
ELSEVIER Physica D 86 (1995) 220-237 

PHYSICA 

Quantum chaos: unexpected complexity 
G. Casati a B. Chirikov b 

a Dipartimento di Fisica, Universitd di Milano, Via Castelnuovo 7, 22100 Como, Italy 
b Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russian Federation 

Abstract 

An overview of the most important, in our opinion, recent results (both numerical as well as theoretical) in the studies 
of a very controversial topic, the so-called quantum chaos, is presented. We focus on the dynamical models and behavior 
which results, under appropriate conditions, in surprisingly rich statistical properties of the quantum motion, even in case 
of a discrete energy spectrum of the latter. The results under consideration include the time evolution of an initial narrow 
wave packet with its diffusion and statistical relaxation to the quantum steady state as well as the statistical properties of 
the (quasi)energy eigenvalues and eigenfunctions. The guiding line of our discussion is based on the conception of quantum 
chaos as a new dynamical phenomenon in a domain which has been traditionally considered as that of regular motion. A 
number of open questions and unsolved problems is also presented. 

1. Introduction:  quantum chaos as a new 

dynamica l  p h e n o m e n o n  

The main purpose of  this talk ig to present a brief 

overview of  most important, in our opinion, recent re- 

suits, both numerical as well as theoretical, in the stud- 

ies of  a very controversial topic, the so-called quantum 

chaos. 

Some researchers see nothing essentially new at 

all in this phenomenon. Indeed, the problems in this 

field all belong to the traditional, "old-fashioned" 

and rather "simple" quantum mechanics of  finite- 

dimensional systems with a given interaction and no 
quantized fields. Nevertheless, many, including our- 
selves, consider quantum chaos as a new discovery, 

in an old field though, of  great importance for funda- 
mental physics. To understand this, the phenomenon 

of  quantum chaos should be put into the proper per- 
spective of  recent developments in physics. The focus 
of  this perspective is the conception of  dynamical  

chaos in classical mechanics (see, e.g., Refs. [ 1,2] ). 

This conception destroys the deterministic image of  

classical physics and shows that typically the trajec- 

tories of  deterministic equations of  motion are in a 

sense random and unpredictable [3] .  The mecha- 

nism of dynamical chaos lies in the most strong local 

instability of  motion, that is in the exponential sepa- 

ration of  almost all close trajectories while the global 

motion remains bounded. This implies a continuous 

power spectrum of the motion and correlation decay 

(not always exponential though) which, in turn, leads 

to statistical relaxation, that is to a non-recurrent 

(but reversible!) evolution of  any nonsingular distri- 
bution function (phase space density). Moreover, the 

relaxation proceeds in both directions of  time. 
The correlation decay, or mixing,  is the most im- 

portant property which provides a meaningful statisti- 

cal description of  a dynamical system in terms of  the 
probability theory. The exponential local instability of  

motion is certainly sufficient for mixing. However, it 
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is not clear whether the former is also necessary (ap- 

parently not?). In any event, this new mechanism for 
chaos is qualitatively different from the old one in the 

thermodynamic limit N --~ cx~, where N is the num- 
ber of freedoms [5]. The most striking difference is 

that the new mechanism provides chaos just in a few 
freedoms, e.g., for N > 2 in a conservative system. 

Dynamical chaos is one limiting case of the modern 
general theory of dynamical systems which describes 
the statistical properties of the deterministic motion 

(see, e.g., Ref. [5] ). No doubt, this theory has been 
developed on the basis of classical mechanics. Yet, as 

a general mathematical theory, it does not need to be 
restricted to classical mechanics only. Particularly, it 

can be, and indeed was, applied to quantum dynam- 

ics with a surprising result. Namely, it had been found 

from the beginning [6] and was subsequently well 

confirmed (see, e.g., Ref. [ 7 ] ) that quantum mechan- 

ics does not typically permit the "true" (classical-like) 
chaos. This is because in quantum mechanics the en- 
ergy (and frequency) spectrum of any system whose 

motion is bounded in phase  space is discrete and its 
motion is almost periodic. Hence, according to the ex- 

isting ergodic theory, such a quantum dynamics be- 

longs to the limiting case of regular motion which is 
opposite to dynamical chaos. The ultimate origin of 

quantum almost-periodicity is in the discreteness of 
the phase space itself which is at the basis of quan- 

tum physics and directly related to the fundamental 

uncertainty principle. Yet, another fundamental prin- 
ciple, the correspondence principle, requires the tran- 

sition to classical mechanics in all cases including the 
dynamical chaos with its peculiar properties. 

Some researchers believe that the only way out of 
this apparent contradiction is the failure of the corre- 
spondence principle. If  this were true, quantum chaos 

would be, indeed, a great discovery. "Unfortunately", 
there exists a less radical (but also interesting and im- 

portant) resolution of this difficulty. In our opinion, 
the fundamental importance of quantum chaos is pre- 
cisely in that it reconciles the two apparently opposite 
regimes, regular and chaotic ones, in the general the- 
ory of dynamical systems. Namely, as is well estab- 
lished by now [4] quantum chaos possesses all the 
properties of classical dynamical chaos but only on fi- 
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nite, and different, time scales which, moreover, indef- 
initely grow towards the classical limit. Thus, quantum 

chaos is not a particular case of the well understood 
dynamical chaos but a new dynamical phenomenon 
currently under intensive studies and sharp debates. 

Another view of the quantum-classical correspon- 
dence for chaotic phenomena emerges from the ob- 
servation that the border between continuous and dis- 

crete spectra is sharp in the limit Itl ~ oc only. On 
any finite time interval there exists a transition zone 

which is wider in time the larger is the quasiclassical 
parameter q = l / h ,  where 1 is a characteristic value of 

the action variable of the system. (In what follows we 

set h = 1.) This transition zone on the plane ( t , q )  is 
precisely the place where quantum chaos may occur. 

It is interesting to notice also that the same mecha- 

nism of temporary, transient, chaos works in case of 

any (e.g., classical) linear waves as well [8], or in 
linear (many-dimensional) oscillators, or even in the 
much more general case of completely integrable dy- 
namical systems, both linear and nonlinear (e.g., in a 

Toda lattice [9] ). Thus, quantum chaos, in spite of its 
generality and importance for fundamental physics, 

is a particular case of a new dynamical phenomenon 
which we call pseudochaos  as distinguished from 

"true" dynamical chaos in the existing ergodic theory. 

