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Quantum Chaos and Ergodic Theory

B.Y. Chirikov

Budker Institute of Nuclear Physics
630090 Novosibirsk, USSR

Abstract

The conception of quantum chaos is described in some detail. The most striking
feature of this novel phenomenon is in that all the properties of classical dynamical
chaos are retained but, typically, on finite and different time scales only. The nec-
essary reformulation of the ergodic and algorithmic theories, as parts of the general
theory of dynamical systems, is discussed. A number of specific unsolved problems
is listed.

1. Introduction

This paper is primarily addressed to mathematicians with the main purpose
of explaining new physical ideas in the so-called quantum chaos which has
recently been attracting ever growing interest of many researchers [1-5, 10].

The breakthrough in understanding of this phenomenon has been achiev-
ed, particularly, due to a new philosophy accepted, explicitly or more often
implicitly, in most studies of quantum chaos. Namely, the whole physical
problem of quantum dynamics was separated into two different parts: (i) the
proper quantum motion described by a specific dynamical variable ¢(t) which
obeys, e.g., the Schrodinger equation, and (ii) the quantum measurement
including 1 collapse which, as yet, has no dynamical description. In this
way one can single out the vague problem of the fundamental randomness in
quantum mechanics which is related to the second part only, and which in a
sense is foreign to the proper quantum system. The remaining first part then
fits perfectly the general theory of dynamical systems.

The importance of quantum chaos is not only in that it represents a new
unexplored field of nonintegrable quantum dynamics with many applications,
but also, and this is most interesting for the fundamental science, in recon-
ciling the two seemingly different dynamical mechanisms for the statistical
laws in physics.
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Historically, the first mechanism is related to the thermodynamic limit
N — oo in which the completely integrable system becomes chaotic for typi-
cal (random) initial conditions (see, e.g.,[6]). A natural question—what hap-
pens for large but finite number of freedoms N—has still no rigorous answer
but the new phenomenon of quantum chaos, at least, presents an insight
into this problem too. We call this mechanism, which is equally applicable in
both classical and quantum mechanics, the traditional statistical mechanics
(TSM).

The second (new) mechanism is based upon the strong (exponential) local
instability of motion characterized by positive Lyapunov’s exponent A > 0
[6, 7]. It is not at all restricted to large N, and is possible, e.g., for N > 1 in
a Hamiltonian system. However, this mechanism has been considered, until
recently, in the classical mechanics only. We term this the dynamical chaos
as it does not require any random parameters or any noise in the equations
of motion. .

The quantum system bounded in phase space has a discrete energy (fre-
quency) spectrum and is similar, in this respect, to the finite-N TSM. More-
over, such quantum systems are even completely integrable in the Hilbert
space (see, e.g. [3]). Yet, the fundamental correspondence principle requires
the transition to classical mechanics, including dynamical chaos, in the classi-
cal limit ¢ — oo, where ¢ is some quasi-classical parameter, e.g., the quantum
number n (the action variable, i = 1). Again, a natural physical conjecture
is that for finite but large ¢ there must be some chaos similar to finite-N
TSM. Yet, in a chaotic quantum system the number of degrees of freedom
N does not need to be large similarly to the classical chaos. The quantum
counterpart of N is g, both quantities determining the number of frequencies
which control the motion. Thus, mathematically, the problem of quantum
chaos is the same as that for the finite-V TSM.

The main difficulty here (especially for mathematicians) is that the both
problems suggest some chaos in the discrete spectrum which is completely
contrary to the existing theory of dynamical systems and to the ergodic
theory where such a spectrum corresponds to the opposite limit of regular
motion.

The ultimate origin of the quantum integrability is discreteness of the
phase space (but not, as yet, of the space-time!) or, in the modern mathe-
matical language, the noncommutative geometry of the former.

As an illustration I will make use of the simple model described classically
by the standard map (SM) [7, 8]:

7n=n+ksinf; 6=6+Tn (1)

with action-angle variables n, 8, and perturbation parameters k, T. The quan-
tized standard map (QSM) is given by [9, 10]

¥ = exp(—ik cos f) exp (~i€-ﬁ2) (/. (2)
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where the momentum operator 7 = —id/86. To provide the complete bound-
edness of the motion we consider SM on a torus of circumference (in n)
2mm
L=—H 3
- 3

with integer m to avoid discontinuities. The quasi-classical transition cor-
responds to quantum parameters k — oo, T — 0, L — oo while classical
parameters K = kT = const, and m = LT /2w = const remain unchanged.

QSM models the energy shell of a conserved system which is the quantum
counterpart of the classical energy surface.

In the studies of dynamical systems, both classical and quantal, most
problems unreachable for rigorous mathematical analysis are treated “numer-
ically” using the computer as a universal model. With all obvious drawbacks
and limitations such “numerical experiments” have very important advan-
tage as compared to the laboratory experiments, namely, they provide the
complete information about the system under study. In quantum mechan-
ics this advantage becomes crucial as in the laboratory one cannot observe
(measure) the quantum system without a radical change of its dynamics.

