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High-precision measurement of separatrix splitting in a nonlinear resonance
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We present the results of numerical modeling and a theoretical analysis of the splitting of a
nonlinear-resonance separatrix in the intermediate asymptotic region for the standard-map model.
Direct measurements of the splitting anglea(K), whereK is the small parameter of the
system, have been carried out over a huge range, 0.1*a*102208 (1>K>0.0004), with a relative
accuracy greater than one part in 10225 and an average accuracy of roughly one part in
10230. This made it possible to compare in detail our results with those of the existing asymptotic
theory and to detect a number of new effects. We find a relatively simple empirical
expression for thea vs. K dependence in the intermediate asymptotic region, and this region
proves to be surprisingly broad:K&1022. We also study the effect of noise, in particular,
errors in measuring the angle, which proved to be much more significant and complicated than
expected. Finally, we point out unresolved questions and possible directions of research
involving this problem. ©1998 American Institute of Physics.@S1063-7761~98!02410-X#
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1. INTRODUCTION

The dynamics of Hamiltonian~nondissipative! systems
is governed by the interaction of nonlinear resonances, wh
are the basic structural elements of the modern theory
nonlinear oscillations.1–4 The Hamiltonian of such a system
can be written

H~ I ,u,t !5H0~ I !1«(
n,m

Vnm~ I !exp~ inu1 i tmV!, ~1.1!

where « is the small perturbation parameter,I and u are
action–angle variables,V is the vector of the frequencies o
the external perturbation with harmonicsmV, and n labels
the harmonics of natural oscillations with the unperturb
frequencies

v~ I !5
]H0~ I !

]I
. ~1.2!

Each perturbation term in~1.1! defines a primary resonanc

vnm[nv~ I !1mV'0. ~1.3!

When the oscillations are linear, the frequencies are par
eters of the system, which either does or does not wind u
resonance regardless of the initial conditions of motion. T
most important feature of nonlinear oscillations is the f
that the oscillation frequencies change in the process of
tion because of their dependence on the action variab
Below we examine the case of strong nonlinearity, i.e., wh
such dependence is present even for the unperturbed freq
cies:

]v~ I !

]I
5

]2H0

]I 2
Þ0. ~1.4!
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In this broad class of dynamical systems, the description
nonlinear resonances and the interaction of such resona
proves to be universal and relatively simple.2

In numerical models it is more convenient to repla
differential equations in terms of the continuous time va
able by a discrete map.1–4 One model of this type that is
simple and yet rich in content is the so-called standard m2

~for a history of the model and related physical applicatio
see Ref. 5!:

p̄5p1K sinx, x̄5x1 p̄, ~1.5!

wherep and x are action–angle variables.K!1 is the sole
parameter in the model, which characterizes the effect of
perturbation over a single map period, which is taken to
unity. In terms of the continuous time variable, this mode
described by the Hamiltonian~cf. ~1.1!!

H~p,x,t !5
p2

2
1K (

m52`

`

cos~x2mVt !, ~1.6!

whereV52p is the fundamental frequency of the extern
perturbation. The model comprises an infinite set of hig
nonlinear resonances (]2H/]p251), with the motion near
each of these resonances being identical to within a shif
the action variable:p2pm→p, wherepm5mV is the reso-
nant value of the action. The frequency of small natural
cillations in any resonance isv05AK!1. Although all the
resonances have the same amplitude (K), all except the fun-
damental, which is governed by the initial conditions, co
stitute an extremely weak perturbation. This is explained
the high perturbation frequency compared to the natural
cillation frequency at the main resonance:

l5
V

v0
5

2p

AK
@1. ~1.7!
© 1998 American Institute of Physics
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Interaction among the these resonances is adiabatic, an
effect of such interaction is exponentially small in the lar
adiabaticity parameterl.

Neglecting weak nonadiabaticity, we can use the pen
lum Hamiltonian

H1~p,x!5
p2

2
1K cosx ~1.8!

to describe an isolated resonance, say, the one withm50
~see~1.6!!. Such a simple form of the resonance Hamiltoni
proves to be universal in the case of strong nonlinearity.2 The
most important feature of this problem, which characteri
the nonlinear resonance~1.8!, is the presence of a separatri

ps562v0 sin ~x/2!, H1
~s!5v0

25K, ~1.9!

a special trajectory that separates phase oscillations~in reso-
nance! from phase rotation~out of resonance!. Clearly, near
the separatrix the motion of the system specified by~1.8! is
highly unstable, since almost any arbitrarily small perturb
tion changes the nature of the motion dramatically~from
rotation to oscillation and vice versa!. It is here that chaos
can emerge in nonlinear oscillations. As far as we know,
was first observed via numerical modeling,6 and was subse
quently studied by many researchers~see, e.g., Refs. 1–4 an
7!.

A simple example of such weak nonadiabaticity is t
interaction of just two nonlinear resonances, say, withm
50 andm51, which can be described by the Hamiltonia
~see~1.6!!

