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Pseudochaos in statistical physics
By BORIS CHIRIKOV

Budker Institute of Nuclear Physics, Novosibirsk, Russia

A new generic dynamical phenomenon of pseudochaos and its relevance to statistical physics,
both modern and traditional, are discussed in some detail. Pseudochaos is defined as a statis-
tical behaviour of the dynamical system with discrete energy and/or frequency spectrum. The
statistical behaviour, in turn, is understood as a time-reversible but nonrecurrent relaxation
to (at average) some steady state, superimposed with irregular fluctuations. Our main atten-
tion is payed to the most important and universal example of pseudochaos, so-called quantum
chaos, that is dynamical chaos in bounded mesoscopic quantum systems. Quantum chaos as a
mechanism for implementation of the fundamental correspondence principle is also discussed.

The quantum relaxation localization, a peculiar characteristic implication of pseudochaos,
is reviewed in both time-dependent and conservative systems, with special emphasis on the
dynamical decoherence of quantum chaotic states. Recent results on the peculiar global structure
of the energy shell, Green function spectra and eigenfunctions, both localized and ergodic, in a
generic conservative quantum system are presented.

Examples of pseudochaos in classical systems are given, including linear oscillators and waves,
digital computers and completely integrable systems. A far-reaching similarity between the
dynamics of a quantum system with few degrees of freedom at high energy levels (n — o), and
that of many degrees of freedom (N — o) is also discussed.

1. Introduction: the rebirth of pseudochaos

The concept of pseudochaos was first introduced explicitly by Chirikov (1991b) in an
attempt to interpret the very controversial phenomenon of quantum chaos, and to un-
derstand its mechanism and physical meaning. The term itself was borrowed from the
theory of pseudorandom number gemerators in digital computers. Even though such im-
itations of ‘true’ random quantities are widely used in many numerical ezperiments, e.g.
those employing Monte—Carlo techniques, this pseudorandomness was always considered
of no general relevance for physics. However, in recent numerous attempts to understand
quantum chaos, which is attracting the ever growing attention of researchers (see e.g.
Casati (1985), Giannoni et al. (1991), Heiss (1992) and a collection of papers in Casati
& Chirikov (1995a)), it is becoming more and more clear that this specific mechanism
provides, in fact, a typical chaotic behaviour in physical systems.

Moreover, from the viewpoint of fundamental physics, pseudochaos is the only kind of
chaos principally possible in physical systems of finite dimensions. In infinite macroscopic
systems of traditional statistical mechanics (TSM), both classical and quantum, partic-
ularly in the principal TSM concept of the thermodynamic limit, N — oo, where N is
the number of the degrees of freedom, this situation is not the case. Namely, it has been
rigorously proved (see e.g. Kornfeld et al. (1982)) that, roughly speaking, ‘true’ chaos
is a generic phenomenon in this limit even if for any finite N the system is completely
integrable!

The discovery of dynamical chaos in finite (and even low-dimensional) classical sys-
tems, a fundamental breakthrough in recent decades, has crucially changed classical
statistical mechanics. By now, this new mechanism for the statistical laws is well under-
stood (but still not very well known), and has acquired firm mathematical foundations
in modern ergodic theory, see Kornfeld et al. (1982).

In spite of the success of this new mechanism a ‘minor’ problem still remains: such a
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152 B. Chirikov: Pseudochaos in statistical physics

mechanism does not work in finite quantum systems, whose motion is bounded in phase
space and, hence, whose energy and frequency spectra are discrete.

The simplest solution to this problem, which nowadays seems to be almost com-
monly accepted, is that dynamical chaos in such systems is simply impossible. How-
ever, this seemingly obvious ‘solution’ is in fact a trap, as it immediately leads to a
sharp and very profound contradiction with the fundamental correspondence principle,
see Casati & Chirikov (1995b). We need to choose what to sacrifice, this principle or
else ‘true’ (classical) chaos. I prefer to drop the latter. If the phenomenon of quan-
tum chaos really did violate the correspondence principle, as some physicists suspect, it
would indeed be a great discovery, since it would mean that classical mechanics is not the
limiting case of quantum mechanics, but a completely different theory. ‘Unfortunately’,
there exists a less radical (but also interesting and important) resolution of this difficulty,
pseudochaos, which is the main topic of my talk.

Within such a philosophical framework the central physical problem is to under-
stand the nature and mechanism of dynamical chaos in quantum mechanics. In other
words, we need the quantum theory of dynamical chaos, including the transition to
the classical limit. Certainly, quantum chaos is a new dynamical phenomenon, see
Casati & Chirikov (1995b), related but not identical to classical chaos. We call it pseu-
dochaos, the term pseudo intending to emphasize the difference from the ‘classical’ chaos
in the ergodic theory. From the physical point of view, which I accept here, the lat-
ter, strictly speaking, does not exist in Nature. So, within the common philosophy of
universal quantum mechanics pseudochaos is the only true dynamical chaos. Classical
chaos 1s but a limiting pattern which is, nevertheless, very important, both in theory, to
compare with real (quantum) chaos and in applications, and as a very good approxima-
tion in a macroscopic domain, as is the whole of classical mechanics. Ford (1995) calls
it mathematical chaos, as contrasted to real physical chaos in quantum mechanics.

I emphasize again that classical chaos is impossible in finite and closed quantum sys-
tems to which my talk is restricted. Particularly, I am not going to discuss here quan-
tum measurement in which macroscopic (infinite-dimensional) processes are involved, see

e.g. Casati & Chirikov (1995b).

Thus, the physical meaning of the term pseudochaos is principally different from (and
even opposite to) that of pseudorandom numbers in a computer. The reason for it
is that the original term pseudo had a double meaning. At the beginning, the first
and only meaning was related to the common belief that (by definition) no dynamical,
deterministic, system like a computer can produce anything random. This illusion has
been overcome in the theory of dynamical chaos in the field of real numbers. However,
the digital computer works on a finite lattice of integers. This is qualitatively similar
to quantum behaviour, see Chirikov et al. (1981). Computer numbers, like quantum
variables, can at most be pseudorandom only, in contrast to the ‘true’ random classical
quantities represented by real numbers. But then, a very special notion of pseudorandom
was scrambling up to the level of a new fundamental concept in physics.

Quantum chaos is a part of quantum dynamics which, in turn, is a particular class of
dynamical systems. It became a real physical problem upon discovery and understanding
of classical dynamical chaos. To explain the problem I need to briefly remind you of the
main peculiarities of classical chaos, especially those that are crucial in quantum theory.
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2. Asymptotic chaos in classical mechanics

There are two equivalent descriptions of classical mechanics or, more generally, of any
finite-dimensional dynamical system: via individual trajectories, and via a distribution
function, or phase-space density, for Hamiltonian systems (most fundamental).

The trajectory obeys the equations of motion, which in general are nonlinear. It
desribes a particular realization of a system’s dynamics depending on the initial condi-
tions. The phase density satisfies the Liouville equation, which is always linear, whatever
the equations of motion, and which usually represents the typical (generic) dynamical
behaviour of a given system. In particular, all zero-measure sets of special trajectories
are automatically excluded.

Notice, however, that in some special cases, the phase density may display properties
absent for trajectories. An interesting example, see Courbage & Hamdan (1995), is the
correlation decay (and, hence, continuous spectrum) for a special initial phase density in
a completely integrable system. The point is that such decay is related to the correlation
between different trajectories rather than the behaviour on a given trajectory. The
trajectory spectrum remains descrete, and the corresponding correlation persists. An
interesting open question concerns the exact conditions for a phase density to represent
the trajectory properties.

