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Theory of Fast Arnold Diffusion in 
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A previous conjecture by the authors about a new regime of Arnold diffusion 
with a power-law dependence of the diffusion rate on perturbation strength is 
confirmed by detailed theoretical evaluation. A new effect of slow (logarithmic) 
dependence of the power-law exponent on the perturbation parameter is 
conjectured. The theory developed seems to allow for a new interpretation of the 
recent extensive numerical experiments on Arnold diffusion in a particular 
many-dimensional model of Kaneko and Konishi even in the presence of some 
global chaos. 
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1. I N T R O D U C T I O N :  A R N O L D  D I F F U S I O N  

One of the mos t  beautiful  p h e n o m e n a  in H a m i l t o n i a n  dynamics  is the 
so-cal led Arnold diffusion (AD),  a pecul iar  universal  ins tabi l i ty  of 
m a n y - d i m e n s i o n a l  non l inea r  oscil lat ions.  (1'2) This g lobal  ins tabi l i ty  had  
been pred ic ted  by  Arnold ,  (3) while its chaot ic  na tu re  was discovered in refs. 
4, 5, and  1 and  further  s tudied in detai l  in refs. 6-9 and  2. 

Firs t ,  we briefly recall  the A D  mechanism,  which is re la ted to the 
in te rac t ion  of  non l inea r  resonances.  Cons ide r  the H a m i l t o n i a n  

H ( I , O , t ) = H o ( I ) + e  ~ Vm,(I )exp( im.O+itn .s  (1.1) 
m,n 

w h e r e / ,  0 are N-d imens iona l  vectors  of  the ac t i on -a ng l e  variables;  s is the 
M - d i m e n s i o n a l  vec tor  of  dr iv ing frequencies; m, n are integer vectors  of N 
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and M dimensions, respectively; and e stands for a small perturbation 
parameter. The dot in expressions like m. 0 denotes the scalar product. 

A primary resonance 

o)m, =- m .o)(I) + n . g?=0  (1.2) 

is called nonlinear if the unperturbed frequencies 

8Ho(I) 
~o( / )  = (1 .3 )  

8I 

depend on actions I, or to be more precise, if the determinant 

8211o 
8i  2 ~ 0  (1.4) 

is nonzero. 
For nonlinearity to stabilize the resonance perturbation, the quadratic 

form of the matrix 82Ho/8I 2 must be sign definite or, geometrically, the 
surface Ho(I)= const must be convex. (~4) The latter condition is a weaker 
one, as it may include higher polynomial forms. Both conditions are 
sufficient only, (14'~5) but in physical applications it is an unimportant 
restriction (see below). 

The above conditions ensure also the absence of the strong instability 
( ~  e), due to a quasilinear resonance, when several independent conditions 
(1.2) are simultaneously satisfied. This is called multiple nonlinear 
resonance. However, the weak instability caused by nonresonant (O)m, ~ 0 
for given initial conditions) terms in the perturbation series (1.1) is 
possible, and it is just AD we are going to discuss in detail. Moreover, this 
weak instability is a typical phenomenon of nonlinear oscillations, as it 
occurs under almost any, particularly arbitrarily small, perturbation of a 
completely integrable system. The only restriction is the action space 
dimensionality da, which must be larger than that of the invariant torus 
(da > dt = 1). The latter is an absolute barrier for the motion trajectory, 
which can only bypass the torus but never go through it. For a driving 
perturbation [ M > 0  in Eq. (1.1)-1 the minimal number of freedoms is 
thus N m i  n = 2, but in conservative case ( M =  0), Nr~in = 3 as the trajectory 
is bound to follow an energy surface. 

Even these minimal restrictions are not absolute, being related to the 
strong nonlinearity only of (1.4) when the effect of resonant perturbation is 
small ( A I / I ~  w/~ ~ 1). In case of linear Ho(I) (harmonic oscillator) Nmi n is 
less by one, (1~ but we are not going to discuss this special case here. 

