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THE STRUCTURE OF A WEAKLY NONLINEAR RESONANCE

B. V. CHIRIKOV and V. V. VECHESLAYOYV
Inststule of Nuclear Physics, 630098, Novesibirsk, /55K

ABSTRACT

An example of the weakly nonlinear resonance is considered. The unbounded
resonance structure is described in detail, and is shown to be unstable against
weak perturbations. Peculiarities of diffusive motion within the intricate chaotic
component are discussed.

1. Introduction

The colorful world of nonlinear phenomena, one of whose architects and masters
is Professor Péter Szépfalusy, continues to attract an ever growing army of rescarchers
from all the sciences and around. In this paper we hope to put a tiny new touch on this
international painting by describing the peculiar phenomenon of the weakly nonlinear
resonance (WHR}. The most striking feature of nonlinear phenomena is the complete
rearranging of the motion structure under a weak perturbation. An excellent example
is the KAM theory (sce, e.g., Ref. 1 and its generalization in Ref. 2) with its subtle,
everywhere dense chaotic web,*

Dynamical chaos—another fascinating discovery in nonlinear mechanics— is al-
most never just plain disorder bul has a highly organized and beautiful structure
whose pictures have become common by now on conference advertisements. A new
example we are going to discuss below presents one more type of such a structure. This
is an intricate interplay of nonlinear resonances which control dynamies in Hamilto-
nian systema.

Let us start with the fundamental Poincaré problem defined by the Hamiltonian

H(I,0,t) = Ho(I) + €V (I,0,1) (1)

where [,0 are N-dimensional aclion-angle variables, and ¢ — 0 is a perturbation
parameter.

The unperturbed system Hy is supposed to be ‘trivial’ that is completely inte-
grable (for good texts in nonlinear dynamics see, e.g., Refs. 1,5). If, in addition, it is
nonlinear, that is, the determinant

|d“HuMF| £ 0, (2)
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Figure |: Outline of the resonance phase-space structure for strong nonlinearity (a), and for weak
nonlinearity {(&); arrows show the direction of motion.

we call Hy strongly nonlinear. This nonlinearity does not depend on the weak per-
turbation and remains finite when the latter vanishes.

A single strengly nonlincar resonance (SNIU) is then also completely integrable
and, hence, trivial. Its phase-space picture is now also well known as a ‘chain of
1slands’ framed by the separatrix (Fig. 1a) which is the most unstable and chaotic
place in the phase space, and which forms the Arnold web mentioned above. This pic-
ture is universal and structurally stable, that is, it remains topologically unchanged
nnder sufliciently weak additional Hamiltonian (nondissipative) perturhation. More-
over, the effect of resonant perturbation vanishes with ¢ (e.g., the separatrix swing
is A1 ~ /¢) even though it considerably exceeds that off the resonance (A7 ~ ).
The strong nonlinearity suppresses resonant perturbation if the latter is sufficiently
weak. This is one of the principal phenomena in nonlinear Hamiltonian dynamics
underlying the celebrated KAM theory.

Remember that for the linear oscillator, that is when the whole Hamiltonian
(1) is quadratic in the Cartesian variahles p, », any resonance, internal or driving,
produces a big effect, no matter how weak iz the perturbation ¢ — 0. Also, the
resonance conditions depend on the oscillator’s parameters only, and not on the initial
conditions of motion like in the nonlinear oscillator.

Now an interesting question is what happens in between? We call this domain
weak nonlinearily. In terms of the Hamiltonian (1) it means that the unperturbed
Hamiltonian

Ho{l) = wo I (3)
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i« linear in action variahles or its frequencies wy, =const, while the perturhation
e V(I,0,1) remains arbitrary.

At first glance, this problem may appear simpler than the case of strong non-
linearity, due to another small parameter, nonlinearity v ~ ¢, to which only the
perturbation term contributes now. Yet, that is not the case ! A simple explanation
is that the weak nonlinearity may nol suppress the resonance perturbation whaose
effect now depends on the ratio ¢ /v of the two small parameters. In particular, the
extension of the KAM theory to weakly nonlinear systems is only possible under the
additional requirement of the absence of unperturbed resonances.

