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Abstract 

First theoretical and numerical results on the global structure of the energy shell, the Green function spectra and the 
eigenfunctions, both localized and ergodic, are presented for the Wigner band random matrix ensemble, which is believed to 
provide a description for a broad class of conservative quantum systems which are strongly chaotic in the classical limit. In 
case of quantum localization the eigenfunctions are shown to be typically narrow and solid, with centers randomly scattered 
within the semicircle energy shell while the Green function spectral density (local spectral density of states) is extended 
over the whole shell, but sparse. 

PACS: 05.45.+b 

One of the main results in the study of the so-called 
quantum chaos has been the discovery of quantum dy- 
namical localization as a mesoscopic quasi-classical 
phenomenon [ 11. This phenomenon has been widely 
studied and confirmed by many researchers for dy- 
namical models described by maps. Contrary to com- 
mon belief, maps describe not only time-dependent 
systems, but also conservative ones (in the form of 
Poincart maps). On the other hand, to our knowledge, 
there are no direct studies of quantum dynamical lo- 
calization in bounded conservative models; moreover, 

the appearance of dynamical localization in such sys- 

tems due to quantum effects is challenged by some 

researchers. The existence of localization in conser- 
vative systems would restrict quantum distributions 
to smaller regions of phase space than classically al- 
lowed, and would therefore introduce significant de- 

viations from ergodicity. 
We have addressed this problem on the Wigner band 

random matrix (WBRM) model, which was intro- 
duced by Wigner 40 years ago [2] for the descrip- 
tion of complex, conservative quantum systems like 
atomic nuclei. Due to severe mathematical difficul- 
ties, the random matrix theory (RMT) immediately 
turned to the much simpler case of statistically homo- 
geneous (full) matrices, for which impressive theoret- 

ical results have been achieved (see, e.g., Refs. [ 31) . 
However, full matrices describe local chaotic struc- 
tures only, and this limitation is often unacceptable, 
for instance in the case of atoms [4,5]. 

Generally speaking, RMT is a statistical theory of 
systems with discrete energy (and frequency) spec- 
trum. Since the latter is a typical property of quantum 
dynamical chaos [ 61, RMT provides a statistical de- 
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scription of quantum chaos and, what is very impor- 
tant, one which does not involve any coupling to a ther- 
mal bath, which is a standard element in most statis- 
tical theories. Moreover, a single matrix from a given 
statistical ensemble represents the typical (generic) 
dynamical system of a given class, characterized by 
a few matrix parameters. This makes an important 
bridge between dynamical and statistical description 
of quantum chaos. 

To the extent that band random matrices can be 
taken as models for few-freedoms conservative sys- 
tems which are classically strongly chaotic (in par- 
ticular ergodic) on a compact energy surface [ 7,4,8], 
the results presented in this Letter provide the first 
characterization of the properties of quantum chaos in 
momentum space for quantum systems of this class. 

We consider real Hamiltonian matrices of a rather 
general type (more specific random matrix models 
have been recently proposed in Ref. 191) 

H,,,, = ~n&n + “,,n (m,n= l,..., N), (1) 

where off-diagonal matrix elements v,, = v,,, are 
statistically independent, Gaussian random variables, 
with (vnm) = 0 and (vz,,,) = v*, if jrn - IZI < b, and 
are zero otherwise. In a classical picture, WRRMs like 
( 1) would correspond to classical Hamiltonians of the 

form 

H=Ho+l( (2) 

where the perturbation V is usually assumed to be suf- 
ficiently small, while the unperturbed Hamiltonian HO 

is completely integrable. In the quantum model the 
matrix ( 1) is given in the basis of the unperturbed 
eigenstates & of fit). Correspondingly, the fluctua- 
tions of unperturbed energy levels E, are taken as Pois- 
sonian. Although in a completely integrable quantum 
system there is a quantum number for each freedom, 
we suppose that the unperturbed states are ordered 
according to increasing energy, and we thereby label 
them by a single number rz. The most important char- 
acteristic of WBRM is the average level density p, 

P -’ = (En - e,_t). (3) 

Here and below, the averaging is understood either 
over disorder (that is, over many random matrices) or 
within a single, sufficiently large, matrix. Both ways 

are equivalent owing to assumed independence of ma- 
trix elements. 

