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We present the results of numerical modeling and a theoretical analysis of the splitting of a
nonlinear-resonance separatrix in the intermediate asymptotic region for the standard-map model.
Direct measurements of the splitting angléK), whereK is the small parameter of the

system, have been carried out over a huge range; 210 2% (1=K =0.0004), with a relative
accuracy greater than one part in #9and an average accuracy of roughly one part in

1073, This made it possible to compare in detail our results with those of the existing asymptotic
theory and to detect a number of new effects. We find a relatively simple empirical

expression for thex vs. K dependence in the intermediate asymptotic region, and this region
proves to be surprisingly broal:<10" 2. We also study the effect of noise, in particular,

errors in measuring the angle, which proved to be much more significant and complicated than
expected. Finally, we point out unresolved questions and possible directions of research
involving this problem. ©1998 American Institute of PhysidsS1063-776198)02410-X

1. INTRODUCTION In this broad class of dynamical systems, the description of
nonlinear resonances and the interaction of such resonances
Rroves to be universal and relatively simple.

In numerical models it is more convenient to replace
ifferential equations in terms of the continuous time vari-
able by a discrete madp? One model of this type that is
simple and yet rich in content is the so-called standard’map
(for a history of the model and related physical applications
H(1,0,)=Hq(1)+8>, Von(l)exping+itmQ), (1.1) see Ref. &

n,m

The dynamics of Hamiltoniaiinondissipative systems
is governed by the interaction of nonlinear resonances, whic
are the basic structural elements of the modern theory of
nonlinear oscillation$~ The Hamiltonian of such a system
can be written

_ . p=p+Ksinx, x=x+p, 1.5
where ¢ is the small perturbation parametérand 6 are . . _
action—angle variable$) is the vector of the frequencies of Wherep andx are action—angle variableK.<1 is the sole
the external perturbation with harmonio®), andn labels  parameter in the model, which characterizes the effect of the

the harmonics of natural oscillations with the unperturbedperturbation over a single map period, which is taken to be

frequencies unity. In terms of the continuous time variable, this model is
described by the Hamiltoniafef. (1.1))
w(y= oD, (1.2 2 =
Jl H(p,x,t)=%+K > cogx—mQt), (1.6
m=—o

Each perturbation term ifl.1) defines a primary resonance: .
where (=27 is the fundamental frequency of the external

wpm=no(l)+mQ~=0. 1.3 perturbation. The model comprises an infinite set of highly
nonlinear resonances’{H/dp2=1), with the motion near
When the oscillations are linear, the frequencies are parangach of these resonances being identical to within a shift in
eters of the system, which either does or does not wind up ithe action variablep— p,,— p, wherep,,=mq is the reso-
resonance regardless of the initial conditions of motion. Theyant value of the action. The frequency of small natural os-
most important feature of nonlinear oscillations is the factcijlations in any resonance isy= VK<1. Although all the
that the oscillation frequenCieS Change in the process of MGesonances have the same amp“tbm% (a” except the fun-
tion because of their dependence on the action variablegiamental, which is governed by the initial conditions, con-
Below we examine the case of strong nonlinearity, i.e., wheRtitute an extremely weak perturbation. This is explained by
such dependence is present even for the unperturbed frequaRe high perturbation frequency compared to the natural os-

cies: cillation frequency at the main resonance:
ﬁw(l)—azH"#o (1.4) N 1.7
a g2 ' wo KT '
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Interaction among the these resonances is adiabatic, and t
effect of such interaction is exponentially small in the large
adiabaticity parametex.

V. V. Vecheslavov and B. V. Chirikov

heate equations of motion of the separatrix-map type. The
first to solve this problem was probably Poincatequation
(1.12 also shows that in the given moddl.6) the contribu-

Neglecting weak nonadiabaticity, we can use the pendution of other resonancegni|>1) is negligible {,=m\).

lum Hamiltonian
2

p—+K COSX

> (1.8

H 1(p:X) =
to describe an isolated resonance, say, the one mitD
(see(1.6)). Such a simple form of the resonance Hamiltonian
proves to be universal in the case of strong nonlinearitiye

In this model, however, all the resonance amplitudes are the
same,e=K (see Eq.1.6). This leads to the emergence of
an additional factof ~1 in (1.12. A qualitative explanation

of the emergence of this factor as an effect of higher-order
approximations of perturbation theory can be found in Ref.
2, where the value of this factor obtained from numerical
models is also given:

most important feature of this problem, which characterizes

the nonlinear resonanc#.9), is the presence of a separatrix,
(1.9

a special trajectory that separates phase oscillationgso-
nance from phase rotatiorout of resonange Clearly, near
the separatrix the motion of the system specified hg) is
highly unstable, since almost any arbitrarily small perturba
tion changes the nature of the motion dramaticdflpm
rotation to oscillation and vice versdt is here that chaos

Ps=* 2w sin (x/2), H¥=wi=K,

can emerge in nonlinear oscillations. As far as we know, thid!

was first observed via numerical modelihgnd was subse-
quently studied by many researché&sse, e.g., Refs. 1-4 and
7).

