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Abstract

The controversial concept ofquantum chaos– the dynamical chaos in bounded mesoscopic quantum systems – is presented
as the most important and universal instance of a new generic dynamical phenomenon:pseudochaos. The latter characterizes
the irregular behaviour of dynamical systems withdiscreteenergy and/or frequency spectrum, which include classical systems
with discrete phase space. The question of randomness is addressed in terms of the algorithmic theory of dynamical systems,
using the Arnold cat map for illustration. The relationship between the algorithmic theory and ergodic theory is discussed.
©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction: the quantum–classical correspondence

A recent publication [1] has provided the opportunity to reconsider the very controversial problem of the so-
calledquantum chaos, i.e., the statistical properties of bounded mesoscopic quantum systems. In spite of intensive
studies into this problem (see, e.g., the conference proceedings [2–10] and also [67–71]), the physical meaning
and interpretation of quantum chaos remain vague, to the extent that there is as yet no agreement even on the most
basic question: does any chaos at all exist in quantum mechanics? We should clarify from the outset that the trivial
affirmative answer to this question (quantum mechanics is fundamentally random) is irrelevant to our discussion.
For, even though the random element in quantum mechanics (‘quantum jumps’) is unavoidable, it can be singled
out and separated from the ‘proper’ quantum processes. The intrinsic randomness in quantum mechanics is related
only to a very specific event – thequantum measurement– which is, in a sense, foreign to the quantum system itself
(see [11–14] for a discussion). This allows us to divide the problem of quantum dynamics into two qualitatively
different parts
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• The proper quantum dynamics as described by the time-evolution of the wave functionψ , which obeys some
purely dynamical (deterministic) equation, for example, the Schrödinger equation. The discussion below will be
restricted to this aspect only.

• The quantum measurement, which includes the registration of the result, whence the collapse of theψ-function.
Because no dynamical description of the quantum measurement is as yet available, this issue remains vague. In
particular, there is no agreement on the question of whether this is a real physical problem or an
ill-posed one.
Recent advances in the studies of quantum chaos have mostly relied on the aforementioned device of separating out

the dynamical part of quantum mechanics. Such a philosophy is accepted – at least implicitly – by most researchers
in this field.

While the general aspects of quantum dynamics were extensively studied since the early days of quantum me-
chanics, the problem of quantum chaos arose only much later, after the simpler phenomenon of classical chaos was
discovered and assimilated [11,12]. Classical chaos has been central to the development of the theory of dynamical
systems, particularly of ergodic theory [15–17].

As a general mathematical theory, ergodic theory need not be restricted to classical mechanics only, and indeed
its application to quantum dynamics has led to surprising results. For instance, it was discovered at an early stage
[18–20], and subsequently confirmed [11,12,21], that quantum mechanics does not typically allow ‘true’ (classical-
like) chaos. This is because in quantum mechanics the energy and frequency spectra of any bounded system are
discrete, so that the motion is almost periodic. Hence, according to ergodic theory, such quantum dynamics belongs
to the limiting case of regular motion, quite the opposite of dynamical chaos.

The ultimate origin of quantum almost-periodicity lies in the discreteness of the phase space itself (or, more
formally, in the noncommutative geometry of the latter), which is the basis of quantum physics and which is directly
related to the uncertainty principle. At the same time, another fundamental principle – the correspondence principle
– requires the transition to classical mechanics in all cases, and in particular when the classical system is chaotic.
This dichotomy lies at the heart of the present controversy on quantum chaos.

An insight into this problem [11,12,14,22,23] was gained from the simple observation (well-known in principle,
though perhaps not in practice), that the sharp border between discrete and continuous spectrum is physically
meaningful only in the limit|t | → ∞, a regime routinely considered in ergodic theory. The study of thefinite
time statistical properties of dynamical systems – quantal as well as classical – thus becomes a new strategic
aim; accordingly, the existing ergodic theory will require some modifications, so as to incorporate finite time
explicitly.

Over a finite time, a discrete spectrum is dynamically equivalent to a continuous one, thereby providing much
stronger statistical properties of motion than one would expect from asymptotic considerations. In some cases,
motions with discrete spectrum may exhibit all the statistical properties of classical chaos, albeit only on some finite
time scales.