In the classical case, the unperturbed energy EO is 
not constant along a classical chaotic trajectory of the 
full Hamiltonian with a given total energy H = E. In- 
stead, it sweeps a range of values, or “energy shell”, 
AEo = AV, and is distributed inside this shell accord- 
ing to a measure WE(EO). The form of W,(Eo) de- 
pends on the form of the perturbation I/; we will call 
this measure “ergodic” because it is determined by 
the ergodic (microcanonical) measure on the given 
energy surface H = E. The quantum analog of this 
measure characterizes the distribution of the “ergodic” 
eigenfunction (EF) in the unperturbed basis. 

Conversely, if we keep the unperturbed energy EO 

fixed, the bundle of trajectories of the total Hamilto- 
nian H, which reach the surface HO = Eo, has a dis- 
tribution in the total energy E which is described by 
a measure WE,,(E) . In the quantum case, this mea- 
sure corresponds to the energy spectrum of the Green 
function (GFS) at energy Eo, and has received differ- 
ent names, such as “strength function”, “local spectral 
density of states”, “spectral measure” of the unper- 
turbed eigenstate at energy Eo. 

An expression for the latter measure has been given 
by Wigner [ 21. For a typical perturbation, represented 
by a WBRM, the average measure 
depends on the Wigner parameter, 

q= (P”)* 
b 

49 = (m(E)) 

(4) 

and has the following limiting forms [2] (see also 
Refs. [ 11,12,7]), 

w(E) = --&&-, 
SC 

i-/2%- ?r 

= I9 + p/4 2 arctan ( l/n-q) ’ 

for IEl < EBW, q< 1 (5) 

Outside the specified energy intervals, both distribu- 
tions have exponentially small tails. Formulae (5) are 
valid provided pv > 1, which is the condition for 
strong coupling of neighboring unperturbed states by 
the perturbation. In the opposite case pv < 1 the effect 
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of the perturbation is small, and we have the so-called 
perturbative localization. 

In the limit q >> 1 we have the semicircle (SC) 

law and the width of the energy shell AE = 2E,, = 
4u& = 4fiEb > Eb where Eb = b/p is the half 
width (in energy) of the band. In the other limit, q < 
1, we have the Breit-Wigner (BW) distribution, of 
width AE = 2E~w = 2Eb, with the main part inside 
a width r = 2npv2 = 27rqEb << Et,. In all these 
expressions E is measured with respect to the center 
of the distribution. Since q < 1 requires pv < v’%, in 
the BW regime the perturbation is not strong enough 
to couple all states within one bandwidth. This means 
that the BW regime corresponds in fact to a sort of 
partial perturbative localization. 

The numerical results presented below are con- 
tained in the EF matrix C,,,, which connects exact 
eigenfunctions I+$~, , obtained by diagonalization of the 
Hamiltonian matrix ( 1) , to unperturbed basis states 

4 iI* 

(6) 

In what follows the eigenvalues E,, are ordered, so 
that E,, FZ m/p. 

From the matrix C,,,, we have found both the sta- 

tistical distribution W,,t (n) = C$,, of the eigenstates 
rclnl on the unperturbed ones r$,,, and the distribution 
w,(m) of the unperturbed eigenstates on the exact 
ones; the meaning of these distributions is similar to 
that of the classical W and w discussed above. We 
have then analyzed both distributions, and have com- 
pared their structures to each other and to the SC dis- 
tribution, paying special attention to localization. By 
localization we shall here mean a situation in which 
eigenfunctions are localized on a scale which is sig- 
nificantly smaller than the maximum one consistent 
with energy conservation. Indeed, the size of the re- 
gion which is populated by an eigenfunction (termed 
localization length in the following) is bounded from 
above by the ergodic localization length dce) = cpAE, 
which measures the maximum number of basis states 
coupled by the perturbation. This length characterizes 
the full width of the energy shell AE. The factor c 
depends on the definition of localization width (see 
Eq. (7) below). In other words, in a conservative 
quantum system there is always localization in energy, 
due to the existence of a finite AE [lo]. This fact, 

which is sometimes a source of confusion, is just a triv- 
ial consequence of energy conservation. Here we are 
interested in localization inside the shell [ IO], which 
can be caused by quantum effects. In this connection, 
the matrix size N is an irrelevant parameter, provided 
N >> dce) is large enough to avoid boundary effects. 
The quantum model ( 1) is thus defined by the three 
physical parameters p, v, and b. 

The localization length d,, of a distribution w,,(n) 
can be defined in several ways, We have used the so- 
called inverse participation ratio (see, e.g., Ref. [ 61)) 

d,’ = f c w;(n) 
II 

(7) 

and similarly for W,(m) . The numerical factor l/3 
accounts for fluctuations in individual distributions. 
These distributions are assumed to be Gaussian and 
independent [ 51. 