A simple example of such weak nonadiabaticity is the
interaction of just two nonlinear resonances, say, with
=0 andm=1, which can be described by the Hamiltonian
(see(1.9)

p2

Hz(p,x,t)=7+K cosx+ e cogx—Ot), (1.10
wheree is the amplitude of the perturbing resonance. Motion
near the separatrix of the main resonanoe=(0) can be
approximated by the so-called separatrix map, which wa
first introduced (implicitly) by Zaslavski and Filonenkd.
We write this map in the form used in Ref.(8ee also Ref.
4):

w=w+Wsing, ¢=¢+X\ In 3—_2 (1.19)

|wi
Herew=H,/K—1 is the dimensionlesg&nergy deviation
from the unperturbed separatrish=Qt is the perturbation
phase at the instant when the “pendulum” passes the pos
tion of stable equilibrium X= ), andW is the nonadiaba-

S

f=2.15+0.04. (1.13

The low accuracy of the measuremefwsich in fact turned
out to be an overestimatean be explained by the insuffi-
ciently small values oK (K=0.1-1) and by the approxi-
mate nature of the separatrix map itself.

Considerable progress in solving this problem was made
only relatively recently(in 1984 by Lazutkinet al1® The
value of the correction factdr=2.25% . . . wasobtained by
umerically solving an auxiliary equation from which the
exponential factor had been eliminated. In contrast to the
general expressiofl.12, the factorf is not universal as
assumed in Ref. 10 but depends on the specific set of inter-
acting resonances.

In their mathematical work, Mel'niko$,Poincare® La-
zutkin et al,'° and Gelfreichet al1*'?and others calculated
not the effect of nonadiabaticity ifiL.11), which was later
studied by physicisty;” but an auxiliary quantity, the sepa-
ratrix splitting anglea. Although this quantity alone is in-
sufficient for reproducing the detailed dynamics near the
separatrix,« is an important characteristic of resonance in-
teraction and, in contrast W, is rigorously defined and can
be calculated to any precision.

Separatrix splitting can be approximately described by
the map(1.11) as follows. When there is no perturbation
(W=0), each of the branches of the separatfix9) is an
asymptotic trajectory with an infinitely long period, a trajec-
tory that leaves\W=0, t—) the position of unstable equi-
librium, x=0mod 27, and returns to it =0, t— +»).
When a perturbation is turned olV#0), two intersecting
trajectories emerge: one still originatesxat p=0 (w=0,

t— —o0) but never returns to that pointw@ 0, t— ), and
the other behaves as the first would under time revetsal (
— —t). The free ends of the split separatrix form an infinite

ticity amplitude. If the perturbing resonance is much weakefumber of loops with unboundedly increasing lendtfs,

than the main resonance<€W), the amplitudeW can be
calculated relatively simply by the Mel'nikov methbésee
also Refs. 2-4% and forA>1 we can write

€
W=~ 87 f e N2 ™2, (1.12

which, however, fill a limited and narrow region along the
unperturbed separatrix, forming a so-called chaotic |ayeér.
One important characteristic of such a layer is the layer half-
width we~\W=4a/w, (see Ref. 2 which is directly re-
lated to the separatrix splitting angleee(1.15). These lay-

ers are the universal, ultimate source of chaos in nonlinear

Note that this problem cannot be solved by perturbatioroscillations.

techniques, because the dependence of (thiisn fact any
othen nonadiabatic effectW/(K)) on the initial perturbation
parameter K) is not analytic atk =0. However, after this

The two branches of the split separatrix intersect, in par-
ticular, atx=7r and a certaips(7)~pg=2w, (see(1.19).
It is at this intersection that the angte is usually studied,

effect has been isolated, we can employ perturbation-theorgnd this is also true of the present work. The intersection of
techniques, and this has been successfully done for approxeparatrices corresponds to the valiér)=0 in (1.11.
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Near the intersection point the deviation of the two branches  o(h)=»(h) sin « (1.19

of the separatrix from the unperturbed separatrix is described . . . . .
by a simple approximate formula: Is the simplectic invariant, ang(h) is a certain norm of the

tangent vectors.
wy . Ay Gelfreich et al* found an approximate solution to this
9 (Y) =P (X) = ps(X)~ EW = sin—-, (114 problem that can also be written as a correctisimilar to

(1.17) to the invariant:
where y=x—m, and we have employed the fact that H
)

