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BUDKER’S PROBLEM OF PARTICLE CONFINEMENT
AND WHAT HAS COME ABOUT OF IT

Boris Chirikov
Budker Institute of Nuclear Physics,
Novosibirsk 630090, Russia

ABSTRACT

One of numerous Budker’s ideas was born out of his deep insight into the old prob-
lem of adiabatic invariance, the relatively simple but crucial condition for realization
of his proposal which set out a new direction in the controlled nuclear fusion re-
search termed nowadays the open systems. The studies of this apparently very
particular application problem had quickly developed, nevertheless, into the funda-
mental research of a brand-new, at that time, and very surprising phenomenon, the
so-called dynamical chaos, which has grown by now in a whole large field in physics
and mathematics with many applications. A brief history of this research is traced
back to Budker’s original intuition. The principal results in the chaos theory, gained
since then, are discussed using, as a simple example, the first Budker’s trap with
”magnetic plugs”.

1. A little of the history

In 1954 A.M. Budker, then a young theoretician in the now Kurchatov Insti-
tute, proposed a new approach to realization of the controlled nuclear fusion termed
today the open systems[1]. He himself baptized this invention ”the particle trap with
magnetic plugs”. In such a device the particle confinement was relied upon the adi-
abatic invariance of particle’s orbital magnetic moment proportional to its action.
Since this invariance is approximate only the immediate question was if such a trap
would confine at least a single particle for the sufficiently long time required for the
fusion reactions. Budker’s intuition suggested that a purely theoretical solution was
hardly possible here, and he turned to experiment. He invented a nice way to check
the confinement by making use of the decay electrons of tritium inside the magnetic
trap. This experiment has been quickly realized by his pupil Rodionov[2], and it
confirmed fairly good confinement properties of Budker’s trap. Since the single parti-
cle stability was certainly not the main difficulty in the controlled nuclear fusion the
former minor application problem seemed to have been exhausted. Apparently, such
was the conclusion of the American physicists in a similar research highly classified
before 1958 [3,4]. But this was not the case in Budker’s group!

His always interesting, deep, and exciting discussions, or rather disputes, acted
as the powerful attraction to a purely physical problem of the adiabatic invariance.
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This is a rather general problem of primary importance in both classical and quantum
physics. In the former the action-angle variables are the most natural quantities for
describing the oscillatory dynamics while in the latter just the actions are quantized
and assume discrete values only the adiabaticity meaning suppression of the quantum
transitions. Besides, Rodionov’s experiment revealed that the electron life time in the
magnetic trap was big but finite indicating some puzzling slow motion instability.

All this excited our curiosity, and the studies into the adiabatic noninvariance
continued somewhat contrary to Budker’s plans. He was hesitating as, on the one
hand, he would like to concentrate all the efforts on the central problem of nuclear
fusion but, on the other hand, he well understood the scientific importance of the
adiabaticity problem and, moreover, was himself very curious about it. Eventually,
he blessed the new research to which he himself had given, unintentionally though, a
powerful initial momentum.

At the beginning two Budker’s insights proved to be very important in guiding
us in this new field of research.

The first one was the idea of some accumulation of small changes in the action
variables under a periodic adiabatic (low-frequency) perturbation. Eventually, this
idea has been developed into the conception of the nonlinear resonance as the central
construction in the theory of motion stability in Hamiltonian systems.

The second, also a vague, idea was born out of Budker’s consideration and
criticism of a then new proposal of the strong focusing particle accelerators. The idea
was in that the nonlinearity of a particle oscillation, i.e. a dependence of the oscilla-
tion frequencies on the actions, may cause a loss of the oscillation phase "memory”
resulting eventually in a diffusion-like behavior. Apparently, it was the first idea of
chaos in nonlinear oscillations. Curiously, these Budker’s doubts about the strong
focusing, also classified at that time and never published afterwards, received some
confirmation in one of the first numerical experiments (computer simulations) on the
particle dynamics in a simple model of the strong focusing accelerator [5]. The sim-
ulation was done in the course of design of the first CERN Proton Synchrotron, and
has led to severe tolerances on the nonlinearity. Since particle’s oscillation in the mag-
netic trap was strongly and unavoidably nonlinear (see Eq.(3) below) this Budker’s
idea turned out to be of a primary importance. It completed the resonance picture
of nonlinear oscillations and allowed for the first estimates of the particle stability in
the magnetic trap [6] (for a recent review see Ref.[7]).