In order to suppress large fluctuations in individ- 
ual distributions of both types Vv, (n) and w, (m) , we 
have taken averages over 300 of them, chosen around 
the center of the spectrum. Since different distribu- 
tions cover different regions of the II (respectively, m) 
space, prior to averaging they have to be shifted into 
a common region. This we have done in two differ- 
ent ways, namely, either by counting the site label n 
in W,,(n) starting from the center of the energy shell 
i.e., from the reference site m (and vice versa in the 
case of w,,(m) ) (circles in Figs. 1, 2)) or from the 
center n,(m) of Wnl(n), defined by 

n,(m) = C Wnl(n) . n. (8) 
n 

The two types of average will be denoted by 

(W(n))J%L respectively. In particular, V(n) 
yields the average shape of an eigenstate (full line in 

Figs. 1, 2). 
First we shall discuss the distributions W,,(n) . In 

Ref. [lo] it was shown that the average localization 
length d z ((C, Wz, (n) ) -‘) obeys a scaling law of 
the form 

&=&-=I--e--“cl, 

where 

(9) 

ab2 ab3j2 
~=d(c)=4&v. (10) 
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Fig. 1. Structure of ergodic (a) and localized (b) eigenfunc- 
tions. Each figure corresponds to a single matrix with parameters 

N = 2560, D = 0.1, b = 16, p = 40, q = (p~)~/b = 1 (a), and 
N = 2400, v = 0.1, h = 10, p = 300, q = 90 (b). The fat full line 

is the semicircle law (5). Solid lines were obtained by averaging 

300 eigenfunctions with respect to their centers; circles, by aver- 

aging the same eigenfunctions with respect to the centers of their 

energy shells. In the ergodic case (a) A = 3.7, all distributions are 

close to one another apart from fluctuations. In the localized case 
(b) A = 0.24, the average with respect to centers n,(m) of the dis- 

tributions WnL(n) shows a clear localization with p = 0.24, while 
the other average remains close to a semicircle, with /3 = 0.99. 

Here a M 1.2; the factor c can be directly calculated 
from the limiting expression (5) for w, which gives 
c x 0.92. 

The empirical relation (9) has been found [lo] to 
hold in the whole interval A < 2.5 and was confirmed 
in the present studies up to A z 7 (the parameter A 
was introduced to describe energy level statistics in 
Ref. [ 131). 
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Fig. 2. Structure of the GFS (local DOS) for a single matrix, 

with the same parameters as for Fig. lb. The same averages as 
in Fig. 1 are shown, and unlike that case they are close to each 

other and to the semicircle law. 

The parameter h has been shown [ lo] to play the 
role of an ergodicity parameter because, when it is 
large, the localization length approaches its maximal 
value dce), which means that the eigenfunctions be- 
come ergodic, i.e., delocalized over the whole energy 
shell. Notice that in the BW region the ergodic lo- 
calization length dCe) = 71-pT = 2rr2bq, and A M 
ab/2q?r2 >> 1 [ 111 since q < 1 (and b > 1 in quasi- 
classical situations). Hence, localization is only pos- 
sible in the parameter range in which the local density 
of states follows the SC law. This domain is the main 
object of the present studies. 

In the case A >> 1 (Fig. la) we have found that the 
averaged distributions (W(n)), w(n) are fairly close 
to the SC law: a remarkable result, because that law 
was theoretically predicted for the other distribution, 
namely, for the GFS spectrum (w(m) ). We presume 
that the deviations from the SC law which are observed 
in the distribution W(n) are due to the not very large 
value of the ergodicity parameter (A = 3.7). The nu- 
merical values of the localization parameter (9) are 
p = 0.94 and p = 1 .?S for the two types of average, 
respectively, in a reasonable agreement with the aver- 
age ,& = 0.97 computed from (9) for A = 3.7. For 
finite q the average distributions of both types are bor- 
dered by two symmetric steep tails, which apparently 
fall down even faster than the simple exponential. The 
structure of these tails will be discussed in detail else- 
where. 
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Fig. 3. A comparison of the structure of eigenfunctions and of GFS 

in the localized case of Fig. lb. Solid vertical bars represent the 

widths An of individual eigenfunctions over the unperturbed basis. 

Horizontal dotted lines show the size Am of the local spectrum for 
individual basis states. Although all basis states have comparable 

sizes, close to the size of the energy shell, they are very sparse 
(p = 0.20), due to the fact that EFs are strongly localized, and 

irregularly scattered inside the energy shell. 