Another very important example of pseudochaos, 
from which we have borrowed the term itself, is the 

computer simulation of dynamical systems [ 10]. In- 
deed, in a digital computer any variable is "quantized" 
(discrete) so that all dynamical trajectories eventually 
become periodic (this fact is well known in the theory 

of the so-called pseudorandom number generators). 
The absence of the classical-like chaos in quan- 

tum dynamics apparently contradicts not only the cor- 
respondence principle but also the fundamental sta- 

tistical nature of quantum mechanics. However, even 
though the random element in quantum mechanics 

("quantum jumps") is unavoidable, it can be singled 
out indeed and separated from the proper quantum pro- 
cesses. Namely, the fundamental randomness in quan- 
tum mechanics is related only to a very specific event 
- the quantum measurement  - which, in a sense, is for- 
eign to the proper quantum system itself. This allows 
us to divide the whole problem of quantum dynamics 
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in two qualitatively different parts: 

(i) The proper quantum dynamics as described by a 

very specific dynamical variable, the wavefunc- 
tion ~ (t) ,  obeying some deterministic equation, 

for example the Schr6dinger equation. Our dis- 
cussion below will be limited to this part only. 

(ii) The quantum measurement including the regis- 

tration of the result and, hence, the collapse of 
the ~p function. This part still remains very vague 

to the extent that there is no common agree- 

ment even on the question whether this is a real 

physical problem or an ill-posed one so that the 

Copenhagen interpretation of quantum mechan- 

ics answers all the "admissible" questions. In 
any event, there exists as yet no dynamical de- 

scription of the quantum measurement including 
the ~p collapse. 

The recent breakthrough in the understanding of 

quantum chaos has been achieved, particularly, due to 

the above philosophy of separating out the dynami- 

cal part of quantum mechanics. Such a philosophy is 

accepted, explicitly or more often implicitly, by most 
researchers in this field. In this approach the initial 

state ¢ (0 )  of a quantum system is assumed to be the 
result of some complete quantum measurement. How- 

ever, the question if any arbitrary ¢ (0) could be phys- 

ically realized remains open (for discussion see, e.g., 
Ref. [ 12] ). The quantum measurement as far as the 
result is concerned, is fundamentally a random pro- 
cess. However, there are good reasons to believe that 
this randomness can be interpreted as a particular man- 

ifestation of dynamical chaos [ 11 ]. 
In the presentation below we essentially follow our 

recent review [7] with the addition of new results, 
mainly unpublished. In view of the growing interest 
in the problem of quantum chaos it is practically im- 

possible, within the limits of this talk, to discuss all 
the numerous papers devoted to this topic with various 
novel ideas, approaches and methods. Instead, we will 
focus on the most controversial part of the problem, 
the quantum dynamics with discrete spectrum. In this 
class of dynamical systems it is especially clear that 
quantum chaos is a new dynamical phenomenon, not 
a particular case of the classical-like dynamical chaos. 
As our numerous discussions reveal, most mathemati- 

cians as well as some physicists are still very reluctant 

to accept such an uncomfortable conception of quan- 
tum chaos. So, it appears worthwhile to dwell on this 
stumbling block again. 

Below we shall discuss the quantum dynamics es- 

sentially in momentum space which is relevant to the 
applications in nuclear, atomic and molecular physics. 
There exists a broad class of the so-called dual prob- 
lems related to the conjugated configurational (coor- 

dinate) space which are most relevant to the solid-state 
physics. The interrelation between the two had been 

discovered in Ref. [ 13], and proved to be very fruit- 

ful for both fields of research (for further discussion 

see, e.g., Ref. [7] ). 

2. Quantum maps 

One class of models extensively used in the studies 

of quantum dynamics is described by the so-called 

quantum maps via the unitary operator 0T over some 

time interval T, 

~ ( t )  - ¢ ( t  + T ) = O r ~ ( t ) ,  

T 

where 7~ is the Hamiltonian operator. A well-known 
example is the Kepler map which approximately de- 
scribes the interaction of a highly excited (Rydberg) 
Hydrogen atom with a monochromatic electric field 

(microwave) [ 14]. The Hamiltonian is given by 

7-[ = lp2 _ 1/r  + ez cos(tot) , 

and the unitary operator over one orbital period of the 
electron is given by [ 14] 

UT = exp ( i r r ~ ) e x p ( - i k ( e ) c o s q b ) ,  

(2.2) 

where T = 1/n 3 is the electron period related to the 
principal quantum number n >> 1 (in atomic units), 
e and to are the strength and frequency of the elec- 
tric field, respectively, v = - E / t o  = +l/2nZto is the 
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action variable (number of photons), and ~b the con- 

jugate phase 03 = -iO/Ofb). The parameter k depends 

on the strength of the perturbation and is given by the 

estimate 

e / w  5/3 , ~ < lOw~m, 

k(~) ~ [ exp ( - e m / 5 w ) / w m  2 , e >~ l O w / m ,  

where m is the magnetic quantum number. The first 

case (e ~< 10 w / m )  describes the regime of diffusive 
ionization and was extensively studied theoretically 
[14,87] and experimentally [88]. The second case 

(e ~> l0 w / m )  describes a recently discovered effect: 
stabilization of a Rydberg atom in strong fields [ 15]. 

The use of maps very much simplifies both ana- 

lytical and numerical studies of dynamical problems. 

Yet, in quantum mechanics, two questions still remain 

open. First, the accuracy of the quantum map; indeed 
direct quantization of the classical map is usually very 

simple but generally different from the exact quan- 
tum map which should be obtained via integration of 

the Schr6dinger equation. Second, a map (quantum or 
classical) usually describes the motion in a different 

(discrete) time r whose relation to the original (con- 

tinuous) time t depends on dynamical variables. For 

example, for the map (2.2), 

0-r = 1 = n3 = (2wv)-3/2 .  (2.3) 
0t T 

For the quantum map it is not clear how to relate, in 
general, the discrete time ~O(v, r)  to the continuous 
time ~p(v, t). Only for the quantum steady state it 
is possible to show that the following relation holds 
for the coarse-grained (phase-averaged) distribution 

function fs  = <lJ,12> [17]: 

Ot 
fs (V;  t) = f s ( v ; r )  Or 

where brackets denote here averaging in time. 
We would like to especially emphasize that contrary 

to a widespread misunderstanding, quantum maps de- 
scribe also conservative systems. In this case they are 
called quantum Poincar~ maps. The simplest exam- 
ple is the map which can be obtained from a time- 
dependent system considered in the so-called extended 
phase space [ 1 ]. A more physical example is the map 
for the Rydberg hydrogen atom in a static magnetic 

field which particularly describes long-live states in 

the continuum [ 18 ]. A general method for construct- 
ing Poincar6 maps in the framework of the period-orbit 

quantization has been developed in Ref. [ 19]. 

