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Shnirelman Peak in Level Spacing Statistics
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The first results on statistical properties of quantum quasidegeneracy are presented. A physical
interpretation of the Shnirelman theorem which predicted bulk quasidegeneracy is given. Conditions
for the strong impact of degeneracy on quantum level statistics are formulated, which allow us to extend
the application of the Shnirelman theorem to a broad class of quantum systems.
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Energy level statistics is one of the most important and
well studied characteristics of quantum systems. Particu-
larly, it is commonly assumed by now [1] that in the
limit of classically completely integrable systems the dis-
tribution of nearest-neighbor level spacings is Poissonian
(independent levels) [2]. In the opposite limit of classi-
cally chaotic systems this distribution is characterized by
level repulsion and, for ergodic eigenfunctions, is gen-
erally given by the Wigner-Dyson law [3]. In the in-
termediate nearly integrable [Kolmogorov-Arnol’d-Moser
(KAM)] region various expressions were suggested to de-
scribe a smooth transition between the above statistics
[4,5]. Such behavior was well confirmed by many nu-
merical experiments with various dynamical models (see,
e.g., [6] and references therein).

However, this picture seems to be in a sharp contra-
diction with an old theorem due to Shnirelman [7]. This
theorem states that for a classically nearly integrable sys-
tem at least each second level spacing in the correspond-
ing quantum system becomes exponentially small in the
quasiclassical domain. This would imply a big narrow
peak in the distribution of nearest-neighbor level spacings
(level clustering). This result is especially surprising as
no special symmetry was assumed in a particular model
considered by Shnirelman. However, the time-reversal
symmetry holds in such a model. Formally, the theo-
rem states that the spectrum A; is asymptotically multiple,
i.e., for each M > 0 there exists Cy > 0 such that
min()\k — Ai—1,Ak+1 — Ak) < CMA;M. In the first for-
mulation the theorem had been proved for a geodesic flow
on a two-dimensional torus (some nearly integrable bil-
liards), while in the second formulation its applicability
had been extended to a broader class of two-dimensional
nearly integrable systems with at least four invariant tori
[7]. To the best of our knowledge no physical interpreta-
tion of this theorem has been given as yet.

In this Letter we present the first numerical results
on this new phenomenon which allows us to give a
plausible interpretation of the theorem and to extend its
implications onto a broad class of quantum systems. Our
interpretation is based on the conception of quasiclassical
degeneracy destroyed by tunneling. Similar phenomena
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in the presence of spatial symmetry were studied in many
papers (see, e.g., [8] and references therein) but the effect
of time reversibility on level statistics in absence of spatial
symmetry was not considered to our knowledge. In some
sense the degeneracy between the states connected by
time-reversal symmetry is destroyed by tunneling between
the future and the past. Such a situation corresponds to a
double well in momentum space.

As a simple model we use the kicked rotator on a torus
[9] described by the following unitary matrix:

Unn = gexp{—igln + @ + (m + @)’}

N,
X > exp[—iV(6;) — i(n — m)6;]. (1)
J==Ni i

Here V(0;) = k(cos@; — ysin26;), k is the perturbation
strength of the kick, T is the period of the perturbation,
N = 2N; + 1 is the total number of states, §;, = 27 j/N
is spatial variable, and n is momentum (% = 1). The time-
reversal invariance corresponds to U, , = U—_p —,.

The quasiclassical region we are interested in corre-
sponds to big quantum parameters k¥ and N and small
quantum parameter 7. The classical parameter K = kT
determines the type of classical motion, K << 1 corre-
sponding to nearly integrable motion while K > 1 de-
scribes chaotic motion. The second classical parameter,
integer r = TN /2w, determines the number of primary
classical resonances on a torus. The parameter « has
the meaning of magnetic field violating the time-reversal
symmetry. Another parameter y controls the spatial sym-
metry which is completely destroyed for y ~ 1 [10].
Usually we consider the cases with @« = 0 and y = 1/2,
when only time-reversal symmetry remains. To ana-
lyze the properties of the level spacing statistics p(s) we
diagonalized the matrix U,, for different values of the
parameter k& from a fixed interval, so that the total spac-
ing statistics was always equal to 10000. The normal-
ized level spacing s was defined as a difference between
nearest quasienergies divided by the average spacing for
all levels 27 /N.

Our results for level spacing statistics in the classical
KAM region without spatial symmetry are presented in
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FIG. 1. Level spacing distribution p(s) in model (1) with
a =0 and y = 1/2: points connected by the dashed line are
fork =6 — 10, T = 47 /N = 0.025, r = 2, and N = 501; the
solid line gives Poisson distribution with a 62% fraction of all
spacings; the circles are for k = 25—30, 7 = 407w /N, N = 501,
and D/N = 1.5; and the full line shows the Wigner distribution.
Total spacing statistics is 10 000.

