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Abstract—Detailed numerical experiments on the dynamics and statistics of asingle crossing of the separatrix
of anonlinear resonance with a time-varying amplitude are described. The results are compared with asimple
approximate theory first developed by Timofeev and further improved and generalized by Tennyson and
coworkers. The main attention is paid to anew, ballistic, regime of separatrix crossing in which the violation of
adiabaticity is maximal. Some unsolved problems and open questions are also discussed. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Any conservation law, if only approximate, is of
great importance in physics. One of those is the adia
batic invariance that is the conservation of the action
variables (J) under a slow parametric perturbation. In
the simplest case of a single arbitrarily large variation
of the latter, the corresponding change in J is well
known to be exponentially small in an appropriate adi-
abatic parameter (e — 0) provided the perturbationis
an analytic function of time or of any other dynamical
variable.

However, in the theory of dynamical systems, a
much more interesting and important case is a station-
ary variation of the perturbation (e.g., periodic, quasip-
eriodic, or even chaotic). Inthis case, the adiabaticity is
violated for sufficiently long length of time, no matter
how slow the adiabatic perturbation is. Generic mecha-
nism of such a nonadiabaticity are resonances, both
driving and coupling ones, which always determine the
long-term dynamics of Hamiltonian oscillator systems.
This was first discovered and explained in 1928 by
Andronov, Leontovich, and Mandelshtam [1]. Remark-
ably, it was sufficient, for this purpose, to carefully
examine the well-known Mathieu equation and its solu-
tions from the standpoint of physics. Indeed, the insta-
bility zones (“stop bands’) exist for specia but arbi-
trarily small values of the parameter €, where the adia-
baticity is completely destroyed in a sufficiently long
length of time. Thisleads to an additional condition for
the adiabatic invariance: the perturbation must be not
only slow but also nonresonant.

At a separatrix, an asymptotic trgjectory with infi-
nite period of motion, both conditions are violated (see,
e.g0., [2, 3]). Thisisexactly the place where the dynam-
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ical chaos is born, the ultimate origin of chaos. In a
Hamiltonian system, the separatrix is typically associ-
ated with nonlinear resonances. The violation of adia-
baticity results in the formation of a narrow chaotic
layer around the unperturbed separatrix. The set of all
resonances is everywhere dense in phase space and
forms the so-called “Arnold web.” For the number of
freedoms N > 2 (in a conservative system), a united
chaotic component of motion is formed along which a
chaotic (but nonergodic!) trajectory is covering the
whole energy surface. This very intricate process was
termed “Arnold diffusion,” which is an universal insta-
bility of multidimensional nonlinear oscillations [3-5].
However, the rate of this diffusion, as well as the total
measure of the web, istypically exponentialy small in
perturbation parameter €. For large N or for a driving
guasiperiodic perturbation with many frequencies,
these nonadiabatic effects decay with e as a power law
but only within afiniterange e, < € < 1 (the so-called
fast Arnold diffusion [6]). Asymptotically, ase — O,
the decay is always exponential [7], the crossover value
becoming smaller with larger numbers of unperturbed
frequencies.

A more serious violation of adiabaticity was found
for the crossing of the separatrix by atrajectory. In this
case, the change of J is always a power law in €, and,
moreover, the measure of the chaotic component does
not depend on € at all and isalwayslarge. Thisistruefor
the dow resonance crossing [8, 9] as well as for the
crossing of a single separatrix [9-13]. Interestingly,
for the linear oscillator with the frequency value
crossing zero, the change of J may belargely indepen-
dent of € [14].

In this paper, we present the results of numerical
experiments for asingle crossing of a single separatrix.
The present work was stimulated by an interesting

1063-7761/00/9003-0562%$20.00 © 2000 MAIK “Nauka/Interperiodica’



ADIABATIC INVARIANCE AND SEPARATRIX: SINGLE SEPARATRIX CROSSING

study of the corresponding quantum adiabaticity [15].
We use the same classical model described in the next
section.