One of the most popular models in the studies of 
classical and quantum dynamical chaos is the so-called 
kicked rotator described by the standard map 

h = n + kcos qS, 

q~ = ~b + fiT, (2.4) 

where n, ~b are action-angle variables. Quantization 

of map (2.4) leads to the unitary operator [6] (cf. 
Eq. (2.2)) 

Or = exp ( - i T h 2 / 2 )  exp ( - i k c o s  O~), (2.5) 

where h = -iO/Odp. It is important to stress that the 
standard map approximates more general maps locally 
in the action. For example, the Kepler map (2.2) is 

locally approximated by the standard map (2.5) [ 14] 
with T = 6~rw2/(2wv)  V2, n = v - Vo. 

The standard map (2.5) is defined on the cylinder 

(-cxD < n < + ~ )  where the motion can be un- 

bounded. To describe the bounded motion of a con- 

servative system it is more convenient to make use of 
another version of the standard map, namely the map 

on a torus with afinite number of states L. In momen- 
tum representation ~p(n, 7-) it is described by a finite 

unitary matrix Unm, 

Ll 

¢ ( n )  = Z Unm~ll(m)' 
m=--Zl 

where L = 2Li + 1 ~ 2Ll, and 

1 
Unm = ~ exp (iZ(n 2 -~- m2)/4)  

L1 
× ~ e x p [ - i k c o s  (27rj /L)  

j=--LI 

-2~ri(n - m ) j / L ]  , (2.6) 

while T/4~r = M / 2 L  is now rational [20]. 
There are three quantum parameters in this model, 

the perturbation k, the period T and the number of 
states L, but only two classical combinations remain, 
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the perturbation K = kT and the classical size M = 

TL/2rr,  which is the number of resonances over the 

torus. Notice that the quantum dynamics is generally 

more rich than the classical one as the former depends 

on an' extra parameter. This is, of course, another rep- 

resentation of Planck's constant which we have set 
h = l .  

The quasiclassical region, where we expect quan- 

tum chaos, corresponds to T --~ 0, k ~ c¢, L ---, o¢ 

while the classical parameters K = const, and M = 

const. 

We would like to mention that in a recent paper 

[21 ] the standard map was used to describe the elec- 

tron motion in a quasi-lD lattice (the model for a thin 

wire) which is another example of the map's applica- 

tion to the conservative (dual) problem. 

3. Two basic time scales in quantum chaos: new 

facets 

3.1. Random time scale and transition to classical 

chaos 

The shortest characteristic time scale tr of the clas- 

sically chaotic quantum motion is called random time 

scale, and it is given by the estimate [22] 

Atr ~ lnq,  (3.1) 

where A stands for the classical Lyapunov exponent 

which is the instability rate of the classical motion. 

Indeed according to the Ehrenfest theorem the motion 

of a narrow wave packet follows the beam of classical 

trajectories as long as the packet remains narrow, and 

hence it is as random as in the classical limit. For the 
particular case of the standard map, expression (3.1) 

for the random time scale reduces to 

A'rr  ~ l inT[,  (3.2) 

where A ~ In K/2 ,  K = kT. Even though the ran- 
dom time scale is very short, it grows indefinitely as 

q ~ ~z. Thus, a temporary, finite-time quantum pseu- 
dochaos turns into the classical dynamical chaos in 
accordance with the correspondence principle. To put 
it another way, the "true" chaos in the ergodic theory, 

which is not restricted in time as t --+ oc, is a limit- 

ing pattern, important in theory but it does not really 

exist in the quantum world. In a more formal mathe- 

matical language it is convenient (and much simpler) 

to consider the so-called condit ional limit, 

t 
t, q --+ oc, ?(t, q) - - -  - const., (3.3) 

t r (q)  

where the variable ? is termed scaled time. 

Particularly, if we fix time t, then in the limit q ---, 

oc we obtain the transition to the classical limit in 

accordance with the correspondence principle while 

for q fixed and t ~ ec we have the proper quantum 

evolution in time. For example, the quantum Lyapunov 

exponent, 

A, ~ '<<l ,  
A q ( t )  ---* O, t'>> 1. (3.4) 

The quantum instability (Aq > 0) was observed in 

numerical experiments indeed (see Refs. [23,7] and 

Fig. 1). A new interesting question arises here: what 

does terminate the instability for t > tr? Numerical 

experiments show that the original wave packet, after 

a considerable stretching similar to the classical one, is 

rapidly destroyed. Namely, it gets split into many new 
small packets. A possible explanation [24] is related 

to the discreteness of the action variable in quantum 

mechanics which leads to the "rupture" of a very long 

stretched packet into many pieces (Fig. 1). Such a 

mechanism determines a new destruction t ime scale 

which, for the standard map, is given by the estimate 

[71 

lnT[ 
7"a ~ - -  ( 3.5 ) 

2A 

This roughly agrees with the results of numerical 

experiments [23,7]. As expected, rd ~ rr (see 
Eq. (3.1)). 

There is another mechanism which produces a de- 
viation of the quantum packet evolution from the clas- 

sical motion [24]. We call it inflation, because of the 
increase in time of the phase space area occupied by 
the Wigner function contrary to the classical phase 
space density which is conserved (Liouville's theo- 
rem). The inflation can be analyzed using the equation 
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Fig. 1. Chaotic evolution of a wave packet of the kicked rotator in the Husimi representation. The quantum evolution of a minimum 
uncertainty (coherent-state) wave packet is compared numerically with the classical evolution of an ensemble of 2000 points: K = 5, 
k = 25, T = 0.2. (a) initial state; (b) after 3 kicks (random time scale); (c) after l0 kicks. Notice the destruction of the wave packet 
upon spreading over the whole phase interval, and the apparent absence of any substantial squeezing in spite of a large stretching (adapted 
from Ref. [7]) .  
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Fig. 2. Squeezing as well as stretching of a wave packet in the Wigner representation [26] (cf. Fig. 1): (a) initial wave packet; (b) 
stretched/squeezed state. 

for the Wigner function W [25]. For the case of the 
standard map it can be shown [7] that this equation 
reduces to 

dW(n,  ¢)  1 03~ O3W 
(3.6) 

dT 24 3¢ 3 3n 3 " 

This leads to the following estimates [7] for the infla- 

tion time scale "rif and the inflation phase size ( A ¢)  if: 

[In (TK2/A2)[ 
Ti f  ~'~ 6A ' 

( A ¢ ) i f  "~ ~ O, k ~ ~ .  (3.7) 

using the distribution functions intermediate between 
Husimi's and Wigner's ones is described in Ref. [27]. 

Another interesting and as yet unclear question is: 

why is the inflation phase size ( A ¢ ) i f  small and, 
moreover, why does it indefinitely decrease in the qua- 
siclassical region (3.7)? This theoretical estimate im- 
plies a considerable inflation prior to the destruction 
of the wave packet. It would be interesting to check 
this prediction numerically. 

An important implication of the above picture of 
packet's time evolution is the rapid and complete de- 
struction of the so-called generalized coherent states 
[ 51 ] in quantum chaos. 