The most important time scale in quantum chaos is therelaxation timetR, which refers to one of the main
properties of chaos, the statistical relaxation to some steady state. The relaxation time is given by the following
general estimate [11,12,22,23] (see also [70])

tR ∼ Q

ω
∼ ρ0 ≤ ρH. (1)

The quantityQ stands for some appropriate quantum parameter, which is large in the semiclassical region, e.g.,
the total number of states for a bounded quantum motion isQ ∼ 0/(2π)F , where0 is the volume of the phase
space andF is the number of degrees of freedom. The parameterω is the characteristic frequency of the motion,
while the meaning ofρ0 andρH will be explained below. (In what follows, we always assume that Planck’s constant
is equal to one.)
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The physical meaning of the relaxation timetR originates directly from the uncertainty principle(1t ·1E ∼ 1),
as implemented in Eq. (1). One sees thattR is bounded by theHeisenberg timeρH, which is the full average density
of energy levels. Fort . tR, the discrete spectrum is not resolved, and the statistical relaxation follows the classical
(limiting) behaviour. This is precisely the regime (which is unaccounted for in ergodic theory) where quantum
pseudochaos manifests itself. A more accurate estimate oftR can be obtained by considering the average densityρ0

restricted to the so-calledoperative eigenstates, i.e., those which are actually present in a particular quantum state
ψ , and which control its dynamics.

It is a mathematical expedient to consider in place of finite time relations (of true physical significance), the
following conditional limit

t,Q → ∞, τR = t

tR(Q)
= const, (2)

whereτR is a new dimensionless time. Thedouble limit Eq. (2) (unlike the single limitQ → ∞) is not the
limit of classical mechanics which, in this representation, holds true forτR . 1 and with respect to the statistical
relaxation only. ForτR & 1, the behaviour remains essentially quantum even in the limitQ → ∞, and it is
calledmesoscopic. Specifically, the quantum steady state is generally quite different from the classical statistical
equilibrium, in that the former may belocalized(under certain conditions), i.e.,nonergodicin spite of classical
ergodicity [11,12,22,23,67–70].

Another important difference is found in thefluctuations, which are also a characteristic property of chaotic
behaviour. By comparison with classical mechanics, the quantumψ(t) plays, in this respect, an intermediate role
between the classical trajectory with large relative fluctuations, and the coarse-grained classical phase space density
with no fluctuations at all. Unlike either, the fluctuations ofψ(t) (or rather, those of averages in a quantum state
ψ(t)) are typically of the orderd−1/2

H , wheredH . Q – theHilbert dimensionof the stateψ – is the number of
operative eigenstates associated with the quantum stateψ . In other words, the chaotic wave function represents
statistically afinite ensembleof approximatelydH statistically independent systems, even though formallyψ(t)

describes asinglesystem in a pure state.
The relaxation time scaletR should not be confused with thePoincaré recurrence timetP, which is typically

much longer, and which sharply increases when the size of the recurrence domain decreases. The time scaletP

characterizes large fluctuations for both the classical trajectory and the quantumψ (but not for the phase density), of
which recurrence is a particular case. By contrast,tR characterizes the average relaxation process. Rare recurrences
(the larger the quantum parameterQ, the rarer the recurrences), make quantum relaxation similar to the classical
non-recurrent one.

Statistical properties which are stronger than relaxation and fluctuations are related to the local exponential
instability of motion. The importance of these stronger properties for statistical mechanics is not completely clear.
Nevertheless, in accordance with the correspondence principle, those properties are present in quantum chaos as
well, but on a much shorter random time scaletr

3tr ∼ lnQ ∼ ln(ωtR) � tR. (3)

Here,3 is the classical Lyapunov exponent characterizing the instability rate. This random time scale was
discovered and partly explained in [18] (see also [11,12,19,22,23,71]). According to the well-known Ehrenfest
theorem, the motion of a narrow wave packet follows an ensemble of classical trajectories as long as the packet
remains narrow, and hence it is as random as in the classical limit. Since the instability range is limited both from
below (the minimal size of the quantum packet – the coherent state – is of order unity, due to the uncertainty
principle) as well as from above (for bounded motions), the time intervaltr of quantum instability is logarithmically
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short, in agreement with the estimate (3). Nonetheless, it grows indefinitely asQ → ∞, and therefore a temporary,
finite time quantum pseudochaos converges slowly to the classical dynamical chaos.

