for the diffusion discussed above but now it concerns the expo- 
nential spreading of a narrow wave packet prior to diffusion. The difference 
is in the level density which, for a scar, is p, .-~ Ts. Hence, the time scale for 
the localization of instability is Ts, and this is a simple explanation of the 
exponential factor in Eq.(7.12). 

Oscillating ~(X) tails of unknown length overlap to produce somehow the 
average ergodic (microcanonical) distribution ,,, 6(E- H(x)) (see Eq.(7.12)) 
as well as the Gaussian fluctuations discussed above. The total number of 
separated scars is ,-, n N-1. Since the number of periodic trajectories grows 
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as exp((N - 1)AT) the longest period T,~ of the basis scars is given by the 

estimate 

AT~ ,-, Inn (7.14) 

and it coincides with the random time scale (4.1) (q ,-, n). This is the time 
interval for a wave packet spreading over the whole energy surface. The 
scars with longer periods T, > T,, are not separated from each other, that 
is even their central fringes do essentially overlap, hence they are crucially 
modified. As a crude approximation one can simply drop these higher terms 

which makes series (7.12) trivially convergent. It is not excluded that this 
approach could provide some physical justification for a formal procedure of 

smoothing ~(E - H) [10]. It is essential that under a natural assumption of 

random phases in Eq.(7.12) [26] the divergence is only logarithmic in T and, 
hence, insensitive to the exact truncation border. 

In a recent theory of the series over classical periodic orbits [105] the 
truncation border was found to be at T,~ax "" tR, the relaxation time scale. 
In this theory the series represent quantum eigenvalues. A natural conjecture 
is that the truncation T,~ax in both cases is of the order of the corresponding 
localization time scale. 

Another characteristic statistical property of chaotic eigenstates is the 
distribution of their eigenvalues, the energies. Particularly, the spacings s 

between neigbouring levels are distributed, according to RMT, as 

p(s)  ~-, A s  a e -B*2 (7.15) 
where A, B are obtained from normalization and condition < s > =  1. 

In the old RMT the level repulsion parameter fl could take 3 values only 
(fl = 1; 2; 4) depending on system's symmetry. In Refs.[77,13] this property 
was confirmed for ergodic quasienergy eigenstates as well. 

A new problem is the impact of localization on the statistical properties 
of chaotic eigenstates. It was firsrt adressed in Ref.[60] for the quantized 
standard map on a torus to discover a new class of spacing statistics which 
is now called the Izrailev distribution: 

- -  ~ S  2 

where now fl is a continuous parameter in the whole interval (0,4). This 
semiempirical relation was found using Dyson's model of charged bars on a 
ring. In this model the parameter fl, which is the inverse bar temperature, 
can take any value. Yet, for the level repulsion of ergodic eigenstates only 
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3 values, given above, make sense. Izrailev has found that the intrermedi- 
ate values describe localized eigenstates. The Izrailev distribution is also 
called intermediate statistics as contrasted to the limiting statistics (7.15) 
for ergodic states. This intermediate statistics should be distinguished from 
another one proposed in Ref.[84] to account for the lack of ergodicity in the 
classical limit. Earlier a few cases of big deviations of unknown nature from 
the limiting statistics (mainly in heavy nuclei) were described by a purely 
empirical Brody's distribution (0 <_ fl <<_ 1): 

p(s)  = A s ~ e -88'+~ (7.17) 

The next important step would be to relate parameter fl in Eq.(7.16) 
to the localization length l or rather to the ergodicity parameter A = l/C. 
Instead, Izrailev introduced a new ergodicity parameter 

2l~ (7.18) flu = exp(~r - U~) ~ C 

Here/~r, l,, 7 are the average entropy of eigenstates and corresponding length, 
respectively (see Eq.(6.5)); and H~ ~ In(C/2) is the entropy of an ergodic 
state which is less than maximal (ln C) owing to fluctuations (7.11). Sur- 
prisingly, the new parameter fin ~ fl proved to be very dose to the repulsion 
parameter fl of intermediate statistics (7.16). Why this relation is so simple 
remains an open question. 

Particularly, in case of strong localization (tiff << 1) the spacing distribu- 
tion (7.16) approaches the Poisson law 

p(s) = e - "  (7.19) 

which originally was associated with the completely integrable systems and 
regular dynamics. Also, this limiting case shows that Eq.(7.16) is an ap- 
proximation because clearly p(0) ~ 0 for sufficiently small fin. At most, the 
residual level repulsion could be exponentially small. 

In any event, this limit explains the absence of repulsion for Anderson 
localization in infinite disordered solids. Yet, in a finite sample the repulsion 
must appear which is also an interesting mathematical problem. 