The strongest statistical properties of a dynamical system are related to the local
exponential instability of trajectories, as described by the linearized equations of motion,
provided the motion is bounded in phase space. These two conditions are sufficient for a
rapid mixing of trajectories by the mechanism of ‘stretching and folding’. For the linear
equations of motion the combination of both conditions is impossible unless the whole
phase space of the system is finite. A well-known example of the latter situation 1s the
model described by the linear ‘Arnold cat map’, see Arnold & Avez (1968):

Pp=p+z (mod1) (2.1)
T =x+p (mod 1)

on a unit torus. The motion is exponentially unstable with (positive) Lyapunov exponent
A = In[(3 +/5)/2] > 0, and is bounded due to the operation (mod 1). Notice that the
linearized motion is described by the same map but without (mod 1), that is in the
infinite plane (—oo < dp,dz < 00). It is unbounded and globally unstable but perfectly
regular. We have so-called hyperbolic motion:

dp = aexp(At) + bexp(—At), dz = cexp(At)+ dexp(—At), (2.2)

where the constants a, b, c,d depend on initial conditions and on A, and the integer ¢
is the discrete map time. Remarkably, the motion (2.2) is time-reversible but unstable
in both senses (¢ — =+o00). This implies time reversibility of all statistical properties
for the main system (2.1). This is a surprising conclusion which is still confusing some
researchers (see e.g. Misra & Prigogine (1983)).

A nontrivial part of the relation between instability and chaos is in that the instability
must be exponential. A power law instability is insufficient for chaos. For example, if
we replace the first of equations (2.1) by p = p, the model becomes completely inte-
grable with oscillation frequency depending on the integral of the motion p (nonlinear
oscillation). This produces linear (in time) instability, but the motion remains regular
(with discrete spectrum). This is a typical property of completely integrable nonlinear
oscillations, see Casati et al. (1980), which leads to a confusing difference in dynamical
behaviour between the trajectories and phase densities, as mentioned above. Another
open question is how to choose the correct time variable for a particular dynamical
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problem, see Casati & Chirikov (1995b). A change of time may convert the exponential
instability into a power one, and vice versa (see e.g. Bliimel (1994) for discussion).

The two above conditions for dynamical chaos can be realized in very simple (e.g.
low-dimensional) systems like the model of (2.1). Another simple example, to which
I will refer below, is the so-called ‘kicked rotator’ described by the standard map, see

Chirikov (1991h), Casati & Chirikov (1995b), Chirikov (1979) and Chirikov et al. (1981):
p=p+ksinz, T=z+TD, (2.3)

also on either a torus (z,p (mod 27) or a cylinder (z (mod 27), —co < p < o). This
model is also well studied, and has many physical applications. The motion on a cylinder
is bounded in one variable only. This, however, is sufficient for chaos.

The exponential instability implies a continuous spectrum of the motion which is equiv-
alent, roughly speaking, to the mixing, or temporal correlation decay. Apparently, this
is the most important characteristic property in statistical mechanics, underlying the
principal and universal statistical phenomenon of relazation to some steady state, or
statistical equilibrium.

Aperiodic relaxation is especially clear in the Liouville picture for phase density be-
haviour (see e.g. Arnold & Avez (1968)). Consider a basis for Liouville’s equation, for
example

©mn = exp[27i(mz + np)], (2.4)

where m,n are any integers, in a simple example of model (2.1). In other words, we
represent the phase density as a Fourier series:

f@,p,t) =Y Frn(t)omn(@:p) = Y Fun(0) exp2mi(m(t)z + n(£)p)]- (2.5)

m,n m,n

Each term in this series, except @gg, has zero total probability, and characterizes the
spatial correlation in the phase density. The map (2.1) induces a map for the Fourier
amplitudes and for harmonic numbers:

Fon=Fam, RA=n+m, m=m+n. (2.6)

Remarkably, the variables m(t) and n(t) obey the same map as that for the linearized
equations of motion in variables dz,dp, and with the same instability rate A on the n-
finite lattice (m,n). The dynamics of the phase density in the Fourier representation,
described by the same equation (2.2) (upon substitution of m,n for dz,dp), is also un-
bounded, globally unstable, and regular. This is not surprising, as both representations
describe the local structure of the motion. Dynamical chaos is a global phenomenon
determined, nevertheless, by the microdetails of the initial conditions, due to the ex-
ponential instability of the motion, see Casati & Chirikov (1995b) and Chirikov (1994).
Accordingly, in the original phase space the temporal density fluctuations are chaotic, as
are almost all trajectories of the map (2.1).

The ouly stationary mode m = n = 0 represents, in this picture, the statistical steady
state, while all the others describe nonstationary fluctuations. The latter are another
characteristic property of statistical behaviour. These higher modes can be separated
from the average statistical relaxation by so-called coarse-graining, or spatial averaging,
which is a projection of the phase density on a finite (and arbitrarily fine) partition of the
phase space. The kinetic (particularly, diffusive) description of the statistical relaxation
is restricted to such a coarse-grained projection only, while the fluctuations work as a
dynamical generator of noise.

Another elegant method of separating out the average relaxation is a suppression of
the fluctuations using Prigogine’s A operator, see Misra & Prigogine (1983), which pro-
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vides an invertible smoothing of the exact phase density, see Kumicak (this conference).
True, the inverse operator is an improper one, yet this method could be efficiently used
in some theoretical constructions. Contrary to common belief, it has nothing to do with
time irreversibility, see Misra & Prigogine (1983) and Goodrich et al. (1980). Moreover,
unlike the coarse-grained projection, the A-smoothed phase density is as reversible as
the exact one (in principle but not in practice, of course). The origin of the misunder-
standing concerning irreversibility is apparently related to the necessary restriction on
the initial smoothed density, which was missing in the theory of Goodrich et al. (1980).
Such a density is a technical rather than actual property of the system, and hence it
does not need to be arbitrary. A similar operation is often used in quantum mechanics
(for different purposes) to convert the Wigner function (the counterpart of exact classi-
cal phase density) into the so-called Husimi distribution, which is an expansion in the
coherent states (see e.g. Casati & Chirikov (1995b)).

Nonstationary fluctuations/correlations of the phase density form a stationary flow into
higher modes |m|,|n| — oo (see Prigogine (1963)), and keep the memory of the exact
initial conditions (see the first equation of (2.6)) providing time reversibility for the exact
density. A stationary correlation flow is only possible for the continuous phase space,
which is a characteristic feature of classical mechanics. This allows for an asymptotic
formulation of the ergodic theory (¢ — £c0). Notice that both the trajectories and the
full density are time-reversible. However, the latter, unlike the former, is nonrecurrent.
Reversed relaxation, and in particular ‘antidiffusion’, describe the growth of a large
fluctuation, which is eventually (as ¢ — —oo) followed by standard relaxation in the
opposite direction of time, see Chirikov (1994).

3. Quantum pseudochaos: a new dimension in ergodic theory

Dynamical chaos is one limiting case of modern general theory of dynamical systems
which describes statistical properties of the deterministic motion (see e.g. Kornfeld et
al. (1982)). No doubt, this theory has been developed on the basis of classical me-
chanics. Yet, as a general mathematical theory, it does not need to be restricted to
classical mechanics only. In particular, it can be applied to quantum dynamics, and
indeed it was, with a surprising result. Namely, it had been found at the beginning,
see Casati et al. (1979), and was subsequently well confirmed, see e.g. Chirikov (1991b),
Casati & Chirikov (1995b), Chirikov et al. (1981), Cohen (1991) and Casati et al. (1986),
that quantum mechanics does not typically permit ‘true’ (classical-like) chaos. This is
because in quantum mechanics the energy (and frequency) spectrum of any system,
whose motion is bounded in phase space, is discrete, and its motion is almost periodic.
Hence, according to the existing ergodic theory, such a quantum dynamics belongs to the
limiting case of regular motion which is the opposite of dynamical chaos. The ultimate
origin of quantum almost-periodicity is the discreteness of the phase space itself (or, in
a more formal language, the noncommutative geometry of this space). This property
is the basis of quantum physics, directly related to the fundamental uncertainty princi-
ple. Nevertheless, another fundamental principle, the correspondence principle, requires
the transition to classical mechanics in all cases, including dynamical chaos with all its
peculiar properties.