2. MODEL

The model in [15] we use here is determined by the
Hamiltonian

2
H(x, p,t) = % + AySin(wt) cosx
(2.1

2
A
= B 4 Dorgin(x + wot) — sin(x— wt)].
2 2
The first expression describes a single nonlinear reso-
nance in the pendulum approximation (see, e.g., [3, 5])
with atime-varying amplitude

A(t) = Apsin(wt). (2.2)

Alternatively, the model represents the interaction of
two stationary resonances (the second expression in
(2.1)) assuggested in[16, 17]. Inthelatter case, thefor-
mal resonance overlap parameter [5]

— (2.3)

indefinitely increases as w — 0. Here, (Ap), is the
width of each resonance and 2w is the distance between
them. The adiabatic limit w — 0 corresponding to
infinite resonance overlap was suggested in [17] as a
new paradigm of “pure” chaos. However, this chaosis
generally not ergodic.

Below, we keep to the first interpretation of the
model as a single pulsating nonlinear resonance.

The dimensionless adiabaticity parameter is defined
in the usual way as the ratio of perturbation/oscillation
frequencies. Actually, we can introduce two such
parameters:

e= -2 onde= 2 2.4
AT A 24

Here, /A, is a constant frequency of the small reso-
nance oscillation for the maximal amplitude while
JA(t) is the current frequency, particularly at the
instant of separatrix crossing. Correspondingly, we call

e the global parameter of adiabaticity, and € the local
one.

Two branches of the instant, or “frozen,” separatrix
at somet = const is defined by the relation

po(X; 1) = x2./|A(M)[sin(X/2),

Ox, A(t) >0,
Ex -1, A(t) <O0.

. (2.5)
X =
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Following previous studies of the separatrix crossing,
we restrict ourselves to this frozen approximation in
what follows. As we shall see, the latter provides quite
good accuracy of rather simple theoretical relations.

In this approximation, the action variable is defined
in the standard way as

J = Zi]_(fp(x)dx,

where the integral is taken over the whole period for x
rotation (off the resonance) and over ahalf of that for x
oscillation (inside the resonance). This distinction is
necessary to avoid the discontinuity of J at the separa
trix where the action is given by asimple expression

3= 341 = %A/A(t) <J . = %JKO.

At wt = 0 (modT), the action is J = |p| and the conju-
gated phase is 6 = x. Note that, unlike p, the action J = 0
iS never negative.

It is convenient to set A, = 1 and to introduce the
dimensionless action by the transformation J/J,,c — J.
The crossing region is then the unit interval, and J is
simply related to the crossing timet =t by

(2.6)

(2.7

|A(ty)| = 3%, 0<J<1, (2.8)
while the adiabaticity parameters become
e = wand € = €/J. (2.9)

Numerical integration of the equations of motion for
Hamiltonian (2.1) was performed in (x, p) variables
using the so-called bilateral symplectic algorithm sug-
gested in [18] and based on the symplectic fourth-order
Runge—Kutta method in [19]. A typical number of iter-
ations was ~100 per the minimal motion (oscillation)
period 21t This provides the conservation of the Hamil-
tonian in extended phase space [3] better than 1075,

Asiswell known, the variation of J under an adia-
batic perturbation consists of one to two qualitatively
different parts. (i) the average action, which is nearly
constant between the crossings up to exponentially
small corrections and which is of primary interest in
our problem, and (ii) the rapid oscillations with the
motion frequency (see, e.g., Fig. 7cin [20]). Theratio
of thetwo time scalesis~e < 1, which allows the effi-
cient suppression of the second unimportant part of the
J variation by simply averaging J(t) over a long time
interval ~1/e, the suppression factor being ~l/e > 1
(fairly large).