Figs. 1 and 2 (y # 0). A huge peak in the first bin of
the histogram (Fig. 1) clearly demonstrates the existence
of global quasidegeneracy in a qualitative accordance
with the Shnirelman theorem [7]. We emphasize that
such a peak appears only when one considers all level
spacings without fixing any symmetry, as was proposed
in [11]. The separation of levels by symmetry is the
usual practice in the studies of level statistics which
was apparently the main cause of missing this peak in
previous numerical studies. It is important to distinguish
two qualitatively different situations. If there is exact
level degeneracy due to some continuous symmetry then
such a peak has the trivial shape of a delta function.
However, as is well known, an exact discrete symmetry
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FIG. 2. Normalized integral level spacing distribution I(s) =
NP(s): the full lines are for a« = 0; N = 501, kK = 6—10;
N =251, k =3-5; and N = 127, k = 1.5—2.5. The dashed
lines are for @ = 1.41 X 107° (left) and 1.41 X 107° (right),
N = 251. In all cases r = 2.

does not imply generally the exact degeneracy but only a
quasidegeneracy. In this case the peak has a finite width
and contains important information about the structure of
the quantum system.

The distribution out of the peak can be fitted by a
renormalized Poisson distribution p(s) = o?exp(—os).
The quantity 1 — o has the meaning of the fraction of
degenerate levels which form the Shnirelman peak while
o gives the fraction of the states in the Poissonian tail.
For the case in Fig. 1 o = 0.62, so that the total fraction
of levels in the peak is approximately 0.38. This leads
to the increase of the average level spacing in 1/o times,
hence, o in the exponent.

A visible difference of the total probability in the
peak from 50% predicted by the Shnirelman theorem can
be understood on the following grounds. The origin of
this difference, as far as we understand it, is due to
the fact that the theorem was proved for a particular
geodesic flow where all trajectories are actually rotating
even though this was not explicitly formulated. In our
model (1) in addition there are also oscillating trajectories
within the main resonance. In the quasiclassical case
the splitting between the different directions of rotation
is exponentially small because of the tunneling between
these two classically separated trajectories as was shown
in [8] for the time and spatial symmetry case. However,
for oscillating trajectories both directions of motion are
coupled classically and therefore the corresponding level
splitting is big. Hence, the oscillating states in the main
resonances at n = 0, N/2 do not contribute to the peak.
The fraction of such states in the quasiclassical case is
determined by the relative phase space area of the main
resonances which is equal to p = 6.64\/K/2/m?, for the
case of Fig. 1 with r = 2. The averaging of /K over
the interval of K variation in Fig. 1 gives (VK ) =~ 0.45,
so that the fraction of the oscillating states is p = 0.21.
Then, the expected fraction in the peak is 1 — o = (1 —
p)/2 = 0.40, that is in good agreement with the numerical
value 0.38.

The resolution of the peak is presented in Fig. 2 where
the spacing integral probability P(s) is normalized to
the full number of levels in each matrix [I(s) = NP(s)].
Three different regions are clearly seen. The rightmost
steep increase of I(s) corresponds to the Poissonian tail
in Fig. 1. The leftmost steep drop is apparently due to
numerical errors. The most interesting for us is the middle
region which represents the structure of the Shnirelman
peak. Approximately, the dependence of 7 on Ins is linear
here which corresponds to the exponential splitting of the
levels

s = Aexp(—Zn/lSp), 2)

where 2n is the distance in momentum between the two
states —n, +n related by the time reversal. This is a
usual rough estimate for the energy splitting AE due
to tunneling with AE ~ exp(—S/#) and classical action
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along the path S ~ fin. The maximal distance on the
torus is 2n = N/2 that determines the minimal value
of s. The splitting is characterized by the parameter
l;p, which in this case has the meaning of tunneling
length, and A is some constant. With such a definition
of [y, the slope is dl/d Ins = I,, since the integral
probability P = 2n/N. As is seen from Fig. 2, the
slope for the fixed classical structure (K = const,r =
2) is approximately independent on quantum parameters
N,k,T. The tunneling length is measured in the number
of quantum states and is equal, /s, =~ 1.8.

The parameter I, can be roughly estimated from the
splitting AE as a single-kick effect due to the cou-
pling matrix element U, -, ~ J,(k/2). This gives [, =
2/1In(167rn/eKN). Notice that [, slowly depends on
classical parameters only, including n/N. For the parame-
ters in Fig. 2 and n/N = 1/8, we obtain [, ~ 0.8, which
gives a correct order of magnitude. The dependence [,
on n ~ Ins (2) implies very slow variation /s, (s) as Inlns.