—1=

dw/dp=2/wg and ¢=Qt=Qy/py=Q0Yy/2w,. Moreover, _ - om
the variation ofw at the intersection point is half the total Cs(h)= mE:l 3, (m)h=, (1.20

variation ofw in (1.11), since the latter is symmetric about . 1
x= (see Ref. 2 As a result, for the total separatrix split- /N€réo==4a-. Actually, Gelfreichet al. calculated only
ting angle we have the first four terms in the seriesee Table Il below The

main limitation of this solution is the implicit functioo( @),

o
ag

©

dq @AW € which can be found only numerically because of the addi-
a(k)*ZE* 7 =2mfwo\® — e ™"? tional unknown functiorw(h).
®o In the present paper we present the first results of direct
g~ M2 measurements of the splitting angle of the separatrix of the
=(2m)* K (115  standard mag1.5), carried out over a broad range of the

parameterK: 1=K=0.0004 (=h=0.02). Herea is 0.1
where we have used the standard-map paranaueteoéz K = a=10 2% with a relative accuracy of better than one part
andQ = 27. Note that this simple and important relationshipin 10°2° and an average accuracy of roughly one part in
holds only for the separatrix splitting angleat . 10~% In order to solve this problem we developed a special

The quantity% introduced in Refs. 10 and 11, which we method for measuring and processing the results that used
call the Lazutkin constant, is related to the correction factofully portable softwar& with arbitrary-precision arithmetic.
f: In fact, the accuracy of the numerical model was as high as
¥=16mf=1118.8277059 (1.1 one part in roughly 10
- - ' SR ' In addition to measuring the angte, which is directly
According to our data, the most accurate value/ofs given related to the nonadiabatici§y¢, we measured the invariant
below, in (4.14). Note that the factof < % more correctly ¢ (EQ. (19)) it order to compared to the theoretical value.
characterizes the order of the effect of the finite amplitude off e functionv(h), which is needed if we wish to calculate
a perturbing resonance. but whose analytic expression is not known, was calculated
The last term in(1.15, with an exact value of~ or f,  Using a special program kindly furnished by V. G. Gelfreich,
yields the asymptotic valu@s\ — ) of the separatrix split- {0 whom we are sincerely grat.eful. All this has madg it pos-
ting angle:a..= a(=). In Ref. 10 there is also an estimate of Sible to cpmpareltl)gr resul'ts Wlt'h those of the analyth theory
the correction toe.. in the intermediate asymptotic region ©f Gelfreichet al.™" in detail, which was fully substantiated,
0<K<1: and to detect new effects. We found a relatively simple em-
pirical expression for th& dependence ok in the interme-
a(N\) 1=K U8 diate asymptotic region, which proved to be surprisingly
a, (117 broad:K=10"2. We also studied the effect of noise—angle

o ] measurement errors, in particular—which turned out to be
Our prellmlnary numerical models have shown, hcl)/\;vevermuch more significant and complex than expected.
that the correction decreases wkKhmuch fasterc,~ K"~

We immediately note that this “correction” describes
the intermediate asymptotic region of separatrix splitting tha@. MEASURING THE SEPARATRIX SPLITTING ANGLE
is of present interest, and hence the formation of a chaotic

layer. Solving this problem is the principal goal of ourmves-anglea relates to its extremely small magnitude. For in-

tigation. ; . .
The best-developed theory of the standard map separaSEance' when the perturbauqr;ogaram&en (1'5).'5 0.0004,
. AT . . . . a amounts to roughly 4210 rad. As noted in the Intro-
trix splitting™ predicts not only a rapid decrease in this cor- . .

; . . . duction, this problem could only be solved thanks to a
rection, but also makes it possible to calculate the first terms . :
: . ; ; . . 3pecial-purpose software packagythat implements all stan-
in the power-series expansion by numerically solving auxil-

. . ) FORTRAN iliti i i - isi ith-
iary equations. We believe that to a large extent the succesdsard © capabilities in arbitrary-precision arit

of this theory can be attributed to the felicitous change Orrpetlc, vyhere one can specify thg number, of S|gnlf|cant
. figures in the mantissa of the decimal representation of a real
variables K,a)—(h,o), where

Co(M)=

The main difficulty in measuring the separatrix splitting

number.
K K2 We calculatedr in the following manner. First and fore-
h(K)=In| 1+ 5+ \ K+ ~VK (1.18  most, for any given value of the perturbation paraméter