H2~p,x,t !5
p2

2
1K cosx1e cos~x2Vt !, ~1.10!

wheree is the amplitude of the perturbing resonance. Moti
near the separatrix of the main resonance (m50) can be
approximated by the so-called separatrix map, which w
first introduced~implicitly ! by Zaslavski� and Filonenko.7

We write this map in the form used in Ref. 2~see also Ref.
4!:

w̄5w1W sinf, f̄5f1l ln
32

uw̄u
. ~1.11!

Here w5H2 /K21 is the dimensionless~energy! deviation
from the unperturbed separatrix,f5Vt is the perturbation
phase at the instant when the ‘‘pendulum’’ passes the p
tion of stable equilibrium (x5p), andW is the nonadiaba-
ticity amplitude. If the perturbing resonance is much wea
than the main resonance (e!W), the amplitudeW can be
calculated relatively simply by the Mel’nikov method8 ~see
also Refs. 2–4!, and forl@1 we can write

W'8p f
e

K
l2e2pl/2. ~1.12!

Note that this problem cannot be solved by perturbat
techniques, because the dependence of this~or in fact any
other! nonadiabatic effect (W(K)) on the initial perturbation
parameter (K) is not analytic atK50. However, after this
effect has been isolated, we can employ perturbation-the
techniques, and this has been successfully done for app
the
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mate equations of motion of the separatrix-map type. T
first to solve this problem was probably Poincare´.9 Equation
~1.12! also shows that in the given model~1.6! the contribu-
tion of other resonances (umu.1) is negligible (lm5ml).
In this model, however, all the resonance amplitudes are
same,e5K ~see Eq.~1.6!!. This leads to the emergence o
an additional factorf ;1 in ~1.12!. A qualitative explanation
of the emergence of this factor as an effect of higher-or
approximations of perturbation theory can be found in R
2, where the value of this factor obtained from numeric
models is also given:

f 52.1560.04. ~1.13!

The low accuracy of the measurements~which in fact turned
out to be an overestimate! can be explained by the insuffi
ciently small values ofK (K50.121) and by the approxi-
mate nature of the separatrix map itself.

Considerable progress in solving this problem was m
only relatively recently~in 1984! by Lazutkinet al.10,11 The
value of the correction factorf 52.2552 . . . wasobtained by
numerically solving an auxiliary equation from which th
exponential factor had been eliminated. In contrast to
general expression~1.12!, the factor f is not universal as
assumed in Ref. 10 but depends on the specific set of in
acting resonances.12

In their mathematical work, Mel’nikov,8 Poincare´,9 La-
zutkin et al.,10 and Gelfreichet al.11,12 and others calculated
not the effect of nonadiabaticity in~1.11!, which was later
studied by physicists,1–7 but an auxiliary quantity, the sepa
ratrix splitting anglea. Although this quantity alone is in-
sufficient for reproducing the detailed dynamics near
separatrix,a is an important characteristic of resonance
teraction and, in contrast toW, is rigorously defined and can
be calculated to any precision.

Separatrix splitting can be approximately described
the map~1.11! as follows. When there is no perturbatio
(W50), each of the branches of the separatrix~1.9! is an
asymptotic trajectory with an infinitely long period, a traje
tory that leaves (w50, t→`) the position of unstable equi
librium, x50 mod 2p, and returns to it (w̄50, t→1`).
When a perturbation is turned on (WÞ0), two intersecting
trajectories emerge: one still originates atx5p50 (w50,
t→2`) but never returns to that point (w̄Þ0, t→`), and
the other behaves as the first would under time reversat
→2t). The free ends of the split separatrix form an infin
number of loops with unboundedly increasing lengths8,9

which, however, fill a limited and narrow region along th
unperturbed separatrix, forming a so-called chaotic layer1–7

One important characteristic of such a layer is the layer h
width ws'lW'4a/v0 ~see Ref. 2!, which is directly re-
lated to the separatrix splitting angle~see~1.15!!. These lay-
ers are the universal, ultimate source of chaos in nonlin
oscillations.

The two branches of the split separatrix intersect, in p
ticular, atx5p and a certainps(p)'p052v0 ~see~1.19!!.
It is at this intersection that the anglea is usually studied,
and this is also true of the present work. The intersection
separatrices corresponds to the valuef(p)50 in ~1.11!.
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Near the intersection point the deviation of the two branc
of the separatrix from the unperturbed separatrix is descr
by a simple approximate formula:

q6~y!5p6~x!2ps~x!'6W
v0

4
sin

ly

2
, ~1.14!

where y5x2p, and we have employed the fact th
dw/dp52/v0 and f5Vt5Vy/p05Vy/2v0. Moreover,
the variation ofw at the intersection point is half the tota
variation of w in ~1.11!, since the latter is symmetric abou
x5p ~see Ref. 2!. As a result, for the total separatrix spli
ting angle we have

a~l!'2
dq

dy
'

v0lW

4
52p f v0l3

e

v0
2

e2pl/2

5~2p!4f
e2pl/2

K
, ~1.15!

where we have used the standard-map parametere5v0
25K

andV52p. Note that this simple and important relationsh
holds only for the separatrix splitting angle atx5p.

