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‘Natural Laws and Human Prediction

-

B. Chirikov

Budker Institute of Nuclear Physics, Russia

Abstract. Interrelations between dynamical and statistical laws in physics, on the one
hand. and between classical and quantum mechanics, on the other hand, are discussed
within the philosophy of separating the natural from the human, as a very specific part
of Nature, and with emphasis on the new phenomenon of dynamical chacs,

The principal results of the studies of chaos in classical mechanics are presented in
some detail, including the strong local instability and robustness of motion, continuity
of both phase space and the motion spectrum, and the time reversibility but nonrecur-
reney of statistical evolution, within the general picture of chaos as a specific case of
dynamical behavior.

Analysis of the apparently very deep and challenging contradictions of this picture
with the quantum principles is given. The quantum view of dynamical chacs, as an at-
tempt to resolve these contradictions guided by the correspondence principle and based
upon the characteristic time scales of quantum evelution, is explained. The picture of
quantum chaos as a new generic dynamical phenomenon is outlined together with a
few other examples of such chaos: linear (classical) waves, the (many-dimensional) har-
monic oscillator, the (completely integrable) Toda lattice, and the digital computer.

I conclude with discussion of the two fundamental physical problems: quantum mea-
surement (@-collapse), and the causality principle, which both appear to he related to
the phenomenon of dynamical chaos,

1 Philosophical Introduction: Separation of the Natural
from the Human

The main purpose of this paper is the analysis of conceptual implications from
the studies of a new phenomenon (or rather a whole new field of phenomena)
known as dynamical chaos both in classical and especially in quantum mechanics.
The concept of dynamical chaos resolves (or, at least, helps to do so) the two
fundamental problems in physics and, hence, in all the natural sciences:

— are the dynamical and statistical laws of a different nature or does one of
them, and which one, follow from the other;

— are classical and quantum mechanics of a different nature or is the latter the
most universal and general theory currently available to describe the whole
empirical evidence including the classical mechanics as the limiting case.

The essence of my debut philosophy is the separation of the human from
the natural following Einstein’s approach to the science - building up a model of
the real world Clearly, the hunun is al=o a part of the world, and moreover the
most important part for ns as human beings bnt not as physicists. The whaole
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phenomenon of life is extremely specific, and one should not transfer its peculiar-
ities into other fields of natural sciences as was erroneously (in my opinion) done
in almost all major philosophical systems. One exception is positivism, which
seems to me rather dull; it looks only at Nature but does not even want to see its
internal mechanics. Striking examples of the former are Hegel's ‘Philosophy of
Nature' (Naturphilosophie) and its ‘development’, Engels’ ‘Dialectic of Nature',

Another notorious confusion of such a ‘*human-oriented' physics was Wigner's
claim that quantum mechanics is incompatible with the existence of self-reproducing
systems (Wigner (1961)). The resolution of this ‘paradox’ is just in that Wigner
assumed the Hamiltonian of such a system to be arbitrary, whereas it is actually
highly specific (Schuster (1994)).

A more hidden human-oriented philosophy in physics, rather popular nowa-
days, is the information-based representation of natural laws, particularly when
information is substituted for entropy (with opposite sign). In the most general
way such a philosophy was recently presented by Kadomtsev (1994). That ap-
proach is possible and might be done in a self-consistent way, but one should be
very careful to avoid many confusions. In my opinion, the information is an ad-
equate conception for only the special systems that actually use and process the
information like various automata, both natural (living systems) and man-made
ones. In this case the information becomes a physical notion rather than a human
view of natural phenomena: The same is also true in the theory of measurement,
which is again a very specific physical process, the basic one in our studies of
Nature but still not a typical one for Nature itself. This is crucially important in
quantum mechanics as will be discussed in some detail below {Sections 2.4 and
3.1).

One of the major implications from studies of dynamical chaos is the concep-
tion of statistical laws as an intrinsic part of dynamics without any additional
statistical hypotheses [for the current state of the theory see, e.g., Lichtenberg
and Lieberman (1992) and recent coliection of papers by Casati and Chirikov
{1995) as well as the introduction to this collection by Casati and Chirikev
(1995a)]. This basic idea can be traced back to Poincaré (1908) and Hadamard
(1898), and even to Masewell (1873); the principal condition for dynamical chaos
being strong local instability of motion (Section 2.4). In this picture the statis-
tical laws are considered as secondary with respect to more Fundamental and
veneral primary dynamical laws. !

Yet, this is not the whole story. Surprisingly, the opposite is also true! Namely,
under certain conditions the dynamical laws were found to be completely con-
tained in the statistical ones. Nowadays this is called ‘synergetics’ (Haken (1987),
Wunderlin (these proceedings)) but the principal jdea goes back to Jeans (1929)
who discovered the instability of gravitating gas (a typical example of a statis-
tical system), which is the basic mechanism for the formation of galaxies and
stars in modern cosmology, and eventually the Solar system, a classical example
of a dynamical system. In this case the resulting dynamical laws proved to be
secondary with respect to the primary statistical laws which include the former.
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Thus, the whole picture can be represented as a chain of dynamical-statistical

inclusions:
WMl DD 8 oD o ik (1.1)

Both ends of this chain, if any, remain unclear. So far the most fundamental
(elementary) laws of physics seem to be dynamical (see, however, the discussion
of quantum measurement in Sections 3 and 4). This is why 1 begin chain (1.1)
with some primary dymamical laws.

The strict inclusion on each step of the chain has a very important conse-
quenee allowing for the so-called numerical experiments, or computer simulation,
of a broad range of natural processes. As a matter of fact the former (not labo-
ratory experiments) are now the main source of new information in the studies
of the secondary laws for both dynamical chaos and synergetics. This might
be called the third way of cognition, in addition to laboratory experiments and
theoretical analysis.

In what follows I restrict myself to the discussion of just a single ring of
the chain as marked in (1.1). Here I will consider the dynamical chaos sepa-
rately in classical and quantum mechanics. In the former case the chaos explains
the origin and mechanism of random processes in Nature (within the classical
approximation)., Moreover, that deterministic randomness may oceur (and is
typical as a matter of fact) even for a minimal number of degress of freedom
N > 1 (for Hamiltonian systems), thus enormously expanding the domain for
the application of the powerful methods of statistical analysis.

In quantum mechanics the whole situation is much more tricky and still
remains rather controversial. Here we encounter an intricate tangle of various
apparent contradictions between the correspondence principle, classical chaotic
behavior, and the very foundations of quantum physics. This will be the main
topic of my discussions below (Section 3).

One way to untangle this tangle is the new general conception, pseudochaos,
of which quantum chaos is the most important example. Another interesting
example is the digital computer, also very important in view of the broad ap-
plication of numerical experiments in the studies of dynamical systems. On the
other hand, pseudochaos in computers will hopefully help us to understand quan-
tum pseudochaos and to accept it as a sort of chaes rather than a sort of regular
motion, as many researchers, even in this field, still do believe.

The new and surprising phenomenon of dynamical chaos, especially in quan-
tum mechanics, holds out new hopes for eventually solving some old, long-
standing, fundamental problems in physics. In Section 4, I will briefly discuss
two of them:

— the causality principle (time ordering of cause and effect), and
~ iy-collapse in the quantum measurement.