3. DYNAMICS OF SEPARATRIX CROSSING:
DIFFUSIVE REGIME, J = €3

To the best of our knowledge, the first analytical
estimates for the change in J due to separatrix crossing
have been calculated in[11] followed shortly by amore
accurate [12] and, later, by a more general [9] approxi-
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Fig. 1. Normalized deviation of numerical data for separa-
trix crossings from the simple theory (3.1) in model (2.1):
4 crossings x2500 tragjectories; € = 0.001. (a) Deviation
dependence on Jin thewhole availableinterval: 0.2<J<1
(seetext). (b) Same dataasafunction of the crossing param-
eter M inthe best described interval: 0.7 < J < 0.9; accuracy
(36) 0 =0.01.

mate (asymptotic in €) theory. For model (2.1) under
consideration here, these results (see also [21]) can be
represented in the form

AJ(J, M, €) = F(I)D(M). (3.1)

Here, AJ = J;— J; isthe difference between the final and
initial averaged values of J.

e1-J*

FO) = 5 san(AQ)

(3.2)

is the dependence on the averaged action (usually, but
not necessarily, the initial one), and

®(M) = In|2sin(TtM)], (3.3)

where M is the “crossing parameter.” It looks like a
phase canonically conjugated to the action J [21], but it
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isnot. A peculiarity of the separatrix crossing isthat the
conjugated phase 6 cannot even be introduced on the
frozen separatrix, because the motion frequency in this
approximation is zero, and hence 8 = const. Instead, a
different variable, the crossing parameter, is used in the
theory [9, 12] determined by any of the following
approximate relations:

A3/2 A3/2 2@‘(
M= w, = = w, —2 = gn° =0 34
X2Ax P4Ap D4|j ( )
Here,
|OH(t)| |OH(t,)|
w, = , W, = (3.5
ALY P o(tp)

are the closest dimensionless approaches of the trajec-
tory to the unstable fixed point (X = 0 (mod2m), p = 0)
just before or after separatrix crossing a timet, and t,,
respectively (for details, see [9, 12]). The absolute val-
uesareassumed for all quantitieswith subscripts. Inthe
latter expression (3.4), the coordinate X; (t,,) is taken at
the instant t, of separatrix crossing.

The physical meaning of seemingly complicated
(3.4) is actualy very simple: the main change in J
occurs only at the closest approach to the unstable fixed
point wherethemotionisvery sow, allowing for the mov-
ing separatrix to considerably push or pull the trgjectory
aong. The existing theory cannot distinguish between the
three relations (3.4) with respect to their accuracy. How-
ever, our numerica experiments revealed that, taken by
itsdlf, the third relation (M = M) proved to be most accu-
rate. On the other hand, if we make use of thefirst two and
take the minimal one of them (M = M,,;,, < 0.5), the accu-
racy further increases. In this case, it is important to
take al the quantities at the corresponding instants t,
andt, asindicated in (3.4) and (3.5), and not, e.g., at the
crossing timet,,.. All quantitiesin (3.4) and (3.5) were
computed using the linear interpolation over a single
numerical iteration.

A comparison between the numerical resultsand the
simple theory is presented in Fig. 1.

The empirical data (points) represent four separatrix
crossings over one period of the adiabatic perturbation
A(t) in (2.1) for each of the 2500 trajectories with ran-
dominitid conditionsin thefull interva of 8 =x= (0, 2m)
and of J=1p/4=(0, 1) att = 0. The normalized devia-
tion from the theory is presented as afunction of initial
J=J, (prior to a crossing) and of parameter M. In both
cases, the optimal M = M,;, is used. The best accuracy
of the theory roughly corresponds to the interval 0.7 <
J = 0.9 (Fig. 1a). The latter is separately shown in
Fig. 1b. Beyond thisinterval, the deviation increases at
both sides.