The quantityL introduced in Refs. 10 and 11, which w
call the Lazutkin constant, is related to the correction fac
f :

L516p3f 51118.82770595 . . . . ~1.16!

According to our data, the most accurate value ofL is given
below, in ~4.14!. Note that the factorf !L more correctly
characterizes the order of the effect of the finite amplitude
a perturbing resonance.

The last term in~1.15!, with an exact value ofL or f ,
yields the asymptotic value~asl→`) of the separatrix split-
ting angle:a`5a(`). In Ref. 10 there is also an estimate
the correction toa` in the intermediate asymptotic regio
0,K!1:

ca~l!5
a~l!

a`
21*K1/8. ~1.17!

Our preliminary numerical models have shown, howev
that the correction decreases withK much faster:ca;K1/2.

We immediately note that this ‘‘correction’’ describe
the intermediate asymptotic region of separatrix splitting t
is of present interest, and hence the formation of a cha
layer. Solving this problem is the principal goal of our inve
tigation.

The best-developed theory of the standard map sep
trix splitting11 predicts not only a rapid decrease in this co
rection, but also makes it possible to calculate the first te
in the power-series expansion by numerically solving au
iary equations. We believe that to a large extent the suc
of this theory can be attributed to the felicitous change
variables (K,a)→(h,s), where

h~K !5 lnS 11
K

2
1AK1

K2

4 D'AK ~1.18!

is the positive characteristic index of the tangential~linear-
ized! map ~1.5! at the unstable fixed pointx5p50,
s
d

r

f
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-
s
-
ss
f

s~h!5n~h! sin a ~1.19!

is the simplectic invariant, andn(h) is a certain norm of the
tangent vectors.

Gelfreich et al.11 found an approximate solution to thi
problem that can also be written as a correction~similar to
~1.17!! to the invariant:

cs~h!5
s~h!

s`
215 (

m51

`

as~m!h2m, ~1.20!

wheres`54a` . Actually, Gelfreichet al.11 calculated only
the first four terms in the series~see Table II below!. The
main limitation of this solution is the implicit functions(a),
which can be found only numerically because of the ad
tional unknown functionn(h).

In the present paper we present the first results of di
measurements of the splitting angle of the separatrix of
standard map~1.5!, carried out over a broad range of th
parameterK: 1>K>0.0004 (1*h*0.02). Herea is 0.1
*a*102208, with a relative accuracy of better than one pa
in 10225 and an average accuracy of roughly one part
10230. In order to solve this problem we developed a spec
method for measuring and processing the results that u
fully portable software13 with arbitrary-precision arithmetic
In fact, the accuracy of the numerical model was as high
one part in roughly 102300.

In addition to measuring the anglea, which is directly
related to the nonadiabaticityW, we measured the invarian
s ~Eq. ~19!! it order to compared to the theoretical valu
The functionn(h), which is needed if we wish to calculates
but whose analytic expression is not known, was calcula
using a special program kindly furnished by V. G. Gelfreic
to whom we are sincerely grateful. All this has made it po
sible to compare our results with those of the analytic the
of Gelfreichet al.11 in detail, which was fully substantiated
and to detect new effects. We found a relatively simple e
pirical expression for theK dependence ofa in the interme-
diate asymptotic region, which proved to be surprising
broad:K&1022. We also studied the effect of noise—ang
measurement errors, in particular—which turned out to
much more significant and complex than expected.

2. MEASURING THE SEPARATRIX SPLITTING ANGLE

The main difficulty in measuring the separatrix splittin
angle a relates to its extremely small magnitude. For i
stance, when the perturbation parameterK in ~1.5! is 0.0004,
a amounts to roughly 4.23102208rad. As noted in the Intro-
duction, this problem could only be solved thanks to
special-purpose software package13 that implements all stan
dard FORTRAN capabilities in arbitrary-precision arit
metic, where one can specify the numberN c of significant
figures in the mantissa of the decimal representation of a
number.

We calculateda in the following manner. First and fore
most, for any given value of the perturbation parameterK,
the ordinateps(p) of the point of intersection of the separa
trix branches was found on the linex5p. The unperturbed
theoretical valuep(p)5p052AK ~Eq. ~1.9!! was taken as
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the initial ordinate, and the behavior of the phasex ~rotation
or oscillation! was established for the orbit starting
(p,p(p)). Depending on the result, the value ofp(p) was
successively increased or decreased by a certain step
until the counterpart phase behavior emerged. This mad
possible to initially localize the intersection point, with th
upper boundpr(p) corresponding to rotation of the phasex,
and the lower boundpl(p) to phase oscillations independe
of the direction of time. Recall that each split branch of t
separatrices remains a boundary between oscillations an
tations of the phase for its own particular direction of tim
~see the Introduction!. The step size in momentum was a
ways chosen larger than the expected width of the cha
layer ('4a), so that the width of this initial interval
dp(p)5pr(p)2pl(p), turned out to be much greater tha
the required valuedps(p), which, in contrast, was alway
chosen to be much less than the width of the layer~see be-
low!. For example, for our smallest value of the perturbat
parameter,K50.0004, the width of the chaotic layer wa
approximately 23102207, while the multiple-precision leve
N c and the precision required to yielddps(p)5102N a in
locating the ordinateps(p) were set atN c5300 ~corre-
sponding to a precision of about one part in roughly 102300)
andN a5280, respectively.