The inflation time is of the order of the destruction 
time (3.5) and of the random time scale (3.1) as 
well. This implies a considerable squeezing of a wave 
packet which, however, is not seen in numerical ex- 
periments (Fig. 1). We explain it by the inherent 
limitation of the resolution of the Husimi probability 
(distribution function) used in almost all studies of 
quantum dynamics, including Refs. [23,7]. Indeed, 
the Husimi probability, being the projection of the 
Wigner quasiprobability on coherent states, has a tech- 
nical (artificial) restriction of the resolution in both 
action and phase while the uncertainty principle re- 
stricts only the product of both (the area). The only 
paper we know [26] where the Wigner quasiprobabil- 
ity was used in such studies confirms this explanation. 
In Fig. 2, reproduced from Ref. [26], a considerable 
squeezing of the wave packet in the Wigner repre- 
sentation is clearly seen. A controlled resolution by 

3.2. Relaxation time scale and the periodic-orbit 

quantization 

The shortest random time scale is very important 
mainly because it allows the complete transition to 
classical dynamical chaos. Nevertheless, for statistical 
mechanics of quantum dynamical systems the most 
important time scale is another one, much longer, 
which is called the relaxation time scale tR. It is given 
by the estimate 

tR "~ PO <-- P, (3.8) 

where p is the full density of energy (or quasienergy) 
levels, and p0 is the level density of the operative 
eigenstates only, namely of those states which are ac- 
tually present in the initial quantum state and, thus, 
really control the quantum motion. If, for example, 
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the initial state is maximally localized in momentum 

(~/,(m, 0) = Stun), then (cf. Eq. (6.5)) 

po I m(n)12 6 ( E -  Em) , (3.9) 
m,tl  

where ~Om(n) and Em are eigenfunctions and eigen- 

values, respectively, and the bar denotes smoothing in 
energy. 

The physical meaning of the estimate (3.8) is very 

simple, and is related to the fundamental uncertainty 

principle (see Refs. [ 10,28,29] ). Indeed, for t << tR 
the discrete spectrum is not resolved, and the quantum 

motion partially mimics the motion with continuous 
spectrum. In particular, diffusion and statistical relax- 
ation take place. Notice that typically (see also the 

estimate below) tR >> tr and therefore local instabil- 
ity is certainly sufficient but not necessary at all for a 

meaningful statistical description of a dynamical sys- 
tem. Thus quantum relaxation provides an example of 

a surprising phenomenon of dynamically stable diffu- 

sion which was confirmed in numerical experiments 

[301. 
A technical difficulty in evaluating tR for a particu- 

lar dynamical problem is that the density P0 depends, 
in turn, on the dynamics. So, we have to solve a self- 

consistent problem. For the standard map the answer 
is known (see Ref. [7] ), 

rR = Po = 2D0, (3.10) 

vergence of the series over the periodic orbits. Namely, 
it was discovered that the series can be truncated at 
periodic orbits with period less than Pmax, where 

Pmax = 77"p. (3.12) 

This critical period is also called the Heisenberg time. 

It is of the order of relaxation time scale (3.8) ifp 
P0. Yet, this is not always the case. For example, in 
the standard map on the cylinder p = e~ (because 

quasienergies are determined mod 27r/T) while P0 is 
typically finite (3.10). The latter fact implies statis- 
tical relaxation to a non-ergodic state and this results 
in the quantum localization, or quantum suppression 
of classical diffusion. In our opinion, one of the main 
open questions in the POQ is precisely whether/'max 
is related to ,o or to P0. In other words the question: 
does POQ theory describes the quantum localization 

too? 
Even with the restriction (3.12) the number of pe- 

riodic orbits to be included in the theory is exponen- 

tially large for a chaotic motion ( Np ~ exp (APmax) ). 
An interesting and important question is: do we re- 
ally need such a large number of periodic orbits or is 

it possible to considerably decrease Pmax and, hence, 
Np? Some interesting remarks on this problem are 

presented in Refs. [35,36]. It appears that, at least in 
some examples, only few periodic orbits are sufficient 

[37]. 

where Do = k2/2 is the classical diffusion rate. The 

quantum diffusion rate depends on the scaled variable 

= ~'/2Do(k) and is given by Dq = D0/(1 + ¢ )  [7]. 
This is an example of scaling in the discrete spectrum 

which stops eventually the quantum diffusion. Gener- 

ally 

~)q ----+ { DO, ~" = T/7"R << I , 
0,  ~>> 1. (3.11) 

In closing this section, we would like to mention 
that one of the recent achievements in the theory of 
quantum chaos is a new technique of quantization for 
classically chaotic motion via classical periodic orbits 
(POQ) (see [ 19,31,32] and references therein). This 
technique allows to overcome the most difficult obsta- 
cle of the original Gutzwiller theory [34], a wild di- 

4. Intermediate asymptotics: diffusion localization 
as a mesoscopic phenomenon 

The quantum localization is a non-universal (but 
very interesting and important) phenomenon which 
consists in the formation of non-ergodic or localized 
states (both a steady state as well as eigenstates) for 
classically ergodic motion. For the standard map on the 
torus the ergodicity parameter controlling localization 
can be defined as 

( ~ l / 2 k Z K  k A = Do rn (4.1) 
L re / L M 

where re ~ L2/Do is a characteristic time of the clas- 
sical relaxation to the ergodic steady state I~b(n)12 
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const. 

I f  A >> 1 the final steady state as well as all the 
eigenfunctions are ergodic (after Shnirelman [38];  

see also Refs. [39,40]) ,  that is, the corresponding 

Wigner functions are close to the classical micro- 

canonical distribution in phase space 6 ( H ( n ,  ~b) - E).  
We call this region, characterized by ,~ >> 1, quasi- 

classical asymptotics. It can be reached, particularly, 
if the classical parameter K / M  is kept fixed while the 
quantum parameter k ~ ec. 

However, if A << 1, all the eigenstates and the steady 

state are non-ergodic. It means that their structure re- 
mains essentially quantum, no matter how large is the 
quasiclassical parameter k ---, e~. We call this region 

intermediate asymptotics or mesoscopic domain. Par- 

ticularly, it corresponds to K > 1 fixed, k --~ ec and 
M ~ oc, while 3. << 1 remains small. The meso- 

scopic domain we are speaking about refers to the mo- 
mentum space. In the dual problems in configurational 
space the mesoscopic phenomena are currently under 
intensive studies and may have important applications 
(e.g. in nanoelectronics; see Ref. [43] ). 

The size of  localized states can be characterized by 

the so-called entropy localization length [20],  

For dual problems in solid state physics the left in- 

equality means that the mesoscopic structure is essen- 
tially of  a macroscopic size. 