The structure of EFs is completely different in the 
case ,I < 1 (Fig. 1 b) . Whereas individual eigenstates 
exhibit large fluctuations, the main part of the aver- 
age distribution (with respect to the center nc) w(n) 
shows a clear evidence for exponential localization, 
with localization length in agreement with the empir- 
ical formula (9). The width of the main part is small 
(/3 = 0.24), which is again close to average /I& = 0.21 
for A = 0.24. We have found that the main part of the 
distribution can be represented reasonably well by a 
simple expression, 

iv(n) x5 
2/%-l 

cash (2n,/Z) ’ 
(11) 

where the parameter 2 is related to the localization 
length by I = 4rv2d. If, instead of averaging the EFs 
with respect to their centers, we average them with re- 
spect to the center of the energy shell, a nice SC (with 
some tails) reappears (Fig. lb, p = 0.99) in spite of 
localization. This shows that, in the average, the EFs 
homogeneously fill up the whole energy shell; in other 
words, their centers are randomly scattered within the 
shell (see also Fig. 3). The latter type of averaging 
provides a new method for calculating ergodic dce), 
and hence the important localization parameters P,j 

and h (9). 

Now we turn to the analysis, in the case h < 1, 
of the other type of distribution: the GFS, or local 
spectral density of states w,(m), which is obtained 
from the columns of the matrix C,,,. The structure 
of this distribution is quite different from that of EFs 
(represented by matrix rows). Averaging with respect 
to their centers or with respect to the shell center now 
yields similar results, which well fit the SC distribution 
in both cases (Fig. 2: p = 0.97 and 0.99, respectively, 
cf. Fig. lb with /3 = 0.24 and 0.99). So, GFS look 
extended, yet they are localized! This is clear from 
the average of the corresponding individual p-values: 
(p) = 0.20. The explanation of this apparent paradox 
is that, though each GFS is extended over the shell, it 
is sparse, that is, it contains many “holes”. 

The difference in the structure between EFs and 
GFS is clear from Fig. 3, where solid vertical bars 
show the main parts of EFs. GFS are represented by 
horizontal dashed lines whose sparsity immediately 
follows from scattered localized EFs. Our physical in- 
terpretation of the above described structure is the fol- 
lowing. Spectral sparsity decreases the level density 
of the operative EFs (that is, the ones which are actu- 
ally excited in a given initial state). This is the essen- 
tial mechanism of quantum localization, via decreas- 
ing the relaxation time scale [ 6,111. Yet, the initial 
diffusion and relaxation are still classical, similar to 
the ergodic case, which requires extended GFS. On 
the other hand, EFs are directly related to the steady- 
state distribution, both being solid because of the ho- 
mogeneous diffusion during the statistical relaxation. 
One should note that the sparse structure of the GFS 
in the case of localization is similar to that for stan- 
dard BRMs without the leading diagonal (E, = 0 in 
( 1) ), where the energy shell is determined by the size 
of the matrix. 

In conclusion, we have analyzed the structure of 
the GFS (local spectral density of states) and of the 
eigenfunctions for a class of Random Matrices which 
comes much closer to the structure of the real Hamil- 
tonian matrix of a conservative system than the con- 
ventional full Random Matrices. We have provided 
numerical evidence for the existence of both a delo- 
calized regime, in which eigenfunctions have maxi- 
mal size, with an average shape close to the semicircle 
law, and of a localized regime, in which the size of 
EFs is much smaller than the semicircle width. More 
precisely, quantum localization introduces a symme- 
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try breaking, in the sense that the eigenfunctions are 
solid, narrow and randomly scattered inside the en- 
ergy shell, while the GFS remain extended over the 
whole shell but become sparse. In classical language, 
the latter situation means that, although classical tra- 
jectories are ergodically distributed over the whole en- 
ergy surface, the quantum eigenfunctions cover but a 
small region of the latter. Thus our results indicate that 
quantum localization is a more general phenomenon 
than commonly believed, and suggest similar inves- 
tigations for realistic Hamiltonian, conservative, clas- 
sically (strongly) chaotic systems. We would like to 
stress that, for systems in the latter class, localiza- 
tion would not be in contrast with Shnirelman’s the- 
orem [ 141; the latter holds in the far quasiclassical 
asymptotic regime, i.e., at large values of the ergodic- 
ity parameter ( 10). Localization instead occurs, as ex- 
plained above, in the intermediate asymptotic regime, 
when the ergodicity parameter is small, even though 
the quantum parameter, i.e., the localization length d 

(7) may be arbitrarily large. 
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