Well, physicists are always trying to go ahead of mathematicians. So, consider,
on the contrary, the unperturbed resonance! This is certainly a more interesting case.
But also a more difficult one. Therefore, we choose a model as simple as possible.
One example is given by the Hamiltonian:

P+ wiz?

H{p,z,tl) = 5

—ccos(r=01)=wyl — ¢ cos(p cos @ — 1 t) (4)

where g = (2 I fuy)'/? is the amplitude of the unperturhed oscillations.

This model has been extensively studied in plasma physics where it represents
the motion of a charged particle in both the magnetic ficld {Larmor’s frequency wy)
and the plane wave electric field of strength ¢ (see, e.g., Ref. 3).

If we put wyg = 0 the model describes a single SNR ( @#*H/dp* = 1 ) which is
completely integrable, and so is Hg(p), with no trace of chaos, Moreover, the variation
of p is strictly bounded:

|Ap| < 4 /e (5)

Yet, for any wy # 0 nonlinearity becomes weak (as ¢ — (), and the motion drastically
changes.

2. The First Order Theory

The first approximation of the conventional resonant perturbation theory?® for
mode] (1) and related models was thoroughly studied in a series of papers by Sagdeev,
Zaslavsky and coworkers (see, e.g., Refs. 6.7, and also Refs. 8-10).

To reveal the resonance structure we first get rid of the unperturbed part wq [
of the Hamiltonian (4) by introducing a new phase ¢ = 0 —wy i, and expanding the
pcrtu:rhn.ﬁnn in Bessel functions:

H(1,0,t) = —e f Ju(p) cos b.,ﬁ_(n_x-.m.,}u%k , (6)

k==

All terms of this Hamiltonian satisfying & < p are of the same arder but differ in the
frequency of time-dependence. This difference becomes crucial if we fix a resonance
condition: {1 = nwp with any integer n # 0 (in the case n = 0 the system is
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Figure 2: An example of the phase-space structure of a single weakly nonlinear resonance in model
(4 wg=1; Q=2 ¢=1. Scattered points belong Lo a single chaotic trajectory bounded by a
gap between the third and fourth rows of resonant cells. Inset: an enlarged part of this gap near
w=ufd

completely integrable). Unlike the linear resonance with only one resonance condition
{§! = wy for driving perturbation or {1 = 2wy for parametric one) the WNR is much
richer.

Now we can introduce the new unperturbed Hamiltonian

Tio(1,%) = < Julp) cas (np + 5 ), ©
the rest of the sum in Eq. 6 being a new perturbation. We emphasize again that the
twao parts of the new Hamiltonian differ in frequency only, and this difference increases
as € — 0. In aother words, the perturbation is no longer small but is a high-frequency
one (see Eq. 23 below). Hence, the unperturbed motion ¢(t) is adiabatic with respect
to the perturbation. We call the whole situation inverse adiabaticity,*

The most interesting feature is the global structure of the unperturbed motion
defined by the Hamiltonian (7) which is outlined in Fig. 1b in coordinates ¢ =
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ne +anf2 and R = p — an/2 — x /4, the latter representing the asymptotics of the

Bessel function (p 2 n)
r‘ 2
JH{F} = T]'r; cos M. {B}

A real example of this resonance structure, which we are going to discuss in detail
below, is presented in Fig. 2. The plane p, ¢ here is Poincaré’s surface of section
at t = 0 mod 27 fwy, that is, the system’s position plotted in each period Ty of the
unperturbed linear oscillation,

This resonance structure is characterized by an infinite(!) lattice of periodic
trajectories (fixed points on the plane R,®) both stable (sin® =~ sin R =~ 0) and
unstable (cos® = cos B = 0), the latter being connected by separatrices. A striking
difference from a strongly noolinear resonance (cf, Fig. 1a)! Instead of a narrow
restricted chain of islands we have now the unbounded lattice of resonance cells.

The discovery of this structure was very exciting. It took over 10 years to un-
derstand and evaluate the phenomenon. By now(!) it 1s obvious that the resonance
lattice is present in Fig. 2.11 of the monoegraph by Lichtenberg and Lieberman?®, (see
also Refs. 8, 9, f. Figs. 1b and 2 in this paper). Yet it was missed in both the mono-
graph and its translation into Russian by the present authors! One motivation for
Lhis paper is to show that this story is still not over (see Section 3).