Now, the principal question to be answered is: where is the expected quantum chaos in
ergodic theory? The answer, see Casati & Chirikov (1995b), Chirikov et al. (1981) and
Chirikov (1994), (not commonly accepted as yet) was concluded from a simple observa-
tion (in principle well-known but never fully understood) that the sharp border between
the discrete and continuous spectrum is physically meaningful in the limit |¢| — oo only,
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the condition actually assumed in ergodic theory. Hence, to understand quantum chaos,
the existing ergodic theory needs some modification by introducing a new ‘dimension’:
time. The finite-time statistical properties of a dynamical system, both quantum and
classical, become a new and central problem in ergodic theory.

Within a finite time, the discrete spectrum is dynamically equivalent to the continuous
one, thus providing much stronger statistical properties of the motion than was expected
in the ergodic theory in the case of a discrete spectrum. It turns out that the motion
with discrete spectrum may exhibit all statistical properties of classical chaos, but only
on finite time scales.

The absence of classical-like chaos in quantum dynamics apparently contradicts not
only the correspondence principle but also the fundamental statistical nature of quantum
mechanics. However, even though the random element in quantum mechanics (‘quantum
jumps’) is unavoidable, it can be singled out and separated from the proper quantum
processes. Namely, the fundamental randomness in quantum mechanics is related only
to a very specific event — the quantum measurement — which, in a sense, is foreign to the
proper quantum system itself. This allows us to divide the whole problem of quantum
dynamics into two qualitatively different parts:

e Proper quantum dynamics, as described by a very specific dynamical variable, the
wavefunction (t), obeying some deterministic equation, for example the Schrodinger
equation. The discussion in what follows will be limited to this part only.

¢ Quantum measurement, including the registration of the result, and hence, the col-
lapse of the function v, which still remains a very vague issue in view of the fact that
there is no common agreement even on whether this is a real physical problem or an
ill-posed one, so that the Copenhagen interpretation of quantum mechanics answers all
‘admissible’ questions. In any case, up to now there is no dynamical description of the
quantum measurement, including the collapse of .

Recently a breakthrough in the understanding of quantum chaos has been achieved,
particularly due to the above-mentioned philosophy of separating out the dynamical part
of quantum mechanics. This philosophy is accepted, explicitly or more often implicitly,
by most researchers in this field.

3.1. Twme scales of pseudochaos

The existing ergodic theory is asymptotic in time, and thus involves no explicit time
scales.tf There are two reasons for it. One is technical: it is much easier to derive the
asymptotic relations than to obtain rigorous finite-time estimates. The second reason is
more profound. All statements in the ergodic theory hold up to measure zero, that is
excluding some peculiar nongeneric sets of measure zero. Even this minor imperfection
of the theory did not seem completely satisfactory but has been ‘swallowed’ eventually,
and is now commonly tolerated by both physicists and mathematicians. In a finite-
time theory all these exceptions acquire a small but finite measure, which could not be
accepted by mathematicians. Yet, there is a standard mathematical ‘trick’ for avoiding
both these difficulties.

The most important time scale tg in quantum chaos is given by the general estimate,

see Casati & Chirikov (1995b) and Chirikov et al. (1981):

o

In(wtr) ~InQ, tgr ~ % ~ po < pH, (3.7)

T Asymptotic statements in the ergodic theory should not always be understood literally to
avoid physical misconceptions (see e.g. addendum to Prigogine (1963)). Actually, classical chaos
has also its time scales, for example a dynamical one (~ A™"), see Casati & Chirikov (1995b).
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where w and « ~ 1 are system-dependent parameters, and @ > 1 stands for some large
quantum parameter (in semiclassical region). It can be, e.g. a quantum number Q = I/A,
related to a characteristic action variable I, or the total number of states for the bounded
quantum motion in the phase space domain of volume I': Q ~ I'/(27)"V.1 The time scale
tr 1s called the relazation time scale, referring to one of the principal properties of chaos;
statistical relazation to some steady state. The physical meaning of this scale is simple; it
is directly related to the fundamental uncertainty principle (At AE ~ 1) as implemented
in the second equation (3.7), where py is the full average energy level density (also called
the Heisenberg time). For ¢ Stgr, the discrete spectrum is not resolved, and statistical
relaxation follows the classical (limiting) behaviour. This indeed is the ‘gap’ in the ergodic
theory (supplemented with time as the additional dimension) where pseudochaos, and in
particular quantum chaos, dwells. A more accurate estimate relates tg to a part py of the
level density. This is the density of the so-called operative eigenstates only (those which
are present in a particular quantum state 1, and which actually control its dynamics).

The formal trick mentioned above is not to consider finite-time relations, which we
really need in physics, but rather a special conditional limit:

t,Q — o0, TR = const, (3.8)

ot

tr(Q)
where 7r is a new dimensionless time. The double limit (3.8) (unlike the single one
Q@ — o) is not the classical mechanics which holds, in this representation, for g <1, and
with respect to statistical relaxation only. For 7r 2 1, the behaviour becomes essentially
quantum (even in the limit ) — oco!) and nowadays is called mesoscopic. In particular,
the quantum steady state is in general quite different from classical statistical equilibrium,
in that the former may be localized (under certain conditions), that is nonergodic, in spite
of classical ergodicity.

Another important difference is in fluctuations which are also a characteristic property
of chaotic behaviour. In comparison with classical mechanics, the quantum (#) plays,
in this respect, an intermediate role between the classical trajectory with large relative
fluctuations (~ 1), and the coarse-grained classical phase density with no fluctuations.
Unlike both, the fluctuations of 4(t), or rather those of averages on a quantum state
¥(t), are typically ~ dg'/?, where di is the number of operative eigenstates associated
with the quantum state 1 (dg can be called the Hilbert dimension of the state ¢). In
other words, the chaotic 1(t) represents statistically a finite ensemble of some number
(~ dg) of independent systems, even though formally )(t) describes a single system. The
fluctuations clearly demonstrate the difference between physical time ¢ and the auxiliary
variable 7: in the double limit (¢, — o) the fluctuations vanish, and one needs a new
‘trick’ to recover them for a finite Q.

The relaxation time scale should not be confused with the Poincaré recurrence time
tp (> tr) which is typically much longer, and which sharply increases with decreasing
recurrence domain. The time scale tp characterizes large fluctuations (for both the
classical trajectory and the quantum #, but not the phase density). On the contrary, tg
characterizes the average relaxation process. Rare recurrences make quantum relaxation
similar to classical (nonrecurrent) relaxation.

Stronger statistical properties (than relaxation and fluctuations) are related in the er-
godic theory to the exponential instability of motion. The importance of those stronger
properties for statistical mechanics is not completely clear, see Farquhar (1964). Never-
theless, in accordance with the correspondence principle, these stronger properties are

i Here and in what follows I put A = 1.
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also present in quantum chaos, but on a much shorter time scale t;:
At ~InQ. (3.9)

Here A is the classical Lyapunov exponent. This time scale was discovered and partly ex-
plained by Berman & Zaslavsky (1978) (see also Casati & Chirikov (1995b) and Chirikov
et al. (1981)). We call it a random time scale. Indeed, according to Ehrenfest’s theorem,
the motion of a narrow wave packet follows the beam of classical trajectories as long as the
packet remains narrow, and hence it is as random as in the classical limit. Even though
the random time scale is very short, it grows indefinitely as @) — oo. Thus, temporary,
finite-time quantum pseudochaos turns into classical dynamical chaos in accordance with
the correspondence principle.
Again, we may consider the conditional limst:

2
t,QQ —» oo, T = Q) - const. (3.10)
Notice that the new scaled time 7, is different from that entering equation (3.8) (7r).

