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Abstract—Large entropy fluctuations in the equilibrium steady state of classical mechanics are studied in
extensive numerical experiments in a simple strongly chaotic Hamiltonian model with two degrees of freedom
described by the modified Arnold cat map. The rise and fall of a large separated fluctuation is shown to be
described by the (regular and stable) “macroscopic” kinetics, both fast (ballistic) and slow (diffusive). We aban-
don a vague problem of the “appropriate” initial conditions by observing (in a long run) a spontaneous birth
and death of arbitrarily big fluctuations for any initial state of our dynamical model. Statistics of the infinite
chain of fluctuations similar to the Poincaré recurrences is shown to be Poissonian. A simple empirical relation-
ship for the mean period between the fluctuations (the Poincaré “cycle”) is found and confirmed in numerical
experiments. We propose a new representation of the entropy via the variance of only a few trajectories (“par-
ticles”) that greatly facilitates the computation and at the same time is sufficiently accurate for big fluctuations.
The relation of our results to long-standing debates over the statistical “irreversibility” and the “time arrow” is
briefly discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: MACROSCOPIC VERSUS 
MICROSCOPIC FLUCTUATIONS

Fluctuations are an inseparable part of statistical
laws. This has been well known since Boltzmann. What
is apparently less known are the peculiar properties of
rare big fluctuations (BF) that are different from, and
even in a sense opposite to, the properties of small sta-
tionary fluctuations. In this paper, we consider the sim-
plest type of chaotic dynamical systems, namely, a
Hamiltonian system with a finite number of the degrees
of freedom that admits the (stable) statistical equilib-
rium (SE). This class of dynamical models is still pop-
ular (since Boltzmann!) in debates over the dynamical
foundations of statistical mechanics (see, e.g., “Round
Table on Irreversibility” in [1, 2]).

A sufficiently simple picture of BFs in such systems
is well understood by now, although not yet well
known. To Boltzmann, this picture was the basis of his
fluctuation hypothesis for our Universe. It is also well
understood that this hypothesis is totally incompatible
with the present structure of the Universe because it
would immediately imply the notorious “heat death”
(see, e.g., [3]). For this reason, one may even term such
systems the heat death models. Nevertheless, they can
be and actually are widely used in describing and study-
ing local statistical processes in thermodynamically
closed systems. The latter term means the absence of
any heat exchange with the environment. We note, how-
ever, that under conditions of the exponential instability
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of motion, which are typical of chaotic systems, the
only dynamically closed system would be the “entire
Universe.” In particular, this excludes the hypothetical
“velocity reversal” that also is popular in debates over
“irreversibility” since Loschmidt (for a discussion, see,
e.g., [4]).

In any case, dynamical models with the SE do not
tell us the whole story of either the Universe or even a
typical macroscopic process therein. The principal
solution of this problem, unknown to Boltzmann, is
quite clear now: the “equilibrium-free” models are
required. Various classes of such models are intensively
studied today. Moreover, the celebrated cosmic micro-
wave background tells us that our Universe was born
already in the state of a heat death, which, however,
became unstable due to the well-known Jeans gravita-
tional instability [5]. This resulted in developing a rich
variety of collective processes, or synergetics, the term
recently introduced or, better to say, put in use by
Haken [6]. The most important peculiarity of such a
collective instability is that the total overall relaxation
(to somewhere?) with the ever increasing total entropy
is accompanied by an also increasing phase space inho-
mogeneity of the system, particularly with respect to
temperature. In other words, the entire system and its
local parts become more and more nonequilibrium to
the extent of the birth of a secondary dynamics that can
be, and sometimes is, as perfect as, e.g., the celestial
mechanics (see, e.g., [4, 7, 8] for a general discussion).

We stress that all these inhomogeneous nonequilib-
rium structures are not BF like in the SE but are a result
001 MAIK “Nauka/Interperiodica”
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of a regular collective instability; therefore, they are
immediately formed under a certain condition. In addi-
tion, they are typically dissipative structures according
to Prigogine [9] due to the energy and entropy
exchange with the infinite environment. The latter is the
most important feature of such processes, and at the
same time the main difficulty in studying the dynamics
of those models both theoretically and in numerical
experiments, which are so much simpler for SE sys-
tems.

