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Abstract—Detailed numerical experiments on the dynamics and statistics of a single crossing of the separatrix
of a nonlinear resonance with a time-varying amplitude are described. The results are compared with a simple
approximate theory first developed by Timofeev and further improved and generalized by Tennyson and
coworkers. The main attention is paid to a new, ballistic, regime of separatrix crossing in which the violation of
adiabaticity is maximal. Some unsolved problems and open questions are also discussed. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Any conservation law, if only approximate, is of
great importance in physics. One of those is the adia-
batic invariance that is the conservation of the action
variables (J) under a slow parametric perturbation. In
the simplest case of a single arbitrarily large variation
of the latter, the corresponding change in J is well
known to be exponentially small in an appropriate adi-
abatic parameter (e  0) provided the perturbation is
an analytic function of time or of any other dynamical
variable.

However, in the theory of dynamical systems, a
much more interesting and important case is a station-
ary variation of the perturbation (e.g., periodic, quasip-
eriodic, or even chaotic). In this case, the adiabaticity is
violated for sufficiently long length of time, no matter
how slow the adiabatic perturbation is. Generic mecha-
nism of such a nonadiabaticity are resonances, both
driving and coupling ones, which always determine the
long-term dynamics of Hamiltonian oscillator systems.
This was first discovered and explained in 1928 by
Andronov, Leontovich, and Mandelshtam [1]. Remark-
ably, it was sufficient, for this purpose, to carefully
examine the well-known Mathieu equation and its solu-
tions from the standpoint of physics. Indeed, the insta-
bility zones (“stop bands”) exist for special but arbi-
trarily small values of the parameter e, where the adia-
baticity is completely destroyed in a sufficiently long
length of time. This leads to an additional condition for
the adiabatic invariance: the perturbation must be not
only slow but also nonresonant.

At a separatrix, an asymptotic trajectory with infi-
nite period of motion, both conditions are violated (see,
e.g., [2, 3]). This is exactly the place where the dynam-
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ical chaos is born, the ultimate origin of chaos. In a
Hamiltonian system, the separatrix is typically associ-
ated with nonlinear resonances. The violation of adia-
baticity results in the formation of a narrow chaotic
layer around the unperturbed separatrix. The set of all
resonances is everywhere dense in phase space and
forms the so-called “Arnold web.” For the number of
freedoms N > 2 (in a conservative system), a united
chaotic component of motion is formed along which a
chaotic (but nonergodic!) trajectory is covering the
whole energy surface. This very intricate process was
termed “Arnold diffusion,” which is an universal insta-
bility of multidimensional nonlinear oscillations [3–5].
However, the rate of this diffusion, as well as the total
measure of the web, is typically exponentially small in
perturbation parameter e. For large N or for a driving
quasiperiodic perturbation with many frequencies,
these nonadiabatic effects decay with e as a power law
but only within a finite range ecr & e ! 1 (the so-called
fast Arnold diffusion [6]). Asymptotically, as e  0,
the decay is always exponential [7], the crossover value
becoming smaller with larger numbers of unperturbed
frequencies.

A more serious violation of adiabaticity was found
for the crossing of the separatrix by a trajectory. In this
case, the change of J is always a power law in e, and,
moreover, the measure of the chaotic component does
not depend on e at all and is always large. This is true for
the slow resonance crossing [8, 9] as well as for the
crossing of a single separatrix [9–13]. Interestingly,
for the linear oscillator with the frequency value
crossing zero, the change of J may be largely indepen-
dent of e [14].

In this paper, we present the results of numerical
experiments for a single crossing of a single separatrix.
The present work was stimulated by an interesting
000 MAIK “Nauka/Interperiodica”
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study of the corresponding quantum adiabaticity [15].
We use the same classical model described in the next
section.

2. MODEL

The model in [15] we use here is determined by the
Hamiltonian

(2.1)

The first expression describes a single nonlinear reso-
nance in the pendulum approximation (see, e.g., [3, 5])
with a time-varying amplitude

(2.2)

Alternatively, the model represents the interaction of
two stationary resonances (the second expression in
(2.1)) as suggested in [16, 17]. In the latter case, the for-
mal resonance overlap parameter [5]

(2.3)

indefinitely increases as ω  0. Here, (∆p)r is the
width of each resonance and 2ω is the distance between
them. The adiabatic limit ω  0 corresponding to
infinite resonance overlap was suggested in [17] as a
new paradigm of “pure” chaos. However, this chaos is
generally not ergodic.