At least three perturbation terms in series (1.1) are necessary for AD. 
We shall call each of these terms resonance (for the appropriate initial 
conditions of the motion). A single resonance retains the complete 
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integrability of the unperturbed system. The interaction of two resonances 
already results in the formation of narrow chaotic layers around the 
unperturbed separatrices of both resonances. Yet the chaotic motion 
remains confined within a small domain of the size of a layer's width, as the 
direction of motion in the layer typically does not coincide with that of the 
layer itself. Only the combined effect of at least two driving resonances with 
incommensurable frequencies provides the diffusion along the layer of the 
first, guiding, resonance if N >i Nmi  n. 

In the first approximation (1.2) the driving perturbation terms are 
nonresonant (COm, r 0). Yet the final effect is due to the secondary resonan- 
ces between the driving perturbation and the slow phase oscillation on the 
guiding resonance. This is a particular case of the general rule that all the 
long-term effects in nonlinear oscillations are due to some resonances. For 
the problem in question the principal parameter is the ratio 

;~_ lco,~.t (1.5) 
O)g 

where cog~(elVg[) 1/2 is the frequency of small phase oscillations at the 
center of the guiding resonance, and where Vg is the Fourier amplitude of 
the corresponding perturbation term. For a weak perturbation ( e ~ 0 ) ,  
the parameter 2 ~> l is big, and thus the driving perturbation is a high- 
frequency one. In effect this is equivalent to a low-frequency (adiabatic) 
perturbation. Hence the term &versed adiabatieity we use.(l~) 

For an analytic perturbation the effect in both cases is exponentially 
small in the adiabaticity parameter 2 of (1.5), namely (~1'13) 

D_ ,,~ e -~; ~ w~ (1.6) 
Do 

where D is the diffusion rate, Do~,~2V2g/(.og ~ (gVg) 3/2, and w s stands for a 
dimensionless width of the chaotic layer. Notice that the effect (1.6) is of a 
nonperturbative nature, as 2 ~ e-  1/2. 

In particular models the accuracy of this three-resonance approxima- 
tion was found to be within a factor of two, provided the perturbation was 
not too weak, that is, the adiabaticity parameter 2 is not very big. 

As 2 ~ 0% the higher-order resonances with tm], In[ --* oo come into 
play. Even though their amplitudes Vm.~exp[-~r(]ml+ln])] drop 
exponentially, the detunings too,..] also rapidly decrease. The group of 
operative resonances which control the diffusion can be singled out by 
minimizing the expression (~,4, ~2) 

D 
- l n - - = - E ~ k + 2 ( k )  > ~ / L  (1.7) 

Do 
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with respect to k, where k =  Ira[ + [n[; 2o=COo/mg, with co o as a charac- 
teristic oscillation frequency, and the following Diophantine estimate is 
used: 

(O o (.Omn~kL_l (1.8) 

The most important parameter here, 

L = N +  M-- r  (1.9) 

is the number of linearly independent (incommensurable) unperturbed 
frequencies on an r-fold resonance, that is, when r independent resonance 
conditions (1.2) are simultaneously fulfilled. 

Estimate (1.7) seems to agree with numerical data.(7'11' 13) On the other 
hand, Nekhoroshev rigorously proved the upper bound of type (1.7) but 
with a different exponent (14) ( M =  0): 

3 ( N -  1 ) N + 2  (1.10) 
L m a x  = 4 

Even for the minimal dimension N = 3  this upper bound Lmax=6.5 
considerably exceeds the estimate (1.9): L = 2  ( r = l ) .  The difference 
becomes increasingly large as N ~ oo. Even though this discrepancy is not 
a direct contradiction, as Eq. (1.10) is the upper bound, it constitutes a 
problem of what would be the origin of the deviation between the two 
estimates. 

Recently, this problem has been resolved by Lochak, (is) who 
rigorously proved a more efficient Nekhoroshev-type estimate with 
exponent (1.9) (for M = 0 but any r). The point is that Lochak assumed 
convexity of the unperturbed Hamiltonian Ho(I) explained above, whereas 
Nekhoroshev's proof holds under a weaker condition of the so-called 
steepnegs of Ho. From the physical point of view this difference appears 
to be insignificant. At least we are not aware of any example of a steep but 
nonconvex Ho. 