In the latter case, a BF consists of two symmetric
parts: the rise of a fluctuation followed by its return, or
relaxation, back to the SE (see Figs. 1 and 2). Both parts
are described by the same kinetic (e.g., diffusion) equa-
tion, the only difference being in the sign of time. This
relates the time-symmetric dynamical equations to the
time-antisymmetric kinetic (but not statistical!) equa-
tions. The principal difference between the two types of
equations, sometimes overlooked, is that the kinetic
equations are generally understood as describing the
relaxation only, i.e., the increase of the entropy in a
closed system, whereas in fact they do so (at least, in
the SE) for the rise of BF as well, i.e., for the entropy
decrease. All this was qualitatively known already to
Boltzmann [10]. The first simple example of a symmet-
ric BF was considered by Schrödinger [11]. A rigorous
mathematical theorem for the diffusive (slow) kinetics
was proved by Kolmogorov in 1937 in the paper entitled
“Zur Umkehrbarkeit der statistischen Naturgesetze”
(Concerning Reversibility of Statistical Laws in Nature)
[12] (see also [13]). Regrettably, the principal Kolmog-
orov theorem still remains unknown to both the partic-
ipants of heated debates over “irreversibility” and the
physicists actually studying such BFs (see, e.g., [14]).

At present, there exists a well-developed ergodic
theory of dynamical systems (see, e.g., [15]). In partic-
ular, it proves that the relaxation (correlation decay, or
mixing) eventually proceeds in both directions of time
for almost any initial conditions in a chaotic dynamical
system. However, the relaxation must not always be
monotonic, which simply means a BF on the way,
depending on the initial conditions. To eliminate this
apparently confusing (to many) “freedom,” we take a
different approach to the problem: instead of discussing
the “true” initial conditions and/or a “necessary”
restriction of them, we start our numerical experiments
at arbitrary initial conditions (most likely correspond-
ing to the SE) and observe what the dynamics and sta-
tistics of BF are like. This approach is obviously based
on the fundamental hypothesis that all the statistical
laws are contained in, and can be principally derived
from, the underlying fundamental (Hamiltonian)
dynamics. To the best of our knowledge, there is as yet
no contradiction to this principal hypothesis. We note,
however, that this approach can be directly applied to
fluctuations in finite systems with a statistical equilib-
rium only (see [4] and [16] for a discussion). In these
and only these systems, infinitely many BFs grow up
spontaneously, independently of the initial conditions
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of the motion. This is similar to the well-known
Poincaré recurrences (see Section 4).

In spite of essential restrictions, simple SE models
allow us to better understand the mechanism and the
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Fig. 1. Mixed kinetics for two BFs of different sizes.
Filled/open circles show the time dependence of the mean
variance 〈v(t – ti)〉  around the BF maximum at t = ti; the
upper horizontal straight line is the equilibrium and the
lower line indicates the empirical value of the dynamical
scale vd = 0.015, Eq. (3.4), with the parameter Fd ≈ 1/3. The
two oblique straight lines represent the expected fast kinet-
ics, Eq. (3.3), and the two solid curves do so for the initial
diffusive kinetics, Eq. (3.5). The respective run parameters
and results are given by C = 15, N = 1, vb = 3.9 × 10–11/6.25 ×
10–10 (vxb = vpb), v(0) = 1.96 × 10–14/3.1 × 10–13, n =
1971/4459, w = 500. The average period between succes-
sive fluctuations is 〈P〉  ≈ 1.4 × 107/3.5 × 106 iterations.
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Fig. 2. The same as in Fig. 1 for a typical diffusive kinetics
(anti-diffusion/diffusion): the solid curve shows the average
over all n = 20259 fluctuations in a run and the wiggle line
is the same for the first 28 fluctuations. Two oblique straight
lines represent the expected initial diffusive kinetics, Eq. (3.5),

with τd = 0 and the empirical value  = 0.045, while

the theory (3.15) gives vd = 0.02. Other run parame-

ters/results are given by C = 50, N = 5, vb = 0.0256, w = 104,

〈P〉  ≈ 7.7 × 105/8.7 × 105, and B = 306/348; 〈P〉/w ≈ 77/87.
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role of BFs in statistical physics. In addition to the
removal of the vague problem of initial conditions,
these models are very helpful in clarifying the relation
between macroscopic and microscopic descriptions of
chaotic systems. In particular, a spontaneous rise of a
BF out of the SE is a macroscopic event as well as is its
subsequent relaxation back to the SE, even in a system
with a few degrees of freedom. Similarly to other mac-
roscopic processes, BFs are not only perfectly regular
by themselves but also surprisingly stable against any
perturbations, either regular or chaotic. Moreover, the
perturbations must not be small. At a first glance, this
looks very strange in a chaotic, highly unstable dynam-
ics. The resolution of this apparent paradox is that the
dynamical instability of motion affects the BF instant
of time only. The BF evolution is determined by the
kinetics independently of its mechanism, from a purely
dynamical one, as in model (2.2) used in this paper, to
a completely noisy (stochastic) one. As a matter of fact,
the fundamental Kolmogorov theorem [12] is precisely
related to the latter case but remains valid in a much
more general situation. The surprising stability of BFs
is similar to the less known concept of robustness for
the Anosov (strongly chaotic) systems [17] whose tra-
jectories are only slightly deformed under a small per-
turbation (see [4] for a discussion).