Again, we may consider the conditional limit associated to the random time scaletr,

t,Q → ∞, τr = t

tr(Q)
= const, (4)

which gives rise to the new scaled timeτr . Note that the latter differs from the scaled timeτR of Eq. (2).
Specifically, if we fix the timet , then in the limitQ → ∞, we obtain the transition to the classical instability

in accordance with the correspondence principle, while forQ fixed, andt → ∞, we have the proper quantum
time-evolution. For example, the quantum Lyapunov exponent3q is given by [11,12,24]

3q(τr ) →
{
3 if τr � 1,
0 if τr � 1.

In the semiclassical region(Q � 1), the time scaletr is much shorter than the relaxation timetR. This leads to
the surprising phenomenon that quantum diffusion and relaxation aredynamically stable, contrary to the classical
behaviour. Therefore, the instability of motion is in general not important during statistical relaxation: what is crucial
for the statistical properties of quantum motion, is the correlation decay, that takes place during the shortinitial
random time scaletr,

The dynamical stability of quantum diffusion has been demonstrated in striking numerical experiments involving
time-reversal [25–27]. In a classical chaotic system, the initial state cannot be recovered by reversing the time-
evolution of a sufficiently long orbit, because the unavoidable numerical errors (not random!), are amplified by
the local instability. By contrast, under time-reversal, a quantum state will return to the initial state to a very high
accuracy, after which the wave packet will begin to spread again.

2. Chaos and pseudochaos

A much studied model for strongly chaotic motions is the so-calledArnold cat map, a linear dynamical system
on the two-dimensional torus [15–17,28–35]

qt+1 ≡ 2qt + pt (mod 1),

pt+1 ≡ qt + pt (mod 1).
(5)

The system is exponentially unstable, with positive Lyapunov exponent3 = ln(λ), whereλ = (3 + √
5)/2 is the

largest eigenvalue of the mapping. The spectrum of the motion is continuous, implying the decay of correlations.
The canonical variablesq andp are real numbers. However, the periodic orbits of the cat map correspond to points

with rational coordinatesq = x/N, p = y/N , withN, x, y integers, andx andy reduced moduloN . Clearing the
denominatorN , one arrives at thediscretizedArnold cat map

xt+1 ≡ 2xt + yt (modN),

yt+1 ≡ xt + yt (modN).
(6)

The phase space is now aN × N lattice on the torus. The dynamical and statistical properties of the motion are
completely changed, and new mathematical tools – mainly from algebraic and probabilistic number theory – are
required for their study [31,33,36].
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The discrete cat map may describe three rather different dynamical systems
• A quantumsystem, where the classical trajectories lose physical meaning, but are nonetheless used for the

calculation of the time-evolution of a quantum state. Loosely speaking, the latter corresponds to an ensemble of
discrete orbits.

• A restriction of theclassicalsystem (5) to a discrete subset of the continuous phase space. Its orbits are periodic
orbits of the continuous system (5).

• A discrete dynamical system in its own right, important for computational theories, where arithmetical phenomena
– both deterministic and probabilistic – gain significance at the expenses of metric and topological considerations.
The motion’s spectrum for the mapping (6) is not only discrete, but equidistant, which implies periodic recurrences

for all trajectories of the quantum state [28,32]. Systems of this type are regular and can possess at most the weakest
statistical property, ergodicity. For this reason, there is growing consensus that the quantum manifestations of chaos
must differ from the classical ones. This has led many to believe that ‘true’ chaos can only exist in classical mechanics
(the authors of [1], however, take a different view – see Section 6).

The aforementioned position is unsatisfactory, in that physics is quantal, and hence the only true physical chaos is
quantum chaos. Since the latter is certainly rather different from the former, quantum chaos was termedpseudochaos
(see, e.g., [13]) to emphasize the difference.

Besides quantum mechanics, there are examples of pseudochaos abound in digital computers, which behave like
discrete classical dynamical systems (see, e.g., [13,14]). Their dynamical properties are extremely important, in view
of the enormous range of applications. In particular, many studies of classical chaos have relied crucially on computer
experiments, where in fact pseudochaos is all, that one normally observes (see Section 3). Therefore, it seems to us
that the debate over quantum chaos should be broadened to include considerations about pseudochaos in discrete
systems, with particular reference to computer representations of chaotic systems with continuous cooordinates.