Both the diffusion rate as well as the measure of the chaotic compo- 
nent [ ~ w  s, see Eq. (1.6)] are exponentially small in the perturbation 
e ~ 0: hence the term KAM integrability (m referring to the Kolmogorov- 
Arnold-Moser theory, which proves the complete integrability for most 
initial conditions as e-~ 0. Such a partial integrability, or better to say 
almost integrability, is as good as the approximate adiabatic invariance. 
Notice, however, that the complementary set of the initial conditions 
supporting AD is everywhere dense, as is the set of all resonances (1.2), any 
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one of which can be a guiding resonance. Instructively, the chaotic 
trajectory is not ergodic even though it approaches arbitrarily close to any 
point of phase space (energy surface) because of a small measure of the 
chaotic component. 

Both rigorous estimates are valid asymptotically, for sufficiently small 
only. For example, Lochak requires (15) 

(U e < e L ~  (1.11) 

where ao is the decrease rate of the Fourier amplitudes for an analytic 
perturbation, and L ~> 1 is assumed. This is a very small perturbation, and 
the problem arises to estimate the diffusion rate in the intermediate region: 
eL ~ ~ ~ 1. This problem was first addressed in refs. 11 and 13, where a new 
regime of diffusion, which can be called fast Arnold diffusion (FAD), was 
conjectured from some preliminary results of numerical experiments. Below 
we consider this interesting and surprising phenomenon in detail and 
compare our theoretical predictions with recent extensive computer 
simulations. (16-19) 

2. A M O R E  A C C U R A T E  ESTIMATE OF AD RATE 

In a simple theory (1'4'7'12) the Nekhoroshev-type estimates are 
obtained by minimizing expressions like Eq. (1.7) (cf. first of refs. 15). To 
begin with, consider a simpler auxiliary problem with M =  0 (conservative 
system) and r =  0 (nonresonant frequency vector co), hence L =N.  There 
are two possibilities for the specification of the vector m norm: 

N 
k =  ~ Irn~] (2.1a) 

i=1 

N 
Im(2= E m2 (2.1b) 

i=l  

where mi are (integer) components of the vector m. The first one is more 
suitable to describe the exponential decay of perturbation amplitudes 

V.~ ~ Voe-~* (2.2) 

where o- is some average decay rate. This corresponds to the first term of 
the minimized sum in Eq. (1.7), which is 2o-k as D ~ V 2. 
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To estimate detunings co,,, -=- [m. col in the second term the norm (2.1b) 
is more convenient. At average 

~ k ) ,,~ ,ml ( 2~N) 1/2 (2.3) 

for an isotropic distribution of vectors m. 
Writing detuning as [m. col = Icol rn~ with rn~ ~ 1 the modulus of the m 

component along the vector co, consider the layer of width 2rn~ and radius 
Iml perpendicular to the vector co. Its volume in m space 

mco(2~1/2( 21"gE' x~ N/2 
v ~ - -  Iml N-1 (2.4) 

= \eJ \ N -  1,/ 

is approximately equal to the number of vectors m whose detunings obey 
Im-co[ < 1col rn~o. Notice that asymptotic (in N) relations like Eq. (2,4) and 
similar ones below are actually fairly accurate down to N = 2. The minimal 
detuning is found from the condition vo~ ~ 1, and the whole exponent in 
Eq. (1.7) to be minimized with respect to ]rn I takes the form [see also 
Eqs. (1.6), (2.2), and (2.3)] 

(~.N) 1/2 Q2) 1/2 (N_I~N/2 
E(2o, N, Irnl) = alml .@=2 •o \-2~e J Imll-N 

<t.r~l/NT~[(~l/2~X--l~ 1IN ( ~).~I/N 
__Vl*; 1 a* \ N - - l J  \ x/N,I ~a,  N+ .., (2.5) 

Here s  ]cooj/cog, coo is the frequency vector on the guiding resonance, 
and 

20- =3/2 /~0 
a* = ~---~e~ ~ 0"4 a; 21 =2-~al 2~ ~ 2"8--  a,  {2.6) 

The important new feature of the estimate (2.5) as compared to 
previous ones (1'4'7'12'15) is the additional factor ( N +  1/2) in the exponent E, 
which qualitatively changes the dependence D(2~, N), as we shall see 
below. 