2. Definition of Quantum Chaos

The common definition of classical chaos in physical literature is the strongly
unstable motion, that is one with positive Lyapunov’s exponents A > 0.
The Alekseev-Brudno theorem then implies that almost all trajectories of
such a motion are unpredictable, or random (see [11]). A similar definition
of quantum chaos, which still has adherents among both mathematicians as
well as a few physicists, fails because, for the bounded systems, the set of
such motions is empty due to the discreteness of the phase space and, hence,
of the spectrum.

The common definition of quantum chaos is quantum dynamics of classi-
cally chaotic systems whatever this might happen to be. Logically, this is a
simple and clear definition. Yet, in my opinion, it is completely inadequate
from the physical viewpoint just because such a chaos may turn out to be a
perfectly regular motion as, for example, in case of the perturbative localiza-
tion [12]. In QSM this corresponds to k < 1 when all quantum transitions are
suppressed independent of classical parameter K which controls the chaos.

I would like to define quantum chaos in such a way as to include some
essential part of classical chaos. The best definition I have managed to invent
so far reads: the quantum chaos is statistical relazation in a discrete spectrum.
This definition is certainly in contradiction to the existing ergodic theory as
the relaxation (particularly, correlation decay) requires the mixing, hence, a
continuous spectrum. In what follows I will try to explain a new, modified,
concept of mixing which is necessary to describe the peculiar phenomena of
quantum chaos.
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3. The Time Scales of Quantum Dynamics

The first numerical experiments with QSM already revealed the quantum
diffusion in n close to the classical one under conditions K > 1 (classical
stability border) and k > 1 (quantum stability border) [9]. Further studies
confirmed this conclusion and showed that the former followed the latter in
all details but on a finite time interval only [10, 13]. The latter fact was the
clue to understanding the dynamical mechanism of the diffusion, which is
apparently an aperiodic process, in a discrete spectrum. Indeed, the funda-
mental uncertainty principle implies that the discreteness of the spectrum is
not resolved for sufficiently short time intervals. Whence, the estimate for the
diffusion (relazation) time scale:

tR~po<p. (4)

Here p is the density of (quasi)energy levels, and py is the same for the
operative eigenstates which are actually present in the initial quantum state
1(0). In QSM the quasi-energies are determined mod 27 /T and, surprisingly,
p = LT/2m = m is a classical parameter (3). As to pg, it depends on the
dynamics and is given by the estimate [10, 13]:

_ _ {(4n)?) _m

T =R DETT s ()
Here 7 is discrete map’s time (the number of iterations), and D is the classi-
cal diffusion rate. This remarkable expression relates an essentially quantum
characteristic (7r) to the classical one (D). The latter inequality in Eq. (5)
follows from that in Eq. (4), and is explained by the boundedness of QSM on
a torus.

In the quasi-classical region TR ~ k2 — oo (see Eq.(1)) in accordance
with the correspondence principle. Yet, the transition to the classical limit is
(conceptually) difficult to understand (and still more to accept) as it involves
two limits (k — oo and ¢t — oo) which do not commute. The second limit is
related to the existing ergodic theory which is asymptotic in ¢. Meanwhile the
new phenomenon of quantum chaos requires the modification of the theory
to a finite time which is a difficult mathematical problem still to be solved.
The main difficulty is in that even the distinction between the two opposite
limits in the ergodic theory—discrete and continuous spectra—is asymptotic
only.

In a relatively new algorithmic theory of dynamical systems the finite-
time trajectories are also considered but, as yet, with the strongest statis-
tical property—the randomness—only, which is generally unnecessary for a
meaningful statistical description.

Besides the relatively long time scale (5) there is another one given by
the estimate [14, 10]
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Ing T|InT|

N E T (& )2) -

where ¢ is some (large) quasi-classical parameter, and where the latter ex-
pression holds for QSM. It may be termed the random time scale since here
the quantum motion of a narrow wave packet is as random as classical tra-
jectories according to the Ehrenfest theorem. This was well confirmed in a
number of numerical experiments [15]. The physical meaning of ¢, is in the
fast spreading of a wave packet due to the strong local instability of classical
motion.

Even though the random time scale ¢, is very short it grows indefinitely
in the quasi-classical region (¢ — 0o, T' — 0), again in agreement with the
correspondence principle. ‘

The big ratio tg/t,. implies another peculiarity of quantum diffusion: it
is dynamically stable as was demonstrated in striking numerical experiments
[16].