After establishing the initial interval@pl(p),pr(p)#, we
used the bisection method to get to the pointdp(p)
<dps(p), and then calculated the desired ordinate of
intersection point, takingps(p)5@pr(p)1pl(p)#/2. We
note in passing that this stage of the calculations accou
for most of the computing time~see below!: as the interval
shrank, the orbit moved closer to the unstable fixed po
and the period of motion~the number of iterations of the
map! increased substantially.

After the central point of intersection of the separat
branches was established, it was adopted as the origin
new coordinate system (y5x2p, q5p2ps(p)), in which
all subsequent steps in calculating the anglea were taken.
For two values of the phase,y56dy, udyu!1, to the right
and left of the new origin (y5q50) we found~to the same
accuracydps(p)5102N a) the boundaries between oscilla
tions and rotations~with time increasing toward the future!.
This made it possible to approximate a section of the stra
branch of the separatrix by a second-degree polynomiaq
5Q2(y) and, by determining its coefficients, to find th
angle of the slope of the separatrix. Repeating the ab
procedure with time progressing into the past, we were a
to find the slope of the reverse branch of the separatrix
take the difference of the two, yielding the desired inters
tion anglea2.

Special measures were taken to ensure the feasibilit
this approach.

For the full range of the parameterK we strove to obtain
a relative measurement accuracy ina no worse than one par
in 10225. To this end we were forced to choose values for
the multiple-precision parameters mentioned above:
number of significant figuresN c , the roundoff error
dps(p)5102N a incurred in locating the ordinateps(p), and
the phase offsetdy needed to set up the approximating po
nomials, with proper selection of the third parameter be
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the most critical. According to~1.14!, the phase separatio
Dy between the central and neighboring intersection po
is Dy'2p/l5AK, and it is convenient to choose as a pha
offset some fraction of this distance,

dy5hAK , ~2.1!

with the value ofh for all numerical alternative usually rang
ing from 10216 to 10212.

Above all, it was necessary to understand whether
desired relative accuracy of one part in 10225 in the calcu-
lated value ofa2 had been achieved~clearly, this accuracy
must in no event be identified with the number of significa
digits N c). To this end we repeated the above calculatio
for one more pair of double phase values,y562dy, for
both senses of time. Using the results for the two pairs
points, we were able to construct fourth-degree approxim
ing polynomialsq5Q4(y) and obtain an improved value o
a4.

Generally, some of theN a of the leading significant
digits ~with allowance for round-off! in the expressions for
a2 anda4 are the same, but then these values diverge.
always achievedN a>25, which yielded a relative angle
measurement accuracy no worse than one part in 10225. Cal-
culations with higher-degree polynomials and higher pre
sion only supported this criterion. In actual fact, the relat
accuracy turned out to be higher, and on the aver
amounted to roughly one part in 10230 ~see Sec. 3!.

Note that there is no need to calculate the points of
separatrix branches time proceeding into the past. The s
dard map~1.5! is symmetric, and this symmetry makes
possible to reconcile any point (xf ,pf) on the forward
branch of the separatrix with the corresponding po
(xb ,pb) on the backward branch via the simp
relationship11

xb52p2xf , pb5pf1K sinxf . ~2.2!

Thus, the approximating polynomials for both branches
constructed simultaneously, so that there is no need for
ditional computer time. However, to verify our results we d
check calculations of some of the values of the perturba
parameter with time progressing into the past. These ca
lations validated the numerical scheme describe above.

The major difficulty is to find the coefficients of th
polynomials that approximate the segments of the sep
trices that pass through the intersection pointy5q50:

q5a1y1a2y21a3y31a4y4. ~2.3!

Using four reference points, we obtain a set of linear eq
tions represented in matrix form as

S dy ~dy!2 ~dy!3 ~dy!4

2dy ~dy!2 2~dy!3 ~dy!4

2dy 4~dy!2 8~dy!3 16~dy!4

22dy 4~dy!2 28~dy!3 216~dy!4

D . ~2.4!

The elements of this matrix differ by many orders of mag
tude ~in view of the smallness of the phase offset,dy, ac-
cording to ~2.1!!, and its determinant is close to comput
zero, which makes it impossible to invert the matrix.



le

al
es

e
o-

ic

ld
n

r o

x

t
te
-

o
te

a
ica

ot
an

-

l
s
x-

-
itial
and

one
n

ly
ical
the
the

. 2,

r in-

nts

se
. 1
e

ntire
de

ire
cy

w
te

s in

827JETP 87 (4), October 1998 V. V. Vecheslavov and B. V. Chirikov
The problem was solved through a change of variab
of the form (y,q)→(Y5Sy, Q5Sq). In terms of the new
variables the polynomial was

Q5a1Y1b2Y21b3Y31b4Y4. ~2.5!