The conception of dynamical chaos I am going to present here, which is not
common as yet, was the result of the long-term Siberian-Italian (SI) collabora-
tion including Giulio Casati anmd Italo Guarneri (Como), and Felix Tzrailev and
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Dima Shepelyansky (Movosibirsk) with whom I share the responsibility for our
joint scientific results and the conceptual interpretation,

2 Scientific Results and Conceptual Implications:
the Classical Limit

Classical dynamical chacs, as a part of classical mechanics, was historically the
first to have been studied simply because in the time of Boltzmann, Maxwell,
Poincaré and other founders, statistical mechanics and quantum mechanics did
not exist. No doubt, the general mathematical theory of dynamical systems,
including the ergodic theory as its modern part describing various statistical
properties of the motion, has arisen from (and is still conceptually based on)
classical mechanics (Kornfeld et al. (1982), Katok and Hasselblatt (1994)). Yet,
upon construction, it is not necessarily restricted to the latter and can be applied

to a much broader class of dynamical phenomena, for example, in quantum
mechanics (Section 3).

2.1 'What is a Dynamical System?

In classical mechanics, ‘dynamical system' means an object whose motion in
some dynamical space is completely determined by a given interaction and the
initial conditions. Hence, the synonym deterministic system. The motion of such
a system can be described in two seemingly different ways which, however, prove
to be essentially equivalent.

The first one is through the motion equations of the form

j—: = vix, ), (2.1)

which always have a unique solution

x = x(t, xg) (2.2)

Here x is a finite-dimensional vector in the dynamical space and xg is the initial
condition [xg = x(0)]. A possible explicit time-dependence in the right-hand
side of (2.1) is assumed to be a regular, e.g., periodie, one or, at least, one with
a discrete spectrum. :

The most important feature of dynamical (deterministic) systems is the ab-
sence of any random parameters or any noise in the motion equations. Partic-
ularly for this reason I will consider a speci#l clags of dynamical systems, the
so-called Hamiltonian (nondissipative) systems, which are most fundamental in
hysics, :

Dissipative systems, being very impaortant in many applications, are neither
fundamental {beeause the dissipation is introduced via a crude approximation
of the very complicated interaction with some ‘heat bath') nor purely dynamical
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in view of principally inevitable random noise in the heat bath (fluctuation-
dissipation theorem). In a more accurate and natural way the dissipative systems
can be described in the frames of the secondary dynamics (S O D inclusion in
(1.1)) when both dissipation and fluctuations are present from the beginning in
the primary statistical laws.

A purely dynamical system is necessarily the closed one, which is the main
object in fundamental physics. Thus, any coupling to the environment is com-
pletely neglected. T will come back to this important question below (Section
2.4).

'In Hamiltonian mechanics the dynamical space, called phase space, is an even-
dimensional one composed of N pairs of canonically conjugated ‘coordinates’ and
‘momenta’, each pair corresponding to one freedom of motion.

In the problem of dynamical chaos the initial conditions play a special role:
they completely determine a particular trajectory, for a given interaction, or a
particular realization of a dynamical process which may happen to be a very
specific, nontypical, one. To get rid of such singularities another description
is useful, namely the Liouville partial differential equation for the phase space
density, or distribution function f(x, t):

af _
= Lf (2.3)
with the solution
I = f(xt; fo(x)). (2.4)

Here I is a linear differential operator, and fo(x) = f(x, 0) is the initial density.
For any smooth fp this description provides the generic behavior of a dynamical
system via a continuum of trajectories. In the special case fy = fi{x — xg) the
density describes a single trajectory like the motion equations (2.1).

In any case the phase space itself is assumed to be continuous, which is the
most important feature of the classical picture of motion and the main obstacle
in the understanding of quantum chaos (Section 3).

2.2 What is Dynamical Chaos?

Dynamical chaos can be characterized in terms of both the individual trajecto-
ries and the trajectory ensembles, or phase density. Almost all trajectories of a
chaotic system are in a sense most complicated (they are unpredictable from ob-
servation of any preceding motion to use this familiar human term). Exceptional,
e.g., periodic trajectories form a set of zero invariant measure, yet it might be
everywhere dense.

An appropriate notion in the theory of chaos is the symbolic trajectory first
introduced by Hadamard (1898). The theory of symbolic dynamics was devel-
oped further by Morse (1966}, Bowen (1973), and Alekseev and Yakobson (1981).
‘The symbolic trajectory is a projection of the true (exact) trajectory on to a
discrete partition of the phase space at discrete instants of time t,, eg.. such
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that o4y —tn = T fixed. In other words, to obtain a symbolic trajectory we first
turn from the motion differential equations (2.1) to the difference equations over
a certain time interval T

X(tns1) = Xnp1 = M(xq, ta). (2.5)

This is usually called mapping or map: %, — X1 Then, while running a
(theoretically) exact trajectory we record each x, to a finite accuracy: X, = Mi,.

For a finite partition each m, can be chosen to be integer. Hence, the whole
infinite symbolic trajectory

¢ = ..Mop.. Mo MMy ... Min... = S(xg; T), (2.6)

can be represented by a single number &, which is generally irrational and which
is some function of the eract initial conditions. The symbolic trajectory may be
also called a coarse-graoined trajectory. | remind you that the latter is a projection
of (not substitution for) the exact trajectory to represent in compact form the
global dynamical behavior without unimportant microdetails.

A remarkable property of chaotic dynamics is that the set of its symbolic
trajectories is complete; that is, it actually contains all possible sequences (2.6).
Apparently, this is related to continuity of function S(xg) (2.6). On the contrary,
for a regular motion this function is everywhere discontinuous.

In a similar way the coarse-grained phase density f(mp, t) is introduced, in
addition to the exact, or fine-grained density, which is also a projection of the
latter on to some partition of the phase space.

The coarse-grained density represenfs the global dynamical behavior, partic-
ularly the most important process of statistical relazation, for chaotic motion,
to some steady state f,(m,) (statistical equilibrium) independent of the initial
So(x) if the steady state is stable. Otherwise, synergetics comes into play giving

- rise to a secondary dynamics. As the relaxation is an aperiodic process the spec-

trum of chaotic motion is confinuous, which is another obstacle for the theory
of quantum chaos (Section 3).

[lelaxation is one of the characteristic properties of statistical behavior. An-
other is fluctuation. Chaotic motion is a generator of noise which is purely intrin-
ste by definition of the dynamical system. Such noise is a particular manifestation

of the complicated dynamics as represented by the symbolic trajectories or by
the difference

.”xr ‘!} L T{.“"‘nr t} E‘.ﬁx: ﬂ' {2?]