4. The Quantum Steady State

As a result of quantum diffusion and relaxation some steady state is formed
whose nature depends on the ergodicity parameter

D

ASTET @
where [, is the so-called localization length (see Eq.(10) below). If A > 1
the quantum steady state is close (on average) to the classical statistical
equilibrium which is described by ergodic phase density g.(n) = const (for
SM on a torus) where n is continuous variable. In quantum mechanics n is
integer, and the quantum phase density g,(n, 7) in the steady state fluctuates
[17, 5], the ergodicity description can be given by relation

oy

—_— 1
9a(n) = ol TIE = 7 ®)

where the bar denotes time averaging.

According to numerical experiments the ergodicity does not depend on
the initial state which implies that all eigenfunctions ¢,,(n) are also ergodic,
on average, with Gaussian fluctuations [17, 5]:

1
(om(mI?) = T - )

This is always the case sufficiently far in the quasi-classical region as A ~
k?/L ~ Kk/m — oo with k — oo (K = kT and m = LT/2r remain
constant) in accordance with Shnirelman’s theorem [18].
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An interesting unsolved problem is the microstructure of ergodic eigen-
functions, particularly, the so-called ‘scars’ [29] which reveal the set of clas-
sical periodic trajectories (see [30] for the theory of scars).

Finite fluctuations (9) show that a single chaotic quantum system, de-
scribed by ¥s(n, 7), represents, in a sense, finite statistical ensemble of M ~ L
“particles”. The fluctuations can result in partial recurrences toward the ini-
tial state but the recurrence time is much longer as compared to the relaxation
time scale 7r and sharply depends on the recurrence domain.

If A « 1 the quantum steady state is qualitatively different from the
classical one. Namely, it is localized in n within the region of size [, around the
initial state if the size of the latter o <« l;. Numerical experiments show that
the phase space density, or the quantum statistical measure, is approximately
exponential [10, 13]

1 2[n
9s(n) = ;- exp (— } |> ; ls=D (10)
8 8

for initial g(n,0) = 6(n). The quantum ensemble is now characterized by
M ~ 1, ~ k? “particles”.

The relaxation to this steady state is called diffusion localization, and it
is described approximately by the diffusion equation [19, 28|

0 1 0 0 0

99 _10 09 99

Or’  28n On~ On (11)

for initial g(n,0) = é6(n), where the signs “+” correspond to n # 1, and where
new time

7 =71gln (1 + —T—> (12)
TR

accounts for the discrete motion spectrum [20]. The last term in Eq. (11) de-

scribes “backscattering” of 1) wave propagating in n which eventually results

in the diffusion localization. The fitting parameter 7 ~ 2D was derived from

the best numerical data available (see Ref. [21], where a different theory of

diffusion localization was also developed).

5. Concluding Remarks

In conclusion I would like to briefly mention a few important results for un-
bounded quantum motion. In SM this corresponds to L — oo. First, there is
an interesting analogy between dynamical localization in momentum space
and the celebrated Anderson localization in disordered solids which is a sta-
tistical theory. It was discovered in [22] and essentially developed in [23]. The
analogy is based upon (and restricted by) the equations for eigenfunctions.
The most striking (and less known) difference between the two problems is in
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the absence of a diffusion regime in 1D solids [24]. This is because the energy
level density of the operative eigenfunctions in solids
ldp 1

pONd_ENaNtR (13)
which is the localization (relaxation) time scale, is always of the order of the
time interval for a free spreading of the initial wave packet at characteristic
velocity u.

Another similarity between the two problems is in that the Bloch extended
states in a periodic potential correspond to a peculiar quantum resonance in
QSM for rational T'/4r [9, 10].

An interesting open question is the dynamics for irrational Liouville’s
(transcendental) T'/4r.

As was proved in [25] the motion can be unbounded in this case unlike a
typical irrational value. The latter is the result of numerical experiments, no
rigorous proof of localization for k >> 1 has been found as yet.

In [28] the conjecture is put forward, supported by some semiqualitative
considerations, that depending on a particular Liouville’s number the broad
range of motions is possible, from a purely resonant one (|n] ~ 7) down to
complete localization (|n| < ).

If quantum motion is not only unbounded but its rate in unbounded
variables is exponential, then “true” chaos (not restricted to a finite time
scale) can occur. A few exotic examples together with considerations from
different viewpoints can be found in [10, 26]. However, such chaos does not
seem to be a typical quantum dynamics.

The final remark is that the quantum chaos, as defined in Sect. 2, com-
prises not only quantum systems but also any linear, particularly classical,
waves [27]. So, it is essentially the linear wave chaos. Moreover, a similar
mechanism also works in completely integrable nonlinear systems like the
Toda lattice, for example [31]. From a mathematical point of view all these
new ideas require reconsideration of the existing ergodic theory. Perhaps it is
better to say that a new ergodic theory is wanted which, instead of benefiting
from the asymptotic approximation (|t| — oo or N — 00), could analyze the
finite-time statistical properties of dynamical systems. In my opinion, this is
the most important conclusion emerging from first attempts to comprehend
quantum chaos.
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