Below, we keep to the first interpretation of the
model as a single pulsating nonlinear resonance.

The dimensionless adiabaticity parameter is defined
in the usual way as the ratio of perturbation/oscillation
frequencies. Actually, we can introduce two such
parameters:

(2.4)

Here,  is a constant frequency of the small reso-
nance oscillation for the maximal amplitude while

 is the current frequency, particularly at the
instant of separatrix crossing. Correspondingly, we call
e the global parameter of adiabaticity, and  the local
one.

Two branches of the instant, or “frozen,” separatrix
at some t = const is defined by the relation

(2.5)
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Following previous studies of the separatrix crossing,
we restrict ourselves to this frozen approximation in
what follows. As we shall see, the latter provides quite
good accuracy of rather simple theoretical relations.

In this approximation, the action variable is defined
in the standard way as

(2.6)

where the integral is taken over the whole period for x
rotation (off the resonance) and over a half of that for x
oscillation (inside the resonance). This distinction is
necessary to avoid the discontinuity of J at the separa-
trix where the action is given by a simple expression

(2.7)

At ωt = 0 (modπ), the action is J = |p| and the conju-
gated phase is θ = x. Note that, unlike p, the action J ≥ 0
is never negative.

It is convenient to set A0 = 1 and to introduce the
dimensionless action by the transformation J/Jmax  J.
The crossing region is then the unit interval, and J is
simply related to the crossing time t = tcr by

(2.8)

while the adiabaticity parameters become

(2.9)

Numerical integration of the equations of motion for
Hamiltonian (2.1) was performed in (x, p) variables
using the so-called bilateral symplectic algorithm sug-
gested in [18] and based on the symplectic fourth-order
Runge–Kutta method in [19]. A typical number of iter-
ations was ~100 per the minimal motion (oscillation)
period 2π. This provides the conservation of the Hamil-
tonian in extended phase space [3] better than 10–6.

As is well known, the variation of J under an adia-
batic perturbation consists of one to two qualitatively
different parts: (i) the average action, which is nearly
constant between the crossings up to exponentially
small corrections and which is of primary interest in
our problem, and (ii) the rapid oscillations with the
motion frequency (see, e.g., Fig. 7c in [20]). The ratio
of the two time scales is ~  ! 1, which allows the effi-
cient suppression of the second unimportant part of the
J variation by simply averaging J(t) over a long time
interval ~1/e, the suppression factor being ~1/  @ 1
(fairly large).

3. DYNAMICS OF SEPARATRIX CROSSING: 
DIFFUSIVE REGIME, J * e1/3

To the best of our knowledge, the first analytical
estimates for the change in J due to separatrix crossing
have been calculated in [11] followed shortly by a more
accurate [12] and, later, by a more general [9] approxi-

J
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mate (asymptotic in e) theory. For model (2.1) under
consideration here, these results (see also [21]) can be
represented in the form

(3.1)

Here, ∆J = Jf – Ji is the difference between the final and
initial averaged values of J.

(3.2)

is the dependence on the averaged action (usually, but
not necessarily, the initial one), and

(3.3)

where M is the “crossing parameter.” It looks like a
phase canonically conjugated to the action J [21], but it
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Fig. 1. Normalized deviation of numerical data for separa-
trix crossings from the simple theory (3.1) in model (2.1):
4 crossings ×2500 trajectories; e = 0.001. (a) Deviation
dependence on J in the whole available interval: 0.2 & J < 1
(see text). (b) Same data as a function of the crossing param-
eter M in the best described interval: 0.7 & J & 0.9; accuracy
(3.6) σ ≈ 0.01.
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is not. A peculiarity of the separatrix crossing is that the
conjugated phase θ cannot even be introduced on the
frozen separatrix, because the motion frequency in this
approximation is zero, and hence θ ≡ const. Instead, a
different variable, the crossing parameter, is used in the
theory [9, 12] determined by any of the following
approximate relations:

(3.4)

Here,

(3.5)

are the closest dimensionless approaches of the trajec-
tory to the unstable fixed point (  = 0 (mod2π), p = 0)
just before or after separatrix crossing at time tx and tp ,
respectively (for details, see [9, 12]). The absolute val-
ues are assumed for all quantities with subscripts. In the
latter expression (3.4), the coordinate (tcr) is taken at
the instant tcr of separatrix crossing.