Notice, that Poisson distribution holds only for all levels. For the op- 
erative eigestates, which determine the quantum dynamics, the repulsion 
reappears again. This is another difficult problem. 

The level repulsion does not change the relaxation time scale (4.9) but can 
modify the relaxation tail (see, e.g, Eq.(5.5) and Ref.[55]). In this context 
an interesting question concerns the repulsion among specific Mott's states 
(6.10). For each pair of such states the repulsion is very strong in the sense 



47 

that their spacing is bounded from below by ovelapping untegral (6.9). On 
the other hand, the total number of Mott's pairs increases as the spacing (w) 
decreases owing to the growth of state's size L. Both effects Seem to cancel, 
and the integral repulsion vanishes. Indeed, from Eqs.(6.13a) and (6.10a) 
(both versions (a) and (b) are asymptotically equivalent), we have 

pl = 2al,,,w (7.20) 

This is in apparent disagreement with numerical results in Ref.[55] where 
the level attraction was inferred from the asymptotic behavior of the staying 
probability (5.22). However, this conclusion is very sensitive to the exact 
relaxation law. On the other hand, our result is in agreement with another 
relaxation (5.6) observed in Ref.[48]. To conclude, this question certainly 
requires further studies. 

Empirical dependence fin(h) was found in Refs.[60,85,86]. Parameter fin 
was defined by Eq.(7.18) with the entropy averaged over all eigenstates. The 
dependence can be approximately described by two expressions 

4:~ )~ < 0.5 
/~/]. ~ 1+4)~ 1 - -  (7.21) 

1--4--- ~ ~>_0.l 

Besides the limit A --~ 0 there is no explanation of this dependence so far, 
nor even the physical mechanism underlying Eq.(7.21) has been identified. 

For example, we could use a simple Eq.(5.1) for localized eigenstates. On 
a torus it becomes 

) cosh J m . ! 
~mCn) ~ 1+ Ssinh(1/$) ? (7.22) 

with the Izrailev ergodicity parameter 

{ 2e$ (1 + ~ - )  $ << 1 (7.23) 
f l n ~  1 -  1 $>>1 

360~ 4 

that is quite different from Eq.(7.21). Thus, the real dependence fln(~) is 
related to deviations from simple eigenfunction shape (5.1). 

Remarkably, dependence (7.21) has the nature of a scaling in the sense 
that fin and fl ~ fin depend on the ratio ~ = I /C  = D / 2 C  only, whatever 
the underlying mechanism could be. 

The importance of this scaling is in that both quantities, fl and $, are 
invariant with respect to the rotation of the basis in Hilbert space whereas 
the intermediate quantities, flH and H, are not. 
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The standard map on a torus can be considered also as a model for the 
so-called longitudinal localization in conservative systems that is one along 
the energy shell which destroys the ergodicity. 

The ststistical counterpart of the theory of quantum localization is not 
only old Anderson's theory but also a new development in RMT which makes 
use of the so-called band random matrices (BRM, see, e.g., Refs.[87]). These 
have nonzero random elements within a band of width 2b along the main 
diagonal only. They are defined in a certain physically significant basis, and 
also are not invariant under basis rotation. 

The unitary matrix in quantized standard map (1.6) is also of a band 
structure with b ~ k but nonrandom elements. This similarity suggests that 
appropriate scaling parameter would be [88] 

b 2 
= (7.24) 

where Arm is matrix size, and r some numerical factor. All matrix elements 
are assumed to have the same statistical properties. Indeed, the scaling 

fiR(At) is similar but not identical to that for the dynamical problem (7.21). 
In fact, the first dependence is the same for r ~ 1.5 and it persists even 

farther, up to Ar ~ 3. The second region (fir ~ 1) is apparently different 
but it has not yet been studied in detail. Notice, that the origin of the 
difference can be attributed not so much to the distinction between random 
and regular matrix elements as to the different boundary conditions for a 
square matrix and a torus. 

For A << 1 the matrix of eigenfunctions aq (7.8) is also a band matrix 
with aij smoothly decreasing off the diagonal but with a much larger effective 
width (~  b2). 