Before proceeding let us see how the transition from SNR ( wp = 0, Fig. la)
to WNR (any wy # 0, Fig. 1b) takes place. As wy — 0 is resonant, the parameter
n = 1wy — oo (N is fixed), and the first zero p; of J.(p) in Eq. 7 grows indefinitely.
The k-th zero has the asymptotic form

T 1 ' 3
= tEk—7. (9)
Thus, the WNR lattice shifts upwards, with the first row of resonance cells (0, py)
expanding indefinitely. For the initial condition inside SNR (r ~ 1, 2 ~ ), p ~
1fwe = n) the coordinate z ~ [} grows with time, as well as g, until p reaches
p1. Around this time the SNR picture completely disintegrates, and only the WNR
structure remains.

Already our first numerical experiments with model (4) revealed that the WNK
structure is not as simple as it is suggested by Fig. 1b. Besides the distortion of sepa-
ratrices (a routine perturbation effect) and their chaotic lavers (a universal nonlinear
phenomenon, see Section 4] we noticed an intricate siructure at the intersections of
separatrices (see inset in Fig. 2). Further studies showed that the resonance lattice is
not a connected formation but is cut through by many narrow gaps.

3. Instability of the Resonance Lattice

Unlike the SNR chain, the WNR lattice proved to be structurally nnstable. We
shall analyze this problem using the asymptotic representation (8) of the unperturbed
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Figure 3: A scheme of WNR struciure with perturbation (12) for & = 0 (c[l. Fig. 1b}; the separation
of resonance cell rows by horizontal gaps is clearly seen,

Hamiltonian (7),

ﬁnu,w}rm‘/% cos R cos® + V(I,), (10)

where we have introduced the additional time-independent perturbation V. Remem-
ber that we are studying the stability of the unperturbed WINK structure. The impact
of the high-frequency perturbation will be considered later (Section 4).

Introducing new time and dynamical variables

2
r.=f{¢ “_P (p == const),
r=R-Ry, s=®-—0, (11)

and keeping for the perturbation V only terms linear in the new variables, we arrive
at the new llamiltonian

Ho{l,p) = —sinrsins+ar+ 3s. (12)

Here iy, are the coordinates of a certain fixed point (see Fig. 1b), and the canonical
variables remain [, as before.

Consider first a simpler case 8 = 0 (for @, 8 # 0 see Section 7). Then the
horizontal separatrices (r =const) all remain unchanged, but the vertical ones (2 =

const) are destroyed because of the difference in Fly between the two neighbouring
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fixed points ( AHp = # lx]). The new structure is vutlived in Fig. 3. Remarkably, an
arbitrarily small perturbation (@ — 0) qualitatively changes the structure making all
the rows of resonance cells disconnected by narrow horizontal gaps. For small & > 0
the width of a gap at s = #/2 and r = 0 mod 2rx is:

AH,
OHy/Or

Ap ~ 2 = 27 ol. (13)

Actually, each of these gaps consists of two nearly equal parts at both sides of
the horizontal separatrix. The position of a gap in s is determined by the condition:

acosrsins < U or ap >0 (14)

Particularly, for a given o the direction of motion is the same in all gaps.
The perturbation shifts the fixed points whose position is determined by the
equations:

cosr sins —a — 0, sinr coss = (), (15)
with two solutions
cos s; = 0, cosr; = o,
sins; = +ua, sinrg = 0, (16)

for stable and unstable fixed points, respectively. If
la| > 1, (17)

the WNR structure is completely destroyed, and all the gaps unite.
Counsider, as an example, the model with Hamiltonian ™"

Hip,x,1) = %—mﬂ{uﬂﬂ — ms{m-—-hl‘}. (18)

Glubally, this model describes the interaction of the two SNRs which results in the
formation of relatively narrow chaotic layers around resonance separatrices. But near
the center of the stronger resonance (x = 0) the model (18) is close to our basic
model (4) of WNR. If ! # nwas the resonance center is stable for ¢ — 0. But for
1 = nwy a WNR lattice is formed inside the SNR. However, the former is destroyed

at sufficiently large  as the nonlinearity in Eq. 18 is strong. For |uy =] < 1 the
nenlinearity is described by the term

§H = 28 (z) = B2 (19)

Linearizing this nonlinear perturbation in p we arrive, for p 2 n, at Hamiltonian (12)
with 8 = 0 and

T wi ptl?