For J — 1, the change in J becomes very small
(3.1), which increases the theoretical errors. More
interesting isthe opposite limit (J — 0) wherethe the-
ory becomes singular. It simply means that such a the-
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ory is no longer applicable here. This new and interest-
ing region of maximal nonadiabaticity will be consid-
ered in Section 4 below. Here we notice only that the
absence of any pointsfor J < 0.2 in Fig. 1la has avery
simple explanation: using the best parameter, M = M,
becomes inapplicable in this region, because only one
of the two close approaches remains here while the
other one is never realized. If, instead, one uses a less
accurate parameter M = M;, which isalways applicable,
the deviations exceed 1, which means that the theory
(3.1) has nothing to do with such asmall J.

The highest accuracy achieved in our numerical
experiments o = 0.01 (see (3.6) and Fig. 1b) is compa-
rable with the minimal theoretical errors~elne [9]. Ina
very narrow interval of M, = 0, the accuracy becomes
somewhat worse but is still surprisingly good for such
a simple theoretical relation as (3.1). A few points in
thisregion are clearly seen alsoin Fig. lascattered over
awideinterval in J.

The high numerical accuracy achieved reveds a
complicated structure of the deviations from the theory.
Besides irregular scattering of the points, thereis a clear
regular “splitting” symmetric with respect to zero devia-
tion, which is determined by the sign of A(t). It might bea
result of insufficient J averaging (for discussion see [12]).
Theseregular deviations could be excluded by the explicit
compuitation of thefirst correction to the adiabatic invari-
ant (2.6) asin [10]. However, it would hardly decrease
appreciably the deviations, as they are already of the
order of the terms omitted in the theory. In any event,
we included this “splitting” in the definition of the
accuracy of our numerical datain Fig. 1b for al of the
four successive separatrix crossings:

» _ OAJ-AJy)°0

o = T .

Here, AJisthe empirical and AJ, isthetheoretical (3.1)
value of the J change per crossing.

Another way to demonstrate agreement (or dis-

agreement) of the existing theory with the empirical
dataisto look at the behavior of the transform

AJ— (AJ)" = =AJsgn(A(t)). (3.7)

Asfar astherdation (3.1) holds true, this new quantity
has a strict upper bound

(AJ)" < |F()|P(1/2).
The results are shown in Fig. 2a.

The upper bound of points closely follows the theo-
retical dependence (3.8) down to J; = 0.2 (cf. Fig. 1a).
Remarkably, for small J;, a clear upper bound also
exists even though the unknown underlying dynamics
is apparently completely different here. In particular,
the upper bound in this region does not depend on J and
formsacharacteristic “platean.” The crossover between
the two regionsin Fig. 2aisat J= J,, = 0.1 and scales

(3.6)

(3.8)
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Fig. 2. The set of empirical AJ for the ensemble of trgjecto-
riesasin Fig. Linthefull range J; = (0, 1). (8) Transformed
quantity (AJ)*, (3.7); the solid curve is theory (3.8) shifted
upwards by 20%; the horizontal line is empirical upper
bound 2(AJ)*/e = 150 in the region where there is as yet no
theory; crossover action Ji,o = 0.1. (b) Actual AJ with cor-
rect signs: the oblique straight lineisempirical lower bound
AJ = -J; (seetext).

as Jyo ~ €2 (see (4.5) below). We shall call the well-
understood behavior for J = J,., the diffusive region and
the other domain J < J.,, to be considered in some
detail below, the ballistic region, for reasons explained
in the next section.

4. STATISTICS OF SEPARATRIX CROSSING:
BALLISTIC REGIME, J < €®

For small J < €®, not only is there the complete
absence of any theory, but also constructing the empir-
ical relations seems to us a hard task. Particularly, asis
seen in Fig. 2b, the structure in this region is rather
complicated.
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Fig. 3. Distribution p(M) in number of crossings per bin:
€ =0.01; J.o = 0.215. Top to bottom: (i) M = Mpyip, Ji =
(0.3, 1), the diffusive region, 6928 crossings, 100 bins;
(i) same for M = M3, 7312 crossings; (iii) M = M3, J; =
(0, 0.2), the ballistic region, 1634 crossings, 50 bins.