2. A nonperturbative problem

Consider, as a simple example, the first Budker’s trap with axisymmetric mag-
netic field

B(s)=Bo(1+-zi2) (1)

where s is coordinate along a magnetic line, and subzero refers to the midplane of the
trap (s = 0). The unperturbed Hamiltonian for the longitudinal particle bouncing
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has the form )

Ho(p, s) = = + pw(s) = pwo + J Qp) 2)

where J, = /2pwo/L are the longitudinal action and frequency, respectively; w
stands for Larmor’s frequency; ¢ = E - Sin®0/w = const in this approximation;
E = v%/2, and we use the atomic units e = m = h = 1. Below we will consider small
pitch-angles # < 1 only, hence p = po83, po = E/wo which is also the big quantum
parameter of a particle in magnetic field.

The last expression (2) shows that particle’s oscillation in this trap is harmonic
(by the shape), yet strongly nonlinear in the sense of action-dependent frequencies

Qp) = \/52‘“’0; <w>=wo+%\/—2ﬂ-;‘ (3)

where < w > is the mean Larmor frequency over the longitudinal bouncing which
determines the principal resonances of an electron in the trap

<w>

o =1~ (4)

Here [ is any positive integer, and we introduced the adiabaticity parameter A >> 1
which is convenient to define by the relation

 3pm 3v

(5)

with the maximal Larmor radius p,,.
Resonances (4) cause the exchange of energy between the two freedoms of the
motion, and particularly, a change in p (and in J) at each transit of trap’s midplane:

i 2ufd
Ap—2\/ﬁA'sm¢o——2pwo+JQ-AJ (6)
where the amplitude
A = 0.83r¢/wo exp(— ) (7)

¢o is Larmor’s phase, and ry the distance to the trap axis.

As expected the nonadiabatic effect is exponentially small in parameter A (for
an analytic function w(s)). Particularly, it implies that the whole problem cannot
be solved by means of the standard perturbation theory as an asymptotic expansion
in the small perturbation parameter 1/A because the nonadiabatic effects lie beyond
any order of such an expansion. Instead, the problem may be divided into two parts.
First, one needs to exactly evaluate the nonadiabatic effect in a single transit (6)
which is possible to do for sufficiently simple models like one in question. This is an
auxilliary problem. The main part is to describe accumulation of the nonadiabatic
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changes over many bouncings. This can be realized by the construction of a canonical
(Hamiltonian) map over a bouncing half-period [7]: u, ¢ — %, ¢ where

B p+ 2/EA sing — p+ 2,/lfA-sing (8)
¢=0¢+G@E) + Z-cos¢ = ¢+ G(w) @— w)

Here ¢ = ¢o, and y; is a resonant value of u (see Eq.(4)). The latter approximate
map, linearized in u, is also canonical, and provides the local description of the motion
which depends on a single parameter

To A2 C—'\

K=|2/5A-G,| = 56 — <1 (9)
u L 6

The latter inequality is the condition for stability that is for eternal particle’s confine-
ment. Thus, the accumulating nonadiabatic effects widen the loss cone in the trap
from some 0, (adiabatic loss cone, not specified in the model under discussion) up to
6y = 6o(K = 1). The unstable region corresponds to 8y < 6, the latter being called
the chaos border.