If we fix the time ¢, then in the limit ) — oo we obtain the transition to the classical
instability in accordance with the correspondence principle, while for Q fixed, and t — oo,
we get the proper quantum evolution in time. For example, the quantum Lyapunov
exponent satisfies

A, »nxl
Aqg(e
() = {0, > 1.

Quantum instability (Aq > 0) was observed in numerical experiments, see Casati &
Chirikov (1995b) and Toda & Ikeda (1987). What terminates the instability for ¢ 2 #,7
A simple explanation is suggested by the classical picture of the phase density evolution
on the integer Fourier lattice m,n discussed above for model (2.1). Classical Fourier
harmonics m, n are of a kinematical nature, without any a prior: dynamical restriction.
In particular, they can be arbitrarily large (and actually are for a chaotic motion), which
corresponds to a continuous classical phase space. On the contrary, the quantum phase
space 1s discrete. At first glance, quantum wave packet stretching/squeezing, as for a
classical system, does not seem to be principally restricted, since only a two-dimensional
area (per degree of freedom) is bounded in quantum mechanics. However, Fourier har-
monics of the quantum phase density (Wigner function) are directly related to quantum
dynamical variables, in particular to the action variables, whose values are restricted by
the quantum parameter @), see estimate (3.9). In the simple model (2.1) this is related
to a finite size of the whole phase space. In general, in a conservative system, even with
an infinite phase space, the restriction is imposed by the energy conservation. Numerical
experiments reveal that the original wave packet, after a considerable stretching similar
to the classical one, is rapidly destroyed. Namely, it splits into many new small packets,
see Casati & Chirikov (1995b) and Toda & Ikeda (1987). The mechanism of this sharp
‘disrupture’ of the classical-like motion is not quite clear (for a possible explanation see
Casati & Chirikov (1995b) and Chirikov (1993)). The resulting picture is qualitatively
similar to that for the classical phase density, the main difference being in the spatial
fluctuation scale, now bounded from below by 1/(). Nevertheless, the quantum phase
density can also be decomposed into a coarse-grained average, and fluctuations. An im-
portant implication of this picture for the wave packet time evolution is the rapid and
complete destruction of the so-called generalized coherent states in quantum chaos, see
Perelomov (1986).

In the quasiclassical region (@ > 1) the scale is ¢, < tg. This leads to the surprising
conclusion that quantum diffusion and relaxation are dynamically stable, contrary to the

(3.11)
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classical behaviour. This, in turn, suggests that, in general, the instability of the motion 1s
not important during statistical relaxation. Nevertheless, the foregoing correlation decay
on the short time scale t, is crucial for the statistical properties of quantum dynamics.

Dynamical stability of quantum diffusion has been proved in striking numerical ex-
periments with time reversal, see Shepelyansky (1983). In a classical chaotic system the
diffusion is immediately recovered due to numerical ‘errors’ (not random!) amplified by
the local instability. On the contrary, the quantum ‘antidiffusion’ proceeds until the sys-
tem passes near the initial state to a very high accuracy. Only then is normal diffusion
restored. The stability of quantun chaos on a relaxation time scale is comprehensible,
as the random time scale is much shorter. Nevertheless, the accuracy of the reversal
(up to ~ 10715 (1)) is surprising. Apparently this is explained by the relatively large
size of the quantum wave packet as compared to the unavoidable rounding-off errors,
unlike the classical computer trajectory whose size is comparable to these errors, see
Chirikov (1992b). In the standard map (2.3) (upon quantization) the size of the opti-
mal, least-spreading, wave packet is Az ~ /T, see Chirikov et al. (1981). On the other
hand, any quantity in the computer must well exceed the rounding-off error § (< 1), e.g.
T > 6, and (Ax)? /62 2 (T/6)67! > 1.

3.2. Classical-like relazation and residual fluctuations

The relaxation time scale tg is more important than the time scale ¢, for two reasons.
First, it is much longer than t¢;, and second, it is related to the principal process of
statistical relaxation which is the basis of statistical mechanics. The short scale ¢, was
interpreted by Berman & Zaslavsky (1978) (see also Zaslavsky (1981)) as a limit for the
classical-like behaviour of chaotic quantum motion. Subsequently, it was found that
the method of quasiclassical quantization can be extended to much longer times, see
Chirikov et al. (1981) and Sokolov (1984). However, the physics on both time scales is
qualitatively different: dynamical instability on the scale ¢;, and statistical relaxation on
ir.

The discrete pseudochaos spectrum is not resolved on the whole scale tg, and relaxation
follows the classical law. Consider, for example, model (2.3), the standard map on a torus
with total number of quantum states @), and p, « being the action—angle variables.

If the perturbation parameter k¥ 2 @, the relaxation to ergodic steady state in this
model, as well as in model (2.1), is very quick, with characteristic relaxation time t, ~ 1
(iterations). Such regimes often take place in physical systems. Here I consider another
case, more interesting for the problem of pseudochaos, namely diffusive relazation, which
occurs for a sufficiently weak perturbation

E<Q. (3.12)
In the classical limit this relaxation is descibed by the standard diffusion equation
af(pat) — 1 0 af(p7t)

5 'z'a—pD(P)a—p 7 (3.13)

where f(p,t) = (f(p,x,t)). is a coarse-grained phase density (averaged over z), and
((Ap)?)
D= e 1K

is the diffusion rate. Equation (3.14) holds for the standard map if K = kT > 1, which
is also the condition for global chaos in this model, see Chirikov (1979). The relaxation
to the ergodic steady state fi = 1/Q is exponential with characteristic time

Q@ @
T om2D T Rz

(3.14)

te

(3.15)
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In the diffusive regime (k < () this time is t, > 1. This average relaxation is stable
and regular, in spite of the underlying chaotic dynamics.
The quantized standard map ¢ = U is described by the unitary operator

52
U =exp (—i%) exp(—ik cos Z) (3.16)

on a cylinder (Q — o0), see Casati et al. (1979), where p = —19/0z, and by a similar
but somewhat more complicated expression on a torus, see Izrailev (1990).

There are three quantum parameters in this model: the perturbation k, the period T
and the size @}, but only two classical combinations remain: the perturbation K = kT
and the classical size M = T'Q/(2r), which is the number of classical resonances over
the torus. Notice that the quantum dynamics is in general richer than the classical, as
the former depends on an extra parameter. It is, of course, another representation of
Planck’s constant which I have set equal to one. That is why, in the quantized standard
map, we need both parameters k£ and 7', and cannot combine them in a single classical
parameter K.

The quasiclassical region, where we expect quantum chaos, correspondsto T’ — 0, k —
oo, and ) — oo, while the classical parameters K = const and M = const are fixed.

A technical difficulty in evaluating ¢g for a particular dynamical problem is that the
density po depends on the dynamics. So, we have to solve a self-consistent problem. For
the standard map the answer is known (see Casati & Chirikov (1995b)):

tg = po = 2D. (3.17)

This is a remarkable relation, as it connects essentially quantum characteristics (tg, po)
with the classical diffusion rate D, see (3.14).

The quantum diffusion rate depends on the scaled (dimensionless) time g (3.8), and
1s given by

D {D, ™ =1 / tr € 1
Q= -

1+ 7 0, TR > L.
This is an example of scaling in a discrete spectrum which eventually stops quantum
diffusion.

The character of the steady state crucially depends on the ratio tg/f.. Define the
ergodicity parameter A (see Casati & Chirikov (1995b)):

D /tg\? k* K
)\_WN(t_e) awﬂk (3.19)

Consider first the case A > 1, when the time scale tg is long enough to allow for the
completion of the classical-like relaxation. In that case the final steady state, as well as all
the eigenfunctions, are ergodic, i.e. the corresponding Wigner functions are close to the
classical microcanonical distribution in the phase space. This region is inevitably reached
if the classical parameter K/M is kept fixed, while the quantum parameter ¥ — oo, in
agreement with the Shnirelman theorem, or else with a physical generalization of this
theorem, see Shnirelman (1974). This region is called far quasiclassical asymptotics.