2 16e

(20)
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The latter equality determines the border between the WNR structure (with gaps,
a < 1) and the SNR behavior (a > 1). Particularly, the size p,, of the former is given
by the relation

2T
Pe ~ 0. ss( : ) : (21)
Ps wd
where p, = wfwy is the SNR separatrix size in z. This estimate holds in the interval
n 5 pw ~ 1fup, (22)
provided (see Eqs. 6,7)
_ 2 fn
‘ = J;W 2 P (23)

This adiabaticity parameter is going to play an important role in what follows (see
Section 4). At the border p = p,, (see Eq. 21)

~ Qe 3™ 0

.\
as wo — 0 with fixed {} and e. The inequalities (22) imply that 1 £ 1

Comparison with numerical results in Refs. 11,7 shows that the accuracy of Eq. 23
is about 10 per cent even for p,/n = L.5.

The vnbounded WNR lattice is related Lo the periodicity in g of the unperturbed
Hamiltonian (7) due to the special structure of the perturbation in Eq. 4. Again,
unlike the SNR behavior the WNR one is not universal. For example, if the additional
nonlinear term (19} were proportional to ¢, i.e., weakly nonlinear according to our
definition above, then the parameter o would be independent of ¢, while the resonance
structure would vary in a broad range, from WNR (wg — 0) to SNR (v — o=0).

Another simple example is a detuning §§1 = n fwy from the resonance f1 = nwy.
The additional term in Hamiltonian (4) is 8H = wy fwp p* /2, hence the perturbation

parameler
wﬂ

A = (24)
is in agreement with the previous resull in Ref. 8. Notice that for a fixed 611 # 0 the
WNR structure is always destroyed as A — oo (¢ — 0). This is a simple explanation
of the KAM integrability for weak nonlinearity.

Coming back to model {4) we wonder what may be the origin of the gaps re-
vealed in our numerical experiments 7 Apparently, it is the effect of a higher-order
perturbation, namely, the sccond-order corrcetion to the unperturbed Hamiltonian
(7). It can be evaluated as follows.

First, we rewrite the original Hamiltonian (4) in the form (wp = 1, §1 = n)

H{I,0,t)= 1T — ¢ cos(p cos @) + ¢ |cos(p cos #) — cos(p cosf — nt)]. (25)
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We expand it in Bessel functions, then change variables I, § — [, #; so as to elimi-
nate all first-order terms in the brackets but the resonant one (7). Finally, we intro-
duce a new phase ¢, = 0, — {. As it can be verified easily, the time-independed part
of the result is given up to terms ~ €? hy the expression

€ d 2 m d

ok my Edp @& d
Ho(1,0) = —cu(p) cos (np + 77 ) + 5 T 0 =5 T o)

(26)
where we dropped the subscript 1. Asymptotically, the second sum can be neglected
for it decreases faster (~ p~') than the first one,

d 1 1 37
El d_pﬂ!m':ﬁ'} = —3 [N1(2p) = 241(p)Jo(p)] — B (Eﬁ-‘ = T) . (27)

On all horizontal separatrices (Fig. 1b) cos(2pp—35/4) = cos{wn+# /4) = (=1)"*//2
is approximately the same, and we arrive at Hamiltonian (12) with

ﬂ'=‘E[-‘]} F‘ {ES)
From Eq. 13 the gap width is
Ko B8 (29)
S '

4. Chaotic Web

Without the high-frequency perturbation (see Eq. 6), all separatrices are lines on
the surface of section p, ¢ and all rows of resonance cells are separated by the gaps.
As is well known, the perturbation destroys separatrices and produces chaotic layers,
If the width of a layer exceeds that of the adjacent gap the rows get connected and
the global motion drastically changes,

