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Abs t rac t .  Interrelations between dynamical and statistical laws in physics, on the one 
hand, and between classical and quantum mechanics, on the other hand, are discussed 
within the philosophy of separating the natural from the human, as a very specific part 
of Nature, and with emphasis on the new phenomenon of dynamical chaos. 
The principal results of the studies of chaos in classical mechanics are presented in 
some detail, including the strong local instability and robustness of motion, continuity 
of both phase space and the motion spectrum, and the time reversibility but nonrecur- 
rency of statistical evolution, within the general picture of chaos as a specific case of 
dynamical behavior. 
Analysis of the apparently very deep and challenging contradictions of this picture 
with the quantum principles is given. The quantum view of dynamical chaos, as an at- 
tempt to resolve these contradictions guided by the correspondence principle and based 
upon the characteristic time scales of quantum evolution, is explained. The picture of 
quantum chaos as a new generic dynamical phenomenon is outlined together with a 
few other examples of such chaos: linear (classical) waves, the (many-dimensional) har- 
monic oscillator, the (completely integrable) Toda lattice, and the digital computer. 
I conclude with discussion of the two fundamental physical problems: quantum mea- 
surement (C-collapse), and the causality principle, which both appear to be related to 
the phenomenon of dynamical chaos. 

1 Phi losophical  Introduction:  Separation of  the Natura l  
from the  H u m a n  

The main purpose of this paper is the analysis of conceptual implications from 
the studies of a new phenomenon (or rather a whole new field of phenomena) 
known as dynamical chaos both in classical and especially in quantum mechanics. 
The concept of dynamical chaos resolves (or, at least, helps to do so) the two 
fundamental problems in physics and, hence, in all the natural sciences: 

- are the dynamical and statistical laws of a different nature or does one of 
them, and which one, follow from the other; 

- are classical and quantum mechanics of a different nature or is the latter the 
most universal and general theory currently available to describe the whole 
empirical evidence including the classical mechanics as the limiting case. 

The essence of my debut philosophy is the separation of the human from 
the natural following Einstein's approach to the science - building up a model of 
the real world. Clearly, the human is also a part of the world, and moreover the 
most important part for us as human beings but not as physicists. The whole 
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phenomenon of life is extremely specific, and one should not transfer its peculiar- 
ities into other fields of natural sciences as was erroneously (in my opinion) done 
in almost all major philosophical systems. One exception is positivism, which 
seems to me rather dull; it looks only at Nature but does not even want to see its 
internM mechanics. Striking examples of the former are Hegel's 'Philosophy of 
Nature' (Naturphilosophie) and its 'development', Engels' 'Dialectic of Nature'. 

Another notorious confusion of such a 'human-oriented' physics was Wigner's 
claim that quantum mechanics is incompatible with the existence of self-reproducing 
systems (Wigner (1961)). The resolution of this 'paradox' is just in that Wigner 
assumed the Hamiltonian of such a system to be arbitrary, whereas it is actually 
highly specific (Schuster (1994)). 

A more hidden human-oriented philosophy in physics, rather popular nowa- 
days, is the information-based representation of natural laws, particularly when 
information is substituted for entropy (with opposite sign). In the most general 
way such a philosophy was recently presented by Kadomtsev (1994). That ap- 
proach is possible and might be done in a self-consistent way, but one should be 
very careful to avoid many confusions. In my opinion, the information is an ad- 
equate conception for only the special systems that actually use and process the 
information like various automata, both natural (living systems) and man-made 
ones. In this case the information becomes a physical notion rather than a human 
view of natural phenomena. The same is also true in the theory of measurement, 
which is again a very specific physical process, the basic one in our studies of 
Nature but still not a typical one for Nature itself. This is crucially important in 
quantum mechanics as will be discussed in some detail below (Sections 2.4 and 
3.1). 

One of the major implications from studies of dynamical chaos is the concep- 
tion of statistical laws as an intrinsic part of dynamics without any additional 
statistical hypotheses [for the current state of the theory see, e.g., Lichtenberg 
and Lieberman (1992) and recent collection of papers by Casati and Chirikov 
(1995) as well as the introduction to this collection by Casati and Chirikov 
(1995a)]. This basic idea can be traced back to Poincar6 (1908) and Hadamard 
(1898), and even to Maxwell (1873); the principal condition for dynamical chaos 
being strong local instability of motion (Section 2.4). In this picture the statis- 
tical laws are considered as secondary with respect to more fundamental and 
general primary dynamical laws. 

Yet, this is not the whole story. Surprisingly, the opposite is also true[ Namely, 
under certain conditions the dynamical laws were found to be completely con- 
tained in the statistical ones. Nowadays this is called 'synergetics' (Haken (1987), 
Wunderlin (these proceedings)) but the principal idea goes back to Jeans (1929) 
who discovered the instability of gravitating gas (a typical example of a statis- 
tical system), which is the basic mechanism for the formation of galaxies and 
stars in modern cosmology, and eventually the Solar system, a classical example 
of a dynamical system. In this case the resulting dynamical laws proved to be 
secondary with respect to the primary statistical laws which include the former. 
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Thus, the whole picture can be represented as a chain of dynamical-statistical 
inclusions: 

D s.. .7.. .  (1.1) 

Both ends of this chain, if any, remain unclear. So far the most fundamental 
(elementary) laws of physics seem to be dynamical (see, however, the discussion 
of quantum measurement in Sections 3 and 4). This is why I begin chain (1.1) 
with some primary dymamical laws. 

The strict inclusion on each step of the chain has a very important conse- 
quence allowing for the so-called numerical experiments, or computer simulation, 
of a broad range of natural processes. As a matter of fact the former (not labo- 
ratory experiments) are now the main source of new information in the studies 
of the secondary laws for both dynamical chaos and synergetics. This might 
be called the third way of cognition, in addition to laboratory experiments and 
theoretical analysis. 

In what follows I restrict myself to the discussion of just a single ring of 
the chain as marked in (1.1). Here I will consider the dynamical chaos sepa- 
rately in classical and quantum mechanics. In the former case the chaos explains 
the origin and mechanism of random processes in Nature (within the classical 
approximation). Moreover, that  deterministic randomness may occur (and is 
typical as a matter of fact) even for a minimal number of degress of freedom 
N :> 1 (for Hamiltonian systems), thus enormously expanding the domain for 
the application of the powerful methods of statistical analysis. 

In quantum mechanics the whole situation is much more tricky and still 
remains rather controversial. Here we encounter an intricate tangle of various 
apparent contradictions between the correspondence principle, classical chaotic 
behavior, and the very foundations of quantum physics. This will be the main 
topic of my discussions below (Section 3). 

One way to untangle this tangle is the new general conception, pseudochaos, 
of which quantum chaos is the most important example. Another interesting 
example is the digital computer, also very important in view of the broad ap- 
plication of numerical experiments in the studies of dynamical systems. On the 
other hand, pseudochaos in computers will hopefully help us to understand quan- 
tum pseudochaos and to accept it as a sort of chaos rather than a sort of regular 
motion, as many researchers, even in this field, still do believe. 

The new and surprising phenomenon of dynamical chaos, especially in quan- 
tum mechanics, holds out new hopes for eventually solving some old, long- 
standing, fundamental problems in physics. In Section 4, I will briefly discuss 
two of them: 

- the causality principle (time ordering of cause and effect), and 
- C-collapse in the quantum measurement. 

The conception of dynamical chaos I am going to present here, which is not 
common as yet, was the result of the long-term Siberian-Italian (SI) collabora- 
tion including Giulio Casati and Italo Guarneri (Como), and Felix Izrailev and 
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Dima Shepelyansky (Novosibirsk) with whom I share the responsibility for our 
joint scientific results and the conceptual interpretation. 

2 Sc ient i f i c  R e s u l t s  and  C o n c e p t u a l  Impl i ca t ions :  
t h e  Class i ca l  L imi t  

Classical dynamical chaos, as a part of classical mechanics, was historically the 
first to have been studied simply because in the time of Boltzmann, Maxwell, 
Poincar~ and other founders, statistical mechanics and quantum mechanics did 
not exist. No doubt, the general mathematical theory of dynamical systems, 
including the ergodic theory as its modern part describing various statistical 
properties of the motion, has arisen from (and is still conceptually based on) 
classical mechanics (Kornfeld et al. (1982), Katok and Hasselblatt (1994)). Yet, 
upon construction, it is not necessarily restricted to the latter and can be applied 
to a much broader class of dynamical phenomena, for example, in quantum 
mechanics (Section 3). 

2.1 W h a t  is a Dynamica l  Sys tem? 

In classical mechanics, 'dynamical system' means an object whose motion in 
some dynamical space is completely determined by a given interaction and the 
initial conditions. Hence, the synonym deterministic system. The motion of such 
a system can be described in two seemingly different ways which, however, prove 
to be essentially equivalent. 