A principal difference between the quantum ergodic state and the classical state is
the existence of residual fluctuations in the former. In the quasiclassical region, the
chaotic quantum steady state is a superposition of a large number of eigenfunctions. As
a result, almost any physical quantity fluctuates in time. Even in the discrete spectrum
we are considering here, these fluctuations are very irregular. In the case of a classical-
like ergodic steady state all @) eigenfunctions essentially contribute to the fluctuations.
Moreover, we would expect their contributions to be statistically almost independent.

(3.18)
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Hence, the fluctuations should scale ~ Q_% = dg%, where dy 1s the Hilbert dimension
of the ergodic state. That, indeed, is the case, according to numerical experiments, see
Casati et al. (in preparation). For example, the energy fluctuations were found to follow
a simple relation

AE, 1
A VR 3.20)
E, O (

2
(AE,)? = E*(t)— E}, E,=E(t), E()= %. (3.21)
Here a bar indicates time averaging over a sufficiently long time interval (> t.), and
brackets denote the usual average over the quantum state.

Equation (3.20) suggests the complete quantum decoherence in the final steady state
for any initial state, even though the steady state is formally a pure quantum state.
For Q@ > 1 the fluctuations are small, so that statistically the quantum relaxation is
nonrecurrent. The decoherence of a chaotic quantum state is also confirmed by the
independence (up to small fluctuations) of the final steady state energy Es of the initial
E(0). Since any particular initial quantum state is strongly coherent, the decoherence
is a result of the quantum chaos. It is called dynamical decoherence. This is one of the

most important results in quantum chaos.

where

3.3. Mesoscopics: quantum behaviour in the quasiclassical region

If the ergodicity parameter A < 1 is small, all the eigenstates and the steady state are
non-ergodic, or localized. That is because the scale tr is not long enough to support
classical-like diffusion, which stops before classical relaxation is completed. For this rea-
son this situation is also called quantum diffusion localization. As aresult the structure of
eigenfunctions and of the steady state remains essentially quantum, no matter how large
the quantum parameter k& — oo. This is called intermediate quasiclassical asymptotics
or the mesoscopic domain. In particular, it corresponds to K > 1 fixed, ¥ — oo and
M — oo, while A < 1 remains small.

The popular term ‘mesoscopic’ means here some intermediate behaviour between clas-
sical and quantum. In other words, in mesoscopic phenomenona both classical and
quantum features occur. Again, the correspondence principle requires the transition to
completely classical behaviour. That, indeed, is the case, as mesoscopic phenomena occur
in the region where the quantum parameter k > 1 is large, but still less than a certain
critical value (corresponding to A ~ 1) which determines the border of transition to fully
classical behaviour (far quasiclassical asymptotics).

If A <« 1is very small, the shape of localized eigenstates is asymptotically exponen-
tial, see Casati & Chirikov (1995b), and can be approximately described by a simple
expression, see Casati et al. (to be published):

2

fun®) = (m @) ~ o= (3.22)

The localized steady state has a similar but somewhat more complicated shape, see
Chirikov (1981) and Izrailev et al. (to be published). This is a simple approximation
superimposed with large fluctuations. The parameter [ is called the localization length.
Incidentally, the two localization lengths (I for steady state and [ for eigenfunctions) are
different, see Chirikov et al. (1981):

ls~D while Ix~ 1D, : (3.23)

because of large fluctuations.



162 B. Chirikov: Pseudochaos in statistical physics

In terms of localization length, the region of mesoscopic phenomena is defined by
l<lgq. (3.24)

The inequality on the left reflects classical features of the state, while the right hand
one refers to quantum effects. The combination allows for a classical description, at
least in the standard map, of statistical relaxation to quantum steady state by a phe-
nomenological diffusion equation for the Green function, see Casati & Chirikov (1995Db)
and Chirikov (1991a):

og(v,a) | 0% dg
=1 25
do 4 o2 + B )81/ (3.25)
Here g(v,0) = |4(v,0)|* = §(v — vp) and
v=3s, o=In(l+m,), ™®=j55- (3.26)
The additional drift term in the diffusion equation, with
B(v) = sgn(v — vp) = £1, (3.27)

describes the so-called quantum coherent back-scattering, which is the dynamical mech-
anism of localization.

The solution of (3.25) is, see Casati & Chirikov (1995b),

o(v,0) = \/Lﬁ exp [—(A—ifﬁ] + exp(—4A) erfc (%‘(;’) , (3.28)

where A = |v — 1]

Agsymptotically, as ¢ — oo, the Green function ¢(v,0) — 2exp(—4A) = gs approaches
the localized steady state g, exponentially in o but only as a power-law in physical time
mr or t (¢ — gs ~ 1/7r). This is the effect of a discrete motion spectrum. Numerical
experiments confirm prediction (3.28), at least up to the logarithmic accuracy ~ o =
In 7R, see Casati & Chirikov (1995b) and Cohen (1991).

A physical example of localization is the quantum suppression of the diffusive pho-
toeffect in a hydrogen atom, see Casati et al. (1987). Depending on parameters, the
suppression can occur, no matter how large the atomic quantum numbers are. This is
a typical mesoscopic phenomenon which had been predicted by the theory of quantum
chaos, and was subsequently observed in laboratory experiments.

One might expect that in the case of localization (D < @), the fluctuations scale
like {71/2 ~ k=1, as the number of coupled eigenfunctions in the localized steady state
is ~ [. This, however, is not the case as was found in the first numerical experiments
(Casati & Chirikov (1995b)). According to more accurate data, see Casati et al. (in
preparation), the fluctuations are described by

AES_A__ a
E, —E_dv/Z’
H

(3.29)

with fitting parameters v = 0.55, a = 0.65. For a nonergodic state, the Hilbert dimension

can be defined as (Casati & Chlrlkov (1995b))

=1 [ @l de= [ o) (3.30)

where f(p) is a smoothed (coarse-grained) density, and the factor % accounts for the
fluctuations, see Flambaum et al. (1994). In the case of exponential localization (3.22),
dy ~ 7?1/4. The most important parameter here, v, is about half the expected value
~ = 1. This result suggests some fractal properties of localized eigenfunctions and/or
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their spectra. To put it another way, a slow fluctuation decay (3.29) implies incomplete
quantum decoherence, which can be characterized by the number d; of statistically in-
dependent components in the steady state, see Casati & Chirikov (1995b). Then, from
(3.20) and (3.29) we obtain in the two limits:

d, {1, A>1

— 3.31
da | dy '/a? =24d5%%, A< 1. (3:31)

This result was confirmed by Izrailev et al. (to be published) for a band random matrix
model.

The phenomenon of quantum diffusion localization also explains the limitation of
quantum instability in systems with infinite phase space, like the standard map on a
cylinder. Indeed, the maximum number of coupled states here is determined by the lo-
calization length, whatever the total number of states in the system. Hence, we should
substitute the quantum parameter @ ~ | ~ k? in estimate (3.9). Even if there is no
localization (e.g. for a standard map with the parameter k(p) depending on p, see
Casati & Chirikov (1995b) and Chirikov et al. (1981)), so that the quantum diffusion
goes on and the quantum spectrum becomes continuous, the number of coupled states
increases with time as a power law only (Ap ~ /%), and hence the quantum Lyapunov
exponent vanishes on the relaxation time scale, A; — 0. Only if the action variables
grow exponentially, the instability rate Ay remains finite, and quantum chaos becomes
asymptotic, as in the classical limit (see Chirikov et al. (1981) and Weigert (1990) for

such ‘exotic’ models).