The unperturbed motion on a separatrix can be found from the first-order Hamil-
tonian (7}, and, for a horizontal (p = const) separatrix, is described by the equation

&, = ? cos 9, (30)
The solution ; "
i Y ata 2
3 = In lan(z +4) (31)

is the same as for the SNR separatrix. Hence, the well developed theory of the chaotic
layver (see, o g. Ref 3) is applicable. Particularly, the amplitude of the variation of

the Hamiltonian (7) , or separatrix splitting, is given by the relation

A, = ¢Ji(p) j: cos{kp(t) + wot)wo dt
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(2A)™
[(m)

where I'(m) is the gamma-function and the latter expression holds for A 3 1. No-
tice that the effect is exponentially small in A which is characteristic for adiabatic
processes.

Of all perturbation terms in the Hamiltoman (6) only two with the lowest fre-
quencies are operative with the corresponding values of the parameter m

ki, mmEEL (33)

e

= r Ju(p) _L: cos(m ® 4w tuwe dt = 2me Ji(p) exp(—mA/2), (42)

Of these two the main contribution comes from the one for which @ (n — &) > 0.
Taking account of Eqs. 14 and 28 we have

m=“:1, n even; ﬂ-:=”';l1 n odd. (34)

lu the fisst case the chaotic layer is considerably wider than in the second (see Eq. 32).
We mention that our result is somewhat different from that in Refs. 6,7.

As A ~ p*? the nonadiabatic effect, Eq. 32, exponentially decreases with the
growth of p by a factor of

Jx? .T\)
g=cxp|———] € 1 (35
( 4 p }

for each period Ap = = ol the resonance lattice. Particularly, this implies that in
evaluating AH, the minimal p should bhe taken within a connected chaaotic layer. For
the upper half of a gap (see Fig. 3) it is p = p,, but for the lower part p — p, — .
As a result, the latter is closed at a smaller perturbation.

Another interesting implication is the competition of the two mechanisms of
closing the upper hall of the gap. OUne is related to the width of its chaotic layer

AH, = AAH,, (36)

taken at p = p,. The second one corresponds to a single change Aff; but taken at
a smaller p = p, — 7. Their ratio

AHps)  _
AH.(p, — %) Ag

(37)

asymptotically drops with p. Thus, for sufficiently large p the second mechanism is
decisive,

Using Eqs. 29, 32 and the relation |AH,| = Ap,
obtain for the ratio (wp = 1)

.f’_"'.pu;: 4 ("il
Apr I (m)\r

Jﬁ,;,{dpl x Apgedo(p) we

)mn Fﬂhm{-] [Fr} Exp[—ﬁr[p'”, (HR}



where the new symbols are

4 P’:lf:

Mps) = 5Mps) = 2=, N'(py) = Ap, — 7). (39)

The second one is the main (but not the only) parameter related to the closing of the
gap which roughly corresponds to Ap, = Ap,;.

5. Numerical Experiments

The gaps discussed above are typically very narrow, and this was apparently the
reason why they were missed in previons studies. %7 Also, to compute the width of a
gap and check relation (20) a high accuracy of computation is required. Instead of
the time-dependent Hamiltonian (4) we made use of the equivalent model

H(I,K,8,9) =T+ nK — ecos[z(f, [) — ] = const, (40)

where we put wy = 1; 2 = n. This Hamiltonian is conserved which allows the
efficient control of computation errors. The equations of motion were represented

as a third-order implicit map which provided exact conservation of the phase-space
volume, 12

At first, the width of the gaps were measured for several values of p; (J.(ps) = 0,
n=2 =0, B5 = py £ 49.5) and sufficiently weak perturbation strength e
when the chaotic layers could be neglected. The top and bottom borders of the gap
were located by identifying the transition of the border trajectory from rotation to
oscillation, or vice versa, during one period of slow motion. In all computations the
time-step was choosen so that the conservation of Hamiltonian (40) is better than 10
per cent of its variation over the gap.

If the perturbation parameter ¢ increases, the chaotic layer occupies some part
of the gap, and, finally, closes the gap completely. We studied this process by running
16 trajectories equidistributed across the gap for a hundred of slow motion periods.
The number of trajectories which persisted in the gap and did not deviate into the
adjacent chaotic layers determined the remaining width of the gap Ap..