Before we explain this new behavior, we need to account for M and 
r. The first is straightforward because in all the above estimates the total 
number of independent frequencies matters only, regardless of their nature, 
internal (co) or driving (s Hence, L = N + M  ( r = 0  so far) should be 
substituted for N, and [coo[ ~ icoo+ s One minor difference arises for the 
models described by maps. Then, for one driving frequency a = 0, as the 
map means a 6-function time dependence, and the additional factor is 
reduced by one: L + 1/2 --* L - 1/2. 
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A more difficult problem is r r 0, that is, a resonant ~o. This is always 
the case for AD, which proceeds just along resonances, so that r > 1. Then 
r frequencies can be excluded in the expression for detunings (J)mn using r 
resonance conditions (1.2). Hence, in estimates (2.4), and (2.5), L =  
N + M - r  should be taken for N. However, the first term in Eq. (2.5) 
becomes, generally, very complicated because after exclusion of r frequen- 
cies the new components mi become some combinations of the old ones, 
and the simple expresion (2.2) for the perturbation amplitudes no longer 
holds. The difference is the greater, the larger are the multiplicity r and the 
vector m g of the guiding resonance. On the other hand, the fastest (at 
average) diffusion corresponds to minimal r = 1 (simple resonances which 
occupy the largest part of the phase space as compared to multiple 
resonances with r >  1) and to minimal ]mg[ , - ~  1 with maximal Vg and COg. 
For this reason we neglect below these complications, and retain the above 
estimates with L = N + M -  r instead of N. 

Now let us discuss the consequences of the new factor (L + l) ( l~  1) 
in the exponent E of (2.5). It decreases the diffusion rate as L grows, and 
thus counteracts the increase in D due to the dependence 2~/L. For any pair 
L, <L2 there is a certain value of 2, = 2* at which both diffusion rates 
coincide. Namely 

= + i] 
2* \ L , + l ]  (2.7) 

If 2, < 2", the rate D(L,)> D(L2), and vice versa. 
For a given model with certain L the driving resonances may include 

any number of independent frequencies /~ ~< L. Then, for a given 21, the 
particular L(2,) should be found which provides the maximal diffusion 
rate. In this way we would obtain a broken line which is the envelope of 
the family of curves E(21, L) of (2.5). Interestingly, the existence of such a 
family of intersecting curves could be inferred already (but was missed) 
from the validity of the three-resonance approximation (~'2,6-8,H'j3) (see 
Section 1), which corresponds to/~ = 1, while L = 2 for N = Nmin (r = 1). 

For L > 1 a smooth approximation to the envelope is found from the 
local condition 

1 ln2 , )=  0 (2.s) 
oL \L+I D J 

Whence (21 > 1, L > l) 

L(A1)~ln 2 ~ + l = l n  22; 22=2~e t (2.9) 
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and 

E(21,L)~aleln,~3; ~.3 = 21 e21 (2.10) 

Hence [see Eq. (1.7)] 

D(21) = Do)~3 e~' (2.11) 

and the dependence of the AD rate on the adiabaticity parameter '~1 
becomes a power law provided L ~< L, or 

)~2<e L (2.12) 

that is, for a not too weak perturbation. This border is, of course, much 
higher (in e) than that in the rigorous theory [cf. Eq. (1.11)]. 

Apart from some numerical factors, the main result of this paper, 
Eq. (2.11), confirms our previous estimate, m'~3~ 

Since now the dependence D(e)/Do is a power law (2.11), the 
quantity (13) 

~2V2 
Do N ~ ~ [eV~l 3/2 (2.13) 

fOg 

is equally important, where the subscript g refers, as usual, to the guiding 
resonance. 