3.4. Ezamples of pseudochaos in classical mechanics

Pseudochaos is a new generic dynamic phenomenon missed in ergodic theory. No doubt,
the most important particular case of pseudochaos is quantum chaos. Nevertheless, pseu-
dochaos occurs in classical mechanics as well. A few examples of classical pseudochaos
are given below, which may help in understanding the physical nature of quantum chaos.
Furthermore, they unveil new features of classical dynamics.

¢ Linear waves are an example of pseudochaos close to quantum mechanics (see e.g.
Chirikov (1992a)). Only a part of quantum dynamics is discussed, that described, e.g.
by the Schrodinger equation, which is a linear wave equation. For this reason, some-
times quantum chaos is called wave chaos, see Seba (1990). Classical electromagnetic
waves are used in laboratory experiments as a physical model for quantum chaos, see
Stockmann & Stein (1990). The ‘classical’ limit corresponds here to geometrical optics,
and the ‘quantum’ parameter () = L/ is the ratio of a characteristic size L of the system
to the wave length A. As is well known from optics, no matter how large the ratio L/,
the diffraction patterns prevail at sufficiently large distances R 2 L?/\. This gives a sort
of relaxation scale: R/A ~ Q2.

o A lLinear oscillator (multi-dimensional) is also a particular representation of waves.
A broad class of quantum systems can be reduced to this model, see Eckhardt (1988).
Statistical properties of linear oscillators, particularly in the thermodynamic limit (N —
o0), were studied by Bogolyubov (1945) in the framework of TSM. On the other hand, the
theory of quantum chaos suggests a richer behaviour for large but finite N, in particular,
characteristic time scales for harmonic oscillations, see Chirikov (1986), the number of
the degrees of freedoms N playing the role of ‘quantum’ parameter.

o Completely integrable nonlinear systems also reveal pseudochaotic behaviour. An
example of statistical relaxation on the Toda lattice was given in Ford et al. (1973) much
before the problem of quantum chaos arose. Moreover, the strongest statistical properties
in the limit N — oo, including that equivalent to exponential instability (a so-called K-
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property), were rigorously proved just for completely integrable systems for any finite NV,
see Kornfeld et al. (1982).

o A digital computeris a very specific classical dynamical system, whose properties are
extremely important in view of ever growing interest in numerical experiments, covering
now all branches of science. The computer is an ‘overquantized’ system, in which any
quantity is discrete, while in quantum mechanics only the product of two conjugated
variables is. The ‘quantum’ parameter here is () = M, which is the largest computer
integer, and the short time scale (3.9), t; ~ In M, represents the number of digits in the
computer word, see Chirikov et al. (1981). Due to discreteness, any dynamical trajec-
tory in a computer eventually becomes periodic, an effect well known in the theory and
practice of pseudorandom number generators. One should take all necessary precautions
to exclude such computer artifacts in numerical experiments (see e.g. Maddox (1994)
and references therein). As for mathematics, the periodic approximations in dynami-
cal systems are also considered in ergodic theory, apparently without any relation to
pseudochaos in quantum mechanics or a computer, see Kornfeld et al. (1982).

Computer pseudochaos seems to be the most convincing argument for researchers who
are still reluctant to accept quantum chaos as at least a kind of chaos. They insist that
only classical-like (asymptotic) chaos deserves this name. But this is the same chaos
which was (and still is) studied to a large extent on a computer and so is chaos inferred
from pseudochaos!

4. Statistical theory of pseudochaos: random matrices

A complete solution of a dynamical quantum problem can be obtained via diagonaliza-
tion of the Hamiltonian, to find the energy (or quasi-energy) eigenvalues and eigenfunc-
tions. The evolution of any quantity is then expressed as a sum over the eigenfunctions.
For example, the energy time dependence is

E(t)= Y cnChEmnm expli(Em — B, (4.32)

m,m/’

where FE,,,,+ are matrix elements, and the initial state in momentum representation is
p(n,0) = > cmepm(n). For chaotic motion this dependence is in general very compli-
cated, but statistical properties of the motion can be inferred from the statistics of the
eigenfunctions ¢.,(n) (i.e. of the matrix elements Ep,,) and of the eigenvalues E,.

Nowadays there exists a well developed random matrix theory (RMT, see e.g. Brody
et al. (1981)) which describes average properties of a typical quantum system with a
given symmetry of the Hamiltonian. At the beginning, the object of this theory was
assumed to be a very complicated (in particular multi-dimensional) quantum system as
a representative of a certain statistical ensemble. In the course of understanding the
phenomenon of dynamical chaos, it became clear that the number of the degrees of
freedom of the system is irrelevant. Instead, the number of quantum states (quantum
parameter )) is of importance, providing dynamical chaos in the classical limit.

This approach to the theory of complex quantum systems like atomic nuclei, was
adopted by Wigner (1955) 40 years ago, much before the problem of quantum chaos
was formulated. He introduced the so-called band random matrices (BRM), which were
most suitable to account for the structure of conservative systems. However, due to
severe mathematical difficulties, RMT immediately turned to a much simpler case of
statistically homogeneous (full) matrices, for which impressive theoretical results have
been achieved, see Brody et al. (1981). The price was that full matrices describe the local
chaotic structure only, a limitation especially inacceptable for atoms, see Flambaum et
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al. (1994) and Chirikov (1985). Ounly recently, interest returned to the original Wigner
BRM, see Casati et al. (1993) and Feingold et al. (1991).

One of the main results in studies of quantum chaos was the discovery of quantum
diffusion localization. This mesoscopic, quasiclassical, phenomenon discussed above, has
been well studied and confirmed by many researchers for dynamical models described by
maps. Contrary to common belief, the maps describe not only time-dependent systems,
but also conservative ones in the form of Poincaré maps, see e.g. Bogomolny (1992).
Nevertheless, to my knowledge, up to now no direct studies of quantum localization in
conservative systems have been undertaken, either in the laboratory or in numerical ex-
periments. Moreover, the very existence of quantum localization in conservative systems
is challenged, see Bogomolny (1994). Here, I briefly descibe recent results concerning the
structure of localized quantum chaos in the momentum space of a generic conservative
system with few degrees of freedom, which is classically strongly chaotic, in particular
ergodic on a compact energy surface, see Casati et al. (to be published).

In general, RMT is a statistical theory of systems with discrete energy spectra. This
is the principal property of quantum dynamical chaos, see Casati & Chirikov (1995b).
Thus, RMT turned out to become (accidentally!) a statistical theory for the incoming
quantum chaos. Remarkably, this statistical theory does not include any time-dependent
noise, that is any coupling to a thermal bath, the standard element of most statistical
theories. Moreover, a single matriz from a given statistical ensemble represents a typical
(generic) dynamical system of a given class characterized by the matrix parameters. This
makes an important bridge between dynamical and statistical descriptions of quantum
chaos. A similarity between the problem of quantum diffusion localization in momentum
space, and the well known dual problem of Anderson localization in configurational space
of disordered solids, see Anderson (1978) and Fishman et al. (1984), is especially clear
and instructive in matrix representation.

Consider real Hamiltonian matrices of a general type

Hmn =Hnn57nn+vmn7 m7n:1?""N7 (433)

where off-diagonal matrix elements vy, = vpn., are random and statistically independent,
with (vmn) = 0 and (v2,,) = v? for |m —n| < b, and are zero otherwise. The most
important characteristic of these Wigner band random matrices (WBRM) is the average
energy level density p defined by

% = (Hmm - Hm’m’) 3 (434)
where m' = m — 1. The averaging here and below is understood as performed either on
a disorder, 1.e. over many random matrices, or within a single sufficiently large matrix.
These are equivalent, due to the assumed statistical independence of matrix elements.
In other words, many matrices are statistically equivalent to a large one. In general,
the quantum numbers m and n are arbitrary, but we will have in mind those related to
the action variables, thus considering the quantum structure in momentum space. The
basis in which the matrix elements are calculated is usually assumed to correspond to a
completely integrable system with N quantum numbers, where N is the number of the
degrees of freedom. By ordering the basis states in energy, we can represent N quantum
numbers by a single one related to the energy, which is also an action variable.