3. Dynamical chaos

A real surprise was the nature of the unstable motion which looked (in numer-
ical experiments) highly irregular as if driven by some misterious random forces even
though the motion equations (8) were fairly simple, completely regular, and of the
two freedoms only. In any event, the motion admitted only statistical description, e.
g., via a diffusion equation [7]

of(p,7) _ 0 of
LET _ 2 pwZ 1
where 7 is discrete time (the number of map’s iterations), and
_ ((Al")z) _ 2 _ HKHo 9?
D, =Tt = uar = B2 4 (11)

is the diffusion rate.
An appropriate solution to this equation describes exponential relaxation

f - exp(-2) (12)
TL
with mean particle’s life time
B () X
L= In (#G) % (13)

The mechanism of the dynamical chaos is explained by the most strong (expo-
nential) local instability of motion that is by the fast divergence of close trajectories.
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In a more formal language it means the exponential solutions to the linearized motion
equations:

6 ~ exp(AT) = (—1—2{—)7 (14)

where 62 = (AP)? + (A¢)?, and

A=l (_1_2(_) K>4 (15)
is Lyapunov’s exponent for the linearized equations. That strong instability amplifies
arbitrarily fine details of the initial conditions (far digits of P(0) and ¢(0)) to such an
extent that they eventually affect the global behavior of the chaotic system. Thus,
the arithmetics of the initial conditions plays a role of some inherent "noise” which
makes a chaotic trajectory very complicated and unpredictable. The ultimate origin
of the dynamical chaos lies in the continuity of the phase space in classical mechanics.

Another graphic view of the chaos mechanism is the "scattering” of a typical
particle’s trajectory on the unstable periodic orbits. The number of the latter grows
exponentially with the period (n(T) — exp (AT), T — o0), and they are everywhere
dense. That scattering also leads to the exponential instability of trajectories. A
nontrivial part of the chaos mechanism is in that the instability must be not slower
than exponential, any power-law instability would be insufficient.

In these conditions the trajectory loses any physical meaning, and only sta-
tistical description remains applicable. Remarkably, the dynamical equations still
can be used in the theory to completely evaluate all the statistical properties of the
motion without any ad hoc statistical hypotheses like, e.g., random phases.

The diffusion equation of the type (10) holds true for the ergodic variable only
that is for one in which the steady-state distribution is a constant [7]. In discrete
time 7 it is u, and f,(u|7) = const. In the continuous time t (dt/dr = = [Q(y)), for
example, the ergodic variable is different, namely, » = /i with the new diffusion rate

_Q<(Ar)’> QA vwo e 6

D, T x 104 A3

Particularly, the steady state now is f,(v|t) = const again but is different from that
in the discrete time.

The inherent statistical behavior may happen, of course, to be very unusual.
An interesting example is the impact of the chaos border at §p = 6. This border gen-
erally has a very complicated hierarchical structure, an intricate mixture of regular
and chaotic domains on all the spatial scales [8]. Even though that critical structure
occupies a very narrow region along the border it completely changes the asymptotic
(Jr] — oo) statistical properties of the whole chaotic component of the motion. Par-
ticularly, the relaxation follows exponential dependence (12) only initially, and then
turns to a power law

for7? (16)
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where the exponent
2N -1

depends on the number of freedoms N only. Apparently, such relaxation was actually
observed in a laboratory experiment [9] even though the authors interpretered their
data in a rather different way (for discussion see Ref.[7]).

Particle’s motion in a magnetic field is, of course, not the only example of the
dynamical chaos. On the contrary, the chaos is a generic phenomenon in nonlinear
mechanics. After the nature and mechanism of the chaos had been understood it be-
gan to be found literally everywhere, from the microworld (gauge fields of elementary
particles [10], atoms in electromagnetic fields [11]) to celestial mechanics (comet Hal-
ley [12] and the Solar system itself [13]), and even to cosmology [14]. One of the most
beautiful nonlinear phenomenon, a universal instability of many-dimensional oscilla-
tor systems (termed Arnold diffusion) has been discovered and studied in detail (for
review see Refs.[15] and [16], some recent developments are presented in Ref.[17]).
This diffusion is spreading along the everywhere dense set of very narrow channels -
the chaotic layers around separatrices of nonlinear resonances.