We shall call this regime the fast Arnold diffusion (FAD). Within the 
domain (2.12) the diffusion rate does not depend on L, but asymptotically, 
as 2 ~ o% the Nekhoroshev-like dependence 

D(2~, L) ~ D O exp[ - a ~ ( L  + l)21/L] (2.14) 

is recovered. 
Interestingly, in the degenerate case when Ho(I) = co. I (Section 1), the 

AD rate is also a power law, but for another reason. (w'~3) 

3. N U M E R I C A L  E X P E R I M E N T S  

The asymptotic estimate (2.14) was well confirmed numerically (7'H,~3) 
with o-~ ~ 2.8 for the particular model used ( N =  2; M =  1; r-- 1). A restric- 
ted set of preliminary data (11'13) seems to agree also with the theoretical 
prediction (2.11) for the intermediate AD regime ( N =  2; M =  2; r =  1). 

Recently the results of extensive numerical studies of AD were 
reported (16-~9) for the model with Hamiltonian 

Ip12 N 
H(X, p, t ) = - - - K  ~ cos(xi+l--xi)  fx(t ) (3.1) 

2 i=1 
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and periodic boundary conditions (Xi+N ~- Xi; P i+N = Pi), where p, x are 
action-angle variables, 61(0 stands for the d-function of period 1, and we 
have slightly changed the notations in refs. 16-19: 2~rxi--* xi, and 2zpi ~ Pi. 

Notice that the number of freedoms in this model is N - 1  due to the 
additional motion integral Z p~=const,  hence the principal parameter 
L = N - 1  ( M = r =  1). 

The main numerical results, confirmed by our own computations, are 
shown in Fig. 1, reproduced from ref. 17. Apart from a strong perturbation, 
they look, indeed, like a power-law dependence with the exponent 7 ~ 6.6 
almost independent of N (besides N =  3, see below). The authors also fit 
the data to a power law, but obtained smaller 7 values that, moreover, 
depended on N, because they included the intermediate region of large K 
where the diffusion mechanism might be different. Essentially they tried to 
fit the asymptotic Nekhoroshev-like dependence (2.14), but failed because 
the principal exponent ( l /L)  turned out to be independent of N. Also, they 
studied a different, global, model where the perturbation couples all the 
freedoms, unlike the local model (3.1) with the pair interaction only. 
However, the results are essentially the same (cf. Figs. 1 and 2 in ref. 17). 
Below we restrict ourselves to the model (3.1), and present a different 
interpretation of these numerical results. (tT) 

The strongest guilding resonances for AD are p~--co~= coi+~ (for any 
i =  1,..., N), whose frequency is cog = (2K) 1/2. Due to periodicity in p~ and 
symmetry with respect to p i =  ~r rood 27r, the average (co ~  = =/2 (for the 
random initial conditions used in the computation), and (]~o~ 2> 

"1  . . . . . . .  l 

[] : N=3 
<~ : N=4 

i0" z~ : N= 5 /./~ 

D + : N=6 - //2" 

10-~ 

10-, 

10" i 'I, , i . . . . . . .  1 
i 0 - '  K 10~  

Fig. 1. Diffusion rate D vs. perturbation parameter K in model (3.1) (after ref. 17). 
The straight line shows a power-law dependence with exponent y = 6.6 (our fit); the curve is 
the theoretical dependence for FAD, (5.2)-(5.4), with A = 75; l= -0.24. 

822/71/1-2-17 
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(7~/2)2L + (27~) 2. From Eqs. (2.11) and (2.13), ~ = 3/2 + eal/2 ~ 6.6 (numeri- 
cally) and al ~ 3.8, which is comparable with the previous result mentioned 
above (el ~2.8; L = 2 )  as well as with factor n for L =  1, (1.6). 