In this paper, we consider a particular type of BFs
characterized by a large concentration of “particles” in
a small phase space domain of the dynamical system. In
other words, “our” fluctuations are localized in phase
space and separated in time. A more accurate definition
of these fluctuations is given in Section 3 (see
Eq. (3.6)). The same fluctuations in a stochastic model
(with noise) were studied in detail in [14]. Obviously,
there exist many other fluctuations with their own pecu-
liarities (see, e.g., [18]). The primary object of our
studies is the macroscopic kinetics of big fluctuations
in the background of small stationary microscopic
fluctuations. A brief outline of our results was pre-
sented in [16].

2. A HAMILTONIAN MODEL: 
MOST SIMPLE BUT STRONGLY CHAOTIC

The systems with an SE can be described in terms of
models that are very simple as regards both the theoret-
ical analysis and numerical experiments (of which the
latter are even more important for us). In the present
paper, we use one of the most simple and popular models
specified by the so-called Arnold cat map (see [19, 20]):

(2.1)

which is a linear canonical map on a unit torus. It has
no parameters and is chaotic and even ergodic. The rate
of the local exponential instability, the Lyapunov expo-

nent λ = ln(3/2 + /2) = 0.96, implies a fast (ballistic)

p p x mod 1,+=

x x p mod 1,+=

5
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kinetics with the relaxation time tr ~ 1/λ ≈ 1. Through-
out the paper, t denotes the time in the map iterations.

A minor modification of this map,

(2.2)

where C is a circumference of the phase space torus,
allows studying both the fast (exponential) ballistic
kinetics (for C = 1) and the slow (diffusive) relaxation
in p (for C @ 1) with the characteristic time tp ~ C2/4Dp @
1, where Dp = 1/12 is the diffusion rate in p. In contrast
to the slow diffusion in p, the relaxation time in x does
not depend on C (tr ~ 1) and the subsequent values of x
are therefore practically uncorrelated. Map (2.2) has
the (unstable) fixed point at x = x0 = 1/2 and p = p0 =
C/2.

A convenient characteristic of the BF size is the rms
volume (area) in the 2D phase space (x, p)

(2.3)

occupied by a group of N trajectories (particles). In the
ergodic motion at equilibrium, σ = σ0 = C/12. Because
of a severe restriction to small N & 10 in the numerical
experiments (see below), we have to use simple (aver-
age) characteristics like (2.3) only. On the other hand,
these are precisely the macroscopic variables in which
we are interested.

In what follows, we also restrict ourselves to a par-
ticular case of BFs with the fixed prescribed position in
the phase space,

(2.4)

The variance of the phase space size v  = σ2 =  is
then determined by

, (2.5)

where the brackets 〈…〉  denote averaging over N trajec-
tories. In the ergodic motion at equilibrium, v  = v SE =
C2/122. In what follows, we use the dimensionless mea-
sure  = v /v SE  v  and omit the tilde. In the diffu-
sive approximation of the kinetic equation, the variable
v (t) is especially convenient because it varies propor-
tionally to time. Moreover, v   v p in this case
because of a quick relaxation v x  1 in x.

Among all the advantages of v, the relation of this
variable to the fundamental concept of the entropy is
highly desirable. The standard definition of the entropy,
which can be traced back to Boltzmann, reads

(2.6)

where f(x, p) is a coarse-grained distribution function,
or the phase-space density, and S0 an arbitrary constant
to be fixed later. We note that the distribution calculated
from any finite number of trajectories is always a

p p x 1/2 mod C,–+=

x x p C/2 mod 1,–+=

σ t( ) σp t( )σx t( )=

x fl x0
1
2
---, p fl p0

C
2
----.= = = =

σp
2σx

2

σp
2 p2〈 〉= p0

2– , σx
2 x2〈 〉 x0

2–=

ṽ

S f x p,( )ln〈 〉–= S0,+
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coarse-grained one. However, the direct application of
Eq. (2.6) requires too many trajectories, especially for
a small-size BF. Nevertheless, precisely in the latter
case, which is the main problem under consideration,
we have found a simple approximate relation

(2.7)

that gives at least a rough estimate for the entropy evo-
lution [16]. Moreover, if the distribution is Gaussian,

, (2.8)

estimate (2.7) becomes exact because it is directly
derived from the definition of the entropy in Eq. (2.6).
The two relations for the entropy are compared in the
end of Section 3 for a typical BF.