The first one is through the motion equations of the form 

dx 
d--/ = v(x, t), (2.1) 

which always have a unique solution 

x = x(t, x0) (2.2) 

Here x is a finite-dimensional vector in the dynamical space and x 0 is the initial 
condition Ix 0 -- x(0)]. A possible explicit time-dependence in the right-hand 
side of (2.1) is assumed to be a regular, e.g., periodic, one or, at least, one with 
a discrete spectrum. 

The most important feature of dynamical (deterministic) systems is the ab- 
sence of any random parameters or any noise in the motion equations. Partic- 
ularly for this reason I will consider a special class of dynamical systems, the 
so-called Hamiltonian (nondissipative) systems, which are most fundamental in 
physics. 

Dissipative systems, being very important in many applications, are neither 
fundamental (because the dissipation is introduced via a crude approximation 
of the very complicated interaction with some 'heat bath') nor purely dynamical 
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in view of principally inevitable random noise in the heat bath (fluctuation- 
dissipation theorem). In a more accurate and natural way the dissipative systems 
can be described in the frames of the secondary dynamics (S D D inclusion in 
(1.1)) when both dissipation and fluctuations are present from the beginning in 
the primary statistical laws. 

A purely dynamical system is necessarily the closed one, which is the main 
object in fundamental physics. Thus, any coupling to the environment is com- 
pletely neglected. I will come back to this important question below (Section 
2.4). 

In Hamiltonian mechanics the dynamical space, called phase space, is an even- 
dimensional one composed of N pairs of canonically conjugated 'coordinates' and 
'momenta',  each pair corresponding to one freedom of motion. 

In the problem of dynamical chaos the initial conditions play a special role: 
they completely determine a particular trajectory, for a given interaction, or a 
particular realization of a dynamical process which may happen to be a very 
specific, nontypical, one. To get rid of such singularities another description 
is useful, namely the Liouville partial differential equation for the phase space 
density, or distribution function f (x ,  t): 

Off = ]~f (2.3) 
Ot 

with the solution 
f = f (x ,  t; f0(x)). (2.4) 

Here L is a linear differential operator, and fo(x) = f (x ,  0) is the initial density. 
For any smooth f0 this description provides the generic behavior of a dynamical 
system via a continuum of trajectories. In the special case f0 = 6(x - xo) the 
density describes a single trajectory like the motion equations (2.1). 

In any case the phase space itself is assumed to be continuous, which is the 
most important feature of the classical picture of motion and the main obstacle 
in the understanding of quantum chaos (Section 3). 

2.2 W h a t  is D y n a m i c a l  C h a o s ?  

Dynamical chaos can be characterized in terms of both the individual trajecto- 
ries and the trajectory ensembles, or phase density. Almost all trajectories of a 
chaotic system are in a sense most complicated (they are unpredictable from ob- 
servation of any preceding motion to use this familiar human term). Exceptional, 
e.g., periodic trajectories form a set of zero invariant measure, yet it might be 
everywhere dense. 

An appropriate notion in the theory of chaos is the symbolic trajectory first 
introduced by Hadamard (1898). The theory of symbolic dynamics was devel- 
oped further by Morse (1966), Bowen (1973), and Alekseev and Yakobson (1981). 
The symbolic trajectory is a projection of the true (exact) trajectory on to a 
discrete partition of the phase space at discrete instants of time t~, e.g., such 
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that  t~+l - t ~  = T fixed. In other words, to obtain a symbolic t rajectory we first 
turn from the motion differential equations (2.1) to the difference equations over 
a certain time interval T: 

x(t +l) - x +l = M(x , (2.5) 

This is usually called mapping or map: xn --~ xn+l. Then, while running a 
(theoretically) exact t ra jectory we record each xn to a finite accuracy: xa ~ mn. 
For a finite partition each mn can be chosen to be integer. Hence, the whole 
infinite symbolic t rajectory 

(7 ~ . . .m-n. . .m-lmoml. . .mn . . . .  S(x0;  T), (2.6) 

can be represented by a single number a, which is generally irrational and which 
is some function of the exact initial conditions. The symbolic trajectory may be 
also called a coarse-grained trajectory. I remind you that  the latter is a projection 
of (not substitution for) the exact t rajectory to represent in compact form the 
global dynamical behavior without unimportant  microdetails. 

A remarkable property of chaotic dynamics is that  the set of its symbolic 
trajectories is complete; that  is, it actually contains all possible sequences (2.6). 
Apparently, this is related to continuity of function S(x0)  (2.6). On the contrary, 
for a regular motion this function is everywhere discontinuous. 

In a similar way the coarse-grained phase density f (mn,  t) is introduced, in 
addition to the exact, or fine-grained density, which is also a projection of the 
latter on to some partition of the phase space. 

The coarse-grained density represents the global dynamical behavior, partic- 
ularly the most important  process of statistical relaxation, for chaotic motion, 
to some steady state fs(mn) (statistical equilibrium) independent of the initial 
f0(x) if the steady state is stable. Otherwise, synergetics comes into play giving 
rise to a secondary dynamics. As the relaxation is an aperiodic process the spec- 
t rum of chaotic motion is continuous, which is another obstacle for the theory 
of quantum chaos (Section 3). 

Relaxation is one of the characteristic properties of statistical behavior. An- 
other is fluctuation. Chaotic motion is a generator of noise which is purely intrin- 
sic by definition of the dynamical system. Such noise is a particular manifestation 
of the complicated dynamics as represented by the symbolic trajectories or by 
the difference 

f (x ,  t) - f ( m ~ ,  t) -- f (x ,  t). (2.7) 

The relaxation f --~ fs, apparently asymmetric with respect to time reversal 
t --* - t ,  gave rise to a long-standing misconception of the notorious time arrow. 
Even now some very complicated mathematical constructions are still being 
erected (see, e.g., Misra et al. (1979), Goldstein et al. (1981)) in at tempts to 
extract  somehow statistical irreversibility from the reversible mechanics. In the 
theory of dynamical chaos there is no such problem. The answer turns out to be 
conceptual rather than physical: one should separate two similar but different 
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notions, reversibility and recurrency. The exact density f(x,  t) is always t ime-  
reversible but nonrecurrent  for chaotic motion; that is, it will never come back 
to the initial f0(x) in both directions of  t ime t --~ +co. In other words, the 
relaxation, also present in f ,  is time-symmetric. The projection of f ,  coarse- 
grained f ,  which is both nonrecurrent and irreversible, emphasizes nonrecurrency 
of the exact solution. The apparent violation of the statistical relaxation upon 
time reversal, as described by the exact f(x,  t), represents in fact the growth 
of a big fluctuation which will eventually be followed by the same relaxation 
in the opposite direction of time. This apparently surprising symmetry of the 
statistical behavior was discovered long ago by Kolmogorov (1937). One can say 
that instead of an imagionary time arrow there exists a process arrow pointing 
always to the steady state. The following simple example would help, perhaps, 
to overcome this conceptual difficulty. Consider the hyperbolic one-dimensional 
(1D) motion: 

x( t )  = a .  exp (At)  + b. exp ( - A t ) ,  (2.8) 

which is obviously time-reversible yet remains unstable in both directions of time 
(t ~ 4-oo). Besides its immediate appeal, this example is closely related to the 
mechanism of chaos which is the motion instability. 

2.3 A Few Phys ica l  Examples  of  Low-Dimensional  Chaos  

In this paper I restrict myself to finite-dimensional systems where the peculiar- 
ities of dynamical chaos are most clear (see Section 3.2 for some brief remarks 
on infinite systems). Consider now a few examples of chaos in minimal dimen- 
sionality. 

Bil l iards (2 degrees of freedom). The ball motion here is chaotic for almost 
any shape of the boundary except special cases like circle, ellipse, rectangle and 
some other (see, e.g., Lichtenberg and Lieberman (1992), Kornfeld et al. (1982), 
Katok and Hasselblatt (1994)). However, the ergodicity (on the energy surface) is 
only known for singular boundaries. If the latter is smooth enough the structure 
of motion becomes a very complicated admixture of chaotic and regular domains 
of various sizes (the so-called divided phase space). Another version of billiards 
is the wave cavity in the geometric optics approximation. This provides a helpful 
bridge between classical and quantum chaos. 

P e r t u r b e d  Keple r  mo t ion  is a particular case of the famous 3-body prob- 
lem. Now we understand why it has not been solved since Newton: chaos is gen- 
erally present in such a system. One particular example is the motion of comet 
Halley perturbed by Jupiter which was found to be chaotic with an estimated 
life time in the Solar system of the order of 10 Myrs (Chirikov and Vecheslavov 
(1989); 2 degrees of freedom in the model used, divided phase space). 