The computer is, in a sense, an ‘overquantized’ system in that any quantity is discrete, while in quantum mechanics
only the product of two conjugated variables has that property. The large ‘quantum’ parameterQ is given here, by
the largest representable integerN , whereas the short time scaletr ∼ lnN (Eq. (3)) is the number of computer digits
[22,23]. Owing to discreteness, any dynamical trajectory in a computer becomes eventually periodic, a well-known
phenomenon in the theory and design of pseudorandom number generators, from which the term pseudochaos was
borrowed [13]. (Precautions are necessary to exclude such computer artifacts in numerical experiments, see, e.g.,
[37–41].)

The question of randomness in discrete systems may be approached from an algorithmic angle, whereby, one
attempts to quantify the computational effort necessary to predict the value of dynamical observables, for instance,
the points of an orbit. The amount of computations is typically measured in terms of either the size or the running
time of an ‘efficient’ program which is capable of performing the required calculations. One immediately identifies
two extreme situations. On one hand, the smallest of programs may still be as large as the data it generates, which
would render such computation as ineffective as storing a result known beforehand and printing it. On the other
hand, the fastest of programs may still take as long as the system being simulated, in which case the computation
would be as ineffective as observing the physical system – itself an analog computer – evolve. In either case, we
have a terminal obstruction to predictability.

The wordrandomis routinely linked to incompressibility of information: a sequence is termed random when the
shortest program that generates it has (essentially) the same size as the sequence itself. Developing this idea is the
main concern of algorithmic complexity theory, whose application to dynamical systems has legitimated the use of
the locution deterministic randomness in continuous systems [42–45] (for a clear informal presentation, see [32]).
Unlike time-asymptotic ergodic theory, the algorithmic theory does include (and indeed originally developed) the
notion of finite time randomness, which is crucial for our discussion (see Section 1). Particularly, in both (classical)
chaos as well as pseudochaos, an orbit can be algorithmically random.
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The incompressibility of information, and the resulting obstruction to predictability, are directly related (indeed
equivalent) to the complete independence of different sections of a random symbolic orbit Section 4 . These sections
of orbits are independent not only statistically, but also algorithmically (dynamically), i.e., they cannot be calculated
from one another by any finite procedure (algorithm).

Whilst the above meaning of randomness is theoretically quite established, in practice, one’s inability to compute is
often related to excessive computational time, or excessive storage requirements. Besides numerical experiment with
chaotic dynamical systems, there are examples abound in cryptography, where finding computationally intractable
problems is the main task. There, one typically looks for problems that can only be solved innon-polynomial time
[46], which make them unassailable (see Section 3). An example of storage problems is the computation of the
mysteriously unpredictable digits of a radical (e.g.,

√
2). Even though this can be done by small and fast programs

(i.e., Newton’s method), during the computation such programs become as large as the output, due to the necessity
of storing all intermediate data [47]. (Note that in a theoretical setting the latter problem does not occur, since Turing
machines feature infinite storage capacity.)

An important observation is that complex phenomena, which are best described in probabilistic terms, routinely
emerge alongside any of the computational difficulties mentioned above. In the rest of the paper, we shall articulate
some of these issues, in the context of quantum and discrete dynamics, using the discrete cat map (6) for exemplifi-
cation. Conforming to current usage, we shall reserve the word ‘chaos’ to denote the kind of asymptotic obstruction
to computability in dynamical systems that derives from excessive program size, while the term (algorithmically)
‘random’ may describe both chaos and pseudochaos.

3. Time complexity and period functions

The importance of time complexity in discrete dynamics originates from the proximity of the latter to number
theory and computer science. In this section, we discuss some obstructions to computability that emerge in irregular
discrete dynamical systems such as Eqs. (6) and (8). These problems stem from algorithms with excessive (non-
polynomial) running time.

We note that the two-dimensional mapping (6) can be rewritten as the single congruence [29]

ζt+1 ≡ λζt (modN), (7)

where bothλ > 1 (the largest eigenvalue of Eq. (6)) andζ = (λ−1)x+y arealgebraic integers1 (transforming Eq.
(6) into Eq. (7) is akin to writing a two-dimensional map in complex coordinates). Eq. (7) is structurally identical to

xt+1 ≡ bxt (modN), (8)

whereb > 1 andx are ordinary integers. This analogy is strong whenN is coprime tob, in which case Eq. (8)
is invertible. The mapping (8) – the discrete version of the so-called Bernoulli shift [48] – forms the basis for an
important class of pseudorandom number generators ([49], Vol. 2). In addition, it is a source of the discrete logarithm
problem, which is a computationally intractable problem and which finds widespread use in cryptography [50].