the ordinatep () of the point of intersection of the separa-
is the positive characteristic index of the tangentimlear-  trix branches was found on the line= 7. The unperturbed
ized map (1.5 at the unstable fixed point=p=0, theoretical valugp(7)=po=2VK (Eq. (1.9) was taken as
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the initial ordinate, and the behavior of the phaseotation  the most critical. According td¢1.14), the phase separation
or oscillation was established for the orbit starting at Ay between the central and neighboring intersection points
(7r,p()). Depending on the result, the value of7) was is Ay~2#/x= K, and it is convenient to choose as a phase
successively increased or decreased by a certain step siaffset some fraction of this distance,
until the counterpart phase behavior emerged. This made it
possible to initially localize the intersection point, with the dy=mK, 2.1
upper bound, () corresponding to rotation of the phase  with the value ofy for all numerical alternative usually rang-
and the lower boung, () to phase oscillations independent ing from 10 °to 10 *2
of the direction of time. Recall that each split branch of the  Above all, it was necessary to understand whether the
separatrices remains a boundary between oscillations and rdesired relative accuracy of one part in"#9in the calcu-
tations of the phase for its own particular direction of timelated value ofa, had been achievetlearly, this accuracy
(see the Introduction The step size in momentum was al- must in no event be identified with the number of significant
ways chosen larger than the expected width of the chaotidigits. /). To this end we repeated the above calculations
layer (~4a), so that the width of this initial interval, for one more pair of double phase valugs; +24y, for
dp(m)=p,(7)—p(7), turned out to be much greater than both senses of time. Using the results for the two pairs of
the required valuel py(7r), which, in contrast, was always points, we were able to construct fourth-degree approximat-
chosen to be much less than the width of the laigee be- ing polynomialsg=Q,(y) and obtain an improved value of
low). For example, for our smallest value of the perturbationa;,.
parameterK =0.0004, the width of the chaotic layer was Generally, some of the/’; of the leading significant
approximately 10297 while the multiple-precision level digits (with allowance for round-offin the expressions for
1" and the precision required to yiettp(7)=10""ain @, and a4 are the same, but then these values diverge. We
locating the ordinatepy(7) were set at/ ;=300 (corre- always achieved/ =25, which yielded a relative angle-
sponding to a precision of about one part in roughly®®  measurement accuracy no worse than one part if°1Cal-
and./ ,= 280, respectively. culations with higher-degree polynomials and higher preci-
After establishing the initial intervdlp,(7),p,(7)], we  sion only supported this criterion. In actual fact, the relative
used the bisection method to get to the pouhp(w)  accuracy turned out to be higher, and on the average
<dpg(), and then calculated the desired ordinate of theamounted to roughly one part in 1¥ (see Sec. B
intersection point, takingps()=[p,(7)+p(7)]/2. We Note that there is no need to calculate the points of the
note in passing that this stage of the calculations accountegeparatrix branches time proceeding into the past. The stan-
for most of the computing timésee below. as the interval dard map(1.5) is symmetric, and this symmetry makes it
shrank, the orbit moved closer to the unstable fixed pointpossible to reconcile any pointx{,p;) on the forward
and the period of motiorithe number of iterations of the branch of the separatrix with the corresponding point
map increased substantially. (Xp,pp) oOn the backward branch via the simple
After the central point of intersection of the separatrix relationship*
branches was established, it was adopted as the origin of a
new coordinate systenyEx—, gq=p—ps(7)), in which
all subsequent steps in calculating the anglevere taken. Thus, the approximating polynomials for both branches are
For two values of the phasg= =+ 8y, |dy|<1, to the right constructed simultaneously, so that there is no need for ad-
and left of the new originy{=g=0) we found(to the same ditional computer time. However, to verify our results we did
accuracydpg(7)=10""4a) the boundaries between oscilla- check calculations of some of the values of the perturbation
tions and rotationgwith time increasing toward the future parameter with time progressing into the past. These calcu-
This made it possible to approximate a section of the straighftions validated the numerical scheme describe above.
branch of the separatrix by a second-degree polynomial The major difficulty is to find the coefficients of the
=Q,(y) and, by determining its coefficients, to find the polynomials that approximate the segments of the separa-
angle of the slope of the separatrix. Repeating the abovtices that pass through the intersection pgirtq=0:
procedure with time progressing into the past, we were able
to find the slope of the reverse branch of the separatrix and
take the difference of the two, yielding the desired intersecUsing four reference points, we obtain a set of linear equa-
tion anglea,. tions represented in matrix form as
Special measures were taken to ensure the feasibility of 2 3 4
this approach. oy (%y) (oY) (%y)
For the full range of the parametkrwe strove to obtain =8y (87 —(8y)® (sy)*
a relatzi\;e measurement accuracymo worse than one part 28y 4(8y)? 8(dy)® 16(sy)*
in 10~“°. To this end we were forced to choose values for all 2 3 4
the multiple-precision parameters mentioned above: the —20y 4(%y)T —8(dy)T —16(dy)
number of significant figures/ ", the roundoff error The elements of this matrix differ by many orders of magni-
dps(m)=10""aincurred in locating the ordinatg(w), and  tude (in view of the smallness of the phase offséy, ac-
the phase offsefy needed to set up the approximating poly- cording to(2.1)), and its determinant is close to computer
nomials, with proper selection of the third parameter beingzero, which makes it impossible to invert the matrix.