Another example is a new, diffusive, mechanism of ionization of the Rydberg 
(highly excited) hydrogen atom in the external monochromatic electric field. It 
was discovered in laboratory experiments (Bayfield and Koch (1974)) and was 
explained by dynamical chaos in a classical approximation (Delone et al. (1983)). 
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In this system a given field plays the role of the third body. The simplest model 
of the diffusive photoelectric effect has 1.5 degrees of freedom (1D Kepler motion 
and the external periodic perturbation), and is also characterized by a divided 
phase space. 

Budke r ' s  problem:  charged particle confinement in an adiabatic magnetic 
trap (Chirikov (1987)). A simple model of two freedoms (axisymmetric magnetic 
field) is described by the Hamiltonian: 

p2 (1 + x 2) y2 
g = - -  + (2.9) 

2 2 

Here magnetic field B = ~ ;  p2 = 52 + y2; x describes the motion along 
magnetic line, and y does so accross the line (a projection of Larmor's rotation). 
At small pitch angles /3 ~ ly/2t the motion is chaotic with the chaos border 
being at roughly 

1 
p ~ I ln/3] (2.10) 

and being very complicated, so-called critical, structure (Section 2.5). 
M a t i n y a n ' s  problem:  internal dynamics of the Yang-Mills (gauge) fields in 

classical approximation (Matinyan (1979), Matinyan (1981)). Surprisingly, this 
completely different physical system can be also represented by Hamiltonian 
(2.9) with a symmetrized 'potential energy': 

U = (1 + x 2)y2 + (1 + y2)x 2 (2.11) 
2 

Dynamics is always chaotic with a divided phase space similar to model (2.9) 
(Chirikov and Shepelyansky (1982)). Model (2.11) describes the so-called massive 
gauge field; that is, one with the quanta of nonzero mass. The massless field 
corresponds to the 'potential energy' 

x 2 y2 
U - (2.12) 

2 

and looks ergodic in numerical experiments. 

2.4 Ins tab i l i ty  and  Chaos  

Local instability of motion responsible for a very complicated dynamical behavior 
is described by the linearized equations: 

du 0v(x0(t), t) 
(2.13) ~ U "  

dt Ox 

Here x0 ( t )  is a reference trajectory satisfying (2.1), and u = x( t )  - x0 ( t )  is the 
deviation of a close trajectory x(t). On average, the solution of (2.13) has the 
form 

[u] ,-~ exp (At), (2.14) 
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where A is Lyapunov ' s  exponent.  The motion is (exponentially) unstable if A > 0. 
In the Hamiltonian system of N degrees of freedom there are 2N Lyapunov's 
exponents satisfying the condition ~ A = 0. The partial sum of all positive 
exponents A+ > 0, 

h = A+ (2.15) 

is called the (dynamical) metr i c  entropy. Notice that  it has the dimensions of 
frequency and characterises the instability rate. 

The motion instability is only a necessary but not sufficient condition for 
chaos. Another important  condition is boundedness of the motion, or its oscilla- 
tory (in a broad sense) character. The chaos is produced by the combination of 
these two conditions (also called stretching and folding). Let us again consider 
an elementary example of a 1D map 

x,~+l = 2xn rood 1, (2.16) 

where operation rood 1 restricts (folds) x to the interval (0,1). This is not a 
Hamiltonian system but it can be interpreted as a 'half '  of that; namely, as the 
dynamics of the oscillation phase. This motion is unstable with A = In 2 because 
the linearized equation is the same except for the fractional part (rood 1). The 
explicit solution for both reads 

Un ---- 2 n UO, 

Xn = 2 nx0 mod 1. (2.17) 

The first (linearized) motion is unbounded, like Hamiltonian hyperbolic motion, 
(2.8) and is perfectly regular. The second one is not only unstable but  also 
chaotic just because of the additional operation mod 1, which makes the motion 
bounded, and which mixes up the points within a finite interval. 

We may look at this example from a different viewpoint. Let us express the 
initial x0 in the binary code as the sequence of two symbols, 0 and 1, and let 
us make the parti t ion of the unit x interval also in two equal halves marked by 
the same symbols. Then, the symbolic trajectory will simply repeat x0; tha t  is, 
(2.6) takes the form 

a = x0. (2.18) 

It  implies that ,  as time goes on, the global motion will eventually depend on ever- 
diminishing details of the initial conditions. In other words, when we formally 
fix the exact  xo we 'supply' the system with infinite complexity, which arises due 
to the strong motion instability. Still another interpretation is tha t  the exact 
x0 is the source of in tr ins ic  noise amplified by the instability. For this noise to 
be s ta t ionary  the string of x0 digits has to be infinite, which is only possible in 
cont inuous  phase space. 

A nontrivial part of this picture of chaos is that  the instability must be ex- 
ponent ia l  because a power-law instability is insufficient for chaos. For example, 
the linear instability (lul ~ t) is a generic property of perfectly regular mo- 
tion of the completely integrable system whose motion equations are nonl inear  
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and, hence, whose oscillation frequencies depend on the initial conditions (Born 
(1958), Casati et al. (1980)). The character of motion for a faster instability 
([u[ ~ t ~, a > 1) is unknown. 

On the other hand, the exponential instability (h > 0) is not invariant with 
respect to the change of time variable (Casati and Chirikov (1995a), Batter- 
man (these proceedings); in this respect the only invariant statistical property 
is ergodicity, Kornfeld et al. (1982), Katok and Hasselblatt (1994)). A possible 
resolution of this difficulty is that  the proper characteristic of motion instability, 
important for dynamical chaos, should be taken with respect to the oscillation 
phases whose dynamics determines the nature of motion. It implies that  the 
proper time variable must change proportionally with the phases so that  the 
oscillations become stationary (Casati and Chirikov (1995a)). A simple exam- 
ple is harmonic oscillation with frequency w recorded at the instances of time 
tn = 2~t0. Then, oscillation phase x = wt/27r obeys map (2.16), which is chaotic. 
Clearly, the origin of chaos here is not in the dynamical system but in the record- 
ing procedure (random to). Now, if w is a parameter (linear oscillator), then the 
oscillation is exponentially unstable (in new time n) but only with respect to 
the change of parameter w, not of the initial x0 (x --~ x + x0). In a slightly 
'camouflaged' way, essentially the same effect was considered by Bliimel (1994) 
with far-reaching conclusions on quantum chaos (Section 3.2). 

Rigorous results concerning the relation between instability and chaos are 
concentrated in the Alekseev-Brudno theorem (see Alekseev and Yakobson (1981), 
Bat terman (these proceedings), White.(1993)), which states that  the complexity 
per unit time of almost any symbolic trajectory is asymptotically equal to the 
metric entropy: 

C(t) (2.19) h,  Itl oo. 
Itl 

Here C(t) is the so-called algorithmic complexity, or in more familiar terms, the 
information associated with a trajectory segment of length Itl. 

The transition time from dynamical to statistical behavior according to (2.19) 
depends on the partition of the phase space, namely, on the size of a cell #, which 
is inversely proportional to the biggest integer M _> rnn in symbolic trajec- 
tory (2.6). The transition is controlled by the randomness parameter (Chirikov 
(1985)): 

h Itl Itl (2.20) 
r = ln----M ~ t--r-' 

where tr is the dynamical time scale. As both Itl, M ~ c~ we have a somewhat 
confusing situation, typical in the theory of dynamical chaos, in which two limits 
do not commute: 

M ~ ~ , l t l  -~ c~ r Itl --* c ~ , M  --+ oo. (2.21) 

For the left order (M --* ~ first) parameter r -~ 0, and we have temporary deter- 
minism (Itl <t~),  while for the right order r --~ oo, and we arrive at asymptotic 
randomness (Itl > t~). 
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Instead of the above double limit we may consider the conditional limit 

[t[, M ~ ~ ,  r = const, (2.22) 

which is also a useful method in the theory of chaotic processes. Particularly 
for r < 1, strong dynamical correlations persist in a symbolic trajectory, which 
allows for the prediction of trajectory from a finite-accuracy observation. This 
is no longer the case for r > 1 when only a statistical description is possible. 
Nevertheless, the motion equations can still be used to completely derive all the 
statistical properties without any ad hoc hypotheses. Here the exact trajectory 
does exist as well but becomes the Kantian thing-in-itself, which can be neither 
predicted nor reproduced in any other way. 