A great advantage of (2.7) is that the computation of
S does not require very many trajectories as does the
distribution function. In fact, even a single trajectory is
sufficient, as is demonstrated by Fig. 1 in [16] and Fig. 1
in this paper!

A finite number of trajectories used for calculating
the variance v  is similar to a coarse-grained distribu-
tion, as required in relation (2.6), but with a free bin size
that can be arbitrarily small.

We can now turn to the numerical experiments.

3. MACROSCOPIC KINETICS: COMPLETE, 
REGULAR, AND STABLE

In this section, we consider the regular BF kinetics.
The data were obtained by simultaneously running N
trajectories for a very long time in order to collect suf-
ficiently many BFs for a reliable separation of the reg-
ular part of BFs, or the kinetic subdynamics according
to Balescu (see [21] and references therein), from the
stationary fluctuations. The separation was done by the
plain averaging of the individual v i values (i = 1, …, n)
over all the n BFs collected in a run.

The size of the BF chosen for the subsequent analy-
sis is fixed by the condition that

(3.1)

at some time instant t ≈ ti, the moment of a BF. Here, a
prescribed value v b is the main input parameter of the
run. This condition actually determines the border of
the entire fluctuation domain (FD) as 0 < v  < v b.

The event of entering the FD is the macroscopic
“cause” of the BF whose obvious “effect” will be the
subsequent relaxation to the equilibrium. However, the
main point of our study is that the second “effect” of the
same “cause” was preceding the rise of the BF in an
apparent contradiction with the “causality principle”
(for a discussion, see [16] and Section 4 below). In any
event, the second effect requires the permanent mem-

S t( ) 1
2
--- v t( )ln≈

f x p,( ) f p( )
p p0–( )2– /2v( )exp

2πv
-------------------------------------------------=

v t( ) v b<
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ory of trajectory segments within some time window w,
which is another important input parameter of the run.

The exact procedure of data processing during the
run is as follows. Starting from arbitrary (random) ini-
tial conditions, selection rule (3.1) is checked at each
iteration. Suppose that it is satisfied at some instance tin
when the bundle of trajectories enters the FD. In the
first approximation, we could consider it as the fluctua-
tion maximum (or the variance minimum) ti = tin, where
the subscript i is the number of the current fluctuation
in a run. However, this simple procedure would cause
an asymmetry with respect to t = ti. A better choice
would be given by the rule ti = (tin + tout)/2, where tout is
the time instance of the exit from the FD. Instead, we
have accepted a more complicated procedure that better
restores the true BF symmetry, as we hope. Starting
from the moment tin, we search for the minimum of v(t)
inside a sufficiently large interval tin < t < tin + w. If a
minimum is found at some t = tmin, we check that it also
is the minimum inside the next interval tmin < t < tmin +
w. If this is the case, we identify this minimum with the
BF top and set ti = tmin; otherwise, we set tmin equal to
the time of a better minimum and repeat the last step.
Obviously, the parameter w must be small compared to
〈P〉 , the mean period of the BF, but sufficiently long for
the trajectory to leave FD (3.1). Typically, we chose
w * C2, the total diffusion time. After fixing the current
ti value, the computation within the interval ti < t < ti +
w was completed, and only then the search for the next
BF is continued.

As mentioned above, there are two quite simple lim-
iting cases of generally very complicated kinetics,
namely, the fast (ballistic) and the slow (diffusive) lim-
its. An example of both in one run for N = 1 (!) is pre-
sented in Fig. 1 for two fluctuations of different sizes.
In this case, general condition (3.1) was checked sepa-
rately for p and x,

(3.2)

with v pb = v xb ~ 10–5 and v b = v pbv xb ~ 10–10.

The fast part of the kinetics is approximately
described by

(3.3)

where τ = t – ti, λ is the Lyapunov exponent (see Sec-
tion 2) and v(0) ~ 10–13 is the minimal variance aver-
aged over all n fluctuations observed in the run. We note
that the latter value is considerably smaller than the
border value v b ~ 10–10. This is because of the penetra-
tion of trajectories into the FD. Interestingly, the ratio
vb/v(0) = 2000 is the same for both runs in Fig. 1.