Xp=27—X;, Pp=PpPs+Ksinx;. (2.2

q=a.y+ayy’+agy’+azy*. (2.3

(2.9
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The problem was solved through a change of variables log|a(m)|
of the form (,q)—(Y=Sy, Q=Sg). In terms of the new
variables the polynomial was 81
Q=a,;Y+b,Y2+bsY3+b, Y4 (2.5 al
We see that the only coefficient of interest to usaig
=tan a,4, which remains constant for any value of the scal- or
ing factorS. This is obvious, since our change of variables r
amounts only to magnifying the entire pictugfold. We -4t
usually setS=1/8y, which balanced the orders of magnitude f
of the matrix elements and resolved all difficulties with pro- "80 T

cessing such a matrix.
; i FIG. 1. An example of the dependence of the expansion coefficients in

f r:Ne usedbthg above SCheme tﬁ fimeK) fol;‘?(l)iy VaIUZS (3.2), found by interpolation of the empirical data, on the total nuniesf
of the perturbation paramet&rin the ra_mg_e_ /Q'_OOO *  terms in the series for the anglepen trianglesand the invarian{open
The angle was represented to 35 significant digits, whickircles.
provided more than the minimurone part in 1025 see
above and averagéone part in roughly 10°% see Sec. B
relative accuracy needed to determine the angle.

The minimum perturbation parameter that we could
work with, K=0.0004, was limited by the time per run
(about 24 hours This time rapidly increases a& gets
smaller primarily because of an increase in the number of"' e -7 )

; : ; ratio (a;9/a;)h=*is of order 10". Hence, despite the spe-
necessary iterations of the m#éigs. 1.5. The latter is the '© 5 ' i o
product of the period of motion near the separatrix cial methods used in processing the data, even in the initial
(~|In dpdm)|IVK~.1",/VK ; see Ref. 2and the number of §tage the processing was dqne with qugdruple precision, and
successive approximations at the intersection point in th_e final stagesloghe required precision amounted to one
(~In dpy(m)|~.7"5). Moreover, the time it takes to calculate phart_ln rougljhl_y 10f HBUt ceven Fhlz was not enouﬁh. Asin
(1.5) is proportional ta /", (in the range of moderate accu- 1€ interpolation of the separatrix branchi&ec. 2, the ma-
racy ./,=300 that we are interested)inAs a result, we trix of the system of linear equations that was so highly

estimate the total processing tifffawith this approach to be inhomogeneous usually became singular during numerical
processing. The solution to this problem was found in the

N2 same way as in Sec. 2, i.e., by scaling the variables of the
=l (2.6 problem: 1,8)— (H=Sh C=S0), with the scaling factos
much larger than unity. In contrast to the problem of Sec. 2,
where the empirical value of the parameTeris roughly 2 the coefficients of the polynomiaB.1) are not invariants

The main difficulty in the interpolation of the empirical
data via the serie3.1) lies in the fact that the various terms
of this series differ by many orders of magnitude. For ex-
ample, in the typical case whete~0.05 andM =10, the

X10 %h. under such a transformation, and must be restored after in-
terpolation in the new Vvariables: A(m)—a(m)
=A(m)Ss?m1,

3. PROCESSING THE MEASUREMENTS The number of terms in the serig8.1), M~10, is

bounded above by errors in the calculation of the coefficients

The initial empirical data used our analysisefK) de-  a(m) primarily because of “noise” resulting from the finite
pendence consisted of 60 measured values of the unknowrecision of the empirical data om(h). If M is increased
function(Sec. 2. In the first stage of processing, to calculate beyond 10, we obtain no new coefficients—we even lose
the correctionsc, we used the most accurate value @f  some of the old ones. This is especially evident in Fig. 1
(1.16.1° In order to compare our result with the theoretical from the sharp break im(m) dependence. We chose the
result of Ref. 11, we processed in a similar way the empiricabptimum valueM =10 by trial and error(see also Fig. 3
dependence of the correctiop to the invarianis calculated  below).
by (1.19. The accuracy of the empirical formu(&.1) can be char-

In accordance with the theory developed in Ref. 11, bothacterized by the root-mean-squdres) error
corrections were sought in the form of a finite series expan- -
sion in even powers di. Ac=([c(h)—c(h)]?)*, (3.2

M where the angle brackets denote averaging over the entire

c(hy=a(0)+ X, a(mh?", (3.1)  interpolation interval. The latter does not necessarily include
m=1 all 60 values otc(h). Furthermore, attempts to use the entire
with least-squares interpolatigsee, e.g., Ref. 34Although  empirical interval have revealed the extremely low accuracy
formally the coefficient(0) is zero(see(1.17) and(1.20), of such “global” interpolation:Ac(h)=10"° (cf. Fig. 2.
incorporating it into(3.1) makes possible a considerable im- This is quite natural, since the theoretical power-law
provement in the parameter’ in comparison to its known dependencé (3.1) characterizes only the intermediate
value(1.16. asymptotic region. For this reason, the deviation
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log] d¢ in expressions of typ€3.1) we took the total value of the
Optaa, Lazutkin constant. Relative interpolation was also carried
out, and with it we minimized the relative variance

2
> . (3.9

(Ac)? :<{1_E<h>

c? c(h)

. The results of all three interpolation schemes are in good
100 2 5 10! 2 l/h agreement with one another.