Surprisingly, statistical properties here turned out to
be fairly smple. To our knowledge, Mirbach was the
first to study this problem numerically in 1998 [22].

Since, in this paper, the properties of the single sep-
aratrix crossings are considered, we need a statistical
ensemble of trgjectories before we turn to statistical
numerical experiments. As the motion driven by sepa-
ratrix crossing is known to be ergodic, or at least very
closeto that, within the crossing domain, it would be nat-
urd to make use of the ergodic ensemble. In this case, the
distribution of the crossing parameter M in (3.1), which
determines all the statistical properties of the single
separatrix crossing, was shown to be homogeneous [9,
23]. Particularly, the two first moments of the M-distri-
bution are

W, = Op(M)0O= 0,

2 (4.1)
12

Both numerical values hold in the diffusive region only.
Moreover, it isinsufficient to fix initia J, even for the full
range of 6, = (0, 2m). For homogeneous M-distribution,
the width of initial distribution AqJ, must exceed some
critica value given by asimple approximate relation

Ny 130 J 0 3, 030
3 >e 3 | % 4|:| croI wTD (42)
0 Jo F 1— J.U JO 0 Jg o0

Mo = CO°(M)O= =

Thisrelation is obtained from the condition that theini-
tial strip J, = (0, 1) is transformed in such a strip near
an unstable fixed point (see (3.1)), which provides the
full range of parameter M = (0.1). In most of our statis-
tical numerical experiments, we used the full range of
Jr=(0, 1).
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In Fig. 3, the M-distribution is shown for both defi-
nitions of this parameter.

Two upper distributions in the diffusive region are
fairly homogeneous within statistical fluctuations. In
contrast, the lower one in the ballistic region shows a
clear dope, whose mechanism remains unclear.

The statistical properties we studied are character-
ized by the two first moments of the distribution func-
tionin AJ (see (3.1)) defined as follows:

2
1
(83)5= 0AY'D= FQu, = 5 E}—lﬁJz,
(AJ) = [A\J= EE(AJ)ZD: |J.2€2 (43)
o dal 2 o F

Both analytical expressons are vdid in the diffusve
region only. Moreover, the second one cannot be deduced
from the existing first-order theory, as [AJ~ € is a sec-
ond-order effect. Instead, one can use the well-known
relation between the two moments (see, eg., [3]),
which generally holds true for a chaotic Hamiltonian
system (for discussion, see[2]). Thisrelation, aswell as
the second-order moment [AJC]which may seem to be
negligible at first glance, are in fact very important for
derivation of the correct diffusion egquation

9f(J,1) _ 9 D(J)af
ot 9J 2 aJ

Particularly, this eguation entails the relaxation to a
homogeneous steady state f(J, 1) — f((J) = const as it
should be for the ergodic system.

In (4.4), T isthe discrete time measured in the num-
ber of separatrix crossings and D(J) = [{AJ)’[denotes a
“diffusion rate” [21, 23]. Actually, thisis not the rea
diffusion rate which includes the correlation between
successive crossings. Thismay be important in the prob-
lem under consideration according to numerical datain
[21] (for further discussion, see Section 5 below).

Theresults of our numerical experiments on the sta-
tistical properties for a single separatrix crossing are
presented in Fig. 4a. We used the same numerical data
asin Fig. 2b, which upon ordering in J were averaged
by the standard method of the moving window of width
of 500 points, or A,J = 0.05. The transition from the
diffusive to the ballistic regime is surprisingly sharp,
especially for (AJ), (lower curve). The crossover value

(4.4

J=1J,,=0ae” a=108, (4.5)
where empirical factor a was found from the plateau
(upper bound) for (AJ), (upper curve). To this end, we

substitute J,, for Jin (4.3) to obtain

/\/_2 1/3

(Ad), < (4.6)
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Remarkably, the empirical data follow with a rea-
sonable accuracy the diffusive theory literally down to
the very crossover. This alowed usto numerically dis-
cernthe very small but important first moment and even
to check its agreement with the theory.