The discrete logarithm has a simple dynamical interpretation: it is the time required to reach a given pointx in
an orbit, starting from the initial conditionx0. By choosingx0 = 1 in Eq. (8), one sees thatx ≡ bt (modN), which
implies thatt is the ‘logarithm’ ofx(modN) to the baseb. By the same token, the discrete logarithm is also closely
related to the Poincaré recurrence times in these systems (Sections 1 and 5).

1 An algebraic integer is a root of an irreducible polynomial with integers coefficients and first coefficient equal to 1.
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The running timeT of the fastest algorithms known to date is non-polynomial in the input size log(N)

T = exp
(

3
√

log(N)+ c
)
. (9)

Herec is a constant, and the baseb and sizeN are chosen in such a way that the orbit length be of orderN (see
below). The closer the run time is to a pure exponential (which in Eq. (9) would implyT = O(N)), the closer is
the problem to be solvable only with the ‘wait-and-see’ algorithm, which amounts to null predictive power. Note
that in the computation of the discrete logarithm there are no difficulties with respect to program size.

For this reason, the distinction between polynomial and non-polynomial time is the criterion used in computer
science to discriminate between tractable and intractable problems. The cryptographical significance of the discrete
logarithm lies in the fact that it is atrapdoor function: encryption (the exponential, i.e., computing a point in the
orbit) can be performed in polynomial-time, while decryption (the logarithm, i.e., computing the recurrence time)
cannot be performed.

Among the most complex objects found in discrete dynamics are theperiod functionsP = P(N), which
characterize the maximal (or average) period of the orbits, as a function of the system sizeN [31,51–54]. They play
an important role in quantum chaos as well (see Section 4). As a rule, period functions feature very large fluctuations,
which in modular systems such as Eq. (6) or Eq. (8) have a crisp arithmetical significance. For instance, in the case of
Eq. (8),P(N) is the period of the digits of the rational numberx0/N , expressed in baseb, a problem first considered
by Gauss ([55], Section 6).

One has the bounds

blog(N + 1)c ≤ P(N) ≤ N − 1,

wherebxc is the floor function (the largest integer not exceedingx), and the maximum is attainable (not necessarily
attained!) only ifN is prime and provided thatb is not a square. In the latter case, one has aspace-filling orbit,
reaching every point apart from zero. For the cat map, the corresponding bound is [35]

blog(λ)c + 1 ≤ P(N) ≤ 3N.

The maximal period is now O(N), rather than O(N2), so that space-filling orbits cannot exist: this is an arithmetical
consequence of area-preservation [29]. (However, one can still construct linear dynamical systems of the cat map
type, which are invertible on a toral lattice even if their determinant is not unity and which have a space-filling orbit
[56].)

The fluctuations ofP(N) call for averaging. However, rigorous studies of such averages are notoriously difficult,
related as they are to a class of number-theoretic problems, centered around the so-calledArtin’s conjecture[57].
Various heuristic estimates are known, but the ‘actual’ asymptotic formula for the average order ofP

〈P 〉(N) = 1

N

N∑
n=1

P(n) ∼ N

log(N)(1+O(1))log(log(log(N)))
(10)

can only be proved assuming the validity of the so-called generalized Riemann hypothesis (see [1], and references
therein). The wide gap existing between what is believed to be true and what can actually be proved, underlines
the difficulties in developing an ergodic theory of discrete chaotic systems. By contrast, the ergodic theory of the
continuous version of Eq. (8) is much simpler.

Unsurprisingly, the computation of the period-function of the maps (6) and (8), turns out to be non-polynomial,
for it requires performing the prime decomposition ofN . The run time for factorization of algorithms is similar to
that of the discrete logarithm. For this reason, factorization – the inverse of multiplication – is another well-known
trapdoor function [50].
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The link between non-polynomial time problems, and probabilistic phenomena in discrete dynamical systems
is largely unexplored. For the cat map, the discrete logarithm is associated with two types of fluctuations, namely
those of Poincaré recurrence times mentioned above (see also Section 5), and spectral fluctuations [30]. Within this
context, of note is a recent result [58] establishing a central limit theorem for the propagation ofroundoff errors
in uniform spatial discretization of planar rotations (harmonic oscillator). No polynomial-time algorithm has been
found for the corresponding period function, which features wild fluctuations ([54], see also [59]).