FIG. 2. Interpolation of the empirical data on the separatrix splitting angle The results of processing the data are deplcted in Fig. 2

(open trianglesand the invariantopen circleg Sc(h) is the deviation from and listed in Tables | and II. o ) )
the intermediate asymptotic behavior specifiedyt). The oblique straight The accuracy of the coefficients was established in two

lines represent the first term of the remain@éf), and the curves represent  different ways. First, we calculated the standard rms interpo-
the _exponential deviatiot¥.6). T_he Iipes at the top represent the total cor- lation error” (columns headed6> in Tables I and u. This
rectionsc(h) for the angle and invariant, respectively. . . . .
quantity characterizes the expected error in calculations of
the coefficients for a random rms error in the empirical data.
~ Actually, however, the total error is almost never purely ran-
oc(h)=c(h)—c(h) 33 dom but contains a systematic error, which leads to a shift
contains the most valuable and interesting information aboutadditional variatiohin the values of the coefficients. This is
additional nonadiabatic effects not in the theory. Thus, in theclear in Fig. 2, where the accuracy of interpolation is much
given set of empirical data, it was also necessary to choosgreater than the remainder in the ser(@<0, which is not
an interpolation rangehi—h,), whereh,;=0.02 is the mini- included in the interpolation 0f3.1). This is why another
mum value in the original data. The basic criteria here weranethod was used. The values of the coefficients were deter-
the smallest value ahc (see Eq(3.2) and the precision of mined by averaging over several interpolations with various
the derived coefficients of the seriéx1) (see Tables | and amounts of initial dataN,=14—-20 for the angle andN,
). = 33-38 for the invariant. These values are listed in Tables
The quality of interpolation decreases not onlytgs | and Il (columns headed,(m) andb,(m), respectively.
increasegas noted earligr but also as it decreases, becauseThe relatively weak dependence of the averagesNgn
of the small contribution of high powers bffor small values served as the main criterion in selecting these two groups.
of h, and also due to the decreasing number of polys For the error we took the rms errors of the coefficients in a
participating in the interpolation. The interpolation is bestgroup(columns headed in the tables We see that the two
when h,~0.063 N,=19) andAc,~2X 103! and when estimates are of the same order, although the error in a group
h,~0.12 (N,=36) andAc,~2X 10731 but other values of is the greatest, and hence dominant, in all cases except the
N, close to those just mentioned were also usk Sec. #  one withb(10). The difference between the two rms errors,
Note that the eventual interpolation accuracy yields a roughwhich is especially appreciable for the angle, definitely sug-
estimate of the average accuracy of the measured values gésts that there is a systematic error. The values of the rms
a(K). error in a group determine the number of valid significant
The basic results were obtained through standard inteifigures in the coefficientgéin our opinion. In the columns
polation by minimizing the varianceAc)? (see(3.2) and headeda,(m) andb,(m), we have left two or three “super-
(3.2)). To control the procedure, we used forward interpola-fluous” digits for comparison with future more accurate em-
tion, in which for the zeroth-order unknown coefficiex{i0) pirical and/or theoretical values.

TABLE I. Coefficientsa,(m) in the serieq3.1) for the angle.

m a,(m) A ()

1 —0.23337 64288 64381 61062 76396 19 0.239 % 0.118x10°%*
2 —0.29081 81551 24688 86036 776 0.3010™2° 0.453<10° %
3 —0.01482 49555 34894 05088 4 0.2400° 7 0.973x 10718
4 0.04318 21901 48643 630 0.3870 0.130<10™
5 —0.04151 92394 77208 0.34810° 1 0.115x 1011
5 —0.13137 331019 0.22710°%8 0.673x10° %
7 —0.31916 9504 0.98810°% 0.261x 107 %
8 —1.060635 0.27810° % 0.647x 10 %
9 —4.3613 0.43% 10 % 0.923<10™ %
10 —24.02 0.31x 10" 0.579x 107

Note Here and in Table IIA is the rms error in the group, add) is the average rms error in an individual
interpolation.
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TABLE IlI. Coefficientsb(m) in the serieq4.1) for the invariant.

m b,(m) A ()

1 18.59891 19582 09297 35881 71520 0.xan2 0.343x10° %
2 T —4.32114 12705 68162 53678 60 0.3690 1° 0.125x 10710
3 T —4.18326 37590 91894 112 0.9710 6 0.345x 10716
4 T —4.93413 95907 30929 0.1880 *? 0.735x<10™ %3
5 T —10.64548 64427 41 0.26310°%° 0.121x10° %
6 —35.86008 1765 0.27610° % 0.151x 107 %
7 —177.60356 0.21210°% 0.139x 107 %
8 —1239.507 0.11410%% 0.894x 10 %
9 —11766.0 0.38& 10" 2 0.362x10"%2
10 —163000 0.62%10"% 0.693x10"%

Note The underlined figures are the values of the coefficients obtained in Ref. 11.