The relaxation f — f,, apparently asymmegric with respect to time reversal
t — —t, gave rise to a long-standing misconception of the notorious fime arrow.
Even now some very complicated mathematical constructions are still being
vrected (see, e.g., Misra et al. (1979), Goldstein et al. (1981)) in attempts to
extract somehow statistical irreversibility from the reversible mechanics. In the
theory of dynamical chaos there is no such problem. The answer turns out to be
conceptual rather than physical: one should separate two similar but different
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notions, reversibility and recurrency. The exact density f(x, t) is always time-
reversible but nonrecurrent for chaotic motion; that is, it will never come back
to the initial fo(x) in both directions of fime t — +oo. In other words, the
relaxation, also present in f, is time-symmetric. The projection of f, coarse-
grained f, which is hoth nonrecurrent and irreversible, emphasizes nonrecurrency
of the exact solution. The apparent violation of the statistical relaxation upon
time reversal, as described by the exact f(x, t), represents in fact the growth
of a big fluctuation which will eventually be followed by the same relaxation
in' the opposite direction of time. This apparently surprising symmetry of the
statistical behavior was discovered long ago by Kolmogorov (1937). One can say
that instead of an imagionary time arrow there exists a process arrow pointing
always to the steady state. The following simple example would help, perhaps,
to overcome this conceptual diffieulty. Consider the hyperbolic one-dimensional
(1D} motion:

o(t) = a-exp(At) 4+ b-exp(—dAt), (2.8)

which is obviously time-reversible yet remains unstable in both directions of time
(t — +oo). Besides its immediate appeal, this example is closely related to the
mechanism of chaos which is the motion instability.

2.3 A Few Physical Examples of Low-Dimensional Chaos

In this paper I restrict myself to finite-dimensional systems where the peculiar-
ities of dynamical chaos are most clear (see Section 3.2 for some brief remarks
on infinite systems). Consider now a few examples of chaos in minimal dimen-
sionality.

Billiards (2 degrees of freedom). The ball motion here is chaotic for almost
any shape of the boundary except special cases like circle, ellipse, rectangle and
some other (see, e.g., Lichtenberg and Lieberman (1992), Kornfeld et al. (1982},
Katok and Hasselblatt (1994)). However, the ergodicity (on the energy surface) is
only known for singular boundaries. If the latter is smooth encugh the structure
of metion becomes a very complicated admixture of chaotic and regular domains
of various sizes (the so-called divided phase space). Another version of billiards
is the wave cavity in the geometric optics approximation. This provides a helpful
bridge between classical and quantum chaos.

Perturbed Kepler motion is a particular case of the famous 3-body prob-
lem. Now we understand why it has not been solved since Newton: chaos is gen-
erally present in such a system. One particular example is the motion of comet
Halley perturbed by Jupiter which was found to be chaotic with an estimated
life time in the Solar system of the order of 10 Myrs (Chirikov and Vecheslavov
(1989); 2 degrees of freedom in the model used, divided phase space).

Another example is a new, diffusive, mechanism of ionization of the Rydberg
{highly excited) hydrogen atom in the external monochromatic electric field. It
was discovered in laboratory experiments (Bayfield and Koch (1974)) and was
cxplained by dynamical chaos in a ¢lassical approximation (Delone et al, [1983)).

Natural Laws and Human Prediction 17

In this alsystem a given field plays the role of the third body. The simplest model
of the diffusive photoelectric effect has 1.5 degrees of freedom (1D Kepler motion
and the external periodic perturbation), and is also characterized by a divided
phase space.

Budker’s problem: charged particle confinement in an adiabatic magnetic

trap (Chirikov (1987)). A simple model of two freedoms (axisymmetric magnetic
field) is described by the Hamiltonian:

P (1+2%)y°
H=5%+ 220 (2.9)
Here mfagr!etic field B = v/1 +2z7; p? = &2 + 4% x describes the motion along
magnetic line, and y does so accross the line (a projection of Larmor’s rotation).

At small pitch angles 8 = |§j/#| the motion is chaotic with the chaos border
being at roughly

1
T (2.10)

and being very complicated, so-called critical, structure (Section 2.5).

Matinyan’s problem: internal dynamics of the Yang-Mills {(gauge) fields in
classical approximation (Matinyan (1979), Matinyan (1981)). Surprisingly, this
completely different physical system can be also represented by Hamiltonian
(2.9) with a symmetrized ‘potential energy’:

(1 + 22)y® + (1 % y?)2?
U = Jy 2( ) : (2.11)

D}rn_a?nics is always chaotic with a divided phase space similar to model {2.9)
(Chirikov and Shepelyansky (1982)). Model (2.11) describes the so-called massive
gauge field; that is, one with the quanta of nonzero mass. The massless field

corresponds to the ‘potential energy’

(2.12)

and looks ergodic in numerical experiments.

2.4 Instability and Chaos

Local instability of motion responsible for a very complicated dynamical behavior

is described by the linearized equations: !
du B‘V(xﬂl[t;;1 t)
i = (2.13)

Here xu{t} is a reference trajectory satisfying (2.1), and u = x(t) - x“[t} is the

}Iuvintion of a close trajectory x(t). On average, the solution of (2.13) has the
ormn

fa| ~ exp(At), (2.14)
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where A is Lyapunouv’s ezponent. The motion is (exponentially) unstable if A > 0.
In the Hamiltonian system of NV degrees of freedom there are 2N Lyapunov’s
exponents satisfying the condition 3} A = 0. The partial sum of all positive

exponents A, > 0,
h= A (2.15)

is called the (dynamical) metric entropy. Notice that it has the dimensions of
frequency and characterises the instability rate.

The motion instability is only a necessary but not sufficient condition for
dhaos. Another important condition is boundedness of the motion, or its oscilla-
tory (in a broad sense) character. The chaos is produced by the combination of
these two conditions (also ealled stretching and folding). Let us again consider
an elementary example of a 1D map

Tnet = 22n mod 1, (2.16)

where operation mod 1 restricts (folds) = to the interval {0,1). This is not a
Hamiltonian system but it can be interpreted as a ‘half’ of that; namely, as the
dynamics of the oscillation phase. This motion is unstable with A = In 2 because
the linearized equation is the same except for the fractional part {mod 1). The
explicit solution for both reads

ty = 2™ uy,

Tw = "zg mod 1. (2.17)

The first (linearized) motion is unbounded, like Hamiltonian hyperbolic motion,
(2.8) and is perfectly regular. The second one is not only unstable but also
chaotic just because of the additional operation mod 1, which makes the motion
bounded, and which mixes up the points within a finite interval.

We may look at this example from a different viewpoint. Let us express the
initial zg in the binary code as the sequence of two symbaols, 0 and 1, and let
us make the partition of the unit x interval also in two equal halves marked by
the same symbols. Then, the symbolic trajectory will simply repeat xg; that is,
(2.6) takes the form

g = Tp. (2.18)
It implies that, as time goes on, the global motion will eventually depend on ever-
diminishing details of the initial conditions. In other words, when we formally
fix the exact xq we ‘supply’ the system with infinite complexity, which arises due
to the strong motion instability. Still another interpretation is that the exact
xg is the source of intrinsic noise amplified by the instability. For this noise to
be stationary the string of zp digits has to be infinite, which is only possible in
continuous phase space.

A nontrivial part of this picture of chaos is that the instability must be ex-
ponential because a power-law instability is insufficient for chaos. For example,
the linear instability (ju] ~ &) is a generic property of porfectly regular mo-
tion of the completely integrable system whose motion cquations are nonlinear
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and, hence, whose oscillation frequencies depend on the initial conditions (Born
(1958), Casati et al. (1980)). The character of motion for a faster instability
{lu| ~ ¢, @ > 1) is unknown.