Even though thereisasyet no theory for the ballistic
regime, the underlying physical mechanism of thetran-
sition is rather simple and comprehensible [22]. This
transition is determined by the kinetics parameter

8,

€
DJ—3<1,

which is a reduced dynamical scale in J. The latter
strong inequality is a necessary condition for the diffu-
sion approximation to the exact integro-differentia
kinetic equation to hold; hence, we get the term diffusive
region for J = J,, ~ €%. In the opposite limit (k = 1), the
trajectory jumps over the whole region ~J in one sepa-
ratrix crossing. This is usualy called the ballistic
regime.

Sincethe action J = 0 cannot be negative, the change
AJ is necessarily restricted for any J. In the ballistic
region, the restriction becomes very strong, asthe strict
lower bound in Fig. 2b demonstrates. It ssimply means
that J; = 0, as well as J,. Also, there exists the strict
upper bound J < 1, but it corresponds to a very big AJ
unlessJ —» liscloseto the upper border of separatrix
crossing. Near this border is aso the second ballistic
region, but its width is very small. Again, it is deter-
mined by the kinetics parameter (4.7), which now takes
the form

4.7

«o&zp e
VAN

whence anew crossover J® ~ 2.

In the diffusive normalization used in Fig. 4a, the
quantities 2(AJ), ,/e do not depend on e in the diffusive
region but do so in the ballistic domain. Instead, one
may use a different, ballistic, normalization by intro-

ducing anew variable J = Jle¥3. Theresultis presented
in Fig. 4b for the two values of €. Instead of (4.3), we
now have the relations:

J,=1-1J (4.8)

Hao

~5"

Ho 413[]

T2 _ Mol
(Ad)2 = 4|:54 € q

(Ad), = — 4.9

The second oneisindependent of e inthefull range of J.
Some difference between the two lower curves is
apparently due to fluctuations, especially for the
smaller . The first relation slightly depends on e, but
thisisimportant near the upper border (J = 1) only. The
diffusive theory (4.9) is shown in Fig. 4b for e = 0.01
(upper thin curve).

Even though thereisasyet no theory for the ballistic
region, some statistical properties can be predicted here
from a general consideration. One of those is the sur-
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Fig. 4. Statistics of 10* separatrix crossings, window width
A, J = 0.05. (a) (AJ), (upper thick curve), and (AJ), (lower
curve) vs. J for e = 0.001; two thin solid curves represent
the diffusive theory (4.3); the horizontal line is the empir-
ical upper bound for 2(AJ),/e = 78. (b) Same datafor € =

0.001 and 0.01in ballistic normalization: J = J/e¥3; empir-
ical upper bound 2(A3 )2 =0.78.

vival probability P(t) for atrgjectory to stay in the bal-
listic region during a time >t. Namely, this probability
is expected to decay exponentially

P(1) = exp E—%ﬂ% (4.10)

with some average survival time @0 ~ 1. This is
because, for large jumps of a tragjectory across the
whole ballistic region, thereis a certain probability w ~
1 for atrajectory to remain within thisregion after each
separatrix crossing. Moreover, the successive probabil-
ities are expected, for a chaotic motion, to be equal and
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Fig. 5. Survival probability P(t) in the ballistic region for
e = 0.001 (circles) and e = 0.01 (crosses); 10* trajectories
homogeneously distributed initially over the ballistic
region; the straight lineisthe fit with @0= 4.35, w = 0.79.

statistically independent. This implies the exponential
(4.10) with @O= —1/Inw independent of €. The latter is
especially clear in the balistic normalization (4.9).

The results of numerical experiments are presented
inFig. 5.