A surprisingly sharp crossover to the diffusive kinet-
ics, clearly seen in Fig. 1, is related to the dynamical
scale of the diffusion corresponding to a certain size v d

of the increasing variance at which the exponential
growth stops. Roughly, it occurs at the time instance

v p t( ) v pb and v x t( ) v xb,<<

v τ( ) v 0( ) 4λτ( ),exp≈
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τ = τd, when |x – x0 | ~ |p – p0 | ~ 1/2, whence v xd ~
12/4 = 3 and v pd ~ 3/C2. We can therefore characterize
the dynamical scale as

(3.4)

where Fd is an empirical factor and τd is found from
Eq. (3.3). The data in Fig. 1 imply the dynamical scale
v d ≈ 0.015 independently of v b, which gives the empir-
ical factor Fd ≈ 1/3.

In the diffusion region (v  > v d), the initial kinetics is
described by a simple relation for the free diffusion (see
Section 2),

, (3.5)

which is also shown in Fig. 1. It involves two correc-
tions, τd and v d, due to the exponential ballistic kinetics.
The first one (with opposite signs for the two symmetric
parts of the fluctuation) takes the “lost” time after (or
prior to) the antidiffusion (diffusion) into account,
while the second correction describes a finite fluctua-
tion size at the crossover from (to) the diffusion. The
mean empirical value τd = 7 used in Fig. 1 is close to the
value τd = 6.5 found from Eq. (3.4) with another empir-
ical quantity, v d = 0.015.

The large ratio

(3.6)

v τd( ) v d Fdv pdv xd

9Fd

C2
---------,= = =

τd

v d/v 0( )( )ln
4λ

-------------------------------,=

v τ( )
τ τ d±

C2
------------- v d, τd τ  ! C2<+≈

B
P〈 〉

C2
--------- @ 1=

4
P/ 〈P〉

0 8 12

105

104

103
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101
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Fig. 3. The histogram of integrated distribution (3.9) for
data in Fig. 2. Each circle shows the number of periods Pm >

m∆P, for m = 0, 1, … P0 = n, ∆P = 1.5 × 105; Pmin/w =
1.0027; Pmax/〈P〉  = 12.63; 〈P〉  = 765084. The straight line is
the expected distribution nexp(–P/〈P〉).
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of the mean fluctuation period 〈P〉  to the characteristic
time of the diffusion relaxation (see Eq. (3.5)) is the
definition of a big fluctuation. It guarantees the time
separation of successive fluctuations.

We now turn to the main subject of our study, the
purely diffusive kinetics of BFs. For this, we first elim-
inate the x-statistics by excluding v x from selection
condition (3.1), which now reads

(3.7)

Next, the variance v b must now exceed the new dynam-
ical border,

(3.8)

with some empirical factor fp ≈ 1 (see Eq. (3.4) and the
discussion below).

A typical example of a diffusive BF is shown in Fig. 2.
Both the regular macroscopic kinetics of the antidiffu-
sion/diffusion and the irregular fluctuations around are
clearly seen. We note that their size rapidly decreases
toward the BF maximum. It may even seem that the
motion becomes regular in that region, hence the term
“optimal fluctuational path” [14]. In fact, the motion
remains diffusive down to the dynamical scale v  ~ v d in
Eq. (3.8).

Even though a separate BF is sufficiently regular,
the time instance of its spontaneous appearance ti and,
hence, the individual period P are random in the chaotic
system. Due to the statistical independence of BFs
under condition (3.6), the expected distribution in P is
Poissonian (Fig. 3),

(3.9)

The principal characteristic of the period statistics,
〈P〉 , can be estimated as follows. From the ergodicity of
motion in the N-dimensional momentum space, we
have 

(3.10)

This is an exact relation (in the limit as trun  ∞), with
Ts being the total sojourn time of trajectories within the
FD (under the condition v (t) < v b) during the entire run
time trun and 〈Ts〉  the same per fluctuation. Both ratios
are equal to the ratio of the N-dimensional momentum
volume 3 of the fluctuation at τ = 0 to that in the equi-
librium. The ratio Φ was also measured during the run.
It follows that

(3.11)

The next, more difficult step is the valuation of Ts =
2Tex from the diffusion equation, where Tex is the exit
(or entrance due to symmetry) time from (or to) the FD.

v t( ) v p= v pb< v b.=

v b v d> v pd= f p
12

C2
------≈

f P( ) P/ P〈 〉–( )exp
P〈 〉

---------------------------------= .