In the classical limit the definition of WBRM (4.33) corresponds to the standard
Hamiltonian H = Hy 4V, where the perturbation V is usually assumed to be sufficiently
small, while the unperturbed Hamiltonian Hy is completely integrable.

The quantum model (4.33) is defined by 3 independent physical parameters: p, v and
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b. The fourth parameter, the matrix size @, is considered to be technical in this model
provided @ > d. (see (4.38) below) is large enough to avoid boundary effects.

In terms of the unperturbed energy Ej, the classical chaotic trajectory of a given total
energy E = const fills up the energy shell AEy, = AV with ergodic (microcanonical)
measure w, depending on a particular perturbation function V. In the quantum system
this measure characterizes the shape (distribution) of the ergodic eigenfunction (EF) in
the unperturbed basis. Conversly, if we keep the unperturbed energy fixed, Ey = const,
the measure w, describes the band of energy surfaces F = const whose trajectories
reach the unperturbed energy Fy. In a quantum system, the measure w, in the latter
case corresponds to the energy spectrum of a Green function (GS) with initial energy
Ey. This characteristic was originally introduced also by Wigner (1955) as the ‘strength
function’, the term still in use in nuclear physics. Nowadays, it is also called the ‘local
density of (eigen)states’.

For a typical perturbation represented by WBRM, w, depends on the Wigner param-
eter ¢ = (pv)?/b, see Wigner (1955) and also Casati & Chirikov (1995b) and Fyodorov
(unpublished),

(E) nEzgc'\/W7 |E| < Esc, ¢>1 s
e - y .35
) T |F| < Epw, ¢<1,

E?4T2/4 2arctan]l/{mq)] *

provided = pv 2 1, which is the condition for coupling neighboring unperturbed states
by the perturbation. In the opposite case, n < 1, the impact of the perturbation is
negligible, and is called perturbative localization. The latter is a well known quantum
effect, but not one we are interested in (for chaotic phenomena it was first considered by
Shuryak (1976)). What is less known is that for the coupling of all unperturbed states
within the Hamiltonian band, a stronger condition is required, i.e.

n2Vb or ¢21. (4.36)

This is a simple estimate in first order perturbation theory. Indeed, the coupling is
~ V/8E. Within the band in question, energy detuning is éE ~ b/p, while the total
random perturbation is V ~ vv/b, leading to the estimate (4.36). In the opposite case,
q <1, a partial perturbative localization takes place. This is also a quantum phenomenon,
but again not what we have in mind when speaking of quantum localization. The mecha-
nism of perturbative localization is relatively simple and straightforward. This quantum
effect is completely absent only in the semicircle (SC) limit of (4.35), where the width
of the energy shell AE = 2Es¢ = 2v8w? = 4,/2¢qE, > E}, and E}, = b/p is the
half-width of the Hamiltonian matrix band in energy. The last inequality allows for dif-
fusive quantum motion within the energy shell, as a single random jump is ~ b < pAE.
The quantum localization under consideration is just related to the localization (sup-
pression) of quantum diffusion by the interference effects in discrete spectrum, see e.g.
Casati & Chirikov (1995b). Notice that the SC width immediately follows from the above
estimate for perturbative localization: §E ~ AE ~ v/b.

In the lower limit of (4.35), that of Breit-Wigner (BW), the full size of the energy
shell AE = 2Egw = 2Ey is equal to that of the Hamiltonian band. However, due to the
partial perturbative localization explained above, the main peak of the quantum ergodic
measure is considerably narrower, with width T' = 27pv? = 27¢Ep < Ey,. This is again
in accordance with the simple estimate: §E ~ I' ~ v+/pl.

To my knowledge, the quantum distributions (4.35) were theoretically derived and
studied for GSa only. Classically, the measure w, seems to be the same for both E = const
and By = const, as determined by the same perturbation V. One of the main recent
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results in studies of WBRM, see Casati et al. (to be published), is that the classical sym-
metry between EFs (E = const) and GSa (Eo = const) is in general lost in quantum
mechanics. Namely, in the ergodic case, such a statistical symmetry still persists. How-
ever, quantum localization drastically violates the symmetry, producing a very intricate
and unusual global structure of quantum chaos.

In a sense, a conservative system is always localized (finite AE), even for ergodic mo-
tion. This sometimes is the origin of misunderstandings (see e.g. Feingold & Piro (1995)).
In fact, such a classical localization is a trivial consequence of energy conservation, as
was explained above. It persists, of course, in the classical limit as well. Here we are
interested in quantum localization as explained above. In what follows it will simply be
called localization.

As for maps, the localization in conservative systems also depends on the ergodicity
parameter A (see 3.19), where now

b2 abd/?

A=ag— = .
de  4v/2cn
Here the ergodicity is not related to the total number of states (}, as in maps (3.19), but
to that within the energy shell of width AE:

de = cp(AE)sc = 407)\/2—1). (4.38)

(4.37)

The Hilbert dimension d. is also called the ergodic localization length, as it is a measure
of the maximum number of basis states (BS) coupled by the perturbation in the case of
ergodic motion. The numerical factor ¢ &~ 0.92 is directly calculated from the limiting
expression (4.35) for a particular definition of d in (3.30). Formally equation (4.38) is
only valid in the SC region (¢ >> 1), but was shown by computations to hold, within the
accuracy of a few per cent, down to ¢ =~ 0.4.

The parameter A (4.37) was found in Feingold et al. (1991), and implicitely used
there (without any reference to ergodicity). Its meaning was explained in detail in
Casati et al. (1993), where the factor a ~ 1.2 was also calculated numerically.

Localization is characterized by the parameter

d A

/de——-—%]__e_
€

<1 (4.39)

Here d stands for the actual average localization length of EFs measured according to the
same definition (3.30). The empirical relation (4.39) was found in numerical experiments,
see Casatl et al. (1993), to hold in the whole interval A < 2.5, and even up to A = 7, see
Casati et al. (to be published).

In the BW region d. = 7pl’ = 27%bg and A = ab/(27%¢) > 1, as ¢ < 1 in (4.35) and
b > 1 in a quasiclassical region.

Hence, localization is only possible in the SC domain which was studied in Casati et al.

(to be published).

The numerical results, see Casati et al. (to be published), were obtained from two in-
dividual matrices: the main one for the localized case, with parameters

A=0.23, ¢ =90,  =2400, v=10.1, 5=10, p =300, n = 30, d. = 500,
and an additional one for the ergodic case, with parameters
A=36,¢=1 Q=2560, v=0.1, b=16, p =40, n =4, d. = 84.

All results are entirely contained in the EF matrix ¢y, which relates the eigenfunctions
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1 to the unperturbed basis states ¢y,

Ym = Cmnpn, wm(n) = [P(n)F = el = Winn, (4.40)

n

in momentum representation, and assuming the eigenvalues E,, =~ m/p. From the matrix
cmn the statistics of EFs and GSa was evaluated. In order to suppress large fluctuations
in individual distributions, averaging over 300 in the central part of the matrix was
performed in two different ways: with respect to the energy shell center (‘global average’,
localization parameter (4.39) B4 = Eg), and with respect to the centers of individual
distributions (‘local average’, B4 = B;). Furthermore, the average (8;) over ¢ values
from individual distributions was computed.

In the ergodic case, A = 3.6, both average distributions for EFs are fairly close to the
SC law. This is a remarkable result, as that law was theoretically predicted for another
distribution, i.e. GSa. More precisely, the bulk (‘cap’) of the distributions is very close to
the limiting SC (4.35), except for the vicinity of the SC singularities. Numerical values
of the localization parameter (Bg = 1.08, B, = 0.94, {B4) = 0.99) are in reasonable
agreement with the scaled one 84 = 0.97 for A = 3.6, see (4.39).