We see that the only coefficient of interest to us isa1

5tan a4, which remains constant for any value of the sc
ing factorS. This is obvious, since our change of variabl
amounts only to magnifying the entire pictureS-fold. We
usually setS51/dy, which balanced the orders of magnitud
of the matrix elements and resolved all difficulties with pr
cessing such a matrix.

We used the above scheme to finda(K) for sixty values
of the perturbation parameterK in the range 1>K>0.0004.
The angle was represented to 35 significant digits, wh
provided more than the minimum~one part in 10225; see
above! and average~one part in roughly 10230; see Sec. 3!
relative accuracy needed to determine the angle.

The minimum perturbation parameter that we cou
work with, K50.0004, was limited by the time per ru
~about 24 hours!. This time rapidly increases asK gets
smaller primarily because of an increase in the numbe
necessary iterations of the map~Eqs. 1.5!. The latter is the
product of the period of motion near the separatri
(;u ln dps(p)u/AK;N a /AK ; see Ref. 2! and the number of
successive approximations at the intersection poin
(;u ln dps(p)u;N a). Moreover, the time it takes to calcula
~1.5! is proportional toN c ~in the range of moderate accu
racy N c&300 that we are interested in!. As a result, we
estimate the total processing timeT with this approach to be

T'T0

N cN a
2

AK
, ~2.6!

where the empirical value of the parameterT0 is roughly 2
31028 h.

3. PROCESSING THE MEASUREMENTS

The initial empirical data used our analysis ofa(K) de-
pendence consisted of 60 measured values of the unkn
function ~Sec. 2!. In the first stage of processing, to calcula
the correctionsca we used the most accurate value ofL

~1.16!.10 In order to compare our result with the theoretic
result of Ref. 11, we processed in a similar way the empir
dependence of the correctioncs to the invariants calculated
by ~1.19!.

In accordance with the theory developed in Ref. 11, b
corrections were sought in the form of a finite series exp
sion in even powers ofh.

c̃~h!5a~0!1 (
m51

M

a~m!h2m, ~3.1!

with least-squares interpolation~see, e.g., Ref. 14!. Although
formally the coefficienta(0) is zero~see~1.17! and~1.20!!,
incorporating it into~3.1! makes possible a considerable im
provement in the parameterL in comparison to its known
value ~1.16!.
s

-

h

f

wn

l
l

h
-

The main difficulty in the interpolation of the empirica
data via the series~3.1! lies in the fact that the various term
of this series differ by many orders of magnitude. For e
ample, in the typical case whereh;0.05 andM510, the
ratio (a10/a1)h18 is of order 10227. Hence, despite the spe
cial methods used in processing the data, even in the in
stage the processing was done with quadruple precision,
in the final stages the required precision amounted to
part in roughly 102100. But even this was not enough. As i
the interpolation of the separatrix branches~Sec. 2!, the ma-
trix of the system of linear equations that was so high
inhomogeneous usually became singular during numer
processing. The solution to this problem was found in
same way as in Sec. 2, i.e., by scaling the variables of
problem: (h,c̃)→(H5Sh, C5Sc̃), with the scaling factorS
much larger than unity. In contrast to the problem of Sec
the coefficients of the polynomial~3.1! are not invariants
under such a transformation, and must be restored afte
terpolation in the new variables: A(m)→a(m)
5A(m)S2m21.

The number of terms in the series~3.1!, M;10, is
bounded above by errors in the calculation of the coefficie
a(m) primarily because of ‘‘noise’’ resulting from the finite
precision of the empirical data ona(h). If M is increased
beyond 10, we obtain no new coefficients—we even lo
some of the old ones. This is especially evident in Fig
from the sharp break ina(m) dependence. We chose th
optimum valueM510 by trial and error~see also Fig. 3
below!.

The accuracy of the empirical formula~3.1! can be char-
acterized by the root-mean-square~rms! error

Dc5^@c~h!2 c̃~h!#2&1/2, ~3.2!

where the angle brackets denote averaging over the e
interpolation interval. The latter does not necessarily inclu
all 60 values ofc(h). Furthermore, attempts to use the ent
empirical interval have revealed the extremely low accura
of such ‘‘global’’ interpolation:Dc(h)*1026 ~cf. Fig. 2!.
This is quite natural, since the theoretical power-la
dependence11 ~3.1! characterizes only the intermedia
asymptotic region. For this reason, the deviation

FIG. 1. An example of the dependence of the expansion coefficient
~3.1!, found by interpolation of the empirical data, on the total numberM of
terms in the series for the angle~open triangles! and the invariant~open
circles!.
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dc~h!5c~h!2 c̃~h! ~3.3!

contains the most valuable and interesting information ab
additional nonadiabatic effects not in the theory. Thus, in
given set of empirical data, it was also necessary to cho
an interpolation range (h1–h2), whereh150.02 is the mini-
mum value in the original data. The basic criteria here w
the smallest value ofDc ~see Eq.~3.2!! and the precision of
the derived coefficients of the series~3.1! ~see Tables I and
II !.