An interesting point is that, at least in the standard 

map, the statistical relaxation to the quantum steady 

state can be described by a phenomenological diffu- 

sion equation (Refs. [7,36] ) for the Green function 
in term of the scaled variables 6- and h, 

0g(h,6-) 1 O /~(fi) Og Og 
OO- " = 4 0--h O-h + B(f i )  --'Oh (4 .4 )  

Here g(h,  O) = 8(h - fro) and 

n T 
= - - ,  6 - = l n ( l + ~ )  ~ = - - .  

h 2Do ' 2Do 

The additional drift term in the diffusion equation 
(4.4),  

B ( h )  = sign(h - h0) = :~1, 

describes the so-called quantum coherent backscatter- 
ing, which is the main cause of localization. 

The solution of Eq. (4.4) can be expressed in terms 

of  Error functions [7].  In particular, if we consider 
the scaled unperturbed energy 

lH = e  H, H = -  I o(n)l 2 lnl~(n)[ 2. (4.2) 

In the case that the state is exponentially localized, 

q~(n) ~ e x p ( - I n l / l ) ,  lnl --* oc, In turns out to 
be close to the 'asymptotic localization length' I. For 
example, for the standard map it is known that the 
eigenstates are exponentially localized with l ~ 1D 0. 

Sometimes another measure of  localization is used. 
It is called participation ratio, 

) ~:m = [q~m(n) ] 4 , (4.3) 

which is close but not identical to the previous length 

In. 
In terms of  the localization length the region of 

mesoscopic phenomena is defined by the double in- 
equality 

I < < I < < L .  

2Es ' 

where Es = D~/4  is the energy of  the quantum steady 

state, then the relaxation rate is given by 

= 2 e  -~  (?r + ½) erfc(v/-~) - e -~  

--~ D°2 ~ ~ oc .  (4.5) 
v/-~ ¢2 (ln~)3/z ' 

Numerical experiments agree with the analytical re- 
sult (4.5) only with logarithmic accuracy in r. More 
precisely our numerical results [42] (Fig. 3) lead to 
the asymptotic behaviour /~ ,-~ (D2/x /~  2) / l x / ~  
while in a different approach [41 ] the expression/~ 
( D ~ / x / ~  2) ln~ is obtained [41].  On the experimen- 
tal part, the main difficulty lies in the wild fluctuations 
of  the relaxation rate R. To suppress them we made 

d/~ 

d~ 
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use, besides of the ensemble averaging over about 
1000 runs, also of the special time averaging 

(R(T)) = f R(T') W(T' -- 7") dT', (4.6) 

with the weighting function 

r )  2 , f s f < r ,  

where A is the normalizing factor, and p, F parame- 
ters. 

In closing this section we would like to mention 

that the quantum diffusion localization occurs not only 
in time-dependent systems (another common miscon- 

ception!) but also in conservative systems. The most 
striking example of the latter is the celebrated Ander- 

son localization in solids (which is, however, a dual 

problem in our terminology, see Section 1). In mo- 
mentum space the localization takes place, for exam- 

ple, when the Poincar6 map for a conservative sys- 
tem is given by the standard map (see Section 2, and 
Ref. [56] ). It is true that, to the best of our knowl- 
edge, nobody has observed as yet localization in con- 
servative models directly described by the Schr6dinger 

equation. In our opinion, this fact is explained by the 

very special type of models considered. Some indica- 
tions of localization in Robnik's billiard can be found 

in Ref. [27] and will be discussed in Section 5. 

5. Dynamical fluctuations in quantum chaos 

Fluctuations are the most characteristic property of 
any true statistical process. As we shall see, quan- 
tum chaos exhibits a lot of various fluctuations justify- 
ing, thus, the term chaos, even in a discrete spectrum. 
The ultimate origin of these dynamical fluctuations 

is related to decoherence, both in space and time, of 
a typical quantum state associated with a classically 

chaotic system. This leads to correlation decay which 
has been found in many numerical experiments (see, 
e.g., Ref. [4] ). Notice that the very existence of quan- 
tum diffusion, observed already in the first numerical 
experiments [6], implies both correlation decay and 
decoherence. 
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Below we consider some particular types of fluctu- 
ations studied recently. Among them the energy level 
fluctuations (distribution) or, to be more precise, the 
(nearest neighbor) level spacing distribution. Inter- 
estingly, such fluctuations reveal directly some chaos 

in the discrete spectrum itself (even for a classically 
regular motion!). 

5.1. Ergodic states 

A characteristic statistical property of ergodic 
eigenstates is the so-called level repulsion: the nearest 
level spacing distribution is described by the Wigner- 
Dyson formula, 

p(s)  ~ As/~exp ( - B s  2) , (5.1) 

where the repulsion parameter/3 takes the value/3 = 

1; 2; 4 _-- /3e only depending on the system symme- 
try. Quite often this distribution is still called univer- 

sal (see, e.g., Ref. [44] ), in spite of the fact that, 
as we stressed several times [7], Eq. (5.1) is true in 
the case of quantum ergodicity only. Even in this case 
interesting exceptions have been found recently [45] 

whose mechanism is not completely clear. Instead, we 
call Eq. (5.1) the limiting statistics because it corre- 

sponds to the ergodicity parameter a --~ o~z (see also 
Ref. [44] ). So far, to our knowledge, the relation be- 

tween the limiting statistics and limiting ergodicity ac- 
cording to the Shnirelman theorem [38] is not clear. 

As was mentioned already above (Section 3.2) the 

ergodic steady state is close to the classical one up to 

some quantum fluctuations. For example, in the stan- 
dard map we would expect the temporal rms energy 

fluctuations to be of the order 

AE 1 
E--7 ~ (5 .2)  

However, to our knowledge, nobody has checked this 
as yet numerically. 

The spatial fluctuations in chaotic eigenfunctions 
are known to be close to Gaussian (Refs. [46,47]). 
Interestingly, a clear deviation from the Gaussian dis- 
tribution was found due to finite dimensions of eigen- 
functions in the Hilbert space (L = 25) [46]. Be- 
sides such irregular (quasirandom) fluctuations, addi- 
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tional microstructures were observed in chaotic eigen- 

states. The most studied one is connected to the cel- 

ebrated Heller scars which appear around some clas- 
sical (unstable) periodic orbits. However, recent nu- 
merical experiments apparently reveal also a different 
microstructure (Refs. [47,48] ) which is currently un- 
der study. 