Interestingly, the Arnold diffusion, which is a generic phenomenon for the weak
perturbation of a completely integrable Hamiltonian system (the so-called nearly
integrable system), is essetially a nonadiabatic effect too like a very specific Budker’s
problem. The point is that a weak perturbation (with small parameter € — 0) gives
birth to low frequencies (~ /¢) near each of the resonances. Then, the rest of the
perturbation (except a resonance term) acts as a high-frequency perturbation. This

is essentially adiabatic situation, called sometime reversed adiabaticity, with a big
parameter A ~ 1/,/e.

4. Quantum chaos

One of the most challenging problems in this field is the so-called quantum
chaos that is chaotic behavior in quantum mechanics which is commonly accepted as
the most deep and universal physical theory. The principal difficulty here is in that
the energy (and frequency) spectrum of any quantum motion bounded in phase space
is discrete. In the magnetic trap, for example, the energy level density

4= 22k (18)
Wo

is finite. Hence, the quantum evolution is almost periodic which has been always
considered as something opposite to the chaotic motion with a continuous spectrum.
Meanwhile, the fundamental correspondence principle requires transition to the clas-
sical chaos as some quantum parameter grows indefinitely (uo — oo in our example).
Clearly, the quantum chaos cannot be a particular case of the dynamical chaos as it
is known in classical mechanics.
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One resolution of this apparent contradiction is the conception of some char-
acteristic time scales in quantum motion on which various statistical properties of the
classical chaos persist [18]. As the quantum parameter po — oo the time scales grow
indefinitely in accordance with the correspondence principle. The most important
one is the relaxation time scale

th ~ d (19)

This has a very simple physical meaning directly related to the uncertainty principle.
Indeed, for ¢ $tg the discrete spectrum is not yet resolved. A more detailed analysis
reveals that scale tg is even less by a factor of §, which is the fraction of the energy
surface occupied by a chaotic motion. Finally, in discrete time,

TR ~ tROQ ~ po 02 (20)

Beyond this time scale the classical diffusion is suppressed by the quantum
interference effects. The degree of suppression depends on the ratio (see Eq.(13))
TR Ho 02

The latter estimate determines the quantum localization border. If R < 1 the particle
diffusion is suppressed, and the loss cone shrinks back from 6, to 8,. For small 8, (large
A, see Eq.(9)) the uo threshold is fairly high (uo = 10® E[eV]/B|G] for electrons).

A more accurate theory of the quantum localization can be constructed on
the basis of diffusion equation (10) by introducing an additional (dynamical) term
(usually called the drift)

o9 _ 0, 09 9

or Op “Op Ou
which describes the quantum coherent backscattering in a rather universal way [19].
Here g(u, ) is a Greene function with the initial condition g(u,0) = é(u — ps). The
quasistationary solution to this equation, as y — 0, 1s

(22)

g - pt® (23)

diffusion suppression corresponding to A% <1 which coincides with Eq.(21).
The global structure of quantum motion on the plane (uo, 8)) consists of 4
main regions:
po S 0,72 (24.a)

the whole chaotic cone (6o < 83) is too small (us 1) to host even a single quantum

state;
9;2 ,s_, Ho .—s /\05—'5 (24.b)

there are many states within the chaotic cone but no transitions among them because
the quantum perturbation parameter |Ap| ~ /A ~ pofy /A <1 (see Eqs.(8) and
(11)) is too small;

2075 < o S A%0,8 (24.¢)
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there are many transitions but no diffusion due to the quantum localization (R <1,
see Eq.(21)); and
22078 < po (24.d)

classical diffusion and relaxation persist in this quantum domain as R 2 1. Although
brief the above consideration demonstrates, as I hope, that the quantum chaos is a
new phenomenon in dynamical systems which reveals the surprising complexity of
the almost periodic motion with discrete spectrum.

5. A final remark: creative chaos

Development of the research of dynamical chaos in our Institute, initiated by
an "innocent” Budker’s problem of particle’s stability in a magnetic trap, gives a
beautiful example of the instability and chaos in the science itself.

The chaos is not always that bad after all!

In a broader sense this opens a little the rather surprising facet of the chaos,
the creativity. It warns us of the limits of human reasoning, and calls for a free
random search in the hope of lucky findings.
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