On the other hand, the exponential instability (h > 0) is not invariant with
respect to the change of time variable (Casati and Chirikov (1995a), Batter-
man (these proceedings); in this respect the only invariant statistical property
is ergodicity, Kornfeld et al. (1982}, Katok and Hasselblatt {1994)). A possible
resolution of this difficulty is that the proper characteristic of motion instability,
important for dynamical chaos, should be taken with respect to the oscillation
phases whose dynamics determines the nature of motion. It implies that the
proper time wvariable must change proportionally with the phases so that the
oscillations become stationary (Casati and Chirikov (1995a)). A simple exam-
ple is harmonic oscillation with frequency w recorded at the instances of time
ty = 2™tp. Then, oscillation phase x = wi /27 obeys map (2.16), which is chaotic.
Clearly, the origin of chaos here is not in the dynamical system but in the record-
ing procedure (random £y). Now, if w is a parameter (linear oscillator), then the
oscillation is exponentially unstable (in new time n) but only with respect to
the change of parameter w, not of the initial x4 (x — = + zp). In a slightly
‘camouflaged’ way, essentially the same effect was considered by Bliimel (1994)
with far-reaching conclusions on quantum chaos (Section 3.2).

Rigorous results concerning the relation between instability and chaos are
concentrated in the Alekseev-Brudno theorem (see Alekseev and Yakobson (1981),
Batterman (these proceedings), White.(1993)), which states that the complexity

per unit time of almost any symbolic trajectory is asymptotically equal to the
metric entropy:

% -k, It| — oo, (2.19)

Here C(t) is the so-called algorithmic complexity, or in more familiar terms, the
information associated with a trajectory segment of length |¢].

The transition time from dynamical to statistical behavior according to (2.19)
tlepends on the partition of the phase space, namely, on the size of a cell i, which
is inversely proportional to the biggest integer M > m, in symbolic trajec-
tory (2.6). The transition is controlled by the randomness parameter (Chirikov
(1985)): :

hiel It
oy A (2.20)
where ¢, is the dynamical time scole. As bn:uth';|t|, M — oo we have a somewhat

vonfusing situation, typical in the theory of dynamical chaos, in which two limits
o not commute: j

|
M — oo, |t|] = 0o # |t| = o0, M — oo. {2.21)
For the left order (M — oo first) parameter 7 — 0, and we have temporary deter-

mmism ([t| t,), while for the right order r — oo, and we arrive at asymptotic
risnlomness ([t 24,).
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Instead of the above double limit we may consider the conditional limit
[t], M — oo, T = const, {2.22)

which is also a useful method in the theory of chaotic processes. Particularly
for r 1, strong dynamical correlations persist in a symbolic trajectory, which
allows for the prediction of trajectory from a finite-accuracy observation. This
is no longer the case for » 21 when only a statistical description is possible.
Nevertheless, the motion equations can still be used to completely derive all the
statistical properties without any ad hec hypotheses. Here the exact trajectory
does erist as well but becomes the Kantian thing-in-itself, which can be neither
predicted nor reproduced in any other way.

The mathematical origin of this peculiar property goes back to the famous
Godel theorem (Gidel (1931)), which states (in a modern formulation) that
mast theorems in a given mathematical system are unprovable, and which forms
the basis of contemporary mathematical logic (see Chaitin (1987) for a detailed
explanation and interesting applications of this relatively less-known mathemati-
cal achievement), A particular corollary, directly related to symbolic trajectories
(2.6}, is that alinost all real numbers are uncomputable by any finite algorithm.
Besides rational numbers some irrationals like = or e are also known to be com-
putable. Hence, their total complexity, e.g., C(r), is finite, and the complexity
per digit is zero {cf. (2.19)).

The main object of my discussion here, as well as of the whole physies, is a
closed system that requires neglection of the external perturbations. However,
in case of strong motion instability this is no longer possible, at least dynam-
ically. What is the impact of a weak perturbation on the statistical properties
of a chaotic system? The rigorous answer was given by the robustness theorem
due to Anosov (1962): not only do statistical properties remain unchanged but,

moreaver, the trajectories get only slightly deformed providing (and due to) the ~

same strong motion instability, The explanation of this striking peculiarity is
that the trajectories are simply transposed and, moreover, the less the stronger
is Instability.

In conclusion let me make a very general remark, far beyond the particular
problem of chaotic dynamics. According to the Alekseev-Brudno theorem (2.19)
the source of stationary (new) information is always chaotic. Assuming farther
that any creative activity, science including, is such a source we come to an
interesting conclusion that any such activity has to be (partly!) chaotic. This is
the creative side of chaos.

2.5 Statistical Complexity

The theory of dynamical chaos does not need any statistical hypotheses, nor
does it allow for arbitrary ones. Everything is to be deduced from the dynamical
equations. Sometimes the statistical properties turn out to be quite simple and
familiar (Lichtenberg and Licberman (1992), Chirikov (1979)). This is usually
the case if the chaotic motion is also ergodic (on the energy surface), like in some
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billiards and other simple models (Section 2.3). However, quite often, and even
typically for a few-freedom chaos, the phase space is divided, and the chaotic
component of the motion has a very complicated structure.

One beautiful example is the so-called Arnold diffusion driven by a weak
(¢ — 0) perturbation of a completely integrable system with N > 2 degrees of
freedom (Lichtenberg and Lieberman (1992), Chirikov (1979)). The phase space
of such a system is pierced by the everywhere-dense set of nonlinear resonances

Y ma-wd(I) = 0, (2.23)

where my, are integers, and w? are the unperturbed frequences depending on
dynamical variables (usually actions I'). Each resonance is surrounded by a sep-
aratrix, the singular highly unstable trajectory with zero motion frequency. As
a result, no matter how weak the perturbation (¢ — 0) is, a narrow chaotic
layer always arises around the separatrix. The whole set of chaotic layers is ev-
erywhere dense as is the set of resonances. For N > 2 the layers form a united
connected chaotic component of the motion supporting the diffusion over the
whole energy surface. Both the total measure of the chaotic component and the
rate of Arnold diffusion are exponentially small (~ exp(—C/\/€)) and can be
neglected in most cases; hence the term KAM integrability (Chirikov and Vech-
eslavov (1980)) for such a structure (after Kolmogorov, Arnold and Moser who
rizorously analysed some features of this st}ucture}. This quasi-integrability has
the nature and quality of adiabatic invariance. However, on a very big time scale
this weak but universal instability may essentially affect the motion.

One notable example is celestial mechanics, particularly the stability of the
Solar system (Wisdom (1987) Laskar (19889), Laskar {1990), Laskar (1994)). Sur-
prisingly, this ‘cradle’ of classical determinism and the exemplar case of dynami-
cal behavior proves to be unstable and chaotic. The instability time of the Solar
svstem was found to be rather long (A~ ~ 10 Myrs), and its life time is still
many orders of magnitude larger. It has not been estimated as yet, and might
well exceed the cosmological time ~ 10 Byrs.