The physical meaning of seemingly complicated
(3.4) is actually very simple: the main change in J
occurs only at the closest approach to the unstable fixed
point where the motion is very slow, allowing for the mov-
ing separatrix to considerably push or pull the trajectory
along. The existing theory cannot distinguish between the
three relations (3.4) with respect to their accuracy. How-
ever, our numerical experiments revealed that, taken by
itself, the third relation (M = M3) proved to be most accu-
rate. On the other hand, if we make use of the first two and
take the minimal one of them (M = Mmin ≤ 0.5), the accu-
racy further increases. In this case, it is important to
take all the quantities at the corresponding instants tx

and tp as indicated in (3.4) and (3.5), and not, e.g., at the
crossing time tcr . All quantities in (3.4) and (3.5) were
computed using the linear interpolation over a single
numerical iteration.

A comparison between the numerical results and the
simple theory is presented in Fig. 1.

The empirical data (points) represent four separatrix
crossings over one period of the adiabatic perturbation
A(t) in (2.1) for each of the 2500 trajectories with ran-
dom initial conditions in the full interval of θ = x = (0, 2π)
and of J = πp/4 = (0, 1) at t = 0. The normalized devia-
tion from the theory is presented as a function of initial
J = Ji (prior to a crossing) and of parameter M. In both
cases, the optimal M = Mmin is used. The best accuracy
of the theory roughly corresponds to the interval 0.7 &
J & 0.9 (Fig. 1a). The latter is separately shown in
Fig. 1b. Beyond this interval, the deviation increases at
both sides.

For J  1, the change in J becomes very small
(3.1), which increases the theoretical errors. More
interesting is the opposite limit (J  0) where the the-
ory becomes singular. It simply means that such a the-
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ory is no longer applicable here. This new and interest-
ing region of maximal nonadiabaticity will be consid-
ered in Section 4 below. Here we notice only that the
absence of any points for J & 0.2 in Fig. 1a has a very
simple explanation: using the best parameter, M = Mmin
becomes inapplicable in this region, because only one
of the two close approaches remains here while the
other one is never realized. If, instead, one uses a less
accurate parameter M = M3, which is always applicable,
the deviations exceed 1, which means that the theory
(3.1) has nothing to do with such a small J.

The highest accuracy achieved in our numerical
experiments σ ≈ 0.01 (see (3.6) and Fig. 1b) is compa-
rable with the minimal theoretical errors ~elne [9]. In a
very narrow interval of Mmin ≈ 0, the accuracy becomes
somewhat worse but is still surprisingly good for such
a simple theoretical relation as (3.1). A few points in
this region are clearly seen also in Fig. 1a scattered over
a wide interval in J.

The high numerical accuracy achieved reveals a
complicated structure of the deviations from the theory.
Besides irregular scattering of the points, there is a clear
regular “splitting” symmetric with respect to zero devia-
tion, which is determined by the sign of A(t). It might be a
result of insufficient J averaging (for discussion see [12]).
These regular deviations could be excluded by the explicit
computation of the first correction to the adiabatic invari-
ant (2.6) as in [10]. However, it would hardly decrease
appreciably the deviations, as they are already of the
order of the terms omitted in the theory. In any event,
we included this “splitting” in the definition of the
accuracy of our numerical data in Fig. 1b for all of the
four successive separatrix crossings:

(3.6)

Here, ∆J is the empirical and ∆Jth is the theoretical (3.1)
value of the J change per crossing.

Another way to demonstrate agreement (or dis-
agreement) of the existing theory with the empirical
data is to look at the behavior of the transform

(3.7)

As far as the relation (3.1) holds true, this new quantity
has a strict upper bound

(3.8)

The results are shown in Fig. 2a.
The upper bound of points closely follows the theo-

retical dependence (3.8) down to Ji ≈ 0.2 (cf. Fig. 1a).
Remarkably, for small Ji, a clear upper bound also
exists even though the unknown underlying dynamics
is apparently completely different here. In particular,
the upper bound in this region does not depend on J and
forms a characteristic “plateau.” The crossover between
the two regions in Fig. 2a is at J = Jcro ≈ 0.1 and scales

σ2 ∆J ∆Jth–( )2〈 〉
F2

-----------------------------------.=

∆J ∆J( )+ ∆Jsgn Ȧ t( )( ).–=

∆J( )+ F J( ) Φ 1/2( ).≤
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as Jcro ~ e1/3 (see (4.5) below). We shall call the well-
understood behavior for J * Jcro the diffusive region and
the other domain J & Jcro , to be considered in some
detail below, the ballistic region, for reasons explained
in the next section.