The quality of interpolation decreases not only ash2

increases~as noted earlier!, but also as it decreases, becau
of the small contribution of high powers ofh for small values
of h, and also due to the decreasing number of pointsNp

participating in the interpolation. The interpolation is be
when h2'0.063 (Np519) andDca'2310231, and when
h2'0.12 (Np536) andDcs'2310231, but other values of
Np close to those just mentioned were also used~see Sec. 4!.
Note that the eventual interpolation accuracy yields a ro
estimate of the average accuracy of the measured value
a(K).

The basic results were obtained through standard in
polation by minimizing the variance (Dc)2 ~see ~3.2! and
~3.1!!. To control the procedure, we used forward interpo
tion, in which for the zeroth-order unknown coefficienta(0)

FIG. 2. Interpolation of the empirical data on the separatrix splitting an
~open triangles! and the invariant~open circles!; dc(h) is the deviation from
the intermediate asymptotic behavior specified by~3.1!. The oblique straight
lines represent the first term of the remainder~4.7!, and the curves represen
the exponential deviation~4.6!. The lines at the top represent the total co
rectionsc(h) for the angle and invariant, respectively.
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in expressions of type~3.1! we took the total value of the
Lazutkin constant. Relative interpolation was also carr
out, and with it we minimized the relative variance

~Dc!2

c2
5K F12

c̃~h!

c~h!
G2L . ~3.4!

The results of all three interpolation schemes are in go
agreement with one another.

The results of processing the data are depicted in Fig
and listed in Tables I and II.

The accuracy of the coefficients was established in t
different ways. First, we calculated the standard rms inter
lation error14 ~columns headed̂d& in Tables I and II!. This
quantity characterizes the expected error in calculations
the coefficients for a random rms error in the empirical da
Actually, however, the total error is almost never purely ra
dom but contains a systematic error, which leads to a s
~additional variation! in the values of the coefficients. This i
clear in Fig. 2, where the accuracy of interpolation is mu
greater than the remainder in the series~1.20!, which is not
included in the interpolation of~3.1!. This is why another
method was used. The values of the coefficients were de
mined by averaging over several interpolations with vario
amounts of initial data:Np514220 for the angle andNp

533238 for the invariant. These values are listed in Tab
I and II ~columns headedaa(m) and bs(m), respectively!.
The relatively weak dependence of the averages onNp

served as the main criterion in selecting these two grou
For the error we took the rms errors of the coefficients in
group~columns headedD in the tables!. We see that the two
estimates are of the same order, although the error in a g
is the greatest, and hence dominant, in all cases excep
one withb(10). The difference between the two rms erro
which is especially appreciable for the angle, definitely su
gests that there is a systematic error. The values of the
error in a group determine the number of valid significa
figures in the coefficients~in our opinion!. In the columns
headedaa(m) andbs(m), we have left two or three ‘‘super
fluous’’ digits for comparison with future more accurate em
pirical and/or theoretical values.

e

l

TABLE I. Coefficientsaa(m) in the series~3.1! for the angle.

m aa(m) D ^d&

1 20.23337 64288 64381 61062 76396 19 0.239310224 0.118310224

2 20.29081 81551 24688 86036 776 0.101310220 0.453310221

3 20.01482 49555 34894 05088 4 0.240310217 0.973310218

4 0.04318 21901 48643 630 0.357310214 0.130310214

5 20.04151 92394 77208 0.348310211 0.115310211

5 20.13137 33101 9 0.227310208 0.673310209

7 20.31916 9504 0.983310206 0.261310206

8 21.06063 5 0.273310203 0.647310204

9 24.3613 0.439310201 0.923310202

10 224.02 0.312310101 0.579310100

Note: Here and in Table II,D is the rms error in the group, and^d& is the average rms error in an individua
interpolation.
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TABLE II. Coefficientsb(m) in the series~4.1! for the invariant.

m bs(m) D ^d&

1 18.59891 19582 09297 35881 71520 0.101310222 0.343310223

2 24.34114 12705 68162 53678 60 0.369310219 0.125310219

3 24.18326 37590 91894 112 0.971310216 0.345310216

4 24.93413 95907 30929 0.186310212 0.735310213

5 210.64548 64427 41 0.263310209 0.121310209

6 235.86008 1765 0.276310206 0.151310206

7 2177.60356 0.212310203 0.139310203

8 21239.507 0.114310100 0.894310201

9 211766.0 0.386310102 0.362310102

10 2163000 0.627310104 0.693310104

Note: The underlined figures are the values of the coefficients obtained in Ref. 11.
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4. DISCUSSION

We start by examining the behavior of the expans
coefficients in~3.1! on the basis of the data in Tables I an
II. We use the representation of the coefficient in the s
plest form~3.1! except when we compare our results direc
with those of Ref. 11, where the coefficientsb(m) are rep-
resented by the Taylor series~cf. ~1.20!!

s

s`
L5L1 (

m51

`
b~m!

m!
h2m, b~m!5a~m!m! L.