Another interesting example of complicated statistics is the so—called critical
structure near the chaos border which is a necessary element of divided phase
space (Chirikov (1991)). The critical structure is a hierarchy of chaotic and regu-
lar domains on ever decreasing spatial and frequency scales. It can be universally
described in terms of the renormalization group, which proved to be so efficient
i other branches of theoretical physics. In turn, the renormalization group may
be considered as an abstract dynamical system that describes the variation of
the whole motion structure, for the original dynamical system, in dependence
of its spatial and temporal scale. Logarithm of the latter plays a role of "time’
{renormtime) in that renormdynamics. At the chaos border the latter is deter-
mined by the motion frequencies. The simplest renormdynamics is a periodic
wariation of the structure or, for a renorm-map, the invariance of the structure
with respect to the scale (MacKay (1933)). Surprisingly, this scale invariance
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includes the chaotic trajectories as well. The opposite limit—renormchaos—is
also possible, and was found in several models (see Chirikov (1991)).

Even though the critical structure occupies a very narrow strip along the
chaos border it may qualitatively change the statistical properties of the whole
chaotic component. This is because a chaotic trajectory unavoidably enters from
time to time the critical region and ‘sticks’ there for a time that is longer the
closer it comes to the chaos border, The sticking results in a slow power-law
correlation decay for large time, in a singular motion spectrum for low frequency,
and even in the superdiffusion when the phase-density dispersion o? ~ % (@t > 1)
'grows faster than time (Chirikov (1987), Chirikov (1991)).

3 Scientific Results and Conceptual Implications:
Cuantum Chaos

The mathematical theory of dynamical chaos—ergodic theory—is self-consistent.
However, this is not the case for the physieal theory unless we accept the philos-
ophy of the two separate mechanics: classical and quantum, Even though such a
view cannot be excluded at the moment it has a profound difficulty concerning
the border between the two. Nor is it necessary according to recent intensive
studies of quantum dynamics. Then, we have to understand the mechanics of
dynamical chaos from a quantum point of view. Our guiding star will be the
correspondence principle which requires the complete quantum theory of any
classical phenomenon, in the quasiclassical limit, assuming that the whole clas-
sical mechanics is but a special part (the limiting case) of the currently most
general and fundamental physical theory: quantum mechanics. Now it would be
more correct to speck about quantum field theory but here I restrict myself to
finite-dimensional systems only (see Sections 3.2 and 3.4).

3.1 The Correspondence Principle

In attempts to build up the quantum theory of dynamical chaos we immediately
encounter a number of apparently very deep contradictions between the well-
established properties of classical dynamical chaos and the most fundamental
principles of quantum mechanics.

To begin with, quantum mechanics is commonly understood as a funda-
mentally statistical theory, which seems to imply always some quantum chaos,
independent of the behavior in the classical limit. This is certainly true but in
some restricted sense only. A novel developement here is the isolation of this fun-
damental quantum randomness as solely the characteristic of the very specific
quantum process, measurement, and even as the particular part of that—the so-
called 1-collapse which, indeed, has so far no dynamical description (see Section
4 for further discussion of this problem).

No doubt, quantum measurement is absolutely necessary for the study of the
microworld by us, the macroscopic hman beings. Yet, the measurement s, in
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a sense, foreign to the proper microworld that might (and should) be described
separately from the former. Explicitly (Casati and Chirikov (1995a)) or, more
often, implicitly such a philosophy has become common in studies of chaos but
not yet beyond this field of research (see, e.g., Shimony (1994)).

This approach allows us to single out the dynamical part of quantum mechan-
ics as represented by a specific dynamical variable y(t) in Hilbert space, satistying
some deterministic equation of motion, e.g., the Schrisdinger equation. The more
difficult and vague statistical part is left for a better time. Thus, we temporarily
bypass (not resolve!) the first serious difficulty in the theory of quantum chaos
(see also Section 4). The separation of the first part of quantum dynamics, which
is very natural from a mathematical viewpoint, was first introduced and empha-
sized by Schrédinger, who, however, certainly underestimated the importance of
the second part in physics.

However, another principal difficulty arises. As is well known, the energy (and
frequency) spectrum of any quantum motion bounded in phase space is always
discrete. And this is not the property of a particular equation but rather a con-
sequence of the fundamental quantum principle—the discreteness of phase space
itself, or in a more formal language, the noncommutative geometry of quantum
phase space. Indeed, according to another fundamental quantum principle—the
uncertainty principle—a single quantum state cannot occupy the phase space
volume ¥ SAY =1 [in what follows I set ki = 1, particularly, not to confuse it
with metric entropy A (2.15)]. Hence, the motion bounded in a domain of volume
V' is represented by V/V; ~ V eigenstates, a property even stronger than the
seneral discrete spectrum (almost periodic motion).

According to the existing ergodic theory such a motion is considered to be
reqular, which is something opposite to the known chaotic motion with a continu-
ons spectrum and exponential instability (Section 2.2), again independent of the
vlassical behavior. This seems to never imply any chaos or, to be more precise,
wny classical-like chaos as defined in the ergodic theory. Meanwhile, the corre-
spondence principle requires conditional chaos related to the nature of motion
w the classical limit.

1.2 Pseudochaos

Now the principal question to be answered reads: where is the expected quantum
+haos in the ergodic theory? Our answer to this question (Chirikov et al. (1981),
Chirikov et al. (1988); not commonly s.c-::epti%d as yet) was concluded from a
simple observation (principally well known but never comprehended enough)
that the sharp border between the discrete and continuous spectrum is physi-
vally meaningful in the limit [t] — oo only, r,]m condition actually assumed in
the ergodic theory. Hence, to understand quantum chaos the existing ergodic
theory needs modification by the introduction of a new ‘dimension’, the time. In
viher words, a new and central problem in the ergodic theory is the finite-time

statistical properties of a dynamical system, both quantum as well as classical
[Section 3.4).
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Within a finite time the discrete spectrum is dynamically equivalent to the
continuous one, thus providing much stronger statistical properties of the motion
than was (and still is) expected in the ergodic theory for the case of a discrete
spectrum. In short, motion with a discrete spectrum may exhibit all the statisti-
cal properties of classical chaos but only on some finite time scales (Section 3.3).
Thus, the conception of a time scale becomes fundamental in our theory of quan-
tum chaos (Chirikov et al, (1981}, Chirikov et al. [1988)). This is certainly a new
dynamical phenomenon, related but not identical at all to classical dynamical
chaos. We call it pseudochaos, the term pseudo is used to emphasize the difference
from the asymptotic (in time) chaos in the ergodic theory. Yet, from the physical
point of view, we accept here that the latter, strictly speaking, does not exist
in Mature. So, in the common philosophy of the universal quantum mechanics
psendochaos is the only true dynamical chaes (cf. the term 'pseudoeuclidian ge-
ometry’ in special relativity). Asymptotic chaos is but a limiting pattern which
is, nevertheless, important both in theory, to compare with the real chaos, and
in applications, as a very good approximation in a macroscopic domain, as is
the whole classical mechanics. Ford describes the former mathematical chaos as
contrasted to the real physical chaos in quantum mechanics (Ford (1994)). An-
other curious but impressive term is artificial reality (Kaneko and Tsuda (1994)),
which is, of course, a self-contradictory notion reflecting, particularly, confusion
in the interpretation of surprising phenomena such as chacs.