As expected, GS structure is similar: ﬁg =1.07, B, = 1.06, (B4) = 0.98.

For finite ¢, all distributions are bordered by two symmetric, steep tails which ap-
parently fall off even faster than a simple exponential with characteristic width ~ b.
A physical mechanism for tail formation is a specific quantum tunneling via intermedi-
ate BSs, see Flambaum et al. (1994). An asymptotic theory of the tails was developed
by Flambaum et al. (1994), Wigner (1955) and Silvestrov (1995). Surprisingly, it works
reasonably well even near the SC borders.

The structure of the matrix ¢, is completely different in the localized case, A = 0.23.
The EF local average is a clear evidence for exponential localization with By = 0.24, which
is again close to the scaled 84 = 0.21 for A = 0.23. However, the global average reveals
a nice SC (with tails) in spite of localization (ﬁg = 0.98). It shows that, on average,
the EFs homogeneously fill up the whole energy shell. In other words, their centers are
randomly scattered over the shell.

Unlike the ergodic case, the localized GS structure is quite different from that of EFs.
Both averages now well fit the SC distribution (ﬁg = 0.98, A, = 0.96 as compared to

By = 0.99, By = 0.24 for EFs). So, though GSa look extended, they are localized! This is
immediately clear from the third average (f4) = 0.20. The explanation of this apparent
paradox is that even though the GSa are extended over the shell, they are sparse, 1.e.
contain many ‘holes’.

In the analysis of the WBRM structure, the theoretical expression (4.38) for the ergodic
localization length d. (the energy shell width) was used. In more realistic and complicated
physical models this might impede the analysis. In this respect the new method for direct
empirical evaluation of d., and hence the important localization parameters 8z and A in
(4.39), from both the average distributions for GSa and the global average for EFs, looks
very promising. It was elaborated by Casati et al. (to be published).

A physical interpretation of this structure, based upon the underlying chaotic dynam-
ics, is the following. Spectral sparsity decreases the level density of the operative EFs,
which is the main condition for quantum localization via decreasing the relaxation time
scale, see e.g. Casati & Chirikov (1995b). However, the initial diffusion and relaxation
are still classical, similar to the ergodic case, which requires extended GSa. On the other
hand, EFs are directly related to the steady state density, see Chirikov et al. (1981), both
being solid because of a homogeneous diffusion during the statistical relaxation.
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This picture allows us to conjecture that for a classically regular motion the EFs also
become sparse, so that EF/GS symmetry is apparently restored.

5. Conclusion: pseudochaos and traditional statistical mechanics

Quantum chaos is a particular but most important example of a new generic dynamical
phenomenon, pseudochaos, in almost periodic motion. Statistical properties of motion
with discrete spectra is not a completely new subject of research. It goes back to the
time of intensive studies on the mathematical foundations of statistical mechanics before
dynamical chaos was understood (see e.g. Kac (1959)). This early stage of the theory,
as well as the whole TSM, was equally applicable to both classical and quantum sys-
tems. As for the problem of pseudochaos, one of the most important rigorous results
with far-reaching implications was the statistical independence of oscillations with in-
commensurate (linearly independent) frequencies w,, such that the only solution of the
resonance equation

N
My Wy =0 (5.41)
n=1
in integers is m, = 0 for all n. This is a generic property of real numbers. In other
words, the resonant frequencies (5.41) form a set of zero Lebesgue measure. If we define
yn = cos(wyt), the statistical independence of y, means that the trajectory y,(t) is
ergodic in the N-cube |y,| < 1. This is a consequence of ergodicity of the phase trajectory
$n(t) = wypt (mod 27) on the torus |¢,| < =.

Statistical independence is the basic property of a set to which the probability theory

is to be applied. In particular, the sum of statistically independent quantities,

N
z(t) =) Ancos(wat + én), (5.42)

n=1

which is the motion with discrete spectrum, is a typical object of this theory.

However, familiar statistical properties, like Gaussian fluctuations, postulated (directly
or indirectly) in TSM, are reached in the thermodynamic limit (N — oo) only, see
Kac (1959). In TSM, this limit corresponds to infinite-dimensional models, see Kornfeld
(1982), which provide a very good approximation for macroscopic systems, both classical
and quantum.

What is really necessary for good statistical properties of the almost periodic motion
(5.42) is a large number of frequencies N,,, which makes the discrete spectrum continuous
(as Ny, — o0). In TSM this condition is satisfied by setting N, = N — oo. The
same holds for quantum fields which are infinite-dimensional. In the finite-dimensional
quantum mechanics another mechanism, independent of N, works in the quasiclassical
region ) > 1. Indeed, if the quantum motion (5.42) (with z(t) replaced by w(t)) is
determined by many (~ Q) eigenstates, we can set N, = @, which is independent of N.
The actual number of terms in expansion (5.42) depends on the particular state 1(¢). For
example, if it is just an eigenstate, the sum reduces to a single term. This is analogous
to some special peculiar trajectories of classical chaotic motion, whose total measure is
zero. Similarly, in quantum mechanics we have N, ~ Q for most states, if the system is
classically chaotic.

It the motion is regular in the classical limit, the quantity N, (< Q) becomes consider-
ably smaller. For example, in the standard map N, = Q in the ergodic case, N, ~ k? in
the case of localization (both cases being classically chaotic, K > 1) but only N, ~ k <



170 B. Chirikov: Pseudochaos in statistical physics

k? S Q for classically regular motion (K < 1). The quantum chaos to order transition
is not as sharp as the classical one, but the ratio Ny (K > 1)/N (K < 1) ~ k — oo
increases with the quantum parameter k.

Thus, as far as the mechanism of quantum chaos is concerned, we essentially come
back from the ergodic theory to an old TSM, with the replacement of the number of the
degrees of freedom N by the quantum parameter Q). However, in quantum mechanics,
unlike TSM, we are not interested in the limit ) — oo, which is simply the classical
mechanics. Here, the central problem is in the statistical properties for large but finite
(). This problem does not really exist in TSM, describing macroscopic systems. In
finite-Q (or finite-N) pseudochaos we have to introduce the basic concept of a time
scale, see Chirikov et al. (1981). This allows for interpretation of quantum chaos as a
new dynamical phenomenon, related to but not identical with classical dynamical chaos.
Hence, the term pseudochaos, emphasizing its difference from time asymptotic chaos in
the ergodic theory.

In my opinion, the fundamental importance of quantum chaos is precisely in that
it reconciles two apparently opposite regimes, regular and chaotic, in the general the-
ory of dynamical systems. Study of quantum chaos helps us to better understand
the old mechanism of chaos in multi-dimensional systems. In particular, the existence
of characteristic time scales similar to those in quantum systems was conjectured in
Casati & Chirikov (1995b).

Is pseudochaos really chaos?

Until recently, even the concept of classical dynamical chaos was rather incomprehen-
sible, especially to physicists. I know that some researchers actually observed dynamical
chaos in numerical or laboratory experiments. But did they do their best to get rid of
artifacts: noise or other interference! Now the situation in this field is reversed: many
researchers insist that if an apparent chaos is not like that in classical mechanics (and in
existing ergodic theory), then it is not chaos. This implies sharp disputes over quantum
chaos. The peculiarity of the current situation is that in most studies of ‘true’ (classical)
chaos, a digital computer is used. But there only pseudochaos is possible, similar to that
in guaentum (not classical) mechanics!

Hopefully, this ‘child disease’ of quantum chaos will soon be over.

The concept of quantum chaos presented above has been developed in a long-term
collaboration with G. Casati, J. Ford, I. Guarneri, F. M. Izrailev and D. L. Shepelyansky.
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