Φ
Ts

t f

-----
Ts〈 〉
P〈 〉

----------
3 fl

3eq

---------.= = =

P〈 〉
Ts〈 〉
Φ

----------.=
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A simple crude estimate is Tex ~ v b/Dp = v bC2 (see Sec-
tion 2). However, the first numerical experiments have
already revealed that the actual exit time is much
shorter, roughly by the factor 1/N2. A plausible expla-
nation is that inside the FD, the distribution is concen-
trated in a relatively narrow layer at the surface of the
N-dimensional sphere determined by the selection con-
dition v (t) < v b in Eq. (3.7). The relative width of the
layer ~1/N then implies the observed factor ~1/N2. Fur-
ther, the ratio

(3.12)

with the geometrical function

, (3.13)

admits a relatively accurate approximation down to N = 1
(see Fig. 4).

Collecting all the above formulas, we arrive at our
final empirical relation

(3.14)

with two fitting factors, A for the layer width and F for
all the other approximations made above. The two fac-
tors cannot be united in one because the former enters
a new expression for the dynamical scale that naturally
generalizes Eq. (3.8). Together with inequality (3.6) for
a big fluctuation, the new dynamical scale was used in

Φ v b N,( ) v b
N /2φ N( ),=

φ N( ) πe
6

------ 
 

N /2

≈ 1 1/6N–( )
πN

--------------------------

P〈 〉 F
Φ
----

2v bAC2

N2
-------------------- F

2AC2

N2
-------------

v b
1 N /2–

φ N( )
----------------≈≈

2

î1

N
4 6 8 10

2.0

1.5

1.0

0.5

0

Fig. 4. The comparison of the directly measured ratio Φemp
given by Eq. (3.10) with the theoretical approximation Φth,
Eq. (3.12) for N = 1–10: Φ1 = Φemp/Φth; the average over
71 runs is 〈Φ1〉  = 1.015 ± 0.11 (the standard deviation); the

bars show statistical errors 1/  for each run; the total
number of fluctuations in all runs is 127346.

n
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selecting purely diffusive BFs described by Eq. (3.14).
The corresponding inequality reads (cf. Eq. (3.8))

(3.15)

which means that even a small part (A/N2 < 1) of the FD
must exceed the dynamical scale.

All the empirical parameters were optimized as fol-
lows. The values of two factors, B in Eq. (3.6) and fp in
(3.15), are not crucial; larger values of these factors cor-
respond to a better selection of purely diffusive BF but
reduce the amount of the empirical data available. A
compromise was found at B = 7 and fp = 1, which leaves
36 runs of 61 done and 34429 of the total 75053 BFs
computed with N = 2–10 for comparison to Eq. (3.14).
This was executed as follows. For each selected run
with the parameters N, C, and v b and the computed val-
ues 〈P〉  and Φ, the empirical factor F (which was
assumed to be a constant) was calculated from the first
equation in (3.14). The value of A was chosen by mini-
mizing the relative standard deviation to ∆F/〈F〉  = 0.17.
For a given set of data, the result was A ≈ 6. The final
dependence F(N) is shown in Fig. 5, where the bars are

the statistical errors F/  for each run.

Coming to the analysis of our main theoretical
result, the second equation in (3.14), we first remark
that it does not describe a single trajectory (N = 1). This
is because we excluded v xb from selection condition
(3.7) (cf. Eq. (3.2)) and thus reduced the phase space
dimension to the minimal value, unity. In this case, a
single trajectory repeatedly crosses the FD with the
period P ~ C2, the entire diffusion time around the
phase space torus, which is independent of the FD size.

v b v d> , v d
A

N2
------ f p

12

C2
------,≈

n

2

F

N
4 6 8 10

0

1.5

3.0

Fig. 5. The comparison of the empirical data for 36 runs
selected from 61 runs computed for N = 2–10 by the two
rules, Eq. (3.6) with B > 7 and Eq. (3.15) with A = 6, to the-
oretical relation (3.14) with the main fitting factor Fm, m =
1, …, 36 (see text). The average value is 〈F〉  = 1.51(1 ± 0.17)
(the standard deviation); the bars show statistical errors

Fm/  for each run; the total number of fluctuations in 36
runs is 34429.

n
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More formally, this also follows from Eq. (3.14),
because condition (3.6) cannot be satisfied for small v b.