The statistical properties of the discrete-spectrum motion are not completely
new subjects of research, such research goes back to the time of intensive studies
in the mathematical foundations of statistical mechanics before dynamical chaos
was discovered or, better to say, understood (see, e.g., Kac (1959)). We call this
early stage of the theory traditional statistical mechanics (TSM). It is equally

applicable to both classical as well as quantum systems. For the problem under ,

consideration here, one of the most important rigorous results with far-reaching
consequences was the statistical independence of oscillations with incommensu-

rable (linearly independent) frequencies w,, such that the only solution of the
resonance equation,

N
Y Minwn =0, (3.1)
mn

in integers is my, = 0 for all n. This is a generic property of the real numbers;
that is, the resonant frequencies (3.1) form a set of zero Lebesgue measure.
If we define now y, = cos (w,t), the statistical independence of v, means that
trajectory uy(t) is ergodic in N-cube |yn| = 1. This is a consequence of ergodicity
of the phase trajectory ¢,(t) = w,t mod 27 in N-cube |¢,| < 7.

Statistical independence is a basic property of a set to which the probabil-
ity theory is to be applied. Particularly, the sum of statistically independent
quantities,

N
2(t) = Y An-coslwnt + éy), {3.2)

Fi

Natural Laws and Human Prediction 25

which is motion with a discrete spectrum, is the main object of this theory. How-
ever, the familiar statistical properties such as Gaussian fluctuations, postulated
(directly or indirectly) in TSM, are reached in the limit N — oo only, which is
called the thermodynamical limit. In TSM this limit corresponds to infinite-
dimensional models (Kornfeld et al. (1982), Katok and Hasselblatt (1994)),
which provide a very good approximation for macroscopic systems, both classical
and quantal.

However, what is really necessary for good statistical properties of sum (3.2)
is a large number of frequencies N, — oo, which makes the discrete spectrum
continuous (in the limit). In TSM the latter condition is satisfied by setting
N, = N. The same holds true for quantum fields which are infinite-dimensional.
In quantum mechanics another mechanism, independent of N, works in the
quasiclassical region g % 1 where g = I/h = I is some big quantum parameter,
e.g., gquantum number, and [ stands for a characteristic action of the system.
[ndeed, if the quantum motion (3.2) [with 4(t) instead of z(t)] is determined by
many {~ g) eigenstates we can set N, = ¢ independent of N. The actual number
of terms in expansion (3.2) depends, of course, on a particular state () under
consideration. For example, if it is just an eigenstate the sum reduces to a single
term. This corresponds to the special peculiar trajectories of classical chaotic
motion whose total measure is zero. Similarly, in quantum mechanics N, ~ g
for most states if the system is classically chaotic. This important condition
was found to be certainly sufficient for good quantum statistical properties (see
(hirikov et al. (1981), Chirikov et al. (1988) and Section 3.3 below). Whether it
is also the necessary condition remains as yet unclear.

Thus, with respect to the mechanism of the quantum chacs we essentially
vorne back to TSM with an exchangé of the number of freedoms N for the
quantum parameter g. However, in quantum mechanics we are not interested,
nnlike in TSM, in the limit § — oo, which is simply the classical mechanics,
llere, the central problem is the statistical properties for large but finite g. This
problem does not exist in TSM describing macroscopic systems. Thus, with an
lil mechanism the new phenomena were understood in quantum mechanies,

4.3  Characteristic Time Scales in Quantum Chaos

I'le existing ergodic theory is asymptotic in time, and hence contains no time
sviles at all, There are two reasons for this. One is technical: it is much simplier
to derive the asymptotic relations than to obtain rigorous finite-time estimates.
Another reason is more profound. All statements in the ergodic theory hold true
up to measure zero, that is, excluding somg peculiar nongeneric sets of zero
measure. Even this minimal imperfection of the theory did not seem completely
tisfactory but has been ‘swallowed’ eventually and is now commonly tolerated
cven among mathematicians, to say nothing about physicists. In a finite-time
theory all these exeeptions acquire a small but finite measure which would be
alresudy ‘unbearalile’ (for mathematicians). Yet, there is a standard mathematical
trivk, to be discussed below, for aveiding both these difficultics.
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The most important time scale {g in quantum chaos is given by the general

estimate
Intg ~ lng, tn ~ q% ~ pg < Py, (3.3)

where a ~ 1 is a system-dependent parameter. This is called the relazation time
seale refering to one of the principal properties of chaos: statistical relazation to
some steady state (statistical equilibrium). The physical meaning of this scale is
principally simple and is directly related to the fundamental uncertainty prinei-
ple (At - AE ~ 1) as implemented in the second equation in (3.3), where py is
the full average energy level density (also called the Heisenberg time). For t Stg
the discrete spectrum is not resolved, and the statistical relaxation follows the
classical (limiting) behavior. This is just the ‘gap’ in the ergodic theory (supple-
mented with the additional, time, dimension) where pseudochaos, particularly
quantum chaos, dwells, A more accurate estimate relates tg to a part gy of the
level density. This is the density of the so-called operative eigenstates; that is,
only those that are actually present in a particular quantum state i and actually
control its dynamics.

The formal trick mentioned above is to consider not the finite-time relations
we really need but rather the special conditional limit (cf. (2.22)):

H
t, g — oo T = —— = const (3.4)
a(g)

Quantity 7 is a new rescaled time which is, of course, nonphysical but very help-
ful technically. The double limit (3.4) (unlike the single one ¢ — =) is not the
classical mechanics which holds true, in this representation, for v =1 and with
respect to the statistical relaxation only. For 7 2,1 the behavior becomes essen-
tially quantum (even in the limit ¢ — oo 1) and is called nowadays mesoscopic

phenomena. Particularly, the quantum steady state is quite different from the .

classical statistical equilibrium in that the former may be localized (under certain
conditions) that is nonergodic in spite of classical ergodicity.

Another important difference is in fluctuations, which are also a characteristic
property of chaotic behavior. In comparison with classical mechanics quantum
w(t) plays, in this respect, an intermediate role between the classical trajectory
(exact or symbolic) with big relative fluctuations ~ 1 and the coarse-grained
classical phase space density with no fluctuations at all. Unlike both the fluc-
tuations of (t) are ~ N2, which are another manifistation of statistical
independence, or decoherence, of even pure quantum state (3.2) in case of quan-
tum chaos. In other words, chaotic 1(t) represents statistically a finite ensemble
of ~ N, systems even though formally 4(t) describes a single system. Quantum
fluetuations clearly demonstrate also the difference between physical time ¢ and
auxillary variable 7: in the double limit (t, § — oo) the Auctuations vanish and
one needs a new trick to recover them.

The relaxation time scale should be distinguished from the Poincaréd recur-
rence time tp 3 tg, which is typically much longer, and which sharply increases
with a decrease in the recurrence domain. Time scale tp characterizes big flue-
tuations (for both the classical trajectory, but not the phiase space density, and
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quantum ) of which recurrences is a particular case. Unlike this, tg describes
the average relaxation process.

Stronger statistical properties than relaxation and fluctuations are related in
the ergodic theory to the exponential instability of motion. Their importance
for statistical mechanics is not completely clear. Nevertheless, in accordance
with the correspondence principle, those stronger properties are also present in
quantum chaos as well, but on a much shorier time scale,

Ing
tr h- ' (3'5}

where h is classical metric entropy (2.15). This time scale was discovered and
partly explained by Berman and Zaslavsky (1978) (see also Chirikov et al. (1981),
Chirikov et al. (1988), Casati and Chirikov (1995a)). Being very short, t, grows
indefinitely as g — co.