~4.1!

First and foremost, we were able to find a relative
simple extrapolation ofa(m) outside the range of direc
measurements of the separatrix splitting angle. The resul
this extrapolation are depicted in Fig. 3 and can be descr
by the approximate expressions

aa~m!'Aa

egm

mp
~4.2a!

for the angle, and

as~m!'
As

mp
~4.2b!

FIG. 3. Variation of the coefficients in the intermediate asymptotic reg
specified by~3.1! for the angleaa(m) ~filled triangles!, the invariant~filled
triangles!, the invariantas/(m) ~filled triangles!, and theiraa/as ratio ~as-
terisks!. The solid curves represent the empirical formulas~4.2a! and~4.2b!.
The open triangles and circles represent the errors in the coefficients.
n

-

of
ed

for the invariant.
These empirical relationships were built according to

following reasoning. From Fig. 2 and Tables I and II we s
that the positive correctioncs(h).0 is much smaller in ab-
solute value thanca(h),0 over the entire range ofh studied
here, and the two corrections have opposite signs. This
consequence of the behavior of the normn(h)5n`(1
1cn(h)) (n`54 and cn(h).0) in ~1.19!. This yields the
following relationship between the coefficients:

as~m!5an~m!1 (
k51

m

aa~k!an~m2k!. ~4.3!

All the norm coefficientsan(m) are positive, while almost
all aa(m) and as(m) are negative~with the exception of
aa(4) andas(1); seeTables I and II!. On the other hand
Fig. 3 shows that the coefficients for the angle and invari
behave quite differently. The latter decrease relatively slow
with increasingm, approximately as power-law functions
while the former increase very rapidly, almost exponentia
as the norm coefficients do. This is corroborated by forw
interpolation and directly follows from the fact that the nor
balances the large correction for the angles almost perfe
cs!ucau.

This, then, is the key to building the empirical relatio
~4.2a! and ~4.2b!. Indeed, such balance does not occur fo
purely exponential dependence ofaa(m)'an(m). One can
easily verify, however, that this becomes possible for
combined dependence~4.2a!, provided thatp.1 andm@1.
Figure 3 also depicts the dependence ofaa /as on m, which
is perfectly fit by an exponential~see~4.4! below!. This is all
the more remarkable since the last two or even three co
cients of the invariant clearly deviate from the simple pow
law ~4.2b!. The same is true of the combined dependen
~4.2a! for the angle.

The nature of these anomalies remains an open ques
and requires further study. Note that anomalies appear o
in the highest-order coefficients, which cannot be increa
in number without a catastrophic increase in the errors~Fig.
1!. Furthermore, the ratio of the coefficients of the angle a
invariant in the intermediate asymptotic region contains
obvious anomalies. Of course, the exact dependence o
coefficients, provided that it can be expressed explici
hardly has the simple form of~4.2a! and ~4.2b! even when

n
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m@1. This is clear, if only from the fact that the accuracy
the empirical relations can in no way be compared to
precision of the coefficients themselves~see Tables I and II
and Eqs.~4.4! below!. Nevertheless, even the approxima
formulas~4.2a! and~4.2b! help in interpreting the characte
istic features of the intermediate asymptotic region and
further studies of this problem. In this paper, however,
have limited ourselves to this approximation.

The parameters of the empirical relations can be
tained by interpolating data on the ratio of the coefficie
with m57210 on a semilogarithmic scale, and data on
invariant withm5426 on a log–log scale. The results are
follows:

g51.35860.0059, p53.5160.17,
~4.4!

Aa520.0174~160.28!, As520.0233~160.27!,

where the accuracy is given in terms of absolute and rela
rms errors. Note that interpolation with just three coefficie
(m52,3,4), obtained in Ref. 11, yields similar values of t
parameters in~4.2b!:

As520.0216~160.45!, p53.3860.41. ~4.5!

The accuracy of the empirical relations~4.2a! and~4.2b!
can also be characterized by the relative rms error of
extrapolation itself (Da/uau for the values ofm specified
above!, which amounts to60.029 for the angle and60.028
for the invariant. Note that the relative smallness of the r
errors themselves, compared to the rms errors in the co
cients~4.4!, can be explained in terms of the strong corre
tion of the latter. In both cases the anomalies of the coe
cients are much larger than the reduced errors in the va
of ~4.2a! and ~4.2b! and the two errors of the coefficien
themselves in Tables I and II~see Fig. 3!.