The mathematical origin of this peculiar property goes back to the famous 
G6del theorem (GSdel (1931)), which states (in a modern formulation) that  
most theorems in a given mathematical system are unprovable, and which forms 
the basis of contemporary mathematical logic (see Chaitin (1987) for a detailed 
explanation and interesting applications of this relatively less-known mathemati- 
cal achievement). A particular corollary, directly related to symbolic trajectories 
(2.6), is that  almost all real numbers are uncomputable by any finite algorithm. 
Besides rational numbers some irrationals like ~r or e are also known to be com- 
putable. Hence, their total complexity, e.g., C(~r), is finite, and the complexity 
per digit is zero (cf. (2.19)). 

The main object of my discussion here, as well as of the whole physics, is a 
closed system that  requires neglection of the external perturbations. However, 
in case of strong motion instability this is no longer possible, at least dynam- 
ically. What  is the impact of a weak perturbation on the statistical properties 
of a chaotic system? The rigorous answer was given by the robustness theorem 
due to Anosov (1962): not only do statistical properties remain unchanged but, 
moreover, the trajectories get only slightly deformed providing (and due to) the 
same strong motion instability. The explanation of this striking peculiarity is 
tha t  the trajectories are simply transposed and, moreover, the less the stronger 
is instability. 

In conclusion let me make a very general remark, far beyond the particular 
problem of chaotic dynamics. According to the Alekseev-Brudno theorem (2.19) 
the source of stationary (new) information is always chaotic. Assuming farther 
that  any creative activity, science including, is such a source we come to an 
interesting conclusion that  any such activity has to be (partly!) chaotic. This is 
the creative side of chaos. 

2.5 S ta t i s t i ca l  C o m p l e x i t y  

The theory of dynamical chaos does not need any statistical hypotheses, nor 
does it allow for arbitrary ones. Everything is to be deduced from the dynamical 
equations. Sometimes the statistical properties turn out to be quite simple and 
familiar (Lichtenberg and Lieberman (1992), Chirikov (1979)). This is usually 
the case if the chaotic motion is also ergodic (on the energy surface), like in some 
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billiards and other simple models (Section 2.3). However, quite often, and even 
typically for a few-freedom chaos, the phase space is divided, and the chaotic 
component of the motion has a very complicated structure. 

One beautiful example is the so-called Arnold diffusion driven by a weak 
(c -~ 0) perturbation of a completely integrable system with N > 2 degrees of 
freedom (Lichtenberg and Lieberman (1992), Chirikov (1979)). The phase space 
of such a system is pierced by the everywhere-dense set of nonlinear resonances 

ran" w~ ~ O, (2.23) 
n 

0 where mn are integers, and wn are the unperturbed frequences depending on 
dynamical variables (usually actions I). Each resonance is surrounded by a sep- 
aratrix, the singular highly unstable trajectory with zero motion frequency. As 
a result, no matter how weak the perturbation (c --~ 0) is, a narrow chaotic 
layer always arises around the separatrix. The whole set of chaotic layers is ev- 
erywhere dense as is the set of resonances. For N > 2 the layers form a united 
connected chaotic component of the motion supporting the diffusion over the 
whole energy surface. Both the total measure of the chaotic component and the 
rate of Arnold diffusion are exponentially small (--~ exp ( -C /v~) )  and can be 
neglected in most cases; hence the term KAM integrability (Chirikov and Vech- 
eslavov (1990)) for such a structure (after Kolmogorov, Arnold and Moser who 
rigorously analysed some features of this structure). This quasi-integrability has 
the nature and quality of adiabatic invariance. However, on a very big time scale 
this weak but universal instability may essentially affect the motion. 

One notable example is celestial mechanics, particularly the stability of the 
Solar system (Wisdom (1987) Laskar (1989), Laskar (1990), Laskar (1994)). Sur- 
prisingly, this 'cradle' of classical determinism and the exemplar case of dynami- 
cal behavior proves to be unstable and chaotic. The instability time of the Solar 
system was found to be rather long (A -1 ,,~ 10 Myrs), and its life time is still 
many orders of magnitude larger. It has not been estimated as yet, and might 
well exceed the cosmological time ~,- 10 Byrs. 

Another interesting example of complicated statistics is the so-called critical 
structure near the chaos border which is a necessary element of divided phase 
space (Chirikov (1991)). The critical structure is a hierarchy of chaotic and regu- 
lar domains on ever decreasing spatial and frequency scales. It can be universally 
described in terms of the renorrnalization group, which proved to be so efficient 
in other branches of theoretical physics. In turn, the renormMization group may 
be considered as an abstract dynamical system that  describes the variation of 
the whole motion structure, for the original dynamical system, in dependence 
of its spatial and temporal scale. Logarithm of the latter plays a role of 'time' 
(renormtime) in that  renormdynamics. At the chaos border the latter is deter- 
mined by the motion frequencies. The simplest renormdynamics is a periodic 
variation of the structure or, for a renorm-map, the invariance of the structure 
with respect to the scale (MacKay (1983)). Surprisingly, this scale invariance 
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includes the chaotic trajectories as well. The opposite limit--renormchaos--is 
also possible, and was found in several models (see Chirikov (1991)). 

Even though the critical structure occupies a very narrow strip along the 
chaos border it may qualitatively change the statistical properties of the whole 
chaotic component. This is because a chaotic trajectory unavoidably enters from 
time to time the critical region and 'sticks' there for a time that is longer the 
closer it comes to the chaos border. The sticking results in a slow power-law 
correlation decay for large time, in a singular motion spectrum for low frequency, 
and even in the superdiffusion when the phase-density dispersion a 2 ,~ t ~ (~ > 1) 
grows faster than time (Chirikov (1987), Chirikov (1991)). 

3 S c i e n t i f i c  R e s u l t s  a n d  C o n c e p t u a l  I m p l i c a t i o n s :  

Q u a n t u m  C h a o s  

The mathematical theory of dynamical chaos--ergodic theory--is self-consistent. 
However, this is not the case for the physical theory unless we accept the philos- 
ophy of the two separate mechanics: classical and quantum. Even though such a 
view cannot be excluded at the moment it has a profound difficulty concerning 
the border between the two. Nor is it necessary according to recent intensive 
studies of quantum dynamics. Then, we have to understand the mechanics of 
dynamical chaos from a quantum point of view. Our guiding star will be the 
correspondence principle which requires the complete quantum theory of any 
classical phenomenon, in the quasiclassical limit, assuming that the whole clas- 
sical mechanics is but a special part (the limiting case) of the currently most 
general and fundamental physical theory: quantum mechanics. Now it would be 
more correct to speek about quantum field theory but here I restrict myself to 
finite-dimensional systems only (see Sections 3.2 and 3.4). 

3.1 The  Correspondence  Pr inciple  

In attempts to build up the quantum theory of dynamical chaos we immediately 
encounter a number of apparently very deep contradictions between the well- 
established properties of classical dynamical chaos and the most fundamental 
principles of quantum mechanics. 

To begin with, quantum mechanics is commonly understood as a funda- 
mentally statistical theory, which seems to imply always some quantum chaos, 
independent of the behavior in the classical limit. This is certainly true but in 
some restricted sense only. A novel developement here is the isolation of this fun- 
damental quantum randomness as solely the characteristic of the very specific 
quantum process, measurement, and even as the particular part of that-- the so- 
called C-collapse which, indeed, has so far no dynamical description (see Section 
4 for further discussion of this problem). 

No doubt, quantum measurement is absolutely necessary for the study of the 
microworld by us, the macroscopic human beings. Yet, the measurement is, in 



Natural Laws and Human Prediction 23 

a sense, foreign to the proper microworld that might (and should) be described 
separately from the former. Explicitly (Casati and Chirikov (1995a)) or, more 
often, implicitly such a philosophy has become common in studies of chaos but 
not yet beyond this field of research (see, e.g., Shimony (1994)). 

This approach allows us to single out the dynamical part of quantum mechan- 
ics as represented by a specific dynamical variable r in Hilbert space, satisfying 
some deterministic equation of motion, e.g., the Schr6dinger equation. The more 
difficult and vague statistical part is left for a better time. Thus, we temporarily 
bypass (not resolve!) the first serious difficulty in the theory of quantum chaos 
(see also Section 4). The separation of the first part of quantum dynamics, which 
is very natural from a mathematical viewpoint, was first introduced and empha- 
sized by Schr6dinger, who, however, certainly underestimated the importance of 
the second part in physics. 

However, another principal difficulty arises. As is well known, the energy (and 
frequency) spectrum of any quantum motion bounded in phase space is always 
discrete. And this is not the property of a particular equation but rather a con- 
sequence of the fundamental quantum principle the discreteness of phase space 
itself, or in a more formal language, the noncommutative geometry of quantum 
phase space. Indeed, according to another fundamental quantum principle the 
uncertainty principle a single quantum state cannot occupy the phase space 
volume VI < h N ~ 1 [in what follows I set h = 1, particularly, not to confuse it 
with metric entropy h (2.15)]. Hence, the motion bounded in a domain of volume 
V is represented by V/V1 ~ V eigenstates, a property even stronger than the 
general discrete spectrum (almost periodic motion). 