The simplest example of quantum dynamics on this scale is the stretch-
ing/squeezing of an initially narrow wave packet, with the conservation of the
phase space volume like in classical mechanics, followed by the packet inflation
(increasing phase space volume), and eventually by the complete destruction of
the packet, its splitting into many irregular subpackets (Casati and Chirikov
{1095a)). ’

In a quasiclassical region (g > 1), {, < tg (3.3). This leads to an interesting
conclusion that the quantum diffusion and relaxation are dynamically stable
contrary to the classical behavior. It suggests, in turn, that the motion instability
i= not important during statistical relaxation. However, the foregoing correlation

Jdecay on a short time scale ¢, is crucial for the statistical properties of quantum
Jvnamics.

3.4 Examples of Pseudochaos in Classical Mechanics

P'seudochaos is a new generic dynamical phenomenon missed in the ergodic
theory, No doubt, the most important particular case of pseudochaos is quantum
vhaos. Nevertheless, pseudochaos occurs in classical mechanics as well. Here are
a few examples of classical pseudochaos, which may help us to understand the
phivsical nature of quantum chaos, my primary goal in this paper. Besides, this
unveils new features of classical dynamics as well.

Linear waves is the example of pseudochaos (see, e.g., Chirikov (1992)) that
15 elosest to quantum mechanics. [ remind you that here enly a part of quantum
dvnamics is discussed, the one described, e.g., by the Schrodinger equation,
which is a linear wave equation. For this' reason quantum chaos is sometimes
called wave chaos (Seba (1990)). Classical electromagnetic waves are used in
Laboratory experiments as a physical model for quantum chaos (Stéckmann and
Stein (1090}, Weidenmiiller et al. (1992)). The ‘classical’ limit corresponds here
ter the geometrical ‘opties’, amld the ‘quantum’ parameter 9 = L/ is the ratio of
a characteristic size L of the system to the wave length A
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The linear oscillator (many-dimensional) is a particular case of waves
(without dispersion). A broad class of quantum systems can be reduced to this
model (Eckhardt (1988)). Statistical properties of linear oscillators, particularly
in the thermodynamic limit (N — oo}, were studied by Bogolyubov (1945) in the
framework of TSM. On the other hand, the theory of quantum chaos suggests
richer behavior for a large but finite IV, particularly, the characteristic time scales
for the harmonie oscillator motion (Chirikov (1986)) and the number of degrees
of freedom N playing the role of the ‘quantum’ parameter.

Completely integrable nonlinear systems also reveal pseudochaotic be-
havior. An example of statistical relaxation in the Toda lattice had been pre-
sented in Ford et al. (1973) much before the problem of quantum chaos arose.
Moreaver, the strongest statistical properties in the limit N — oo, including one
equivalent to the exponential instability (the so-called K-property) were rigor-
ously proved just for the (infinite) completely integrable systems (see Kornfeld
et al. (1082), Katok and Hasselblatt (1994)).

The digital computer is a very specific classical dynamical system whose
dynamics is extremely important in view of the ever increasing application in
numerical experiments covering now all branches of science and beyond. The
computer is an ‘overquantized’ system in that eny quantity here is discrete,
whereas in quantum mechanics only the product of two conjugated variables is.
The ‘quantum’ parameter here is ¢ = M, which is the largest computer integer,
and the short time scale (3.5) is £, ~ In M, which is the number of digits in
the computer word (Chirikov et al. (1981), Chirikov et al. (1988)). Owing to
the discreteness, any dynamical trajectory in the computer eventually becomes
periodic, an effect well known in the theory and practice of the so-called pseudo-
random number generators. One should take all necessary precautions to exclude
this computer artifact in numerical experiments. On the mathematical part, the
periodic approximations in dynamical systems are also studied in erpodic the-
ory, apparently without any relation to pseudochaos in guanturn mechanics or
computers.

Computer pseudochaos is the best answer to those who refuse accept the
quantum chaos as, at least, a kind of chaos, and who still insist that only the
classical-like {asymptotic) chaos deserves this name, the same chaos that was
(and is) studied to a large extent just on computers; that is, the chaos inferred
from a pseudochaos!

4 Conclusion: Old Challenges and New Hopes

The discovery and understanding of the new surprising phenomenon—dynamical
chaos—opened up new horizons in solving many other problems including some
long-standing ones. Unlike in previous sections, here [ can give only a preliminary
consideration of possible new approaches to such problems, together with some
plausible conjectures (see also Casati and Chirikov {1095:)).

Let us begin with the problem directly related to quantum dynamics, namely
the quantwm measurement or, to be more correct, the spicilie stuee of the latter:

.
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w-collapse. This is just the part of quantum dynamics I bypassed above in the
report on scientific results. This part still remains very vague to the extent
that there is no common agreement even on the question of whether it is a
real physical problem or an ill-posed one so that the Copenhagen interpretation
of (or convention in) gquantum mechanics gives satisfactory answers to all the
admissible questions. In any event there exists as yet no dynamical description
of the quantum measurement including -collapse. The quantum measurement,
us far as the result is concerned, is fundamentally a random process. However,
there are good reasons to hope that this randomness can be interpreted as a
particular manifestation of dynamical chaos (Cvitanovié et al. (1992)).

The Copenhagen convention was (and still remains) very important as a
phenomenological link between very specific quanturmn theory and laboratory ex-
periments. Without this link studies of the microworld would be simply impos-
sible. The Copenhagen philosophy perfectly matches the standard experimental
setup of two measurements: the first one fixes the initial quantum state, and
the second records the changes in the system. However, it is less clear how to
Jeal with natural processes without any man-made measurements that is with-
it the notorious ebserver. Since the beginning of quantum mechanics such a
question has been considered ill-posed (meaning nasty). However, now there is
A revival of interest in a deeper insight into this problem (see, e.g., Cvitanovié
ot al. (1992)). Particularly, Gell-Mann and Hartle put a similar question, true,
in the context of a very specific and global problem—the quantum birth of the
Iniverse (Gell-Mann and Hartle (1989)). In my understanding, such a question
arises as well in much simpler problems concerning any natural quantum pro-
crsses. What is more important, the answer from Gell-Mann and Hartle (1989)
Joes not seem satisfactory. Essentially, it is the substitution of the automaton

information gathering and utilizing system) for the standard human observer.
“vither seems to be a generic construction in the microworld.

The theory of quantum chaos allows us to solve, at least (the simpler) half of
tlie yr-collapse problem. Indeed, the measurement device is by purpose a macro-
cupic system for which the classical description is a very good approximation.
In such a system strong chaos with exponential instability is quite possible. The
haos in the classical measurment device is not only possible but unavoidable
.nwe the measurement system has to be, by purpose again, a highly unstable
.vstem where a microscopic intervention produces the macroscopic effect. The
smportance of chaos for the quantum measurement is that it destroys the co-
herence of the initial pure quantum state to be measured converting it into the
nwolierent mixture. In the present theories of quantum measurement this is de-
~wribied as the effect of external noise (see, elg., Wheeler and Zureck (1983)).
Lrier, the noise is sufficient to destroy the quuptum coherence, yet it is not nec-
sty at all. Chaos theory allows us to get rid of the unsatisfactory effect of the
wxternal noise and to develop a purely dynamical theory for the loss of quan-
tumn caherence. Unfortunately, this is not yet the whole story. If we are satisfied
with the statistical desciption of quantum dynamics (measurement including)
then the decoherence is all we need. However, the individual behavior includes
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the second (main) part of ¢-collapse: namely, the concentration of 9 in a single
state of the original superposition

W= Z Ca¥n — P, Z =i, (41)

1

This is the proper y-collapse to be understood.