5.2. Localized states 

Statistical properties of  localized states are much 

more rich and interesting since localization, which is 

an essential quantum feature, considerably modifies all 
the statistical properties. Instead of "universal" fluc- 

tuations (5.1),  the intermediate statistics was discov- 
ered to hold (Refs. [20,49] ) with 

p ( s )  ~ A s ~ exp [ -~Tre /3s  2 -  (B - ¼7r/3)s], 

0 <_/3 _< 4 ,  (5.3) 

where now the value of  the repulsion parameter/3 (cf. 
Eq. (5 .1))  depends on the degree of localization. In 

particular it can take the value/3 = 0 (Poisson statis- 
tics) which corresponds to the classically integrable 
case (or to extreme localization!). Moreover, the re- 
pulsion parameter/3 was found to be simply related to 
the localization parameter/3t [ 50] (see also Ref. [ 65 ] 
below) which gives a measure of  the size of  the eigen- 
functions. Indeed, let us define 

/31 = l (H) / le , (5.4) 

where ( } indicate averaging over all eigenfunctions, 

and le >_ l(n) is the maximal entropy localization 
length corresponding to ergodic states. Then it has 

been found that fl ,.~ flefll.  NO explanation of this 
surprisingly simple relation has been given as yet. 
Eq. (5.3) represents a "universal" family of  distribu- 
tions parametized by /3  (or a ) .  

It is instructive to compare this family with the very 

popular Brody distribution, 

p ( s )  = a s / 3  e x p ( - B s S + l ) ,  0 _ < / 3 < 1 ,  

which is also a "universal" distribution introduced to 
fit all empirical data whatever the underlying mecha- 

nism for deviations from the limiting statistics. As a 

consequence the accuracy of the fitting turns out to be 
rather poor [ 65 ]. 

The dependence/31 (,~) on the ergodicity parameter 
,~, or scaling behaviour, can be approximated by a 
simple expression [20],  

a,~ 
/3t(,~) ~ l + a a  ' a ~ 3 ,  ,~<  10. (5.5) 

Deviations for larger ,~ remain unclear, and may de- 
pend on the boundary conditions and/or  ~p(n) sym- 
metry [52] (see also Section 6).  

The intermediate statistics (5.3) is due to the quan- 
tum localization under the assumption of complete 
chaos in the classical limit. This is why observation of 
such statistics (/3 ,,~ 0.31 ) in a billiard with classically 
divided phase space, containing about & ~ 17% of  
regular (stable) component of  the motion, was rather 
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puzzling [27]. The point is that the presence of a sta- 

ble component leads to a nonzero level spacing den- 

sity p ( s )  ~ P0 > 0 as s ~ 0, contrary to numer- 
ical results [27] which confirm Eq. (5.3) down to 
s ~ 0.004. In our opinion, this demonstrates that the 

effect of quantum localization can be dominant even 
for ~ > 0. To clarify this puzzle we suggest a change 
of the model in Ref. [27] as follows: the boundary of 
Robnik's 2D billiard is given by the equation 

Iz + ezml = 1, (5.6) 

where z is the complex coordinate in the billiard plane. 

For m = 2, used in Ref. [27], the requirement for 

complete classical chaos (large e) contradicts with 
that of the diffusive evolution of the particle's velocity 

direction (small e) which is necessary for quantum 

localization (cf. Ref. [8] ). To satisfy both conditions 

we need another parameter, for example m >> 1, so 
that the billiard boundary becomes slightly wiggly and 
this leads to diffusion in velocity. 

Exponentially localized eigenfunctions ~pm(n) 
show wild fluctuations which are not only very big in 

size [20] but, moreover, diffusively increase in both 

directions of n [29], 

((~Tmn - (r/ran)) 2) = O7 IAn[, 

1 (r/re,) (5.7) 
D " = 7 =  Im-nl ' 

where r/m~ ~ In I~Pm(n)l. Particularly, such fluctua- 
tions result in a surprising increase of the steady-state 
localization length ls ~ 2l as compared to that of 

eigenfunctions (l).  Nevertheless, fluctuations of l it- 
self vanish asymptotically as Im - n I --~ :xz. Namely, 

the rms dispersion 

- -  = ---, o ,  I A n l  ~ ~ .  ( 5 . 8 )  
1 

This is not the case for the "global" localization 
lengths lH (4.2) or s c (4.3) which give a measure 
of the extension of the eigenfunctions. It has been 
shown that empirical fluctuations of entropy H (and, 
hence, those of IH) are described surprisingly well by 
a simple expression [53] 
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= , f p ( H )  cosh [~- ( H -  < H >)1 ' p d H = l ,  
(5.9) 

as shown in Fig. 4. This distribution, which has as yet 

no explanation leads to the rms dispersion 

AlH 
- -  ~ 0.66. (5.10) 
1H 

According to recent preliminary numerical data [54] 
the fluctuations of the steady-state localization length 
are qualitatively different, 

A~Zs ~,.~-0.25 ----+0, k---+CxD (5.11) 
~ S  (s 

but equally unexplained. Unlike Eq. (5.9) these fluc- 

tuations are vanishing in the quasiclassical region. An- 
other interesting feature of fluctuations (5.11) is an 

"abnormal" (fractal?) exponent ~ 0.25 instead of 0.5 

for the "normal" fluctuations. Possible fractal proper- 
ties of the quantum steady state are confirmed by the 
temporal fluctuations of the steady-state energy [ 55[ 
(cf. Eq. (5.2)),  

AEs ~ is0. 3 ~ 0, k ~ :xz. (5.12) 
Es 

Notice that both exponents, in Eqs. (5.11 ) and (5.12), 

are equal within the accuracy of numerical exper- 

iments. A naive interpretation of these fluctuations 
would imply that ¢s (n )  for the chaotic steady state 
represents a finite ensemble of v statistically inde- 
pendent systems. In this case one expects AEs/Es  

1/v/'ff and comparison with (5.12) leads to 

0.6 v ,'-, I s . (5.13) 

6. Statistical models in quantum chaos: random 
matrices 

The region t >> tR (if  tR is finite) may be con- 
sidered as the third, asymptotic time scale. Here the 
temporal fluctuations, in the quantum steady state, re- 
main and are determined by the statistics of eigen- 
functions and eigenvalues. These fluctuations are gen- 
erally very complicated. On the other hand, there ex- 
ists a well-developed statistical random matrix theory 
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(RMT)  which describes the statistical properties of  a 

typical quantum system with a given symmetry of the 
Hamiltonian (see, e.g., Ref. [57] ). This was actually 

the first theory aiming at describing statistical proper- 

ties of  quantum systems with discrete spectrum. 
At the beginning the object of  this theory was as- 

sumed to be a very complicated, many-dimensional 
quantum system as a representative of  a certain sta- 
tistical ensemble. With the understanding of the phe- 

nomenon of  dynamical chaos it became clear that the 
number of  system freedoms is irrelevant. Instead, the 
number of  quantum states or the quasiclassical param- 

eter q is of  importance provided dynamical chaos is 

present in the classical limit. 
Until recently the matrices in this theory were as- 

sumed to be homogeneous, that is, all matrix elements 

have identical statistics. Such a RMT was found to 
satisfactorily represent the statistical properties of  dy- 
namical quantum chaos without localization (for both 

energies [58] and quasienergies [20] ). However, the 
quantum localization essentially modifies the statis- 
tical properties as was discussed above. The statis- 
tical counterpart of  the theory of quantum localiza- 
tion is not only the old Anderson theory but also a 
new development in RMT which makes use of  the 
so-called band random matrices (BRM) [ 59 ]. These 
have nonzero random elements within a band of width 
2b along the main diagonal only. The unitary matrix 

in the quantized standard map is also of  a band struc- 
ture with b ~ k. Here matrix elements are not random 