4. DISCUSSION for the invariant.

These empirical relationships were built according to the

We_ starfc by examining the behavior OT the eXpans'onfollowing reasoning. From Fig. 2 and Tables | and Il we see
coefficients in(3.1) on the basis of the data in Tables | and that the positive correction, (h)>0 is much smaller in ab-

Il. We use the representation of the coefficient in the SIM~ 0 ute value thai, (h) <0 over the entire range ¢fstudied

plest form(3.1) except when we compare our results directly . . . o
with those of Ref. 11, Whe.re the coefficieritém) are rep- 25:@’6332 nt?: t\(;\:co t?]oerri(:lh();vsior:a\éi ?ﬁgof‘g‘i’vgﬁgf;}:&s IS a
resented by the Taylor seriésf. (1.20) +c,(h)) (v.=4 andc,(h)>0) in (1.19. This yields the

o “. b(m) 7 following relationship between the coefficients:
— Y=+ mEl Tth, b(m)=a(m)m! .

O m

(4.2) a,(m=a,(m+ >, a,ka,(m—k). 4.3
First and foremost, we were able to find a relatively =t

simple extrapolation ofa(m) outside the range of direct a|| the norm coefficientsa,(m) are positive, while almost

measurements of the separatrix splitting angle. The results ¢fij a_(m) and a,(m) are negative(with the exception of

this extrapolation are depicted in Fig. 3 and can be describeg (4) anda,(1); seeTables | and II. On the other hand,

by the approximate expressions Fig. 3 shows that the coefficients for the angle and invariant
ym behave quite differently. The latter decrease relatively slowly
aa(m)%Aa_p (4.2  with increasingm, approximately as power-law functions,

while the former increase very rapidly, almost exponentially,
as the norm coefficients do. This is corroborated by forward
interpolation and directly follows from the fact that the norm
A, balances the large correction for the angles almost perfectly:
a,(m)~ P @20 ¢ <lc,).

This, then, is the key to building the empirical relations
(4.29 and(4.2b. Indeed, such balance does not occur for a
purely exponential dependence af(m)=a,(m). One can
easily verify, however, that this becomes possible for the
combined dependendd.23, provided thapp>1 andm>1.
Figure 3 also depicts the dependenceagpfa, on m, which
is perfectly fit by an exponentigsee(4.4) below). This is all
the more remarkable since the last two or even three coeffi-
cients of the invariant clearly deviate from the simple power
law (4.2b. The same is true of the combined dependence

for the angle, and

_at a . o (4.29 for the angle.
6l R The nature of these anomalies remains an open question,
o and requires further study. Note that anomalies appear only
T U in the highest-order coefficients, which cannot be increased
1 3 5 7 2 N in number without a catastrophic increase in the er(big.

1). Furthermore, the ratio of the coefficients of the angle and
FIG. 3. Variation of the coefficients in the intermediate asymptotic regionjnyariant in the intermediate asymptotic region contains no
specified by(3.1) for the anglea,(m) (filled triangles, the invariant(filled )\ iy,5 anomalies. Of course, the exact dependence of the
triangles, the invarianta,/(m) (filled triangles, and theira,/a, ratio (as- L. . . .
terisk9. The solid curves represent the empirical formuthga and(4.2b. coefficients, provided that it can be expressed explicitly,
The open triangles and circles represent the errors in the coefficients.  hardly has the simple form q#.23 and (4.2b even when
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m>>1. This is clear, if only from the fact that the accuracy of another(unknown value of the factof in (1.12 and a sys-
the empirical relations can in no way be compared to theéem of resonances of higher-order approximations, which is
precision of the coefficients themselvisee Tables | and Il much more complicatet?.
and Egs.(4.4 below). Nevertheless, even the approximate  The situation for the separatrix splitting angle is much
formulas(4.29 and(4.2b help in interpreting the character- more interesting, since the seri¢$.23 diverges whenh
istic features of the intermediate asymptotic region and in>h,~exp(-y/2)~0.507, i.e., within the range under inves-
further studies of this problem. In this paper, however, wetigation (15 leftmost points in Fig. 2 At the same time, no
have limited ourselves to this approximation. singularities or anomalies in the behavior of the function
The parameters of the empirical relations can be obe,(h) or its deviationéc,(h) from interpolation has been
tained by interpolating data on the ratio of the coefficientsobserved in this range. Furthermore, the deviation can be
with m=7-10 on a semilogarithmic scale, and data on thedescribed perfectly well by the remainder term (#.7),
invariant withm=4—6 on a log—log scale. The results are aswhich, incidentally, is represented in Fig. 2 only by its first
follows: term. This clearly shows that there is a significant change in
the behavior of both the angle and the invariant at large
y=1.3580.0059, p=3.51+0.17, ~1 as compared with the intermediate asymptotic region.
The approximate relation®.2a and(4.2b make it pos-
sible to more accuratelfthan in Ref. 1] estimate the re-