4. Discrete pseudochaos

In this section, we review the main construction of the algorithmic theory of continuous dynamical systems,
and then characterize the extent to which the asymptotic chaos found in continuous dynamics is suppressed in
discrete dynamics. The context is that of a discrete dynamical systems withN states, where the period function
P(N) introduced in Section. 3 plays a key role. An alternative approach developed in [1,60] will be discussed in
Section 6.

The origin of the algorithmic theory of dynamical systems can be traced to the introduction of the notion of
symbolic trajectory, due to Hadamard [61]. We start from a partition of the phase space intoM cells, each labelled
by an integerm. We then consider an orbitx = xt in correspondence to some discrete instants of time which is
again labelled by the integers. At the timet , we record the labelmt of the cell to which the orbit belongs, thereby
constructing an infinite sequence of symbols

σ = σ(x0) = (m0,m1, . . . , mt , . . . ). (11)

(In an invertible system,σ can be made doubly-infinite.) Such symbolic trajectory is a coarse-grained representation
of the original trajectory, obtained by projecting the latter onto a finite set.

Representing orbits as strings of symbols, opened the possibility of applying the notion of algorithmic complexity
to the study of motions (see [14,62], for an informal introduction). Following Kolmogorov [42], one introduces the
complexityC(t, x0) of the t-string corresponding tox0, as the length of the shortest algorithm that computes such
symbolic string. The quantityC is determined up to a machine-dependent additive constant. One then considers the
limit

K(x0) = lim
t→∞

C(x0, t)

t
, (12)

and the sequenceσ(x0) is defined to beasymptotically random(or chaotic) if such limit exists and is positive
[44,62].

Some strongly chaotic dynamical systems, when represented symbolically with respect to a suitable partition,
have the remarkable property that the set of symbolic trajectories is complete, i.e., it contains all possible sequences
Eq. (11). From this, it is possible to deduce that most symbolic orbits are random [42,44].

Ergodic and algorithmic theories have a limited but significant overlap, based on a prominent result linking
exponential instability of motion with randomness: the Alekseev–Brudno theorem [45,62,63]. For almost all initial
conditionsx0 (with respect to some invariant measureµ), we have (cf. Eq. (12)).

K(x0) = hµ, (13)

where

hµ =
∑
3i>0

3i (14)
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is called themetric entropy, which has the dimension of a frequency and which characterizes the rate of exponential
instability of motion. The summands in Eq. (14) are the positive Lyapunov exponents. In a two-dimensional map
like Eq. (5), the above sum contains only one term and one finds thathµ = 3.

The remarkable relation (13) links explicitly an algorithmic concept (left-hand side) to a probabilistic one (right-
hand side). The positiveness of the entropy is then taken as a definition of dynamical asymptotic randomness, thereby
justifying the informal inference of that from ergodic theory.

The limit of Eq. (13) says that in order to calculate each successive segment of a symbolic trajectory, one needs
new information on the initial conditions of the orbit, at a rate determined by the entropy. Consequently, regardless
of how much knowledge one has on the coarse-grained past history of the motion, its future evolution(t > 0) still
remains unpredictable. Of course, this is true for a symbolic trajectory only, as on the ‘exact’ orbit it is sufficient to
fix a single point.

The remnants of determinism still persist in the symbolic trajectories, in the form of some dynamical correlations
which take place within a shortdynamical time scaletd, which is determined by therandomness parameter[64]

R = |t |
td

∼ h|t |
lnM

. (15)

This allows us to follow in time, the building up of asymptotic randomness, and to make some estimates for a finite
time (see below). In particular, we have temporary determinism over the time scale|t | . td where strong dynamical
correlations persist in a symbolic code, so that information about the future evolution of an orbit can be inferred
from the result of finite-accuracy observations of an orbit segment. On this relatively short time scale, the trajectory
can hardly be termed random. On the other hand, for|t | � td, almost all symbolic orbits become random, and only
a statistical description is possible. Even though, in principle, the equations of motion can still be used to derive all
statistical properties without any ad hoc hypotheses, the exact trajectory becomes an elusive entity, which can only
be observed, yet neither predicted nor reproduced in any way.