(see Eqs. (2.5) and (2 .6)) .  However, they appear to 
be "pseudorandom" and indeed they lead to statistical 

properties of  eigenvalues and eigenfunctions similar 
to those of  BRM. In particular, a scaling behaviour 

has been found for both the quantized standard map 
and the BRM and the appropriate scaling (ergodicity) 
parameter is [60] 

a = a b 2 / L ,  (6.1) 

where a ,-~ 1 is some numerical factor (cf. Eqs. (4.1) 
and (5 .5)) ,  and L stands now for the size of  a ma- 

trix. Notice that in the dynamical problem discussed 
above, the ergodicity parameter (4.1) depends on the 

diffusion rate which includes dynamical correlations. 
This may explain why the statistics of  random matri- 
ces and that of  the corresponding dynamical models 

were found to be similar but not identical. For exam- 
ple, no deviations at large A were found in the former 
models [ 61 ]. 

In a conservative system the parameter b 2 character- 
izes the width of the energy shell which is the quantum 
counterpart of  the classical energy surface. Hence, the 
old RMT describes the locally ergodic quantum struc- 
ture only, that is for L << b 2, and L << I. The global 
structure is associated instead with band matrices. The 
former approximation (full random matrices) is very 
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good, for example, in heavy nuclei (b 2 ~ 106) but 

not in heavy atoms (b 2 ~ 10 only) [67]. The very 
large width of the energy shells in nuclei has interest- 

ing applications in the studies of the weak interaction 
of elementary particles [ 69]. 

An advantage of RMT is that it describes both 
classes of dual problems. Moreover, the statistical the- 

ory proved to be much simpler than the corresponding 
dynamical one, so that the former is well developed by 
now [62]. Particularly, the exact dependence fil()t) 

was found to be very close to the simple relation (5.5) 

in the whole range (0 < ,~ < oc). Moreover, the dis- 
tribution of localization lengths s c was also calculated 

and turned out to be rather different from that of In 

(5.9) in the dynamical problem. While for the latter 

both tails of the distribution follow a power-law with 
different exponents (see Eq. (5.9)),  the distribution 

of ( in BRM decays exponentially for both s c ~ c~ 
as well as for ( ---, 0 [62]. 

In all the above papers the BRM were assumed to be 
homogeneous, that is, their statistical properties were 

the same along the main diagonal. Such BRM do not 
describe the global structure of conservative quantum 

systems. For example, their level density p grows in- 
definitely as L --~ e~. Moreover L is clearly an irrele- 

vant (technical) parameter for a conservative system 
with its energy shells of a finite width. Only recently 
the so-called inhomogeneous BRM with increasing di- 
agonal elements were studied in some detail [63], 

Hnm = rn f,,n + Vmn , Vmn = V,m . (6.2) 
P 

Here (v,m) = O, 2 = u 2 (Vm,~) for Im - n[ < b. Curi- 
ously, this had been the first random matrix model in- 
troduced and studied many years ago by Wigner [64], 

precisely to describe conservative quantum systems, 
(soon completely forgotten also by Wigner himself!), 

and reconsidered again only recently [63]. 
In Wigner's BRM the empirical scaling f i t (a)  was 

found to be completely different [65] as compared to. 
homogeneous BRM scaling (5.5). Namely, 

f i t ,~ 1 - e  - a ,  , t = a b 2 / l ~ ,  a,--~ 1, (6.3) 

where 
(i) for "wide" eigenfunctions [ 65 ], 
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(6.4) le=cpvv/ -b>~b,  c ~ 5 . 2 9 ,  a ~  1.14, 

with the semicircle local spectral density [64] 

pI (E;  n) = Z [~°m(n)le d ( E -  Era) 
m 

~ / 8 b v  2 - ( E -  En) 2 
--~ (6.5) 

47r b vZ 

where the arrow indicates smoothing (and normaliza- 
tion ) in energy for sufficiently large p (cf. Eq. (3.9));  
(ii) for "narrow" eigenstates [66], 

le = c ( p v )  2 < b, c ~ 42.45, a ~ 0 . 2 5 ,  (6.6) 

with the Breit-Wigner density [64] 

p2(E;n )  = F / 2 ~  F = 27rpv 2 , 
( E  - E n )  2 %" F2/4  ' 

I E - E,[ < b / p .  (6.7) 

In this model the localization length le >_ l for er- 
godic states is always finite and independent of the 

matrix size L >> le as it should be in conservative sys- 
tems. We call this transverse localization (across the 
energy shell). The proper, or longitudinal localization 

l < le (along the shell) is only possible for the wide 
eigenstates since for the narrow ones ,~ ,-,, b2/le > 

b >> 1. The remarkable relation/3 ~ fit has been con- 
firmed for this model [65] to a surprisingly accuracy 
of about 1% (!?) within the whole available/3 range 

(0.2 < ,~ < 2.5). 
The difficult question of how to relate the BRM pa- 

rameters to a particular dynamical problem remains 
open. A straightforward approach - just to calculate 
the matrix elements Hmn for a given Hamiltonian - 

leads to a curious conclusion, namely that BRM be- 
come increasingly sparsed in the quasiclassical region 

[68]. Moreover, no ergodic states were observed in 
such a model. Even a simpler question, when one 
should use homogeneous or inhomogeneous matrices, 
is still not completely clear, at least, for the problems 

in momentum space. 

7. Conclusion: other developments 

Quantum chaos in a discrete spectrum, which has 
been discussed in the main part of this talk, appears 



234 G. Casati, B. Chirikov / Physica D 86 (1995) 220-237 

as an interesting new dynamical phenomenon. Yet, it 
is a particular case of quantum dynamics and, more- 
over, it is the most difficult one for theoretical analy- 
sis. Much simpler is the consideration of unbounded 
motion with continuous spectrum. This is apparently 
because the spectral density, in the latter case, is much 
more smooth (as compared to a sum of 8-functions 
for the discrete spectrum (6.5)).  As a result even the 

dynamical theory is much more developed in continu- 

ous spectrum (see, e.g., Ref. [70] ). Notice, however, 
that continuous spectrum (hence, unbounded motion) 
is only a necessary condition for the "true" (classical- 

like, asymptotic in time) chaos in a quantum system 

but far from being a sufficient one (see Refs. [ 29,86] ). 
Typically, quantum chaos remains a pseudochaos even 

in continuous spectrum. In this connection an inter- 
esting question which is currently under study con- 
cerns the algorithmic complexity of quantum dynam- 

ics [71]. 
Below we briefly mention some interesting and 

important developments in the studies of unbounded 

quantum motion (and of related topics). 
Perhaps the most active field in this direction 

is in solid-state physics, apparently motivated by 
a rich variety of important applications (see, e.g., 
Refs. [72,73,62]). However, most results here were 
obtained for dual statistical problems. In the dynami- 
cal approach the so-called Harper model and kicked 
Harper model seem to have attracted the most atten- 
tion (see, e.g., review [74] and references therein). 