Using ~4.2a! and ~4.2b!, we can set up an approxima
model of the intermediate asymptotic behavior, taking for
initial coefficients, which clearly do not obey~4.2a! and
~4.2b!, their exact values from Tables I and II. Prelimina
experiments along these lines show that the model ind
reproduces the shift of all~and especially the last! coeffi-
cients. However, this shift lies within the limits of error~see
Tables I and II and Fig. 3! and does not explain the anom
lies discussed earlier. Furthermore, even turning on a
tional noise that is uniform inh and simulates the errors i
angle measurements does not help.

The approximate relationships~4.2a! and ~4.2b! also
make it possible to perceive global behavior in the interm
diate asymptotic region. Above all, the series~4.2b! for the
invariant is convergent over the entire rangeh<1 up to glo-
bal chaos limit, although it does not describe the actual
havior of the invariant forh*0.14. Here the presence of a
exponential is clear~see Fig. 2!:

udc~h!u'63e2p2/h. ~4.6!

This function exceeds the remainder~4.7! and describes the
perturbation of the separatrix by a distant resonance wi
frequency 2V54p ~see~1.6!!. The simple theory in Ref. 2
predicts a numerical factor of 8, i.e., smaller by a factor
almost 10. Such a discrepancy can easily be explained
e
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another~unknown! value of the factorf in ~1.12! and a sys-
tem of resonances of higher-order approximations, which
much more complicated.15

The situation for the separatrix splitting angle is mu
more interesting, since the series~4.2a! diverges whenh
.hcr'exp(2g/2)'0.507, i.e., within the range under inve
tigation ~15 leftmost points in Fig. 2!. At the same time, no
singularities or anomalies in the behavior of the functi
ca(h) or its deviationdca(h) from interpolation has been
observed in this range. Furthermore, the deviation can
described perfectly well by the remainder term in~4.7!,
which, incidentally, is represented in Fig. 2 only by its fir
term. This clearly shows that there is a significant change
the behavior of both the angle and the invariant at largeh
;1 as compared with the intermediate asymptotic region

The approximate relations~4.2a! and~4.2b! make it pos-
sible to more accurately~than in Ref. 11! estimate the re-
mainder in the series~1.20!, which is not included in the
interpolation~3.1!:

R~h,M !5 (
m5M11

`

a~m!h2m'a~M11!h2M12. ~4.7!

Figure 2 shows that even the first term inR provides a fairly
good description of the behavior of the angle deviation o
the entire range under investigation. The same can be sa
the exponential function~4.6! for the invariant. However, an
attempt to add both expressions to the polynomial~3.1! cata-
strophically reduces the interpolation accuracy:Dc;1026.
This again demonstrates that the structure of the reg
whereh;1 is extremely complicated. In view of the impo
tance of this region in many applications, this problem d
serves further study.

Finally, we focus on the most precise and accurate w
of finding the Lazutkin constantL. We introduce the correc
tion

dL i5~L i2L0!31023, ~4.8!

wherei labels the various ways of obtainingL, and

L051118.82770 59409 00778 41514 639 ~4.9!

is the zeroth-order value, which we already obtained in p
liminary numerical modeling~cf. ~1.16!!. Formally, the high-
est accuracy is achieved in individual interpolation withNp

514 andM510:

dLa50.32356060.000017,
~4.10!

dLs50.32357260.000017.

Since the intermediate asymptotic series~4.2! differ substan-
tially in these two cases, such good agreement is a ser
argument favoring the reality of this accuracy.

In view of the importance of this constant, we also us
other methods to determine it. First we isolated a group
variants of interpolation schemes with the same valueM
510 but different valuesNp512220 andNp513238 for
the angle and invariant, respectively~35 cases in all!. The
group was chosen to be as broad as possible, the only l
tation being thatdL i was supposed to decrease rapidly a
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monotonically for reasons discussed earlier. For the ave
value and the rms error in this group we found

^dL i&3550.32336860.0017. ~4.11!

We see that the error has increased significantly. Howeve
histogram of the distribution ofdL i in the group~Fig. 4!
shows that the main peak is much narrower. If we discard
wings of the distribution~two cases to the right and six to th
left!, we obtain

^dL i&2750.32365460.00029. ~4.12!

Finally, leaving only the nine cases in the rightmost cell
the histogram, we find that

^dL i&950.32366060.000021. ~4.13!

Weighing the pros and cons, we conclude that the m
accurate value of the Lazutkin constant and the error are

L51118.82770 59409 00778 41514 63932 356663310227.
~4.14!

We have underline the value ofL previously obtained with
the approximate theory of Lazutkinet al.10

The results of the present work corroborate the theory
Gelfreichet al.11 both qualitatively~the form of the interme-
diate asymptotic series~3.1!! and quantitatively~Table II!.
Furthermore, we have found the intermediate asymptotic
gion directly for the separatrix splitting angle, which is im

FIG. 4. Bar diagram of the correction~4.8! of the value of the Lazutkin
parameter~4.9!: n is the number of different values of the correction in a b
with a width of 1024.
ge
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portant in and of itself, and which has made it possible, wh
combined with the data on the invariant, to obtain appro
mate empirical relations~4.2! in this region that are not lim-
ited by the number of directly derived coefficients.
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