The full numerical dependence can be approximately described near 
minimal K~0 .1  as (straight line in Fig. 1) 

D( K) "~ ~K 7 (3.2) 

with ~ ~ 0.3, 7 ~ 6.6. The theoretical value for the factor ~ is found from 
Eq. (2.11), where we should put (co ~  = n/2 for leo~ s in the expression 
for )~o [see Eqs. (2.6), (2.10)]. This is because the additional factor ~ is 
absorbed in the complicated dependence E(L)  and does not change the 
final asymptotic estimate (2.5). In the case of L>> 1 the term O = 2 n  can 
also be dropped from the expression for Ico~ Assuming D O ~ K3/2/4n 2 [see 
Eq. (2.13)] with an additional factor 432 due to the different notations 
explained above, we have 

1 //4x/~rl"] e~ (3.3) 
e r  ~ 4n---~ \ rcS/2e2--------7// 

From the empirical e~0 .3  and a1~3.8 we obtain l ~ 0  instead of the 
expected -0 .5 ,  which is not a big difference if L ~> 1. 

Anomalous behavior for N =  3 (L = 2) also can be explained, at least 
qualitatively, by the existence of the FAD border (2.12) with 

7~ 5 e 2l 

Kb ~ 32~(~*)2 (3.4) 

To reach agreement with the empirical K b ~ 0.3 (Fig. I), we would need 
l ~ 1.6, which seems too big, while for l = 0 the estimated border K b ~ 0.01 
is too small. Apparently, the asymptotic relations we use are too poor 
for such a small value of L = 2. One way to improve the agreement is to 
take the opposite limit [o)~ s ~ s = 2n instead of n/2 in Eq. (3.4), which 
gives Kb~0.2. Another difficulty is related to a very complicated (and 
unusual) motion structure for the particular conditions of the numerical 
experiments. (16-19) We proceed with a preliminary discussion of such a 
structure and some of its consequences. 

4. FAD A N D  GLOBAL CHAOS 

Usually, AD is assumed to proceed through a set of narrow chaotic 
channels along resonance surface (1.2), so that the relative measure of the 
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chaotic component k t ~  1 is very small. This is certainly true for a 
sufficiently weak perturbation ( K ~ 0 ) .  However, in the numerical 
experiments under discussion (16 19) this is apparently not the case. Accord- 
ing to the data in ref. 18, #s ~ 1 for K~> 0.1 and N>~ 5, that is, the phase 
space is almost entirely chaotic, just opposite to the expected structure. 
Our own numerical experiments with model (3.1) (to be published 
elsewhere) confirm this important conclusion. 

Does it make any sense in such a complicated structure of motion to 
single out a very specific AD within narrow chaotic layers? We think it 
does, and the reason is that the global chaos for sufficiently small K ~  1 
is apparently provided by the overlap of high-order resonances which 
produce very inhomogeneous and rather slow diffusion for large N (see 
ref. 20 and below). In these conditions the main diffusion flow can still 
follow chaotic layers of the strongest primary resonances as was assumed 
in the above estimates. This picture was qualitatively confirmed (19) by 
observation of a "clustered" motion, that is, the correlation between dif- 
ferent freedoms of the model. Such "clusters" have a finite lifetime because 
the motion trajectory both enters (forming a cluster) and leaves (destroying 
a cluster) chaotic layers. In the special case of N =  3 some primary resonan- 
ces are clearly seen in Fig; la of ref. 18 (see also the end of this section). 
The described structure of the motion is further confirmed by our 
measurements of the maximal Lyapunov exponent, which was found to 
scale as A ~ C O g = ( 2 K )  1/2 and hence to correspond to the main primary 
resonances. These seem, indeed, to play a special role in spite of global 
chaos. 