Our main numerical resulls are represented in Fig. 4 by diamonds for 23 gaps
with different p and € (85 < p < 495; 0.5 < ¢ < 7). This figure shows the
dependence Ap(A) where

1
Aj = Opr: . By (41)
Bp  (3x/A)e

is the ratio between the actual gap width Ap, and the asymptotic value (29) without
chaotic layers, which depend on the parameter A = p*? /e (see Eq. 38). For large A
values the chaotic layers can be neglected, and Ap — 1 as expected. Higher values
of Ap for smaller A are apparently due to deviations from asymptotical dependence
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Figure 4: The dependence of the reduced gap width Ap, Eq. 41, on the chaotic layer parameter
A, Eq. 3% diamonds are numerical results, crosses are theoretical estimates {Eq. 42). Logarithm 1s
decimal.

(29). The sharp cut-off in Ap(A) at A =~ 20 is the effect of chaotic layers which close
the gaps. This effect can be estimated using Eq. 38 as

Ajml = %:1 ~ 4.3 /pEA* exp(—A"), (42)
k

where we put the values n = 2, m = 3/2 used in the numerical experiments.
The theoretical values of Ap are also plotted in Fig. 4 by small crosses. Notice the
scattering of the latter which is explained by the dependence of Aj on the two different
variahles, oy and e

The deviation from the theoretical estimate (38) is apparently related to the
poor approximation (30) where the unperturbed separatrix is used. By introducing
the [itting parameter 7 = 0.78 good agreement between numerical and theoretical
values of Ap can be achieved, which seems to be satisfactory for such a delicate
phenomenon as the separatrix chaotic layer.
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8. Diffusion Peculiarities in Resonance Web

- Now we are going to compare the maotion within the WNR weh and the Arnold
diffusion (AD) in a strongly nonlinear system. One thing in commeon is the network
of chaotic layers of a similar structure as we have seen in Section 4. An important
difference is the minimal dimensionality to permit diffusion: N = 2 degrees of freedom
for WNR web and N = 3 for AD (in conservative systems). Also, the former is not
universal, in contrast to AD. First, the WNR structure itselfl is not universal as
discussed above (see Section 1), and second, even such a WNR web 1s structurally
unstable (Section 3) so that the diffusion is restricted hy the gaps.

Furthermore, within the allowed region the WNR diffusion is very peculiar. The
local diffusion rate averaged over many resonance cells (not a good approximation
because of a small factor g < 1, Eq. 35, see below) is according to Rels. 4,13

B {(8p)°) _ wo  €n°
S S CY PIT e

(43)

that is very fast compared to AD which is exponentially small in A. This is be-
cause in the present case the diffusion proceeds in big jumps (Ap = 7) instead of
Ap ~ exp(—mif2) for AD. Yet, it does not mean that the global diffusion is always
fast. %7 The point is that the general Fokker-Planck- Kolmogorov diffusion cquation

has two terins ® 3f[p,!} B li
at  ~ 2dp
the second one describing the drift

D,(p) g—‘; - ﬂ—i B.(s) f. (44)

dD,
dp

Vi) = 2 = B, + (45)

Function 8,(p) can be derived from Einstein's relation using the steady-state distri-
bution, or invariant measure

Js ~ exp(—xA/2), (46)
which is roughly proportional to the chaotic layer’s width (36). From Eqs. 44, 45 we
have

g - Dednf, _e'n?
P2 dp wgpt’
e’n? e*n? e*n?
A 7z R T e il
Term B, in Eq. 45 dominates, since the ratio
dD,jdp _ 1 . . (48)

B. A
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The drift acts as a damping even though the system is Hamiltonian, This is a
peculiar effect of the specific structure of the chaotic component. Notice that if its
measure f,(p} grew with p, a blow-up would occur (V, > 0) instead of damping.