For two trajectories (N = 2), the period does not
depend on v b, and for the data in Fig. 5, we have the
ratio 〈P〉/C2 ≈ 8.7. Because of fluctuations, the actual
values of this ratio are in the interval 7.4–11.0, still not
too big for a BF. Apparently, this leads to a relatively
large scattering of points with N = 2, which also persists
for N = 3.

The main dependence in Eq. (3.14), the exponential
of N, is readily derived from a graphic picture of N sta-
tistically independent particles gathering together

inside a small domain with the probability ~1/P ~ .
Such estimates are known for the Poincaré recurrences
since Boltzmann [10]. The estimate is especially vivid
in the geometrical picture of the N-dimensional sphere

of the radius  considered above. Our empirical
relation (3.14) considerably improves the simple esti-
mate by including a weaker power-law dependence,
which is evident in Fig. 5.

In our studies described above, we fixed the position
of a BF in phase space, Eq. (2.4). If we lift this restric-
tion, the probability of a BF increases by the factor

, which corresponds to decreasing N by one
(N  N – 1) because only N – 1 trajectories then
remain independent. With the latter change, all the
above relations presumably remain valid.

Our main relation (3.14) describes the diffusive
kinetics for v b > v d, Eq. (3.15), when a BF is not too

v b
N /2

v b

v b
1/2–

–10000

S

t – t i

–5000 0 5000 10000

–2

–3

0.5

0

Fig. 6. The macroscopic kinetics of the BF entropy: the
lower line is the “exact” entropy given by Eq. (2.6), to be
compared with approximation (2.7), the middle line; the
upper line is the same approximation for the diffusion the-

ory, Eq. (3.5) with τd = 0 and the empirical value  =

0.02. The run parameters/results are C = 50, N = 5, vb =

0.01, w = 104, n = 4580, 〈P〉  ≈ 3.3 × 106, B = 1314; 〈P〉/w ≈
329. The number of partition bins for calculating (2.6) is
Np = 401.

v d
emp( )
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big. In the opposite case v b ! v d of a very big fluctua-
tion, as in Fig. 1, the dependence 〈P(v b)〉  becomes
much simpler (see Eqs. (3.11)–(3.13) and [16]):

(3.16)

This is explained by a fast exponential kinetics near the
BF top (Fig. 1), which implies the shortest exit time
Tex ≈ 1, and hence, Ts ≈ 2. Indeed, for both BFs in
Fig. 1, we have the empirical value 〈P〉Φ = 1.98.

In the conclusion of this section, we show in Fig. 6
the macroscopic kinetics of the BF entropy, both the
“exact” one in Eq. (2.6), calculated for the partition of
the entire interval (0 < p < C) into Np = 401 bins, and
the one given by our approximation (2.7). Both entro-
pies were calculated for the same 5 trajectories in one
run. The necessary statistics for the exact entropy was
obtained at the expense of a large number n = 4580 of
fluctuations in the run. To compare the two entropies,
we must adjust the constant S0 in Eq. (2.6). As is easily
verified, Gaussian distribution (2.8) leads exactly to
relation (2.7) if

(3.17)

Approximation (2.7) is valid for the most part of the BF
except a relatively small domain near the equilibrium,
where the distribution in p approaches the homoge-
neous one. The exact entropy (with constant (3.17)) in
the equilibrium is

(3.18)

instead of zero in approximation (2.7). The difference
is relatively small, the larger the fluctuation. In the main
part of the BF, our simple relation for the entropy in
Eq. (2.7) reproduces exact relation (2.6) to a surpris-
ingly good accuracy. This confirms that the distribution
in p is indeed very close to the Gaussian one in
Eq. (2.8), as expected.

4. CONCLUSION: THERMODYNAMIC ARROW?

We have presented the results of extensive numeri-
cal experiments on big entropy fluctuations (BFs) in a
statistical equilibrium (SE) of classical dynamical sys-
tems and discussed their peculiarities.

All numerical experiments were carried out on the
basis of a very simple model given by Arnold cat map
(2.1) on a unit torus with only two minor, but important
and helpful, modifications:

(1) expanding the torus in the p direction, Eq. (2.2),
for a more impressive diffusive kinetics of BFs out of
the equilibrium (Fig. 2), and

(2) inserting a special (unstable) fixed point for a
better demonstration of the exponential ballistic kinet-

P v b( )〈 〉
Ts〈 〉
Φ

----------=
2

v b
N /2φ N( )

----------------------- 2v b
N /2– .≈ ≈

S0
1
2
--- 2πe( ) 1.4189 2.–≈–≈ln–=

SSE
1
2
--- πe

6
------ 

  0.18–≈ln–=
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ics (Fig. 1). In addition, this point was used as a fixed
position of BFs, which relates our studies of BFs to
another interesting and important problem, the
Poincaré recurrences (see Eq. (2.2)).