The presence of global chaos apparently explains the surprising inde- 
pendence of the average diffusion rate on initial conditions. (16'17) Then, a 
more realistic estimate for D ( K )  requires some averaging over the phase 
space. Since the details of the motion structure are unknown as yet, we 
made use of a very crude approximation, multiplying the diffusion rate 
(2.11) within a layer by its width ws [see Eq. (1.6)] as a relative measure 
ffA of the chaotic component supporting AD: 

Whence [see Eq.(2.11)] 

D "~ 1/2 
,U A ~ Ws ~ \--~0,] (4.1 ) 

D ~ ( D )  ~.~D0233~1e/2 (4.2) 

Thus, the main effect of averaging is the renormalization of the parameter 
~1~3ot /2 .  For a given numerical exponent 7=6.6 the new value is 
a1=2.5. From the numerical value ~ 0 . 3  we have the parameter 
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I = - 0 . 2 3 ,  which is much closer to the expected l ~ - 0 . 5 .  With 
I ~ +g?l ~f2  the border value of Kb~0.3 is also well in agreement with 
numerical data (cf. Section 3). 

The global chaos apparently entails a peculiar transient behavior. The 
diffusion rate (2.11) or (2.14) is reached only on a rather long time scale, 
to..~ 1/20D, (16~ while for a shorter time the formally computed D ~  t -~ 
decreases, roughly but not exactly as a power law. Figure 2 shows that the 
exponent /~ increases as K decreases, approaching fl = 1 for K--* 0. The 
latter means, actually, the absence of diffusion, that is, some stationary 
oscillations. This effect is well known and commonly used as a check for 
the diffusive character of the motion. (7) However, the difference (1 - /3)  may 
indicate some slow diffusion due to the global chaos. Indeed, in numerical 
experiments we observed transitions between primary resonances. 
Remarkably, this diffusion is not only slow, but its rate drops in time, 
which could explain why eventually AD, also fairly slow, dominates in 
spite of the presence of global chaos. 

Another interesting transient regime of diffusion occurs on a very short 
time scale, ~ K-1/2 which is the oscillation period on a guiding resonance. 
This regime is seen in the data of ref. 16 (but was not discussed there), and 
it is especially clear in the scaled variables of Fig. 2, which represents the 
results of our computations. A peculiar feature of this regime is the maxi- 
mal diffusion rate D = K Z / 4 g  2 apparently due to uncorrelated initial phases 
xi used in the computation. (16) The correlation is building up due to the 

0 

log D* 

0.,50 

- i  

I I 

0 1 2 
log (tK J/=) 

Fig. 2. Transient  diffusion in mode l  (3.1): normal ized  diffusion rate D * =  4~2D/K z vs. K1/2t; 
N =  128; r a n d o m  initial condit ions;  numbers  on the curves are K values; logari thms are 
decimal.  
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resonant oscillation with frequency cos = (2K)1/2, which also affects the later 
behavior (Fig. 2). This is another manifestation of transient clusters ~% as 
well as of special role of strong primary resonances. 

5. A NEW CONJECTURE 

An important parameter controlling the AD rate, both the inter- 
mediate fast one, (2.11), as well as the asymptotic one, (2.14), is a, the rate 
of perturbation Fourier amplitude decay. At first glance it is determined by 
the perturbation function V(L O, t) [see Eq. (1.l)]: a = ~ro. Yet, for a broad 
class of dynamical systems with a finite number of perturbation Fourier 
harmonics this is not the case, and formally ao = oo. Clearly, the whole 
spectrum of the perturbation arises in higher orders of the perturbation 
theory and has the form of a polynomial series of the original perturbation. 
Hence, V,~,,,~K k, where k is defined in Eq. (2.1a). Comparing with 
Eq. (2.2), we can assume that 

(5.1) 
K 

where A is roughly some constant independent of K and N. Generally, the 
latter is certainly not true, but as we shall see, it seems to be a reasonable 
approximation, at least in a restricted domain of K values. 