4. STATISTICS OF SEPARATRIX CROSSING: 
BALLISTIC REGIME, J & e1/3

For small J & e1/3, not only is there the complete
absence of any theory, but also constructing the empir-
ical relations seems to us a hard task. Particularly, as is
seen in Fig. 2b, the structure in this region is rather
complicated.
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Fig. 2. The set of empirical ∆J for the ensemble of trajecto-
ries as in Fig. 1 in the full range Ji = (0, 1). (a) Transformed
quantity (∆J)+, (3.7); the solid curve is theory (3.8) shifted
upwards by 20%; the horizontal line is empirical upper
bound 2(∆J)+/e ≈ 150 in the region where there is as yet no
theory; crossover action Jcro ≈ 0.1. (b) Actual ∆J with cor-
rect signs: the oblique straight line is empirical lower bound
∆J ≥ –Ji (see text).
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Surprisingly, statistical properties here turned out to
be fairly simple. To our knowledge, Mirbach was the
first to study this problem numerically in 1998 [22].

Since, in this paper, the properties of the single sep-
aratrix crossings are considered, we need a statistical
ensemble of trajectories before we turn to statistical
numerical experiments. As the motion driven by sepa-
ratrix crossing is known to be ergodic, or at least very
close to that, within the crossing domain, it would be nat-
ural to make use of the ergodic ensemble. In this case, the
distribution of the crossing parameter M in (3.1), which
determines all the statistical properties of the single
separatrix crossing, was shown to be homogeneous [9,
23]. Particularly, the two first moments of the M-distri-
bution are

(4.1)

Both numerical values hold in the diffusive region only.
Moreover, it is insufficient to fix initial J0 even for the full
range of θ0 = (0, 2π). For homogeneous M-distribution,
the width of initial distribution ∆0J0 must exceed some
critical value given by a simple approximate relation

(4.2)

This relation is obtained from the condition that the ini-
tial strip J0 = (0, 1) is transformed in such a strip near
an unstable fixed point (see (3.1)), which provides the
full range of parameter M = (0.1). In most of our statis-
tical numerical experiments, we used the full range of
J0 = (0, 1).
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Fig. 3. Distribution ρ(M) in number of crossings per bin:
e = 0.01; Jcro = 0.215. Top to bottom: (i) M = Mmin , Ji =
(0.3, 1), the diffusive region, 6928 crossings, 100 bins;
(ii) same for M = M3, 7312 crossings; (iii) M = M3, Ji =
(0, 0.2), the ballistic region, 1634 crossings, 50 bins.
JOURNAL OF EXPERIMENTAL 
In Fig. 3, the M-distribution is shown for both defi-
nitions of this parameter.

Two upper distributions in the diffusive region are
fairly homogeneous within statistical fluctuations. In
contrast, the lower one in the ballistic region shows a
clear slope, whose mechanism remains unclear.

The statistical properties we studied are character-
ized by the two first moments of the distribution func-
tion in ∆J (see (3.1)) defined as follows:

(4.3)

Both analytical expressions are valid in the diffusive
region only. Moreover, the second one cannot be deduced
from the existing first-order theory, as 〈∆J〉 ~ e2 is a sec-
ond-order effect. Instead, one can use the well-known
relation between the two moments (see, e.g., [3]),
which generally holds true for a chaotic Hamiltonian
system (for discussion, see [2]). This relation, as well as
the second-order moment 〈∆J〉 , which may seem to be
negligible at first glance, are in fact very important for
derivation of the correct diffusion equation

(4.4)

Particularly, this equation entails the relaxation to a
homogeneous steady state f(J, τ)  fs(J) = const as it
should be for the ergodic system.