The most important distinction of our approach is
that we have abandoned the vague question of the initial
conditions, in particular, a “necessary” restriction of
those in statistical physics. Instead, we started our
numerical experiments at arbitrary initial conditions
(most likely corresponding to the SE), and did observe
the dynamics and statistics of BFs. In other words, we
studied the spontaneous BFs only.

It is also important that such a spontaneous rise of a
BF out of the SE and its subsequent relaxation back to
the SE can be considered as a statistical macroscopic
event, even in a system with a few degrees of freedom
as the one in Eq. (2.2). The term “macroscopic” refers
to average quantities including variance, entropy, mean
period, distribution function, and the like.

We consider a particular class of BFs that we call the
Boltzmann fluctuations. They are obviously symmetric
under the time reversal (see Figs. 1, 2, and 6), and there-
fore, at least in this case, there is no physical reason at
all for the concept of the notorious “time arrow.” Nev-
ertheless, a related concept—the thermodynamic arrow
pointing in the direction of the average increase of
entropy—makes sense in spite of the time symmetry
[16]. The point is that the BF characteristic relaxation
time is determined by the model parameter C only and
does not depend on the BF itself. On the contrary, the
expectation time for a given BF, or the mean period
between successive fluctuations, rapidly grows with the
BF size and with the number of trajectories (or the
degrees of freedom), Eq. (3.14). A large ratio of the two
quantities, B = 〈P〉/C2 @ 1, is our definition of a big
fluctuation, Eq. (3.6). A similar result was recently
obtained in [22], but the authors missed the principal
difference between the time arrow and the thermody-
namic arrow.

A related notion of the causality arrow, which by
definition points from an independent macroscopic
cause to its effect, also makes some physical sense (see
[16] and Section 3 for a discussion). For the Boltzmann
BFs considered in the present paper, the directions of
both arrows coincide independently of the direction of
time. In our opinion, the last statement is the most
important, philosophical “moral” that the principally
well-known Boltzmann fluctuations teach us.

Even though we discuss and interpret our empirical
results in terms of entropy (S), which is the most funda-
mental concept in statistical physics, we actually use
another entropy-like quantity, the variance v(t) for a
group of N trajectories, Eq. (2.5). One reason is techni-
cal: the computation of v  is much simpler than that of
S(t), which is either very time-consuming in numerical
experiments (for exact S given by (2.6)) or approximate
in accordance with (2.7). In addition, for diffusive
kinetics, in which we are mainly interested, the vari-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ance is a natural variable that makes the BF picture
most simple and comprehensible.

Originally, we planned to cover both sides of the BF
phenomenon, the regular macroscopic kinetics and the
accompanying microscopic fluctuations (noise)
around. However, our numerical experiments revealed
a much more complicated structure of the latter, as an
example in Fig. 2 demonstrates. The dependence v (t)
looks like a fractal curve on a variety of time scales,
ranging from the minimal one ~1 iteration up to ~C2,
which is comparable to that of the BF itself. This inter-
esting problem certainly requires and deserves further
studies.

Only the fluctuations in classical mechanics are con-
sidered in this paper. General quantum fluctuations are
quite different. However, according to the Correspon-
dence Principle, the dynamics and statistics of a quan-
tum system in the semiclassical region are close to the
classical ones at the appropriate time scales, the longest
of which corresponds to the diffusive kinetics and
ensures the transition to the classical limit (see [4, 23]
for details). Curiously, the computer classical dynamics
that is the simulation of a classical dynamical system on
digital computer is of a qualitatively similar character.
This is because any quantity is discrete (“overquan-
tized”) in the computer representation. As a result, the
correspondence between the classical continuous
dynamics and its computer representation in numerical
experiments is generally restricted to certain finite time
scales as in quantum mechanics (see the first two refer-
ences in [23]).

The discreteness of the computer phase space leads
to another peculiar phenomenon: generally, the com-
puter dynamics is irreversible due to the rounding-off
operation unless a special algorithm is used in numeri-
cal experiments. However, this does not affect the sta-
tistical properties of the chaotic computer dynamics. In
particular, the statistical laws remain time-reversible in
the computer representation in spite of the (nondissipa-
tive) irreversibility of the underlying dynamics. This
simple example demonstrates that contrary to a com-
mon belief, the statistical reversibility is a more general
property than the dynamical reversibility.
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