According to the existing ergodic theory such a motion is considered to be 
regular, which is something opposite to the known chaotic motion with a continu- 
ous spectrum and exponential instability (Section 2.2), again independent of the 
classical behavior. This seems to never imply any chaos or, to be more precise, 
any classical-like chaos as defined in the ergodic theory. Meanwhile, the corre- 
spondence principle requires conditional chaos related to the nature of motion 
in the classical limit. 

3.2 Pseudochaos  

Now the principal question to be answered reads: where is the expected quantum 
chaos in the ergodic theory? Our answer to this question (Chirikov et al. (1981), 
Chirikov et al. (1988); not commonly accepted as yet) was concluded from a 
simple observation (principally well known but never comprehended enough) 
that the sharp border between the discrete and continuous spectrum is physi- 
cally meaningful in the limit Itl --~ c~ only, the condition actually assumed in 
the ergodic theory. Hence, to understand quantum chaos the existing ergodic 
theory needs modification by the introduction of a new 'dimension', the time. In 
other words, a new and central problem in the ergodic theory is the finite-time 
statistical properties of a dynamical system, both quantum as well as classical 
(Section 3.4). 
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Within a finite time the discrete spectrum is dynamically equivalent to the 
continuous one, thus providing much stronger statistical properties of the motion 
than was (and still is) expected in the ergodic theory for the case of a discrete 
spectrum. In short, motion with a discrete spectrum may exhibit all the statisti- 
cal properties of classical chaos but only on some finite time scales (Section 3.3). 
Thus, the conception of a time scale becomes fundamental in our theory of quan- 
tum chaos (Chirikov et al. (1981), Chirikov et al. (1988)). This is certainly a new 
dynamical phenomenon, related but not identical at all to classical dynamical 
chaos. We call it pseudochaos; the term pseudo is used to emphasize the difference 
from the asymptotic (in time) chaos in the ergodic theory. Yet, from the physical 
point of view, we accept here that  the latter, strictly speaking, does not exist 
in Nature. So, in the common philosophy of the universal quantum mechanics 
pseudochaos is the only true dynamical chaos (cf. the term 'pseudoeuclidian ge- 
ometry'  in special relativity). Asymptotic chaos is but a limiting pattern which 
is, nevertheless, important both in theory, to compare with the real chaos, and 
in applications, as a very good approximation in a macroscopic domain, as is 
the whole classical mechanics. Ford describes the former mathematical chaos as 
contrasted to the real physical chaos in quantum mechanics (Ford (1994)). An- 
other curious but impressive term is artificial reality (Kaneko and Tsuda (1994)), 
which is, of course, a self-contradictory notion reflecting, particularly, confusion 
in the interpretation of surprising phenomena such as chaos. 

The statistical properties of the discrete-spectrum motion are not completely 
new subjects of research, such research goes back to the time of intensive studies 
in the mathematical foundations of statistical mechanics before dynamical chaos 
was discovered or, better to say, understood (see, e.g., Kac (1959)). We call this 
early stage of the theory traditional statistical mechanics (TSM). It is equally 
applicable to both classical as well as quantum systems. For the problem under 
consideration here, one of the most important rigorous results with far-reaching 
consequences was the statistical independence of oscillations with incommensu- 
rable (linearly independent) frequencies w,~, such that  the only solution of the 
resonance equation, 

N 

= 0, (3.1)  
n 

in integers is m,~ ------ 0 for all n. This is a generic property of the real numbers; 
that  is, the resonant frequencies (3.1) form a set of zero Lebesgue measure. 
If we define now Yn = cos (oant), the statistical independence of Yn means that  
trajectory Yn (t) is ergodic in N-cube ]y~ ] < 1. This is a consequence of ergodicity 
of the phase trajectory r = w~t m o d  2r  in N-cube ]r _< ~r. 

Statistical independence is a basic property of a set to which the probabil- 
ity theory is to be applied. Particularly, the sum of statistically independent 
quantities, 

N 

x(t)  -- A n . c o s  t + (3.2) 
n 
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which is motion with a discrete spectrum, is the main object of this theory. How- 
ever, the familiar statistical properties such as Gaussian fluctuations, postulated 
(directly or indirectly) in TSM, are reached in the limit N --~ oo only, which is 
called the thermodynamical limit. In TSM this limit corresponds to infinite- 
dimensional models (Kornfeld et al. (1982), Katok and Hasselblatt (1994)), 
which provide a very good approximation for macroscopic systems, both classical 
and quantal. 

However, what is really necessary for good statistical properties of sum (3.2) 
is a large number of frequencies N~ --~ c~, which makes the discrete spectrum 
continuous (in the limit). In TSM the latter condition is satisfied by setting 
N~ = N. The same holds true for quantum fields which are infinite-dimensional. 
In quantum mechanics another mechanism, independent of N,  works in the 
quasiclassical region q >> 1 where q = I / h  =- I is some big quantum parameter,  
e.g., quantum number, and I stands for a characteristic action of the system. 
Indeed, if the quantum motion (3.2) [with r  instead of x(t)] is determined by 
many (~  q) eigenstates we can set N~ = q independent of N. The actual number 
of terms in expansion (3.2) depends, of course, on a particular state r  under 
consideration. For example, if it is just an eigenstate the sum reduces to a single 
term. This corresponds to the special peculiar trajectories of classical chaotic 
motion whose total  measure is zero. Similarly, in quantum mechanics N~ ~ q 
for most states if the system is classically chaotic. This important  condition 
was found to be certainly sufficient for good quantum statistical properties (see 
Chirikov et al. (1981), Chirikov et al. (1988) and Section 3.3 below). Whether  it 
is also the necessary condition remains as yet unclear. 

Thus, with respect to the mechanism of the quantum chaos we essentially 
come back to TSM with an exchange of the number of freedoms N for the 
quantum parameter q. However, in quantum mechanics we are not interested, 
unlike in TSM, in the limit q --* ec, which is simply the classical mechanics. 
Here, the central problem is the statistical properties for large but finite q. This 
problem does not exist in TSM describing macroscopic systems. Thus, with an 
old mechanism the new phenomena were understood in quantum mechanics. 

3.3 C h a r a c t e r i s t i c  T i m e  Scales  in Q u a n t u m  C h a o s  

The existing ergodic theory is asymptotic in time, and hence contains no t ime 
scales at all. There are two reasons for this. One is technical: it is much simplier 
to derive the asymptotic relations than to obtain rigorous finite-time estimates. 
Another reason is more profound. All statements in the ergodic theory hold true 
up to measure zero, tha t  is, excluding some peculiar nongeneric sets of zero 
measure. Even this minimal imperfection of the theory did not seem completely 
satisfactory but  has been 'swallowed' eventually and is now commonly tolerated 
even among mathematicians, to say nothing about physicists. In a finite-time 
theory all these exceptions acquire a small but finite measure which would be 
already 'unbearable'  (for mathematicians). Yet, there is a standard mathematical  
trick, to be discussed below, for avoiding both these difficulties. 
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The most important  time scale tn  in quantum chaos is given by the general 
estimate 

l n tR  ~,, lnq ,  tR ~ qa ~ PO <-- PH, (3.3) 

where a ~ 1 is a system-dependent parameter. This is called the relaxation t ime 
scale refering to one of the principal properties of chaos: statistical relaxation to 
some steady state (statistical equilibrium). The physical meaning of this scale is 
principally simple and is directly related to the fundamental uncertainty princi- 
ple (A t .  A E  ,-, 1) as implemented in the second equation in (3.3), where PH is 
the ful l  average energy level density (also called the Heisenberg time). For t < tn  
the discrete spectrum is not resolved, and the statistical relaxation follows the 
classical (limiting) behavior. This is just the 'gap' in the ergodic theory (supple- 
mented with the additional, time, dimension) where pseudochaos, particularly 
quantum chaos, dwells. A more accurate estimate relates tR to a part Po of the 
level density. This is the density of the so-called operative eigenstates; tha t  is, 
only those that  are actually present in a particular quantum state r and actually 
control its dynamics. 

The formal trick mentioned above is to consider not the finite-time relations 
we really need but rather the special conditional limit (cf. (2.22)): 

t 
t, q --* oo ~" - - const  (3.4) 

tR(q) 
Quanti ty  T is a new rescaled time which is, of course, nonphysical but  very help- 
ful technically. The double limit (3.4) (unlike the single one q --~ (x~) is not the 
classical mechanics which holds true, in this representation, for T < 1 and with 
respect to the statistical relaxation only. For T > 1 the behavior becomes essen- 
tially quantum (even in the limit q -~ cx~ !) and is called nowadays mesoscopic 
phenomena.  Particularly, the quantum steady state is quite different from the 
classical statistical equilibrium in that  the former may be localized (under certain 
conditions) that  is nonergodic in spite of classical ergodicity. 