The estimate Eq. (15) may be justified as follows. For a given partitionM, the complexity of an individual point
of a symbolic trajectory isC1 ∼ lnM (the number of digits needed to specify an element of the partition). Since
successive points within the interval∼ td are essentially correlated, the average complexity per iteration of the map
is reduced to〈C1〉 ∼ C1/td ∼ h. Hence,td ∼ lnM/h, in accordance with Eq. (15).

The definition of randomness as given in Eq. (13) is somewhat weaker than the original algorithmic definition
[42,44], as the former allows for some dynamical correlations over the time scaletd. This is inevitable for a continuous
time system. For a map, both definitions coincide iftd < 1(lnM . h), or if a very special partition is used [15–17].

The situation is altogether different for discrete dynamical systems. If the sizeN of the systems is finite, all orbits
are (eventually) periodic, and the problem is to estimate the complexity of a typical orbit, for timest not exceeding
its period. Note that, for fixedN , the question of asymptotic (long time) randomness has a trivially negative answer
here, since every orbit will repeat itself, leading to a logarithmic growth ofC(t). Thus, in such a system only
pseudochaos is possible, at most.

As in the continuum, each orbit is still determined by its initial pointx0, but specifying the latter requires no more
than log(N) bits of information, whence

C(x0, t, N) = O(lnN) for 0 ≤ t < P (x0, N), (16)

whereP(x0, N) is the period of the orbit throughx0.
With reference to the limiting procedure (12) and the estimate (16), one sees that in the present class of systems,

the question of randomness is intimately related to the asymptotic growth rate of the period functionP(N), to be
averaged over a set of initial conditions whose density approach unity. In particular, if the orbits have a sufficiently
long period, i.e., ifP(N) admits a lower bound which grows faster than the logarithm ofN for ‘typical’ values ofN
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(i.e., possibly excluding a set of zero density), then one would conclude that the discrete motions are ‘non-random’,
in the sense that the share of random motion is negligible, i.e., logarithmic in the period of the orbit. This is indeed
the case for systems such as Eq. (6) or Eq. (8), as long as one accepts the conjectured asymptotic estimate Eq. (10).

However, from a rigorous viewpoint, the question of the lack of randomness of these discrete orbits – as plausible
as it is – still remains unsettled (cf. last section in [1]). It seems though that proving lack of randomness (i.e., finding
a super-logarithmic lower bound forP(N)) should be considerably easier than proving an asymptotic formula for
the complexity, which may well require the full force of Riemann hypothesis!

5. Quantum pseudochaos

As to the quantum version of the mapping (6), there is little to add to the analysis of the classical version presented
in Section 4. The time-evolution of a quantum state (in the Wigner representationW(x, p, t)) is exactly the same
as the classical one [32]. This remarkable peculiarity of a linear quantum map greatly simplifies the studies of the
quantum dynamics and chaos. The price is the non-generic global periodicity, whence the difficult problem of the
associated period functionP(N) (see Section. 3).

The main physical distinction of the quantum cat map lies in the strict restrictions on the quantum stateW

itself, particularly on the initial conditions of quantum motion. Formally, one can interpret thequasi-probability
W as an ensemble of ‘trajectories’ which is the analog of the classical phase-space density, apart from possible
negative values ofW . In this picture, each quantum ‘trajectory’ represents a nonseparable part of the quantum state,
with a specificW -value, which, nevertheless, follows exactly the classical trajectory! The numberNW of such
elements of the ensemble of trajectories must be sufficiently large:NW & N , with the lower bound corresponding
to the most localized quantum wave packet, a coherent state. Specifically, the total number of quantum states is
Q = N , to be compared with theN2 classical states (initial conditions), each of which is physically distinct from
all others. The number of different (periodic) trajectories is much less, being∼ N2/〈P 〉, where〈P 〉 is given by Eq.
(10). On the other hand, in the quantum case, the initial state is characterized not only by the initial conditions of
the corresponding ‘trajectories’, but also by different values ofW on those. Again, this is similar to the classical
description in terms of the phase-space density. Besides these quantitative restrictions of the quantum state, there
is an additional restriction concerning the shape of the functionW(x, p). In particular, it is still unknown whether
functionsW which are non-negative can exist in the discrete cat map model.