In (4.4), τ is the discrete time measured in the num-
ber of separatrix crossings and D(J) = 〈(∆J)2〉  denotes a
“diffusion rate” [21, 23]. Actually, this is not the real
diffusion rate which includes the correlation between
successive crossings. This may be important in the prob-
lem under consideration according to numerical data in
[21] (for further discussion, see Section 5 below).

The results of our numerical experiments on the sta-
tistical properties for a single separatrix crossing are
presented in Fig. 4a. We used the same numerical data
as in Fig. 2b, which upon ordering in J were averaged
by the standard method of the moving window of width
of 500 points, or ∆w J ≈ 0.05. The transition from the
diffusive to the ballistic regime is surprisingly sharp,
especially for (∆J)1 (lower curve). The crossover value

, (4.5)

where empirical factor α was found from the plateau
(upper bound) for (∆J)2 (upper curve). To this end, we
substitute Jcro for J in (4.3) to obtain

(4.6)
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Remarkably, the empirical data follow with a rea-
sonable accuracy the diffusive theory literally down to
the very crossover. This allowed us to numerically dis-
cern the very small but important first moment and even
to check its agreement with the theory.

Even though there is as yet no theory for the ballistic
regime, the underlying physical mechanism of the tran-
sition is rather simple and comprehensible [22]. This
transition is determined by the kinetics parameter

, (4.7)

which is a reduced dynamical scale in J. The latter
strong inequality is a necessary condition for the diffu-
sion approximation to the exact integro-differential
kinetic equation to hold; hence, we get the term diffusive
region for J * Jcro ~ e1/3. In the opposite limit (κ * 1), the
trajectory jumps over the whole region ~J in one sepa-
ratrix crossing. This is usually called the ballistic
regime.

Since the action J ≥ 0 cannot be negative, the change
∆J is necessarily restricted for any J. In the ballistic
region, the restriction becomes very strong, as the strict
lower bound in Fig. 2b demonstrates. It simply means
that Jf ≥ 0, as well as Ji . Also, there exists the strict
upper bound J ≤ 1, but it corresponds to a very big ∆J
unless J  1 is close to the upper border of separatrix
crossing. Near this border is also the second ballistic
region, but its width is very small. Again, it is deter-
mined by the kinetics parameter (4.7), which now takes
the form

(4.8)

whence a new crossover  ~ e2.

In the diffusive normalization used in Fig. 4a, the
quantities 2(∆J)1, 2/e do not depend on e in the diffusive
region but do so in the ballistic domain. Instead, one
may use a different, ballistic, normalization by intro-

ducing a new variable  = J/e1/3. The result is presented
in Fig. 4b for the two values of e. Instead of (4.3), we
now have the relations:

(4.9)

The second one is independent of e in the full range of J.
Some difference between the two lower curves is
apparently due to fluctuations, especially for the
smaller e. The first relation slightly depends on e, but
this is important near the upper border (J ≈ 1) only. The
diffusive theory (4.9) is shown in Fig. 4b for e = 0.01
(upper thin curve).

Even though there is as yet no theory for the ballistic
region, some statistical properties can be predicted here
from a general consideration. One of those is the sur-

κ
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vival probability P(τ) for a trajectory to stay in the bal-
listic region during a time >τ. Namely, this probability
is expected to decay exponentially

(4.10)

with some average survival time 〈τ〉  ~ 1. This is
because, for large jumps of a trajectory across the
whole ballistic region, there is a certain probability w ~
1 for a trajectory to remain within this region after each
separatrix crossing. Moreover, the successive probabil-
ities are expected, for a chaotic motion, to be equal and
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Fig. 4. Statistics of 104 separatrix crossings; window width
∆w J ≈ 0.05. (a) (∆J)2 (upper thick curve), and (∆J)1 (lower
curve) vs. J for e = 0.001; two thin solid curves represent
the diffusive theory (4.3); the horizontal line is the empir-
ical upper bound for 2(∆J)2/e ≈ 78. (b) Same data for e =

0.001 and 0.01 in ballistic normalization:  = J/e1/3; empir-

ical upper bound 2(∆ )2 ≈ 0.78.
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statistically independent. This implies the exponential
(4.10) with 〈τ〉  = –1/lnw independent of e. The latter is
especially clear in the ballistic normalization (4.9).

The results of numerical experiments are presented
in Fig. 5.