Another  important difference is in f luctuations, which are also a characteristic 
proper ty  of chaotic behavior. In comparison with classical mechanics quantum 
r  plays, in this respect, an intermediate role between the classical t ra jectory 
(exact or symbolic) with big relative fluctuations ~ 1 and the coarse-grained 
classical phase space density with no fluctuations at all. Unlike both  the fluc- 
tuat ions of ~b(t) are ,-~ N ~  1/2, which are another manifistation of statistical 
independence, or decoherence, of even pure quantum state (3.2) in case of quan- 
tum chaos. In other words, chaotic ~(t)  represents statistically a f inite ensemble 
of ~ N~ systems even though formally r  describes a single system. Quantum 
fluctuations clearly demonstrate also the difference between physical t ime t and 
auxiliary variable T: in the double limit (t, q --~ cx~) the fluctuations vanish and 
one needs a new trick to recover them. 

The  relaxation time scale should be distinguished from the Poincard recur- 
rence t ime tp  >> tn ,  which is typically much longer, and which sharply increases 
with a decrease in the recurrence domain. Time scale tg  characterizes big fluc- 
tuat ions (for both the classical trajectory, but  not the phase space density, and 
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quantum r of which recurrences is a particular case. Unlike this, tR describes 
the average relaxation process. 

Stronger statistical properties than relaxation and fluctuations are related in 
the ergodic theory to the exponential instability of motion. Their importance 
for statistical mechanics is not completely clear. Nevertheless, in accordance 
with the correspondence principle, those stronger properties are also present in 
quantum chaos as well, but on a much shorter time scale, 

lnq (3.5) t r  ~ --~-- ,  

where h is classical metric entropy (2.15). This time scale was discovered and 
partly explained by Berman and Zaslavsky (1978) (see also Chirikov et al. (1981), 
Chirikov et al. (1988), Casati and Chirikov (1995a)). Being very short, tr grows 
indefinitely as q --* oo. 

The simplest example of quantum dynamics on this scale is the stretch- 
ing/squeezing of an initially narrow wave packet, with the conservation of the 
phase space volume like in classical mechanics, followed by the packet inflation 
(increasing phase space volume), and eventually by the complete destruction of 
the packet, its splitting into many irregular subpackets (Casati and Chirikov 
(1995a)). 

In a quasiclassical region (q >> 1), tr << tR (3.3). This leads to an interesting 
conclusion that  the quantum diffusion and relaxation are dynamically stable 
contrary to the classical behavior. It suggests, in turn, that  the motion instability 
is not important during statistical relaxation. However, the foregoing correlation 
decay on a short time scale t~ is crucial for the statistical properties of quantum 
dynamics. 

3,4 E x a m p l e s  o f  P s e u d o c h a o s  in Class ical  M e c h a n i c s  

Pseudochaos is a new generic dynamical phenomenon missed in the ergodic 
theory. No doubt, the most important particular case of pseudochaos is quantum 
chaos. Nevertheless, pseudochaos occurs in classical mechanics as well. Here are 
a few examples of classical pseudochaos, which may help us to understand the 
physical nature of quantum chaos, my primary goal in this paper. Besides, this 
unveils new features of classical dynamics as well. 

L i ne a r  waves  is the example of pseudochaos (see, e.g., Chirikov (1992)) that  
is closest to quantum mechanics. I remind you that  here only a part of quantum 
dynamics is discussed, the one described, e.g., by the SchrSdinger equation, 
which is a linear wave equation. For this reason quantum chaos is sometimes 
called wave chaos (Seba (1990)). Classical electromagnetic waves are used in 
laboratory experiments as a physical model for quantum chaos (StSckmann and 
Stein (1990), Weidenmiiller et al. (1992)). The 'classical' limit corresponds here 
to the geometrical 'optics', and the 'quantum' parameter q -- L/A is the ratio of 
a characteristic size L of the system to the wave length A. 
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The  linear oscillator (many-dimensional) is a particular case of waves 
(without dispersion). A broad class of quantum systems can be reduced to this 
model (Eckhardt (1988)). Statistical properties of linear oscillators, particularly 
in the thermodynamic limit (N -~ oc), were studied by Bogolyubov (1945) in the 
framework of TSM. On the other hand, the theory of quantum chaos suggests 
richer behavior for a large but finite N, particularly, the characteristic time scales 
for the harmonic oscillator motion (Chirikov (1986)) and the number of degrees 
of freedom N playing the role of the 'quantum' parameter. 

Comple te ly  integrable nonl inear  sys tems  also reveal pseudochaotic be- 
havior. An example of statistical relaxation in the Toda lattice had been pre- 
sented in Ford et al. (1973) much before the problem of quantum chaos arose. 
Moreover, the strongest statistical properties in the limit N -~ co, including one 
equivalent to the exponential instability (the so-called K-property) were rigor- 
ously proved just for the (infinite) completely integrable systems (see Kornfeld 
et al. (1982), Satok and Uasselblatt (1994)). 

The  digital  compute r  is a very specific classical dynamical system whose 
dynamics is extremely important in view of the ever increasing application in 
numerical experiments covering now all branches of science and beyond. The 
computer is an 'overquantized' system in that any quantity here is discrete, 
whereas in quantum mechanics only the product of two conjugated variables is. 
The 'quantum' parameter here is q = M, which is the largest computer integer, 
and the short time scale (3.5) is t~ ~ in M, which is the number of digits in 
the computer word (Chirikov et al. (1981), Chirikov et al. (1988)). Owing to 
the discreteness, any dynamical trajectory in the computer eventually becomes 
periodic, an effect well known in the theory and practice of the so-called pseudo- 
random number generators. One should take all necessary precautions to exclude 
this computer artifact in numerical experiments. On the mathematical part, the 
periodic approximations in dynamical systems are also studied in ergodic the- 
ory, apparently without any relation to pseudochaos in quantum mechanics or 
computers. 

Computer pseudochaos is the best answer to those who refuse accept the 
quantum chaos as, at least, a kind of chaos, and who still insist that only the 
classical-like (asymptotic) chaos deserves this name, the same chaos that was 
(and is) studied to a large extent just on computers; that is, the chaos inferred 
from a pseudochaosi 

4 Conclusion: Old Challenges and New Hopes 

The discovery and understanding of the new surprising phenomenon--dynamical 
chaos---opened up new horizons in solving many other problems including some 
long-standing ones. Unlike in previous sections, here I can give only a preliminary 
consideration of possible new approaches to such problems, together with some 
plausible conjectures (see also Casati and Chirikov (1995a)). 

Let us begin with the problem directly related to quantum dynamics, namely 
the quantum measurement or, to be more correct, the specific stage of the latter: 
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r This is just the part  of quantum dynamics I bypassed above in the 
report  on scientific results. This part  still remains very vague to the extent 
tha t  there is no common agreement even on the question of whether it is a 
real physical problem or an ill-posed one so that  the Copenhagen interpretation 
of (or convention in) quantum mechanics gives satisfactory answers to all the 
admissible questions. In any event there exists as yet no dynamical description 
of the quantum measurement including C-collapse. The quantum measurement, 
as far as the result is concerned, is fundamentally a random process. However, 
there are good reasons to hope that  this randomness can be interpreted as a 
particular manifestation of dynamical chaos (Cvitanovid et al. (1992)). 

The Copenhagen convention was (and still remains) very important  as a 
phenomenological link between very specific quantum theory and laboratory ex- 
periments. Without  this link studies of the microworld would be simply impos- 
sible. The Copenhagen philosophy perfectly matches the standard experimental 
setup of two measurements: the first one fixes the initial quantum state, and 
the second records the changes in the system. However, it is less clear how to 
deal with natural processes without any man-made measurements that  is with- 
out the notorious observer. Since the beginning of quantum mechanics such a 
question has been considered ill-posed (meaning nasty). However, now there is 
a revival of interest in a deeper insight into this problem (see, e.g., Cvitanovid 
et al. (1992)). Particularly, Gell-Mann and Hartle put a similar question, true, 
in the context of a very specific and global problem-- the  quantum birth of the 
Universe (Gell-Mann and Hartle (1989)). In my understanding, such a question 
arises as well in much simpler problems concerning any natural quantum pro- 
cesses. What  is more important,  the answer from Gell-Mann and Hartle (1989) 
does not seem satisfactory. Essentially, it is the substitution of the automaton 
(information gathering and utilizing system) for the standard human observer. 
Neither seems to be a generic construction in the microworld. 