In a conservative system the BRM may represent both longitudinal as well 
as tranvevse localization. The latter is related to a finite width of the energy 
shell. The relative width depends on a particular dynamics, and vanishes in 
the classical limit when shell becomes a surface. Transverse localization is a 

universal phenomenon independent of motion's ergodic properties. The type 
of localization depends on the structure of matrix elements. If their distri- 
bution along the main diagonal is homogeneous the longitudinal localization 
only is represented, generally with the intermediate statistics as described 
above. To account for a finite energy shell the diagonal (unperturbed) ma- 
trix elements have to grow, at average, along the diagonal. If, moreover, 
the eigenfunctions are ergodic the limiting statistics (7.15) persists in spite 
of localization as was found empirically in heavy nuclei and atoms as well 
as in simple dynamical models like billiards [21, 70, 111]. However, distant 
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correlations among many levels may change on the scale of energy shell's 
width Ns.  Generally, the old RMT describes the local quantum structure 
only, that  is for N,,, ~< Ns,  even for ergodic eigenstates. The global structure 
is associated with band matrices. The former approximation is very good, 
for example, in heavy nuclei (NE ~ 10 6) but not in heavy atoms (NE "~ 10 
only) [89]. 

A new type of statistical properties for the quantum chaos has been intro- 
duced recently in Ref.[90]. It is the statistics of bands (or gaps) in the fractal 
spectrum of a particle in the quasiperiodic critical potential. For a particular 
model the band "attraction" (or clustering) was found with the parameter 
fl ~ - 3 / 2  (cf.Eq.(7.15)) in the limit of small gaps. The attraction parameter 
characterizes also the fractal dimensions of the spectrum d I = - f l  - 1 = 1/2 
in this model. Apparently, the same statistics can be applied to the nonres- 
onant unbounded motion in the standard map (see Eqs.(6.22)-(6.24)). 

Also, I would like just to mention (and to attract attention to) a very 
interesting and less known theorem due to Shnirelman [91] (for the proof 
see Ref.[73]). It is related to the KAM integrability which is intermediate 
between the complete integrability with independent levels (see Eq.(7.19)) 
and the quantum chaos with level repulsion (7.16). The KAM structure is 
highly intricate as its chaotic part, being of exponentially small measure, is 
everywhere dense. 

In quantum mechanics the beautiful Shnirelman theorem, which even 
does not need translation, asserts: 

V N 3 C N  > O, Vn > 1 min(.Xn+l - .~,~, A,~ - A,,_,) < Cjvn - N  (7.25) 

where A~ are the energy eigenvalues. Thus, asymtotically as n --* oo, a half 
of level spacings is exponentially small. A striking difference from both the 
complete integrability and quantum chaos ! 

8. Conclusion: the quantum chaos and 
traditional statistical  mechanics 

The dunarnical chaos in classical mechanics seems to be a fundamentally 
new mechanism underlying statistical laws in physics as compared to the 
traditional ("old") statistical mechanics (TSM). It is indeed ! The only 
problem with this mechanism is in that the classical chaos does not exist, 
strictly speaking, as our world is quantal. Now, in quantum mechanics the 
chaos is waning and becoming a sort of pseudochaos which only mimics 
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some properties of the "true" chaos and, moreover, on finite time scales 

only. Besides, it turns out that such a quantum chaos is rather similar in 
mechanism to TSM [92, 93]. 

Let us consider these complicated relations in some detail. The paradigm 
of TSM is the many-dimensional linear oscillator which can be described by 
the matrix of coefficients in its quadratic Hamiltonian. This is a completely 
integrable system with purely discrete spectrum. But the same is true for 
a broad class of quantum systems as described by Hamiltonian or unitary 
matrices. In both cases the main dynamical problem is to diagonalize the 
matrix, and to find its eigenvalues and eigenvectors. The principal difference 
is in the nature of matrix's size. In TSM it is the number of freedoms N 
while the quantum counterpart is that of states n. 

If any of these parameters is big the statistical description becomes mean- 

ingful. In TSM it is achieved, in the formal theory, by taking the thermody- 
namic limit N ~ co. Then the spectrum becomes continuous if the eigen- 
functions are delocalized. This is indeed the case, under certain conditions, 
and not only for the simple linear oscillator but also for a broad class of com- 
pletely integrable systems (see, e.g., [4] and references therein). Moreover, 
in the thermodynamic limit the completely integrable system (for any finite 
N) becomes a K system with positive (nonzero) KS entropy. This is a very 
strong statistical property. 

In quantum mechanics we have the classical limit n --* oo with its new 

dynamical chaos. Yet, the main problem in quantum chaos is finite (no mat- 
ter how large) n. This semiclassical region is characteristic for the quantum 
chaos. Actually, the same problem exists in TSM as well. What would be 
the impact of finite N on the statistical properties here? From the studies 
of quantum chaos we know that one still can speak about statistical relax- 
ation in spite of the discrete spectrum. A striking example of such a process 

was observed in old numerical experiments [94] with the completely inte- 
grable Toda lattice of 5 freedoms only! The transition to pseudochaos and 
statistical relaxation in this simple model is shown in Fig.ll .  