where the accuracy is given in terms of absolute and relativghainder in the serie§l.20, which is not included in the
rms errors. Note that interpolation with just three coefficientsnterpolation(3.1):

(m=2,3,4), obtained in Ref. 11, yields similar values of the
parameters irf4.2h):

A,=-0.01741+0.28, A,=-0.02331* 0.27)(,4'4)

]

R(h,M)= > a(mh®~a(M+1)h2M+2 (4.7
A,=—0.02161+0.45, p=3.38+0.41. (4.5 m=M+1

The accuracy of the empirical relatio23 and(4.2b) Figure 2 shows that even the first termRrprovides a fairly
can also be characterized by the relative rms error of th@00od description of the behavior of the angle deviation over
extrapolation itself Aa/|a| for the values ofm specified the entire range under investigation. The same can be said of
above, which amounts ta-0.029 for the angle and:0.028  the exponential functio4.6) for the invariant. However, an
for the invariant. Note that the relative smallness of the rmattempt to add both expressions to the polynori8al) cata-
errors themselves, compared to the rms errors in the coeffstrophically reduces the interpolation accuradye~10"°.
cients(4.4), can be explained in terms of the strong correla-This again demonstrates that the structure of the region
tion of the latter. In both cases the anomalies of the coeffiwhereh~1 is extremely complicated. In view of the impor-
cients are much larger than the reduced errors in the valudance of this region in many applications, this problem de-
of (4.23 and (4.2b and the two errors of the coefficients Serves further study.
themselves in Tables | and ($ee Fig. 3 Finally, we focus on the most precise and accurate way
Using (4.29 and (4.2b, we can set up an approximate of flndlng the Lazutkin constan¥. We introduce the correc-
model of the intermediate asymptotic behavior, taking for thetion
initial coefficients, which clearly do not obe{4.29 and
(4.2b), their exact values from Tables | and Il. Preliminary
experiments along these lines show that the model indee@herei labels the various ways of obtaining, and

reproduces the shift of alland especially the lastcoeffi-
cients. However, this shift lies within the limits of err(see £=1118.8277059409 00778 41514 639 (4.9

Tables I and Il and Fig.)3and does not explain the anoma- is the zeroth-order value, which we already obtained in pre-
lies discussed earlier. Furthermore, even turning on add'ﬁminary numerical modelingcf. (1.16). Formally, the high-

tional noise that is uniform i and simulates the errors in est accuracy is achieved in individual interpolation V‘mb
angle measurements does not help. =14 andM = 10

The approximate relationship&.2g and (4.2b also
make it possible to perceive global behavior in the interme-  6.4,=0.323564-0.000017,
diate asymptotic region. Above all, the serids2b for the ) (4.10
invariant is convergent over the entire rarfge 1 up to glo- 6%,=0.323572-0.000017.

bal _chaos I|m_|t, alt_hough it does not describe the actual beégjnce the intermediate asymptotic serié<) differ substan-
havior of the invariant foh=0.14. Here the presence of an yja|ly in these two cases, such good agreement is a serious
exponential is cleafsee Fig. 2 argument favoring the reality of this accuracy.
e a2lh In view of the importance of this constant, we also used

|dc(h)[~63e ' (4.6 other methods to determine it. First we isolated a group of
This function exceeds the remainddr7) and describes the variants of interpolation schemes with the same vallie
perturbation of the separatrix by a distant resonance with & 10 but different valuesN,=12—20 andN,=13—-38 for
frequency 22 =4 (see(1.6)). The simple theory in Ref. 2 the angle and invariant, respectivel§5 cases in all The
predicts a numerical factor of 8, i.e., smaller by a factor ofgroup was chosen to be as broad as possible, the only limi-
almost 10. Such a discrepancy can easily be explained bwation being thats.#; was supposed to decrease rapidly and

8Li=(%i— o) X107, 4.9
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n portant in and of itself, and which has made it possible, when
or combined with the data on the invariant, to obtain approxi-
mate empirical relation§t.2) in this region that are not lim-
ited by the number of directly derived coefficients.
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