The theory of quantum chaos allows us to solve, at least (the simpler) half of 
the C-collapse problem. Indeed, the measurement device is by purpose a macro- 
scopic system for which the classical description is a very good approximation. 
In such a system strong chaos with exponential instability is quite possible. The 
chaos in the classical measurment device is not only possible but  unavoidable 
since the measurement system has to be, by purpose again, a highly unstable 
system where a microscopic intervention produces the macroscopic effect. The 
importance of chaos for the quantum measurement is that  it destroys the co- 
herence of the initial pure quantum state to be measured converting it into the 
incoherent mixture. In the present theories of quantum measurement this is de- 
scribed as the effect of external noise (see, e.g., Wheeler and Zureck (1983)). 
True, the noise is sufficient to destroy the quantum coherence, yet it is not nec- 
essary at all. Chaos theory allows us to get rid of the unsatisfactory effect of the 
external noise and to develop a purely dynamical theory for the loss of quan- 
tum coherence. Unfortunately, this is not yet the whole story. If we are satisfied 
with the statistical desciption of quantum dynamics (measurement including) 
then the decoherence is all we need. However, the individual behavior includes 
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the second (main) part of C-collapse: namely, the concentration of r in a single 
state of the original superposition 

r -- ~ an Cn --* Ck, ~ lanl 2 = 1. (4.1) 
n n 

This is the proper C-collapse to be understood. 
Also, it is another challenge to the correspondence principle. For quantum 

mechanics to be universal it must explain as well the very specific classical phe- 
nomenon of the event that does happen and remains for ever in the classical 
records, and is completely foreign to the proper quantum mechanics. It is just 
the effect of ~-collapse. 

All these problems could be resolved by a hypotetical phenomenon of self- 
collapse; that is, the collapse without any 'observer', human or automatic. Un- 
fortunately, it seems that any physical explanation of C-collapse requires some 
changes in the existing quantum mechanics, and this is the main difficulty both 
technical and philosophical. 

Now we come to the even more difficult problem of the causality principle: 
the universal time ordering of the events. This principle has been well confirmed 
by numerous experiments in all branches of physics. It is frequently used in the 
construction of various theories but, to my knowledge, no general relation of 
causality to the rest of physics was ever studied. 

This principle looks like a statistical law (another time arrow), hence a new 
hope to understand the mechanism of causality via dynamical chaos. Yet, it di- 
rectly enters the dynamics as the additional constraint on the interaction and/or 
the solutions of dynamical equations. A well-known and quite general example is 
in keeping the retarded solutions of a wave equation, only discarding advanced 
ones as 'nonphysical'. However, this is generally impossible for a bounded dy- 
namics because of the boundary conditions. Still, causality holds true as well. 

In some simple classical dissipative models, such as a driven damping oscil- 
lator, the dissipation was shown to imply causality (Youla et al. (1959), Dolph 
(1963), Zemanian (1965), Gfittinger (1966), Nussenzveig (1972)). However, such 
results were formulated as the restriction on a class of systems showing causal- 
ity rather than the foundations of the causality principle. Nevertheless, it was 
already some indication of a possible physical connection between dynamical 
causality and statistical behavior. To my knowledge, this connection was never 
studied further. To the contrary, the developement of the theory went the op- 
posite way: taking for granted the causality to deduce all possible consequences, 
particularly various dispersion relations (Nussenzveig (1972)). 

Causality relates two qualitatively different kinds of events: causes and effects. 
The former may be simply the initial conditions of motion, the point missed in 
the above-mentioned examples of the causality-dissipation relation. The initial 
conditions not only formally fix a particular trajectory but also are arbitrary, 
which is, perhaps, the key point in the causality problem. Also, this may shed 
some light on another puzzling peculiarity of all known dynamical laws: they dis- 
cribe the motion up to arbitrary initial conditions only (cf. Weingartner (these 
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proceedings)). It looks like the dynamical laws already include the causality im- 
plicitly even though they do not this explicitly. In any event, something arbi t rary 
suggests chaos is around. 

Again, we arrive at a tangle of interrelated problems. A plausible conjecture 
for how to resolve them might be as follows. An arbitrary cause indicates some 
statistical behavior, while the cause-effect relation points out a dynamical law. 
Then, we may conjecture that  when the cause acts the transition from statistical 
to dynamical behavior occurs, which statistically separates the cause from the 
'past '  and dynamically fixes the effect in the 'future'.  In this imagionary picture 
the 'past '  and 'future' are related not to time but rather to cause and effect, 
respectively. Thus, the causality might be not time ordering (time arrow) but  
cause-effect ordering, or the causality arrow. The latter is very similar to the 
process arrow discussed in Section 2.2. Now, the central point is that  the cause 
is arbi t rary while the effect is not, whatever the time ordering. 

This is, of course, but  a raw guess to be developed, carefully analysed, and 
eventually confirmed or disproved experimentally. 

Also, this picture seems to be closer to the statistical (secondary) dynamics 
[synergetics, or S D D inclusion in (1.1)] rather than to dynamical chaos. Does it 
mean that  the primary physical laws are statistical or, instead, that  the chain of 
inclusions (1.1) is actually a closed ring with a 'feedback' coupling the secondary 
statistics to the primary dynamics? 

We don't  know. 
In all this long lecture I have never given the definition of dynamical chaos, 

either classical or quantal, restricting myself to informal explanations (see Casati 
and Chirikov (1995a) for some current definitions of chaos). In a mathematical  
theory the definition of the main object of the theory precedes the results; in 
physics, expecially in new fields, it is quite often vice versa. First, one studies 
a new phenomenon such as dynamical chaos and only at a later stage, after 
understanding it sufficiently, we t ry  to classify it, to find its proper place in the 
existing theories and eventually to choose the most reasonable definition. This 
time has not yet come. 

References  

Alekseev V. M., Yakobson, M. V. (1981): Phys. Reports 75, 287 
Anosov, D. D. (1962): Dokl. AN SSSR 145, 707 
Batterman, R. (these proceedings): Chaos: Algorithmic Complexity vs. Dynamical In- 

stability 
Bayfield, J., Koch, P. (1974): Phys. Rev. Lett. 33, 258 
Berman G. P., Zaslavsky, G. M. (1978): Physica A 91,450 
Bliimel, R. (1994): Phys. Rev. Lett. 73, 428 
Bogolyubov, N. N. (1945): On Some Statistical Methods in Mathematical Physics (Kiev) 

p. 115; Selected Papers, Naukova Dumka, Kiev, 1970, Vol. 2, p. 77 (in Russian) 
Born, M. (1958): Z.Phys. 153, 372 
Bowen, R. (1973): Am. J. Math. 95, 429 



32 Boris Chirikov 

Casati, C., Chirikov, B. V., Ford, J. (1980): Phys. Lett. A 77, 91 
Casati, G., Chirikov, B. V., Eds. (1995): Quantum Chaos: Between Order and Disorder 

(Cambridge Univ. Press) 
Casati, G., Chirikov, B. V. (1995a): The Legacy of Chaos in Quantum Mechanics, in 

Casati and Chirikov (1995). 
Chaitin, G. (1987): Information, Randomness and Incompleteness, World Scientific 
Chirikov, B. V. (1979): Phys. Reports 52, 263 
Chirikov, B. V. (1985): in Proc. Pd Intern. Seminar on Group Theory Methods in 

Physics, Harwood, Vol. 1, p. 553 
Chirikov, B. V. (1986): Foundations of Physics 16, 39 
Chirikov, B. V. (1987): Proc. Roy. Soc. Lon. A 413, 145 
Chirikov, B. V., Izrailev, F. M., Shepelyansky, D. L. (1988): Physica D 33, 77 
Chirikov, B. V. (1991): Chaos. Solitons and Fractals 1, 79 
Chirikov, B. V. (1992): Linear Chaos. In: Nonlinearity with Disorder, Springer Proc. 

in Physics 67, Springer, p. 3. 
Chirikov, B. V., Izrailev, F. M., Shepelyansky, D. L. (1981): Sov.Sci.Rev. C 2,209 
Chirikov, B. V., Shepelyansky, D. L. (1982): Yadernaya Fiz. 36, 1563 
Chirikov, B. V., Vecheslavov, V. V. (1989): Astron.Astrophys. 221, 146 
Chirikov, B. V., Vecheslavov, V. V. (1990): in Analysis etc., Eds. P. Rabinowitz and 