Also, it is another challenge to the correspondence principle. For guantum
mechanics to be universal it must explain as well the very specific classical phe-
nomenon of the event that does happen and remains for ever in the classical
records, and is completely foreign to the proper quantum mechanics. It is just
the effect of y-collapse. "

All these problems could be resolved by a hypotetical phenomenon of self-
collapse; that is, the collapse without any ‘observer’, human or automatic. Un-
fortunately, it seems that any physical explanation of i-collapse requires some
changes in the existing quantum mechanies, and this is the main difficulty both
technical and philosophical.

Mow we come to the even more difficult problem of the causality principle:
the universal time ordering of the events. This principle has been well confirmed
by numerous experiments in all branches of physics. It is frequently used in the
construction of various theories but, to my knowledge, no general relation of
causality to the rest of physics was ever studied.

This principle looks like a statistical law (another time arrow), hence a new
hope to understand the mechanism of causality via dynamical chaos. Yet, it di-
rectly enters the dynamics as the additional constraint on the interaction and/or
the solutions of dynamical equations. A well-known and quite general example is
in keeping the retarded solutions of a wave equation, only discarding advanced
ones as ‘nonphysical’. However, this is generally impossible for a bounded dy-
namics because of the boundary conditions. 5till, causality holds true as well.

In some simple classical dissipafive models, such as a driven damping osecil-
lator, the dissipation was shown to imply causality (Youla et al. (1959), Dolph
(1963), Zemanian (1965), Giittinger {1966), Nussenzvelg (1972)). However, such
results were formulated as the restriction on a class of systems showing causal-
ity rather than the foundations of the causality principle. Nevertheless, it was
already some indication of a possible physical connection between dynamical
causality and statistical behavior. To my knowledge, this connection was never
studied further. To the contrary, the developement of the theory went the op-
posite way: taking for granted the causality to deduce all possible consequences,
particularly various dispersion relations (Nussenzveig (1972)).

Causality relates two qualitatively different kinds of events: causes and effects.
The former may be simply the initial conditions of motion, the point missed in
the above-mentioned examples of the causality-dissipation relation. The initial
conditions not only formally fix a particular trajectory but also are arbitrary,
which is, perhaps, the key point in the causality problom. Also, this may shed
some light on another puzzling peculiarity of all known dynamical laws: they dis-
cribe the motion up to arbitrary initial conditions only (¢f. Weinzartner (these
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proceedings)). It looks like the dynamiecal laws already include the causality im-
plicitly even though they do not this explicitly. In any event, something arbitrary
suggests chaos is around.

Apgain, we arrive at a tangle of interrelated problems. A plausible conjecture
for how to resolve them might be as follows. An arbitrary cause indicates some
statistical behavior, while the cause—effect relation points out a dynamical law.
Then, we may conjecture that when the cause acts the transition from statistical
to dynamical behavior oceurs, which statistically separates the cause from the
‘past’ and dynamically fixes the effect in the ‘future’. In this imagionary picture
the ‘past’ and ‘future’ are related not to time but rather to cause and effect,
respectively. Thus, the causality might be not time ordering (time arrow) but
rause—effect ordering, or the ecausality arrow. The latter is very similar to the
process arrow discussed in Section 2.2. Now, the central point is that the cause
is arbitrary while the effect is not, whatever the time ordering.

This is, of course, but a raw guess to be developed, carefully analysed, and
eventually confirmed or disproved experimentally.,

Also, this picture seems to be closer to the statistical (secondary) dynamics
[synergetics, or § 2 D inclusion in {1.1)] rather than to dynamical chaos. Does it
mean that the primary physical laws are statistical or, instead, that the chain of

inclusions (1.1) is actually a closed ring with a ‘feedback’ coupling the secondary
statistics to the primary dynamics?
We don't know,

In all this long lecture I have never givjbn the definition of dynamical chaos,
cither classical or quantal, restricting myself to informal explanations (see Casati
andd Chirikov (1995a) for some current definitions of chaos). In a mathematical
theory the definition of the main object of the theory precedes the results; in
physics, expecially in new fields, it is quite often vice versa. First, one studies
4 new phenomenon such as dynamical chacs and only at a later stage, after
understanding it sufficiently, we try to classify it, to find its proper place in the
vxisting theories and eventually to choose the most reasonable definition. This
tune has not yet come,
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flux quantum in one loop and none in the other, one can then ask whether the
“tunneling” of this quantum state from one macroscopic loop to the other fits
the quantum mechanical prediction or not. If it does not, he will have discov-
ered a complexity parameter which could be interpreted as showing where the
transition from quantum to classical occurs. Then there would have to be a new
theory which might show that there actually is a classical regime. Despite the
success of the usual assumption that quantum mechanics rather than classical
physics has to be the fundamental theory, it’s an open question from the point
of view of experiment.

Chirikov: I agree. Such a question you would never answer completely. We have
a common solution and you must be ready to change this solution and not nec-
essarily to follow your preferences. I would like to mention that the phenomenon
vou spoke about is a particular case in the very intensively studied field. Now
it is called mesoscopics. Maybe you heard the word: mesoscopic is something
intermediate. But what people have in mind is that you may be very far in the
quasi-classical region, with quantum numbers arbitrarily large, but nevertheless,
under some additional conditions, the behavior may be essentially quantum.
This is called mesoscopic phenomena. Of course, the extreme case of this is well
known since long ago: superfluidity and superconductivity. Mesoscopic phenom-
ena are called also the intermediate asymptotics. It means that the quantum
numbers may be arbitrarily large but still it is not the final answer for the corre-
spondence principle, you must go further and you will reach the quantum chaos,
it is a theorem. But the example you mentioned is more complicated and more
interesting.

Suppes: I'd like to use the privilege of the chair to ask one quick question. In
your example a minute ago of the two wave functions that separate exponentially,
if you take the expectations of the wave functions then you get a path trajectory.
Are those two paths classically scar-paths - in the language of quantum optics,
are those expected paths chaotic in the classical sense?

Chirikov: You mean some average in the spirit of the Ehrenfest theorem or
something like this? No. Unfortunately, I had no time. But I mentioned that
there are characteristic time scales of quantum motion. The most important
one I mentioned is the scale on which elassical diffusion and relaxation proceed.
But there is another one, very short, proportional only to logarithm of quantum
number or of Planck’s constant on which initially narrow wave packet remains
relatively narrow and simply follows the classical trajectory. So, if this trajectory
is random, then the motion of the packet on this time scale is equally random.
But it terminates because of the spreading of the wave packet and of its eventual
destruction 1 showed. Then, you can no longer follow the wave packet as you
have instead a very complicated structure of y-function but, nevertheless, the
classical diffusion still persists.