Curiously, the diffusion equation (4.4) with constant
D = 0.16 (in ballistic normalization, see Fig. 4b) also
leads to the exponential decay (4.10) with the average
surviva time

2

G <= =5, (4.11)
DK?

where k = 112 isthe parameter of thefirst (main) eigen-

function of the diffusion equation: f;(J) = cos(kJ).
Thisis surprisingly close to the empirical vaue = 4.4
(Fig. 5) in spite of the formal inapplicability of the dif-
fusion approximation in the ballistic region!

5. DISCUSSION

In the present paper, we reported the results of
extensive numerical experiments aimed at the detailed
study of the dynamics and statistics of separatrix cross-
ing in the classical model (2.1). Our work was stimu-
lated by an interesting investigation of the quantum
behavior of this model [15].

First of all, we carefully checked the agreement of
the empirical data with the existing fairly simple first-
order theory [9, 12] and found it surprisingly good,
closein fact to the formal limiting accuracy of the the-
ory (Fig. 1). In addition, we were able to discern one
second-order effect, the behavior of the first moment
[AJI{QI), which is beyond the theory but very important

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

CHIRIKOV, VECHESLAVOV

2(AJ); o/€
100 -

80
60

40

20 \
0
_2()_
—_40}
005 0. 02 05 10
J;

Fig. 6. The effect of correlation over four successive separa-
trix crossings. Two thick wiggly curves show statistics of
the single crossing asin Fig. 4a. Thin wiggly curves repre-
sent the effect of fourfold crossings; both moments are nor-
malized (see text).

for the diffusion equation. Our numerical results con-
firm the expected relation between the two moments
(see (4.3) and (Fig. 4)).

On the other hand, we have found that such a nice
agreement crudely breaks down in the ballistic region
J<Jy, = € (Fig. 4), which is quditatively different
from the complementary diffusive region J > J.,. The
new regime of separatrix crossing was first noticed and
partly explained in [22]. It is a peculiarity of model
(2.1) in which a pulsating separatrix crosses zero. In
many other models studied numerically (see, e.g., [10,
11, 20, 21]), the authors tended to avoid the theoretical
singularity at J — 0 (3.2). This is more simple, of
course, but lessinteresting. Particularly, the largest vio-
lation of adiabaticity (AJ ~ €') is reached only in the
ballistic region (Figs. 2 and 4).

Even though the dynamical theory in this region
seems to be a hard task and has not yet developed the
statistical properties of the motion, here it looks rather
simple. Surprisingly, even a simplified diffusion equa-
tion, which may not hold in the ballistic region, till
allows for some reasonably accurate estimates (Fig. 5).

In the present paper, we consider the dynamics and
statistics of asingle separatrix crossing only. Of course,
thisis insufficient for the full-scale statistical descrip-
tion of the separatrix crossing. As is well known (see,
e.g0., [20, 21]), the correlations in multiple crossings are
generally very essential. In conclusion of our discus-
sion, we present in Fig. 6 the commutative effect of four
successive crossings over one period of the perturba
tion.

Both moments are normalized asfollows: (AJ); —
(M) /T; (AJ)5 — (AJ)3 /1 =D(1) wherediscretetime
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T =4 isthe crossing multiplicity in this case (see (4.3)).
In the diffusive region 2, both curves coincide within
fluctuations, which means that the correlations, if any,
are small over four crossings. Thisisin agreement with
theresultsin [21] (for adifferent model). Whether they
will risewith T and why isan interesting and open ques-
tion. According to [21], they do so, but it may depend
on the method of measuring the diffusion rate. In the
ballistic region, the correlation effect is strong from the
beginning, especialy for the second moment. This is
aso in agreement with numerical datain [22]. Accord-
ing to data in Fig. 6, the normalized second moment

(the “diffusion rate”) decreases as D(t) O 1/ /1 . What
is even more important, the size of the ballistic region
grows: J.,(T) O T8, Anintriguing question is whether
this trend will continue and, if so, for how long.
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