In any case, Lhe diffusion is fast but in one direction only, downwards in our case.
The average motion in this direction becomes dynamical (the ‘secondary dynamies’
we usually say) deseribed by the equation

dp ein?
o Velp) = =C e ! (49)
where C ~ | is a constant. Particularly, the *fall’ time is
3 .5
t, ~ ——oPo (50)

5Ce3n?’

where py i1s the initial value.
A better approximation for £ is simply to sum up the life times at each row (see

Fa. 41)
ko Tl e D 9, wS
e T 92 4, — 1 wp 1142
¥ i Do C’L oyl S T L (51)

where ) ~ | is some constant and ky stands for the initial value.

The motion upwards, forbidden in dynawmical approximation, is only possible due
to statistical fluctuations of a chaotic trajectory. A crude estimate for the ‘ascension’
time {, can be obtained from the statistical balance of transitions between the lower
part of the steady state with measure uo == 1 and an upper part (p > p1) of a small
measure g; = f, ~ erp{—=xA/2) (see Eq. 46)

Hop H]

—_— P e—

', ;'

whence

ty ~ iy exp(xAf2). (52)

This mechanism of dynamical-statistical transport is also typical for AD in a SNR
chaotic web (see, e.g., Refs, 3-5,10). [t increases the numerical factor in the exponent
for the mean diffusion rate.

7. Linear Resonance in Nonlinear Web

Now we consider the effect of the second perturbation in Hamiltonian (12}, that
is, the case 3 #£ 0. If @ = 0 the resonance structure simply turns by the angle = /2
due to the symmetry of Hamiltonian in this approximation. In particular, the gaps
become vertical, lying along r rather than along s as before. For the original system
this would be a crucial change implving a fast energy growth for the initial conditions
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Figure 5: Outline of the WNR structure with perturbation (12) for a = 0.041: #=0.1. One of
the unclosed separatrices is shown by the fat line.

in the gaps if § < 0 (cf. Eq. 14, the oppusite sign is due to canonical conjugation
in Hamiltonian systems). Since s is an angle, the perturbation is periodic in , and
the parameter f has both signs at different . The linear approximation (12) makes
sense for n 3 1 only.

A more interesting resonance structure arises when both a and 3 are nonzero.
In this case all unperturhed separatrices are destroyed or, better to say, drastically
transformed. If |a|, |3] < 1 the fixed points are shifted only slightly but the shape
of four separatrices (two ingoing and two outgoing) per unstable fixed point are now
completely different. As outlined in Fig. 5 (cf. Figs. 1b and 3) two of them unite
and frame a cell of closed trajectories around the stable fixed point while the two
remaining (unclosed) determine the gaps. In the infinite lattice in both r and s the
unclosed separatrices are also infinite for irrational a/3 which is the typical case. For
rational o/ the unclosed separatrix ends at some other fixed point.

At average (over many resonance eells) the unclosed separatrices follow the per-
turbation levels (ar 4+ fs = const in linear approximation (12)). The global behavior
of gaps is not universal and crucially depends on a particular perturbation. To get
an idea what it could be like, we consider the additional perturbation to Hamiltonian
(4) in the form

dH(p,z,t) = v cosli, (53)

which is the linear driving perturbation. It becomes resonant if we put 1y = wy
which is the second resonance in addition to 1 = nwy. With linear perturbation
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(53) and second-order term (26) the Hamiltonman (7) becomes

Ho(l,¢) = —eJulp) cos (m; + ﬂ)- EE i "2‘” cos . (54)

As is easily verified the high-frequency term in perturbation (53) results, to order #?,
in a change of the Hamiltonian which does not affect the motion. The gap trajectories
ply) approximately satisfy the conservation law

()Y,
2 2% p?f? 7 2

cosip = const, (55)

as cxplained above.

The analysis of this equation shows that there exists a certain critical value of
p = p. such that for p > p. the gap trajectories go to infinity (p — ooc) while below
p- their oscillations are bounded. Approximation (53) holds for v < ¢ only when

p % 1, and
1e? 2/9 i &2 2/9
pe 72 (w— m) (u |) - (56)

[n the opposite limit (+ 3 ¢?) all the gap trajectories are apparently unbounded, but
this casc requires further analysis,

In conclusion we would like to emphasize again the richness of nonlinear dynamics
even in fairly simple models as those discussed above.
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