Thus, a new phenomenon - quantum chaos - turns out to be the old TSM 
of completely integrable systems, both classical and quantal, under N --* oo. 
Moreover, the quantum chaos provides a new insight into the old theory as 
to the impact of a finite N on the statistical properties. Such a reconcilation 
of the two apparently unrelated theories seems to be very satisfactory from 
the physical point of view. 

The interrelation between the two mechanisms of chaos becomes espe- 
cially close in a particular class of models described by the Nonlinear Schrhdin- 
ger equation (NSE). The simplest NSE is known to be completely integrable 
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Figure 11: Classical pseudochaos in the Toda lattice: the time dependence of 
harmonic normal mode energies Ek(t), k = 1 - 5, is shown; the total energy 
E = 1.32 (a) and 132 (b) (after Ref.[94]). 

but some additional perturbation, either driving or conservative, can produce 

already the true (asymptotic) chaos in this quantum system [96]. Depending 
on the physical nature of the nonlinearity (] ¢ ]2) it can be interpreted as the 

classical freedoms of motion. An example is the interaction of some quantum 
system with even a single mode of the electromagnetic field with infinitely 
many quanta. Such a system is called semiclassical or partly classical one. 
For any finite number of quanta the NSE is an approximation, the so-called 
mean-field approximation. Physically, the chaotic solutions are just the re- 

sult of this approximation and hence an artifact. Yet, in the classical limit 
for that single freedom only the NSE becomes exact which demonstrates that 
even a single classical freedom is sufficient for the true chaos (an instructive 
analysis of such a model is presented in Ref.[97]). 

On the other hand the above limit can also be interpreted as an infinite 
quantum system in which the old mechanism is operative. This is especially 
clear for the model discussed in second Ref.[96]. The interaction of many 
electrons is described here in the mean-field approximation by the NSE for 
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one of them. A remarkable peculiarity of this example is in that the old 
mechanism for chaos is explicitly reduced to the new one, the dynamical 
chaos. This is also some explanation how the exponential local instability 
arises, in the thermodynamic limit, within a completely integrable system. 

In the very conclusion I would like to make a few comments on the prob- 
lem of quantum measurement. The studies in quantum chaos suggest that the 
latter may have close relation to this problem [95]. First, the measurement 
device is by purpose a macroscopic system for which the classical description 
is a very good approximation. Together with the measured quantum mi- 
crosystem it forms a semiclassical object in which the true chaos is already 
possible as discussed above. Further, the chaos in the measurement device 
is not only possible but inavoidable because the latter has to be, by purpose 
again, a highly unstable system. Indeed, a microscopic interaction produces, 
in the process of measurement, the macroscopic effect. 

The importance of chaos in the quantum measuremant is in that it de- 
stroys coherence of the initially pure quantum state converting it into the 
incoherent mixture. In the existing theories this is described as the effect of 
some external noise. In the standard map, for example, such a process was 
studied in Ref.[98]. Typically, a sufficiently weak noise does not affect the 
classical-like diffusion on relaxation time scale tn (4.9). Yet, even arbitrarily 
weak noise destroys coherent localization and provides finite and permanent 
diffusion rate Dn where 

DN f DD D/~ < 1 
(8.1) 

n ~ ~ 1 n / ~ > _ l  

Here/~ is the diffusion rate under noise only. A sufficiently strong noise 
restores the permanent classical diffusion (for 1/D < b < D). Notice that 
the critical noise level/)~r "~ 1/D ~ 0 in the classical limit as D ~ eo. 

A more interesting effect recently under intensive studies (see, e.g., [99] 
and references therein) is in that the noise of a special type substantially 
inhibits the quantum transitions preserving the initial state. This effect is 
similar to the impact of quantum measurements but unlike the latter admits 
the dynamical description (cf. Ref.[100] on the quantum Zeno effect). 

The chaos theory allows to get rid of the unsatisfactory inclusion of exter- 
nal noise, and to develope a purely dynamical theory for the loss of quantum 
coherence. Particularly, the special type of noise in the latter example is 
related to the specific construction of the device for the measurement of a 
given quantity. 

This is almost dynamical theory of quantum measurement except one, 
perhaps most difficult and important, link in the chain - the probability re- 
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distribution according to the result of the particular measurement (for discus- 
sion see Ref.[14]). The main difficulty here is in that a certain modification 
of the quantum mechanics appears to be inavoidable, a~d not simply the 
studies of solutions to the known fundamental equations. 

This seems to be a very intriguing problem but it certainly goes far beyond 
the scope of my lectures and, perhaps, of the whole physics. 
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