Consider first the FAD as described by Eq. (4.2). For the model under 
consideration, (3.1), assumption (5.1) leads to the expression 

K3/2 (4e  -2' q )q 
(5.2) 

where the exponent q now slowly depends on the perturbation: 

q =  3x / e ln  A in A (5.3) 
7r ~ 1.57 K 

From the empirical cr~ = 2.50 (for K =  0.1) the new parameter A = 65, 
but a better fitting to numerical data is achieved for A =75. The latter 
value would give a I = 2.56 and the power-law exponent ~ = 6.7, which is 
also compatible with numerical data (Fig. 1). In both cases the empirical 
value is l ~  -0.24. Using 2o = (~/2)/(2K) 1/2, as explained in Section 3, we 
arrive at the final very simple relation: 

K(3+q)/2( q )q 
(5.4) 
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This theoretical dependence is also shown in Fig. 1 by the solid curve. The 
agreement with numerical data is surprisingly good in the whole range of 
K values (the average discrepancy is 13 % only). In particular, the new 
relation (5.4) well describes the deviation from the approximate power-law 
dependence (straight line in Fig. 1) which was our starting point. 

The new quantity A is, of course, a sort of fitting parameter. Yet this 
is not a purely empirical fitting, but rather a physically meaningful one 
even though we have as yet no idea about how one could estimate this 
parameter theoretically. In contrast, the second empirical parameter 
l=  -0.24 turns out to be close to the expected value l~  -0.5. 

Without averaging (4.2), the original estimate (2.11) can also be fitted 
to the numerical data but with quite different l~  -0.03 and A ~ 950 (the 
average accuracy is about 25 %). 

We think that these results can be considered as a preliminary confir- 
mation of the new conjecture on the variation of the parameter ~r(K). 
Moreover, this effect appears to be typical if the initial perturbation is 
represented by a truncated Fourier series, so that its parameter ~o= oe. 
For a finite ao the effect in question is restricted to a sufficiently large 
perturbation when a(K)< ao, or 

K> Ae -~~ (55) 

For further studies of this effect, numerical experiments with a much 
weaker perturbation are most important, which, however, would require 
increasingly heavy computation. The optimal region is near the border 
(2.12), where the diffusion rate is maximal (for a given K) while N is 
minimal, both factors decreasing the computation time. 

6. C O N C L U D I N G  R E M A R K S  

The present theory confirms the previous conjecture (t1'~3) that in the 
intermediate domain (1 ~ 2 2 < e  r) of moderately weak perturbation in a 
many-frequency system (L>> 1) the AD rate decays approximately as a 
power law in the adiabaticity parameter 2~, (2.11). In this sense the diffu- 
sion is "fast" as compared to the asymptotic ()v~ c~) exponential decay 
(2.14). Generally, only the total number of unperturbed frequencies both 
internal and driving (N+ M) matters, provided the number of freedoms is 
N>~ Nmin- A surprising feature of FAD is independence of L, (1.9), which 
was a puzzling observation in recent numerical experiments. (~6'17) In the 
theory presented above there is no L dependence at all, as the diffusion rate 
is determined by some/~ < L, (2.9). Numerically, a slight dependence exists 
which is about, on average, 20% between N = 4  and 128, but only 2% 
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between N =  6 and 128. Apparently this is related to a smooth transition 
between the two AD regimes instead of a sharp border (2.12) in our 
simplified theory. 

Another interesting result is that a very specific AD persists and, 
moreover, dominates, as t ~ o% in the presence of some global chaos. 
Apparently this is explained by the very complicated structure of the 
latter, (16'17) where the diffusion rate drops in time. However, the complete 
picture of such a structure is far from clear. In particular, the appropriate 
procedure of phase-space averaging for the diffusion rate (4.2) is not 
known. The whole AD structure is very complicated, indeed. (15~ 

Detailed analysis of numerical data (16'~7~ has led us to a new conjec- 
ture: the parameter  o-, (2.2), controlling the high-order Fourier components 
of the perturbation and, hence, the diffusion rate, is not a constant as was 
assumed before, but slowly depends on the perturbation, (5.1). Numerical 
data seem to confirm this new effect, but additional numerical experiments 
for a weaker perturbation are certainly desirable. 

Restricted by inequality (5.5), this is not a generic phenomenon, as 
typically ao r 0. Yet, in the intermediate region of FAD, it may be very 
important.  

The theory presented above is rather s imple--perhaps,  over- 
simplified--but we hope that it catches the decisive features of this 
beautiful phenomenon of resonance interaction, Arnold diffusion. 
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