E. Zehnder, Academic Press, p. 219 
Cv!tanovi~, P., Percival, I., Wirzba, A., Eds. (1992): Quantum Chaos - Quantum Mea- 

surement (Kluwer) 
Delone, N. B., Krainov, V. P., Shepelyansky, D. L. (1983): Usp.Fiz.Nauk 140, 335 
Dolph, L. (1963): Ann. Acad. Sci. Fenn, Ser. AI 336/9 
Eckhardt, B. (1988): Phys. Reports 163, 205 
Ford, J. (1994): private communication 
Ford J. et al. (1973): Prog. Theor. Phys. 50, 1547 
Gell-Mann, M., Hartle, J. (1989): Quantum Mechanics in the Light of Quantum Cos- 

mology. Proc. 3rd Int. Symposium on the Foundations of Quantum Mechanics in 
the Light of New Technology, Tokyo 

GSdel, K. (1931): Monatshefte flit Mathematik und Physik 38, 173 
Goldstein, S., Misra, B., Courbage, M. (1981): J. Stat. Phys. 25, 111 
Giittinger, W. (1966): Fortschr. Phys. 14, 483, 567 
Hadamard, J. (1898): J. Math. Pures et Appl. 4, 27 
Haken, H. (1987): Advanced Synergetics (Springer) 
Jeans, J. (1929): Phil. Trans. Roy. Soc. A 199, 1 
Katok, A., Hasselblatt, B. (1994): Introduction to the Modern Theory of Dynamical 

Systems (Cambridge Univ. Press) 
Kac, M. (1959): Statistical Independence in Probability, Analysis and Number Theory, 

Math. Ass. of America 
Kadomtsev, B. B. (1994): Usp. Fiz. Nauk 164, 449 
Kaneko, K., Tsuda, I. (1994): Physica D 75, 1 
Kolmogorov, A. N. (1937): Math. Ann. 113, 766 
Kornfeld, I., Fomin, S., Sinai, Ya. (1982): Ergodic Theory (Springer) 
Laskar, J. (1989): Nature 338, 237 
Laskar, 3. (1990): Icarus 88,266 
Laskar, J. (1994): Astron. Astrophys. 287, L9 
Lichtenberg, A., Lieberman, M. (1992): Regular and Chaotic Dynamics (Springer) 
MacKay, R. (1983): Physica D 7, 283 



Natural Laws and Human Prediction 33 

Matinyan S. et al. (1979): Zh. Eksp. Teor. Fiz. (Pisma) 29, 641 
Matinyan S. et al. (1981): Zh. Eksp. Teor. Fiz. (Pisma) 34, 613 
Maxwell, C. (1873) Matter and Motion (London) 
Misra, B., Prigogine, I., Courbage, M. (1979): Physica A 98, 1 
Morse, M. (1966): Symbolic Dynamics. Lecture Notes, Inst. for Advanced Study 

(Princeton) 
Nussenzveig, H. (1972): Causality and Dispersion Relations (Academic Press) 
Poincard, H. (1908): Science et Methode (Flammarion) 
Schuster, P. (1994): private communication 
Seba, P. (1990): Phys. Rev. Lett. 64, 1855 
Sheynin, O. B. (1985): Archive for History of Exact Sciences 33, 351 
Shimony, A. (1994): The Relation Between Physics and Philosophy, in: Proc. 3d Int. 

Workshop on Squeezed States and Uncertainty Relations (Baltimore, 1993), NASA, 
p.617 

StSckmann, H., Stein, J. (1990): Phys. Rev. Lett. 64, 2215 
Weidenmfiller H. et al., Phys. Rev. Lett. 69, 1296 
Weingartner, P. (these proceedings): Under What Transformations are Laws Invariant? 
Wheeler, J., Zurek, W., Eds. (1983): Quantum Theory and Measurement (Princeton 

Univ. Press) 
White, H. (1993): Ergodic Theory and Dynamical Systems 13, 807 
Wigner, E. (1961): In The Logic of Personal Knowledge, London, Ch. 19 
Wisdom, J. (1987): Icarus 72, 241 
Wunderlin, A. (these proceedings): On the Foundations of Synergetics 
Youla, D., Castriota, L., Carlin, H. (1959): IRE Trans. CT-6, 102 
Zemanian, A. (1965): Distribution Theory and Transform Analysis (McGraw-Hill) 



C o m m e n t  on Boris  Chirikov's  Paper  "Natura l  
Laws  and H u m a n  Predic t ion" 

J. Lighthill 

University College London, UK 

I enjoyed all parts of this paper, but the part on which I should especially like to 
comment is the part dealing with the history of investigations of chaos in systems 
subject to the Hamiltonian equations of classical mechanics. I believe that this 
history has been described by Professor Chirikov, perhaps through modesty, in a 
way which does not fully bring out the importance of contributions to the study 
of chaos in such systems which were made by Professor Chirikov himself. Those 
classical authors which are cited in the paper, including especially Poincar~, had 
admittedly achieved an understanding of the possibilities of chaotic behaviour 
that may arise in Hamiltonian systems. On the other hand, their attempts at 
rigorous mathematical proof of the properties of such systems came up against 
some very severs difficulties. Necessarily, such proofs were attempted by means 
of perturbation theory, for sufficiently small departures from a regular (periodic- 
orbits) solution. Nevertheless, many formidable obstacles (including the famous 
"small divisors" problem, for example) opposed the development of their argu- 
ments into a "watertight" mathematical proof. Against this background, one of 
the vitally important contributions of the famous "KAM" papers of Kolmogorov 
(1954), Arnold (1963) and Moser (1962) referred to in section 2.5 of Professor 
Chirikov's paper was their success in overcoming all the obstacles, and in achiev- 
ing a first rigorous demonstration, for sufficiently small values of a perturbation 
amplitude, of the properties of such classical systems. 

Even in those regions of parameter space (involving e.g. near-coincidence of 
resonance frequencies) where the difficulties were most formidable, the KAM 
methods produced completely reliable results. As far as chaos was concerned, 
these results demonstrated beyond any doubt that it could arise in such a sys- 
tem. Nevertheless, they showed that regular behaviour of the system was enor- 
mously more common. Indeed, it was only in regions of parameter space whose 
total measure was of smaller order than any algebraic power of a perturba- 
tion amplitude that this regular behaviour was replaced by chaotic behaviour. 
The presence of those "microscopic" gaps in parameter space where chaotic be- 
haviour could be shown to come about was of course of the greatest physical as 
well as mathematical interest. On the other hand, a group of "die-hard" math- 
ematicians who had long argued that behaviour was an essentially unproven 
hypothesis could still claim that the demonstration of its absence except in a 
region of parameter space of such exceedingly small measure had at least iden- 
tified it as just '% rarity". It has been against that background that the 1979 
paper of Professor Chirikov (see Chirikov (1979)) has required to be seen as of 
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the utmost importance. By using computational methods of extreme precision 
to derive accurate numerical solutions for a Hamiltonian system, he was able 
first of all to verify for small amplitudes the transition from regular to chaotic 
behaviour in those extremely narrow regions of parameter space that are pre- 
dicted by the KAM theory. There his methods were deriving identical results to 
those based upon a perturbation-theory approach. Then, he investigated what 
happened to those extremely narrow regions when the computations were carried 
out with progressively increasing perturbation amplitudes. It was above all this 
investigation which convinced the exponents of classical mechanics that chaos is 
not "a mere curiosity" - and, above all, not just "a rarity". On the contrary, as 
the perturbation amplitude increased, there appeared a steep widening of the 
regions of parameter space within which computed solutions exhibited the be- 
haviour characteristic of chaotic systems. With a further increase of amplitude, 
chaotic behaviour from being exceedingly rare had become extremely normal. 
For many systems, furthermore, the computations indicated a transition to glob- 
ally chaotic behaviour, sometimes called global stochasticity. Some other work 
at that time, being carried out independently in the USA by J.M. Greene (see 
Greene (1979)), was leading to rather similar conclusions, which have of course 
been strongly reinforced in many subsequent investigations. Nevertheless, it is 
no exaggeration for the friends of Professor Chirikov to claim, and moreover to 
wish to emphasize on an occasion like this, that it was his work above all which 
led to a full recognition of how, for conservative dynamical systems in classical 
mechanics, chaotic behaviour is the rule rather than the exception. In relation to 
the subject of this Symposium (the relation between knowledge of laws govern- 
ing natural phenomena and the possibilities of prediction of those phenomena) 
this conclusion has, needless to say, proved to be of fundamental importance. 

References  

Arnold, V. I. (1963): Usp. Mat. Nauk 18(13) 
Chirikov, B. V. (1979): Phys. Reports 52(263) 
Greene, J. M. (t979): J. Math. Phys. 20(1183) 
Kolmogorov, A. N. (1954): Dokl. Akad. Nauk 98(527) 
Moser, J. (1962): Nach. Akad. Wiss. Gttingen, Math. Phys. K1. 2, 1 