A wide range of statistical phenomena were observed 

and studied in some detail using this model, includ- 
ing anomalous diffusion (((An) z) ,',- t ~', "y ~ 1). 

Similar phenomena have been found recently also in 
the kicked rotator model [7] but only for very special 
values of parameter T. 

Another new field of research is the study of decay- 
ing systems with energy levels with finite width (see 
[75] and references therein). Strictly speaking, all en- 
ergy levels but the ground state have always some fi- 
nite width AE due to interaction with fields. Yet, the 
statistical properties crucially depend on the discrete- 

ness parameter  

d = p o A E .  (7.1) 

In case of d << l, which we call quasidiscrete spec- 

trum, the above results for the true discrete spectrum 
still persist. However, for d > 1 the statistics of quan- 
tum chaos is substantially modified. This is very im- 
portant, particularly in applications to heavy nuclei 

[761. 
Another interesting problem concerns nonlinear 

"quantum" equations. In particular this problem al- 

lows us to compare the brand new phenomenon of 
quantum chaos with the old mechanism for statistical 

laws for large N (the so-called thermodynamic limit), 
which is a standard approach in traditional statistical 

physics, both classical and quantum. For infinitely 
dimensional quantum systems true chaos is also pos- 

sible, like the chaos in the classical limit. When we 
speak about the absence of true chaos in quantum me- 
chanics, we mean finite, and even few-dimensional, 
systems. 

It turns out that both mechanisms are very similar; 
as for any finite N in the latter or q in the former, 

the dynamics is formally regular and in particular is 

characterized by a discrete spectrum. The main dif- 

ference is in the nature of the large parameter, N or 
q. The similarity comes from the fact that if any of 
these parameters is large, the motion is controlled by 
a large number of frequencies which makes it very 
complicated. The study in quantum chaos helps to bet- 
ter understand the old mechanism for chaos in many- 
dimensional systems; in particular (for the latter), we 

conjecture the existence of characteristic time scales 
similar to those in quantum systems. 

The direct relation between these two seemingly 
different mechanisms of chaos can be traced back in 

nonlinear quantum models. One interesting example is 
the nonlinear Schr6dinger equation (NSE) [77] (for 
another example see Ref. [ 78 ] ). From a physical point 
of view it describes the motion of a quantum system 
interacting with many other freedoms whose state is 
expressed via the ~p function of the system itself (the 
so-called mean field approximation). This approxima- 
tion becomes exact in the limit N --, cxz which is a par- 
ticular case of the thermodynamic limit. Therefore, the 
mechanism for chaos in this system is the old one. On 
the other hand, NSE has generally exponentially un- 
stable solutions, hence, the mechanism of chaos here 
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is the new one. Thus, for this particular model both 

mechanisms describe the same physical process. We 
would like to emphasize that the true chaos present 

in these apparently few-dimensional quantum models 

actually refers to infinite-dimensional systems. 

A group of  related problems concerns the so-called 
quasidegeneracy, that is, exponentially small level 

spacings (s --~ 0 as q --~ ~ )  which result from many 

effects, particularly from various tunneling processes. 

In Ref. [79] the tunneling was studied numerically 

between two domains of  regular motion through a 

chaotic region which was found to accelerate the 

tunneling. 

For example in the case of  the kicked rotator in 

presence o f  strong localization, most quasienergy lev- 

els form narrow doublets because of  the parity con- 

servation and tunneling between two localized states 

centered at the angular momenta -4-m (m >> l << L) 

[ 80]. The splitting is expected to be similar to that for 

the Mott states (see, e.g., Ref. [41] ), 

1 8 E ~ e x p ( - C m / l ) ,  l ~ TDd,  C ~ 1. 
(7.2) 

This degeneracy must produce a singularity (cluster- 
ing) in the level spacing distribution 

p ( s )  ~ I / C s ,  s ~ O ,  (7.3) 

if computed for the levels of  both parities altogether. 

For the Mott states p ( s )  ~ const. -~ 0 for s ~ 0 

because the degeneracy is accidental [81].  We con- 

jecture that the doublets persist even for violated par- 

ity conservation if the system remains time reversible. 

I f  true it would be a generalization of  the puzzling 

Shnirelman theorem [82] (see also Ref. [39] ) on the 

multiplicity of  quantum spectra in classically nearly 

integrable (KAM) systems. The mechanism of  the 

latter multiplicity is still unclear. Also the band width 

[20] and energy growth rate [7] in quantum reso- 

nance in kicked rotator seem to be of  a similar nature. 
In the final conclusion we would like to make a few 

comments on the problem of  quantum measurement. 

The studies in quantum chaos suggest that it may have 
a close relation to this problem [ 11 ]. First the mea- 

surement device is by purpose a macroscopic system 
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for which the classical description is a very good ap- 

proximation. In such a system the true chaos with ex- 

ponential instability is quite possible. The chaos in the 
measurement classical device is not only possible but 

unavoidable since the measurement system has to be, 
by purpose again, a highly unstable system. Indeed, 

a microscopic intervention produces here the macro- 

scopic effect. The importance of  chaos for the quan- 

tum measurement is in that it destroys the coherence 

of  the initial pure quantum state to be measured con- 

verting it into an incoherent mixture. In the existing 

theories of  the quantum measurement this is described 

as the effect of  the external noise [83] .  The chaos 
theory allows to get rid of  the unsatisfactory effect of  

noise and to develop a purely dynamical theory for the 

loss of  quantum coherence (see also Ref. [84] ). But 

this is not yet the whole story. Indeed, besides the loss 

of  coherence the most important effect of  the quan- 

tum measurement is the redistribution of  probabilities 

] 012 according to the result of  the measurement, the 

famous ~p-collapse, which remains to be explained. 

Recently, some attempts, which are still to be under- 

stood and evaluated, were made to resolve this latter 

problem [85].  So far we would like simply to men- 

tion that these attempts are trying to make use of  the 

nonlinear "semiquantum" equations briefly discussed 
above in this section. 
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