With all the above allowances, the quantum dynamics of the cat map is the same as the discrete classical one, and
so all the estimates in Section 4 remain unchanged. In regard to the specific problem of the motion period in both
cases, what is important from our perspective is that no matter how short is the random time scale Eq. (3), the latter
does grow indefinitely withN , thus providing the correspondence principle which is of fundamental importance in
the quantum case, and which is crucial for numerical experiments on computer.

We finally stress that the study of globally periodic systems, natural as for discrete representations of classical
systems, remains a degenerate case in the quantum problem. In general, the quantum motion is almost periodic, and
it is characterized by quasi-periods or Poincaré recurrences. The latter are extremely long, and are related to very
large, and rare fluctuations. The regular statistical processes are characterized by the relaxation time scale, whose
dependence onN is given by the estimate Eq. (1).

6. Ordering of orbits

This final section is devoted to a discussion of the controversy between [32] and [1], with the former disproving
and the latter proving the random character of the quantum cat map.
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The authors of [1] observe that the complexity analysis of periodic orbits depends crucially on the ordering with
which the orbits are considered. The concern for ordering originates in ergodic theory, where one typically computes
averages with respect to some invariant measure. The periodic orbits constitute a natural discrete sample which may
converge – in the sense of probability theory – to a measure. Not only different orderings may correspond to different
measures, but crucially, orderings corresponding to the same measure may nonetheless give different readings when
it comes to complexity.

In [32], the orbits are ordered according to the system sizeN , which is just the denominator of the rational points
supporting the periodic orbits. Instead in [1], the orbits are ordered according to their increasing minimal periodP ,
and then lexicographically within the same period. Both orderings correspond to the Lebesgue measure.

The central question is to establish which portion, if any, of a ‘typical’ periodic trajectory is algorithmically
random. As discussed in Section 4, the ordering by system size yield (essentially) a logarithmic compressibility of
information, whence lack of randomness, as long as one accepts the validity of the estimate Eq. (10).

The ordering by period leads to randomness can be seen from the following considerations. To find the periodic
pointsx0 of periodP , one solves the (continuous version of) congruence Eq. (8) forx0, for fixedP . One finds
xP ≡ x0 ≡ bP x0(mod 1), whence

x0 = m

bP − 1
, (17)

wherem is an integer in the range 0≤ m < bP − 1. Whenm is coprime tobP − 1, the fraction on the right-hand
side of Eq. (17) is reduced, whenceN(P ) = bP − 1 is exponential inP , so that such a point of periodP requires
O(P ) bits of information to be specified. The set of reduced fractions of the form Eq. (17) has positive density and
is uniformly distributed [65], and so its typical member is random. Consequently, the non-repeating part of a typical
periodic orbit of periodP is also random.

On the other hand, whenm andbP − 1 are not coprime, cancellation will occur in the fraction representingx0.
Such values ofm correspond to periodic orbits of periodP that live on much smaller lattices, which carry most of
the weight when enumerated by system size.

The choice between the two orderings depends on the physical system under consideration. In [1], the classical
version of the model (5) was considered, whose analysis was based on the properties of individual trajectories.
In this case, the ordering by period emerges from ergodic theoretic considerations (even though enumeration by
system size seems to be preferable to us from the physical point of view – see Section 3).

Instead in quantum mechanics, the ordering by system sizeN adopted by [32] is plainly unavoidable, being
inextricably linked to the nonseparable quantum ‘trajectories’ Section 5, and to the semiclassical limitN → ∞.
The ordering by period would instead correspond to an artificial collection of distinct systems, each characterized
by a specific value of the parameterN , and united solely by the existence of some trajectories with a given period
P in each of them. We see no physical meaning in such an arrangement of quantum ‘orbits’.

It seems to us that the authors of [1], apparently unaware of the quantum chaos debate, have applied to a quantum
problem a machinery which is as impeccable mathematically as it is inappropriate physically, and after deducing
with it that the quantum model (5) is chaotic, have accused the authors of [32,66] of ‘misinterpretations’.

We instead believe that the misinterpretation lies with [1], and that their criticism of [32,66] is simply irrelevant
to the question addressed by J. Ford and coworkers.
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