Curiously, the diffusion equation (4.4) with constant
D ≈ 0.16 (in ballistic normalization, see Fig. 4b) also
leads to the exponential decay (4.10) with the average
survival time

(4.11)

where k ≈ π/2 is the parameter of the first (main) eigen-

function of the diffusion equation: f1( ) ≈ cos(k ).
This is surprisingly close to the empirical value 〈τ〉 ≈  4.4
(Fig. 5) in spite of the formal inapplicability of the dif-
fusion approximation in the ballistic region!

5. DISCUSSION

In the present paper, we reported the results of
extensive numerical experiments aimed at the detailed
study of the dynamics and statistics of separatrix cross-
ing in the classical model (2.1). Our work was stimu-
lated by an interesting investigation of the quantum
behavior of this model [15].

First of all, we carefully checked the agreement of
the empirical data with the existing fairly simple first-
order theory [9, 12] and found it surprisingly good,
close in fact to the formal limiting accuracy of the the-
ory (Fig. 1). In addition, we were able to discern one
second-order effect, the behavior of the first moment
〈∆J〉(J), which is beyond the theory but very important

τ〈 〉 2

Dk2
--------- 5,≈ ≈

J̃ J̃

100

10–1

10–2

10–3

10–4

10–5

0 10 20 30 40 50

P

τ

Fig. 5. Survival probability P(τ) in the ballistic region for
e = 0.001 (circles) and e = 0.01 (crosses); 104 trajectories
homogeneously distributed initially over the ballistic
region; the straight line is the fit with 〈τ〉  = 4.35, w = 0.79.
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for the diffusion equation. Our numerical results con-
firm the expected relation between the two moments
(see (4.3) and (Fig. 4)).

On the other hand, we have found that such a nice
agreement crudely breaks down in the ballistic region
J < Jcro ≈ e1/3 (Fig. 4), which is qualitatively different
from the complementary diffusive region J > Jcro . The
new regime of separatrix crossing was first noticed and
partly explained in [22]. It is a peculiarity of model
(2.1) in which a pulsating separatrix crosses zero. In
many other models studied numerically (see, e.g., [10,
11, 20, 21]), the authors tended to avoid the theoretical
singularity at J  0 (3.2). This is more simple, of
course, but less interesting. Particularly, the largest vio-
lation of adiabaticity (∆J ~ e1/3) is reached only in the
ballistic region (Figs. 2 and 4).

Even though the dynamical theory in this region
seems to be a hard task and has not yet developed the
statistical properties of the motion, here it looks rather
simple. Surprisingly, even a simplified diffusion equa-
tion, which may not hold in the ballistic region, still
allows for some reasonably accurate estimates (Fig. 5).

In the present paper, we consider the dynamics and
statistics of a single separatrix crossing only. Of course,
this is insufficient for the full-scale statistical descrip-
tion of the separatrix crossing. As is well known (see,
e.g., [20, 21]), the correlations in multiple crossings are
generally very essential. In conclusion of our discus-
sion, we present in Fig. 6 the commutative effect of four
successive crossings over one period of the perturba-
tion.

Both moments are normalized as follows: (∆J)1 

(∆J)1/τ;   /τ ≡ D(τ) where discrete time∆J( )2
2 ∆J( )2

2

100

80

60

40

20

0

–20

–40

0.1 1.00.50.20.05

2(∆J)1.2/e

Ji

Fig. 6. The effect of correlation over four successive separa-
trix crossings. Two thick wiggly curves show statistics of
the single crossing as in Fig. 4a. Thin wiggly curves repre-
sent the effect of fourfold crossings; both moments are nor-
malized (see text). 
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τ = 4 is the crossing multiplicity in this case (see (4.3)).
In the diffusive region 2, both curves coincide within
fluctuations, which means that the correlations, if any,
are small over four crossings. This is in agreement with
the results in [21] (for a different model). Whether they
will rise with τ and why is an interesting and open ques-
tion. According to [21], they do so, but it may depend
on the method of measuring the diffusion rate. In the
ballistic region, the correlation effect is strong from the
beginning, especially for the second moment. This is
also in agreement with numerical data in [22]. Accord-
ing to data in Fig. 6, the normalized second moment

(the “diffusion rate”) decreases as D(τ) ∝  1/ . What
is even more important, the size of the ballistic region
grows: Jcro(τ) ∝  τ1/8. An intriguing question is whether
this trend will continue and, if so, for how long.
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