The differential distribution of level spacings is given
by

pls) = lsp/NS
whence the average spacing in the peak (s) = IspSmax/N,
where snax ~ 1/N corresponds to the crossover of the dis-
tribution (3) with the Poissonian one [ p(s) = 1]. Notice
that the average spacing in the peak decreases only as a
power law of the quantum parameter N in spite of expo-
nential tunneling (2).

The high sensitivity of the Shnirelman peak to the
violation of time-reversal symmetry is demonstrated in
Fig. 2. A small a produces a sharp cutoff of the
distribution on a small spacing s., while for larger s
the distribution /(s) remains practically unchanged. The
estimate for s. can be obtained from the comparison of the
unperturbed level splitting, AE ~ TaN/2 [see Eq. (1)],
with the critical level splitting 27s./N, that gives s, ~
aTN?/47, in a good agreement with the data in Fig. 2.

In the KAM region the motion is integrable for most
initial conditions. This means that the Shnirelman peak
is essentially determined by the quasidegeneracy of inte-
grable motion. Hence, the effect must generally persist
in a completely integrable system as well. Indeed, such
quasidegeneracy occurs, for example, in the simple (not
kicked) pendulum as is clear from the well known solu-
tions to the Mathieu equation. In this system there are
both spatial and time-reversal symmetries. However, the
peak is produced only by time-reversal symmetry since
the states of the opposite spatial symmetry are not sepa-
rated in the phase space. Also in our model (1) the peak
disappears if only spatial symmetry remains (y = 0, a #
0). Another similar situation corresponds to elliptic
billiards. Indeed, here tunneling between different direc-
tions of rotations should give exponentially small split-
ting between levels. This degeneracy is connected with
time-reversal symmetry and not with spatial symmetry.
Therefore, the degeneracy will not disappear after non-
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symmetric spatial deformation of the billiards. Of course,
such deformation should not be very strong to keep the
system quasi-integrable and to have different directions of
rotations separated.

Much more interesting is the opposite limit of classi-
cally chaotic motion. In this case the quasidegeneracy
depends on the structure of eigenfunctions. If they are er-
godic as in the classical limit [12] then the states with
the opposite angular momentum (—n, +n) are directly
related by the diffusion and hence the splitting is compa-
rable with the average level spacing. This case is demon-
strated in Fig. 1 (open circles). The peak is absent in spite
of the time-reversal symmetry. However, if the quantum
eigenstates are strongly localized (the localization length
[ < N), the exponential degeneracy reappears [13] (see
also [11] and references therein). An example of level
statistics in this case is given in Fig. 3. Again, the de-
pendence of I on Ins is approximately linear in the region
of the peak but the splitting parameter I, is now much
bigger and related to the localization length (I, ~ I).
The latter is determined by the classical diffusion rate
D ~ [ [14]. In our model for v = 1/2, the diffusion rate

~ k2, so that according to the data in Fig. 3 the ratio
lyy/D =~ 1.8.

Our results allow us to formulate more general con-
ditions for the appearance of the Shnirelman peak in the
level spacing distribution. First, the quantum system must
have a discrete symmetry. Second (a new condition), the
states with opposite symmetry must be separated in the
phase space either classically (as in the KAM region in
our example in Fig. 2) or quantum mechanically (as for
the strongly localized chaotic eigenfunctions in Fig. 3).
The second condition was not explicitly formulated in the
Shnirelman theorem [7] but was discussed in detail in [&].
On the one hand, the latter condition restricts the applica-
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FIG. 3. Integral level spacing distribution for N = 501, k =
2.5-3, T = 320w /N, and D/N = 0.015 (full line); Poisson
distribution is shown by the dashed line.
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bility of the Shnirelman theorem. On the other hand, our
results show that the effect itself can be extended on both
completely integrable and chaotic systems (the latter case
was also conjectured in [11]).

In usual random matrix models the Shnirelman peak
is absent in spite of the time-reversal symmetry of the
corresponding Hamiltonian. This can be understood in
the following way. For full matrices the second condition
is violated because of the ergodicity of the eigenfunctions.
For band matrices with localization the time symmetry
is usually fixed. To recover the effect in the latter
case one needs to introduce explicitly the symmetry by
the condition H,,, = H—,, —,, in addition to the usual
condition H,,, = H,,. An interesting related example
is the Anderson localization in a random but spatially
symmetric potential: V(x) = V(—x). On the other hand,
the time-reversal symmetry in this example does not
help due to violation of the second condition: the states
with opposite momenta are strongly coupled by the
backscattering in a random potential.

An interesting direction of further studies of the
Shnirelman effect is related to many-dimensional systems
where we would expect a much more rich structure of
quasidegeneracy.
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